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Self-supervised learning with application for
infant cerebellum segmentation and analysis
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Kathryn L. Humphreys 2,3, Gang Li 1, Sijie Niu1, Mingxia Liu 1 &
Li Wang 1

Accurate tissue segmentation is critical to characterize early cerebellar
development in the first two postnatal years. However, challenges in tissue
segmentation arising from tightly-folded cortex, low and dynamic tissue
contrast, and large inter-site data heterogeneity have limited our under-
standing of early cerebellar development. In this paper, we propose an accu-
rate self-supervised learning framework for infant cerebellum segmentation.
We validate its accuracy using 358 subjects from three datasets. Our results
suggest the first six months exhibit the most rapid and dynamic changes, with
gray matter (GM) playing a dominant role in cerebellar growth over white
matter (WM). We also find both GM andWM volumes are larger in males than
females, and GM and WM volumes are larger in autistic males than neuroty-
pical males. Application of our method to a larger population will fuel more
cerebellar studies, ultimately advancing our comprehension of its structure
and function in neurotypical and disordered development.

The first two postnatal years are an exceptionally dynamic and critical
period of brain structural and functional development, with evenmore
dramatic growth for the cerebellum (i.e., little brain) than the cere-
brum.Although the cerebellumonlymakes up around 10%of the brain
mass, it contains approximately 80% of the brain’s neurons and plays
an essential role in motor control1, sensory integration2, attention3,
language4, and the regulation of fear and pleasure responses5. Cere-
bellar dysfunction has been implicated in several neurodevelopmental
disorders, including autism6,7, attention-deficit/hyperactivity disorder
(ADHD)8, and schizophrenia9.

Accurate characterization of cerebellar tissues is essential for
unraveling the neural and biological underpinnings of both neuroty-
pical and disordered development. It enables the identification of
potential early biomarkers and facilitates timely interventions for
improved outcomes. Previous studies have revealed age and sex dif-
ferences in cerebellar volume, particularly in neurotypical individuals.
For instance, ref. 10 demonstrated that total cerebellar volume is
consistently larger in males compared to females across ages 5 to 24
years. Similarly, ref. 11 reported smaller cerebellar volumes in females

compared to males in subjects aged 3 months to 12.7 years. Sussman
et al.12 further corroborated these findings, showing that the female
cerebellum is significantly smaller than the male cerebellum based on
261 neurotypical subjects aged 4 to 18 years (p value <0.05). In the
quest to identify biomarkers for developmental disorders like autism,
longitudinal studies have provided valuable insights. For example,
ref. 13 conducted a study on subjects aged 6–35 years and found that
total cerebellar volumes in individuals with autism may exhibit
inverted-U curves, which show increased volumes in young children
with autism and subsequently decreased to meet the curve of neuro-
typical groups at 12–13 years of age. Other cerebellar features found in
autistic subjects included decreased vermis volume (7.5–18.5 years14),
increased total cerebellar volume (10–30 years15), increased cerebellar
white matter volume (1.9–5.2 years16), and reduced cerebellar gray
matter volume (8–13 years17). Further study conducted by ref. 18
indicated that autistic boys exhibited greater cerebellar white matter
compared to neurotypical boys between the ages of 2 and 3 years.

Despite these significant findings, most existing studies have
either focused on subjects from early childhood to young adulthood
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or infant subjects without differentiating between gray matter and
white matter in cerebellar MRIs. Consequently, our understanding of
the early cerebellar growth trajectories in both neurotypical and
disordered development remains highly limited, especially during
the first two postnatal years. This limitation is primarily due to the
considerable challenges associated with accurately segmenting
infant cerebellar tissues. These challenges can be summarized
into three main factors. First, manual annotation is difficult because
of low tissue contrast, especially for infants younger than three
months old. This results in a limited number of training subjects with
manual annotations. Figure 1a illustrates typical T1-weighted MR
images of the infant cerebellum acquired at around ≤3, 6, 18, and
24 months of age, as well as the corresponding tissue intensity dis-
tributions, demonstrating the low tissue contrast in neonates and

posing a great challenge for automated or manual segmentation.
Second, the collaborative use of multi-domain infant images, invol-
ving images acquired from different imaging sites with varying
magnetic fields, head coils, and imaging parameters, poses a sig-
nificant challenge known as the domain shift problem. As reported in
a 6-month infant cerebrum segmentation challenge (iSeg-2019,
http://iseg2019.web.unc.edu)19, we found that a model trained on a
specific-site dataset usually performs well on testing subjects
from the same site, but poorly on subjects from other sites. This
problem is also present when working with data from different time
points, as shown in Fig. 1a, where infants at different time points have
dynamic tissue contrasts and varying data distributions. Third, the
arbor vitae is a complete and folded tree-like appearance; however,
due to low tissue contrast and severe partial volume effect, there are
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Fig. 1 | Overview of the proposedwork. a T1-weightedMRIs of infant cerebellums
and the corresponding intensity distributions in the first two postnatal years. b The
proposed self-supervised learning (SSL) framework for infant cerebellum seg-
mentations (24M: 24months; 18M: 18months). c The source domain comprises 24-
month-old subjects with manual labels, while the target domain comprises unla-
beled 18-month-old subjects. Our SSL framework consists of two steps. In Step 1, a
segmentation model (ADU-Net26) is trained based on a number of training subjects
with manual labels in the source domain. This model is then applied to testing
subjects to automatically generate segmentations. Subsequently, a confidence
network (with the U-Net structure40) is trained to evaluate the reliability of the
automated segmentations at the voxel level. In Step 2, a set of reliable training

samples is automatically generated from the testing subjects to train a segmenta-
tion model for the target domain. This training is guided by a proposed spatially-
weighted cross-entropy loss (Lseg_weights). d Histograms of probability values for
correctly classified and misclassified voxels. e Cross-sectional growth trajectories
based on 174 neurotypical infant subjects: (left) scatterplots and fitted develop-
ment trajectories (solid lines) of gray matter and white matter volumes of infant
cerebellum in the first two postnatal years; (right) scatterplots and fitted devel-
opment trajectories (solid lines) of normalized gray matter and white matter
volumes in terms of the total cerebellum volume (TCV) in the first two postnatal
years. The error bands represent the 95% confidence interval. Source data are
provided as a Source Data file.
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often topological errors (“hole” and “handle”) in the segmentation
results.

In this work, to address these challenges, we propose a self-
supervised learning (SSL) framework for infant cerebellum segmen-
tation with multi-domain data. As demonstrated in Fig. 1a, cerebellum
MRIs from infants younger than 3 months old exhibit extremely low
tissue contrast, posing significant challenges for manual annotations.
Consequently, directly applying existing supervised learning algo-
rithms to train a segmentation model becomes difficult. However,
cerebellums MRI from 24-month-old infants exhibits much better tis-
sue contrast20, making it possible to segment them in a more reliable
way, either manually or automatically. Therefore, we can take advan-
tage of accurate manual labels from 24-month-old cerebellums and
transfer them to other time points. To address the domain shift issue,
we propose to automatically generate a set of reliable training samples
for target domains and train a target domain-specific segmentation
model with a spatially-weighted cross-entropy loss function. Experi-
ments on three datasets and one challenge demonstrate the superior
accuracy of our proposed framework. Note that an initial version of
our framework was previously published in a conference paper21,
which, however, had limited validation on a small number of subjects
from a single imaging site. In contrast, this current work presents
extensive validation on multi-site subjects and introduces several key
improvements. (1) We propose a novel approach of transferring
manual labels from24-month-old subjects to younger infants, enabling
the generation of reliable segmentations through self-supervised
learning. Moreover, we validate this method on a large number of
multi-site subjects, demonstrating its effectiveness and general-
izability. (2) We thoroughly evaluate the rationality of the confidence
model and enhance its performance by incorporating tissue prob-
ability maps. This refinement improves the accuracy and reliability of
our segmentation results. (3) We delve into early cerebellar develop-
ment, examining different tissue types and sex differences. Addition-
ally, we chart the growth trajectories of the cerebellum in both autistic
and neurotypical subjects during the first two years of postnatal life.
(4) We further validate our SSL framework on a multi-site infant cer-
ebrumsegmentation challenge (iSeg-2019)19. This additional validation
demonstrates the robustness and competitiveness of our proposed
framework against state-of-the-art methods.

Results and discussion
Experimental setup
To demonstrate the superiority of our SSL method in managingmulti-
site data, we verify its effectiveness on infant images from various time
points (ranging from ≤3months to 18months) and imaging sites. In the
experiments, we evaluate the performance of the proposed SSL
method against several state-of-the-art methods and available pipe-
lines for infant subjects. These include (1) volBrain22, (2) Infant
FreeSurfer23, (3) a multi-atlas-based method24, (4) ASD-Net25, and (5)
ADU-Net26. The volBrain (https://www.volbrain.net/) is an automated
MRI Brain Volumetry System that uses the CERES pipeline27 to analyze
the cerebellum, which won a MICCAI cerebellum segmentation chal-
lenge. The CERES method applies a patch-based multi-atlas method,
using cerebellar atlases from adults, to perform cerebellum segmen-
tation. Infant FreeSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/
infantFS) is an automated segmentation and surface extraction pipe-
line designed for infants. The multi-atlas-based method is a widely
used label fusion segmentation framework. The ASD-Net is an
attention-based semi-supervised deep learning framework that uses a
generative adversarial network (GAN) to predict labels and confidence
maps, and then trains the segmentation model with automatically
generated labels. The ADU-Net is the backbone architecture of our
segmentation model.

To ensure a fair comparison, competing methods and our SSL
method are trained and tested on the same subjects. Additionally, we

use the same gradual label propagation strategy as the ASD-Net
method (detailed in the section “Methods”), which involves consider-
ing all testing subjects in the target domains as training samples and
using a conventional cross-entropy loss to train a domain-specific
segmentation model for each target domain. We evaluate the seg-
mentation accuracy using two commonly used metrics: Dice ratio28

and 95th percentile Hausdorff Distance (HD95)29. The Dice ratio mea-
sures the overlap ratio between the estimated segmentation and the
manual segmentation and is a volume-based assessment. TheHD95 is a
surface-based assessment that measures the distance between the
estimated surface and the manual surface, and the 95th percentile is
used to avoid the effect of outliers. A higher Dice ratio and a lower
HD95 value indicate better segmentation results.

Cross-time point cerebellum segmentation (Siemens scanner)
We compared our SSL method with five competing methods in cross-
time point cerebellum segmentation using the UNC/UMN Baby Con-
nectome Project (BCP)30 dataset with the Siemens Prisma scanner. The
24-month-old subjects were used as training data, while subjects at
earlier timepoints (i.e.,≤3, 6, 9, 12, and 18months)were used as testing
data. Figure 2 presents a visual comparison of the segmentation
results, where the T1w and T2w images, segmentation results gener-
ated by different methods, and corresponding manual labels are
shown from top to bottom.

From the figure, it can be observed that the cerebellum segmen-
tation achieved by our proposed SSLmethod aremore consistent with
the manual labels compared to the other methods. Specifically, the
segmentation results of volBrain, Infant FreeSurfer, and the multi-
atlas-based method are coarse and inaccurate, since these methods
highly relyon the image registration accuracy.However, due to the low
tissue contrast and convoluted folds in infant cerebellar images, it is
challenging to find accurate correspondences between the atlases and
individual infant cerebellum. Similarly, the ASD-Net cannot generate
reasonable segmentation results. This may be because ASD-Net, with
only a simple discriminator network, cannot accurately detect unreli-
able regions in the cerebellum with complex tissue structures.
Although the ADU-Net produces better results than volBrain, Infant
FreeSurfer, the multi-atlas-based method, and ASD-Net, its results for
subjects less than 3 months of age are still unsatisfactory. This is
because ADU-Net directly applies the model trained on 24-month-old
subjects to younger subjects, ignoring the distribution gap between
different time points. In terms of speed, our method is faster than
other non-deep-learningmethods (volBrain, Infant FreeSurfer, and the
multi-atlas-based method) during the testing stage, according to
Supplementary Table 4.

Quantitative analysis. We quantitatively compared our method with
five competing methods on the BCP dataset with the Siemens Prisma
scanner. Specifically, we reported the Dice ratio and HD95 of six
methodson50 infant subjects in Table 1. In addition,weperformed the
Wilcoxon signed-rank test (two-sided) to evaluate the statistical dif-
ference between our SSL method and each of the five competing
methods. Since the volBrain and Infant FreeSurfer methods cannot
well segment CSF, we did not report the corresponding results in
Table 1. Table 1 shows that the proposed method consistently out-
performs the five competing methods at all five time points, while the
ADU-Net usually performs better than volBrain, Infant FreeSurfer, the
multi-atlas-basedmethod, and ASD-Net. Notably, the overall Dice ratio
gradually decreases when segmenting younger subjects. For example,
the Dice ratio forWMachieved by ADU-Net at 18 and ≤3months of age
are 92.79 and 83.96%, respectively, while those of SSL are 93.02 and
90.39%, respectively. Regarding the HD95 metric, our SSL also
achieves better results than the competing methods. These results
indicate that our method generates more accurate segmentation
results comparedwith the competingmethods, especially for themost
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challenging infant subjects younger than 3 months old. More valida-
tion in the source domain (24-month-old subjects) is available in
Supplementary Note 2.

Qualitative analysis. In addition to the quantitative evaluation on 50
subjects with manual labels, we performed a further validation of our
method on 208 subjects without manual labels to demonstrate its
robustness through visual inspection. Each segmentation result was
visually categorized into three quality groups—“good”, “fair”, and
“poor”—independently annotated by two raters. Figure 3 shows the
number distribution of 208 subjects at different time points in a
characteristic rendering ofWM results of different groups in b and the
assessment in each group by two raters in c. To test the inter-rater
reliability, we evaluated the ratings of the two raters. The results
indicated that 192 out of 208 subjects (92.31%) were rated with the
same quality assessment, indicating high inter-rater reliability. From
the assessment in c, ourmethod achieved a decent averagepercentage
of “good” and “fair” (i.e., 85.34% averaged by two raters).

Cross-site cerebellum segmentation (Philips scanner)
Meantime, we evaluated the performance of different methods in a
cross-site cerebellum segmentation task. Specifically, we first directly
applied our self-trained segmentationmodel for 6-month-old subjects
in the subsection “Cross-time point cerebellum segmentation (Sie-
mens scanner)” to five 6-month-old infant images acquired with a
Philips scanner (the second dataset). Then, we trained a segmentation
model according to our SSL strategy. For the ASD-Net, we applied its 6-
month-old segmentation model in the subsection “Cross-time point
cerebellum segmentation (Siemens scanner)” to the testing subjects
and then trained a segmentation model with automatically generated
training samples. For the ADU-Net, we directly applied the 24-month-
old segmentation model in the subsection “Cross-time point cere-
bellum segmentation (Siemens scanner)” to the testing subjects. The
visual segmentation results and quantitative evaluation in terms of the
Dice ratio are shown in Fig. 4. From these results, we observed that the
four competing methods (i.e., volBrain22, Infant FreeSurfer23, ASD-

Net25, ADU-Net26) failed to generate reasonable results though the
results of ASD-Net and ADU-Net are better than others. In contrast, our
method generated much better results in this cross-site segmentation
task, primarily due to our self-supervised learning strategy to train a
site-specific segmentationmodel. To better compare the performance
across sites, we also included the results on ten 6-month-old BCP
subjects acquired with the Siemens scanner in Fig. 4b. Herein, we only
quantitatively compared our results with ASD-Net and ADU-Net, since
they have demonstrated much better performance than non-deep-
learning methods (volBrain, Infant FreeSurfer, and the multi-atlas-
based method) in Fig. 2, Table 1, and Fig. 4a. We found that the Dice
ratios of our method were more consistent across the two imaging
sites than the other competing methods. This demonstrates that our
SSL has a good generalization ability across sites.

Cerebellar volume analysis of neurotypical infants
Leveraging “good” or “fair” segmentation results from 174 subjects
(rated by both raters) in the section “Results and discussion”, we
analyzed the growth trajectory of infant cerebellums from birth to 2
years old, specifically at 0month (2M/4F), 3months (7M/9F), 6months
(7M/9F), 9 months (12M/14F), 12 months (6M/14F), 18 months (17M/
20F), and 24 months (27M/26F), where F and M denote female and
male, respectively. Figure 1e presents the scatterplots of cerebellar GM
and WM volumes of infant cerebellums (left), and the scatterplots of
normalized cerebellar tissue volumes in terms of the total cerebellum
volume (TCV) (right). From the left figure, we observe that the GM
volume increases by 237%, and theWMvolume increases by 175% in the
first two years of life. Furthermore, the first six months of life may be
themost dynamic and critical period of cerebellumdevelopment, with
volumes of (GM and WM) increasing by (141.58 and 85.18%), respec-
tively, from0→ 6months, (19.92 and 15.72%) from6→ 12months, (6.90
and 7.06%) from 12→ 18 months, and (9.06 and 19.90%) from
18→ 24months. The right scatterplot in Fig. 1e presents the normalized
GM and WM volumes in terms of TCV to reflect the growth relative to
thewhole cerebellum.Weobserve that thepercentageofGM increases
significantly, particularly in the first year, whereas the WM percentage

Fig. 2 | Cerebellumsegmentation comparisons for infant subjects from theBCP
dataset at around 18, 12, 9, 6, and ≤3 months. The first row displays the infant
cerebellum MRIs (left: T1w images; right: T2w images) from each time point. From
the second row to the seventh row, the segmentations are obtained by volBrain22,

Infant FreeSurfer23, a multi-atlas-based method24, ASD-Net25, ADU-Net26, and our
proposed SSLmethod. The correspondingmanual labels are shown in the last row.
Zoomed views are also provided for better visualization.
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decreases. Therefore, comparedwithWM,GMplays a dominant role in
the rapid growth of the infant cerebellum.

Figure 5a, b depicts the GM andWMvolumes of the cerebellum in
male and female subjects during thefirst twopostnatal years. Note that
the brain stem was not excluded when we calculated the WM/GM
volume. As seen in both scatterplots (a and b), the GM and WM
volumes are consistently larger in males than females from 0 to
24months. Statistical analysis in Supplementary Table 3 indicates that
cerebellar GM volumes differ significantly between male and female
subjects at 6, 9, 12, 18, and 24 months (p value <0.05 based on the
Wilcoxon rank-sum test or two-sample t-test, two-sided), with very
large effect sizes at 6, 12, and 18months (Cohen’s d > 1.3), a large effect
size at 9 months (Cohen’s d = 1.0541), and medium effect sizes at the
remaining months (Cohen’s d = 0.7342 at ≤3 months; Cohen’s
d =0.6854 at 24 months). Cerebellar WM volumes also exhibit sig-
nificant differences at ≤3, 6, 12, and 18 months, as shown by both the
Wilcoxon rank-sum test and two-sample t-test (p value <0.05, two-
sided). These differences are accompanied by very large or large effect

sizes (Cohen’s d = 1.0883 at ≤3months; Cohen’s d = 2.1281 at 6months;
Cohen’s d = 1.1847 at 12 months; Cohen’s d = 1.4480 at 18 months).
Notably, the trajectory of infant cerebellum development may suffer
from the limited number of studied subjects in this work, but it may
still be worthy of reference for future work.

Longitudinal cerebellar volume analysis of autistic infants
With the reliable and accurate tissue segmentations generated by the
proposed method, we investigated potential differences in cerebellar
growth trajectories between male autistic and neurotypical subjects.
Due to the limited number of female autistic subjects, we only com-
pared autisticmale subjectswith neurotypicalmale subjects using data
from the National Database for Autism Research (NDAR)31,32 (https://
nda.nih.gov/edit_collection.html?id=19/), which includes 95 long-
itudinal male subjects (22 autistic males and 73 neurotypical males)
scanned at 6 months, 12 months, and 24 months of age. The seg-
mentation results from all 95 × 3 = 285 scans were carefully inspected
by two raters, and none of them were rated as “poor”.

Table 1 | Dice ratio and 95th percentile Hausdorff distance (HD95) of cerebellum segmentation results on 50 testing subjects
(N = 10 for each time point) at 18, 12, 9, 6, and ≤3 months of age from BCP (mean± standard deviation)

Age (Month) N Method CSF GM WM

Dice ratio (%) HD95 (mm) Dice ratio (%) HD95 (mm) Dice ratio (%) HD95 (mm)

18 10 volBrain N/A N/A 76.30 ± 3.01* 16.37 ± 3.06 53.18 ± 2.67* 25.18 ± 1.63*

Infant FreeSurfer N/A N/A 71.28 ± 4.43* 16.16 ± 2.22* 58.24 ± 2.01* 16.42 ± 1.95*

Multi-atlas-based
method

53.03 ± 6.28* 11.96 ± 3.01* 68.90± 6.89* 11.41 ± 2.24 65.46 ± 9.06* 8.94 ± 2.74

ASD-Net 73.65 ± 2.44* 12.89 ± 1.53* 85.19 ± 0.12* 11.36 ± 2.77 88.28 ± 1.46* 6.51 ± 3.31

ADU-Net 87.17 ± 6.22 10.46 ± 2.01 91.57 ± 3.10 13.98 ± 2.66 92.79 ± 2.50 6.56 ± 3.62

Proposed 89.45 ± 1.96 9.68 ± 1.75 92.12 ± 0.95 12.81 ± 4.45 93.02 ±0.61 5.92 ± 2.91

12 10 volBrain N/A N/A 74.20 ± 8.91* 19.92 ± 4.01 51.47 ± 3.37* 22.84 ±0.33*

Infant FreeSurfer N/A N/A 67.63 ± 8.57* 15.70 ± 3.12* 56.39 ± 7.65* 15.07 ± 2.02*

Multi-atlas-based
method

52.62 ± 10.70* 14.85 ± 1.64* 71.66 ± 3.39* 17.10 ± 2.35* 66.15 ± 3.71* 8.50 ± 1.96*

ASD-Net 81.22 ± 4.04* 13.56 ± 1.36* 85.05 ± 1.93* 12.30 ± 1.62 84.57 ± 1.96* 6.25 ± 0.72

ADU-Net 88.72 ± 9.61 11.67 ± 2.55 88.59 ± 2.68 14.52 ± 2.50 88.08 ± 1.68* 6.81 ± 1.38

Proposed 90.07 ± 1.68 9.18 ± 2.42 91.66 ± 1.59 10.58 ± 5.14 92.05 ± 2.65 5.58 ± 1.40

9 10 volBrain N/A N/A 77.27 ± 4.28* 16.89 ± 1.43 51.63 ± 1.21* 21.02 ± 1.06*

Infant FreeSurfer N/A N/A 69.86 ± 6.70* 17.64 ± 4.38* 55.15 ± 8.70* 18.28 ± 5.96*

Multi-atlas-based
method

33.93 ± 2.44* 17.48 ± 1.44* 63.78 ± 0.90* 21.88 ± 4.96* 63.60 ± 2.30* 9.28 ± 0.92

ASD-Net 76.33 ± 5.22* 14.09 ± 1.65* 83.30 ± 2.63* 13.37 ± 4.43* 84.28 ± 2.54* 7.29 ± 2.83

ADU-Net 87.64 ± 6.91 10.81 ± 2.35* 88.45 ± 1.65* 16.61 ± 5.45 87.49 ± 2.41* 7.80 ± 2.64

Proposed 87.10 ± 2.56 7.39 ± 2.83 90.96 ± 1.87 16.46 ± 4.29 92.30 ± 3.07 6.76 ± 3.25

6 10 volBrain N/A N/A 74.23 ± 6.18* 17.78 ± 1.99 48.65 ± 4.87* 19.54 ± 3.73*

Infant FreeSurfer N/A N/A 67.81 ± 5.42* 15.25 ± 1.55 59.78 ± 5.66* 14.78 ± 1.41*

Multi-atlas-based
method

32.27 ± 3.19* 17.62 ± 0.57* 67.81 ± 5.42* 16.52 ± 1.55* 63.62 ± 6.15* 9.97 ± 1.89*

ASD-Net 71.57 ± 3.81* 14.76 ± 2.30* 81.14 ± 4.38* 14.08 ± 7.91 83.76 ± 3.59* 11.46 ± 9.48

ADU-Net 82.63 ± 7.88 15.69 ± 7.05 87.49 ± 2.52* 16.71 ± 6.83 87.80 ± 1.75* 11.53 ± 9.19

Proposed 84.46 ± 2.15 10.80 ± 1.77 89.52 ± 1.30 13.37 ± 3.05 91.12 ± 1.60 5.02 ±0.79

≤3 10 volBrain N/A N/A 73.94 ± 4.95 18.24 ± 5.00 50.64 ± 2.66* 23.22 ± 5.71*

Infant FreeSurfer N/A N/A 59.40 ± 3.06* 17.82 ± 7.22 26.30 ± 2.08* 20.00 ± 1.67*

Multi-atlas-based
method

26.16 ± 9.73* 16.37 ± 0.77* 57.67 ± 8.26* 16.14 ± 1.49 64.70 ± 13.39* 11.45 ± 3.83*

ASD-Net 73.64 ± 6.39* 13.12 ± 2.50* 77.42 ± 7.30* 15.70 ± 9.69 81.71 ± 6.66* 6.41 ± 1.17

ADU-Net 76.67 ± 4.81* 10.90 ± 1.45* 80.65 ± 8.35* 16.96 ± 9.50 83.96 ± 7.61* 7.73 ± 1.52*

Proposed 83.87 ± 8.87 8.86 ± 1.02 87.75 ± 9.18 16.04 ± 10.47 90.39 ± 8.59 5.97 ± 1.06

The symbol “*” indicates that our proposedSSLmethod is significantly better than volBrain22, Infant FreeSurfer23,multi-atlas-basedmethod24, ASD-Net25, andADU-Net26, withp value <0.05 (Wilcoxon
signed-rank test, two-sided).
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Figure 5c, d display longitudinal trajectories of GM and WM from
6 months to 24 months for both autistic and neurotypical subjects. A
comprehensive list of gray andwhitematter volumes, alongwith related
clinical measures for 22 autistic and 73 neurotypical subjects, is avail-
able in Supplementary Tables 5, 6. The GM volume of (autistic subjects,
neurotypical subjects) increasesby (23.34%, 21.17%) from6→ 12months,
(10.29%, 11.34%) from 12→ 24 months, and (36.08%, 34.88%) from
6→ 24 months. The WM volume of (autistic subjects, neurotypical
subjects) increases by (33.53%, 32.38%) from 6→ 12 months, (16.81%,
17.38%) from 12→ 24 months, and (55.97%, 55.37%) from 6→ 24 months
of age. Although there is no significant difference in growth rate
between the autistic and neurotypical groups (as shown in Supple-
mentary Table 3), theGMgrowth rates from6 to 12months and from 12
to 24 months show small effect sizes between the two groups (6→ 12:
Cohen’s d =0.3473; 12→ 24: Cohen’s d =0.4116). Thus, the GM and WM
volumes are not only larger in autistic males compared to neurotypical
males from 6 to 24 months but also have a slightly faster growth rate
from 6 to 12 months. To test the statistical difference, we used the
Wilcoxon rank-sum test and t-test to calculate the significant difference
of tissue volumes between the autistic and neurotypical groups. Both
tests demonstrate that the autistic GM volumes have a significant dif-
ference from those of neurotypical subjects at 12 months, with a very
large effect size (Cohen’s d= 1.3151).

We further calculated cerebellum volumes, normalized cere-
bellum volumes in terms of TBV, and normalized cerebellar GM and
WM volumes in terms of TBV between neurotypical subjects and
autistic subjects at 6 months, 12 months, and 24 months, as shown in
Fig. 6. We found that as infants grow up, the difference of cerebellum
volumes between neurotypical subjects and autistic infants gradually
increases. Specifically, based on the Wilcoxon rank-sum test in Sup-
plementary Table 3, the difference in cerebellum volumes is not
significant at 6 months (p value = 0.1647), but becomes significant at
12 months (p value = 0.0162) and 24 months (p value = 0.0265).
However, the normalized cerebellar volumes in terms of TBV have no
significant difference. In addition, for the normalized cerebellar GM
and WM volumes, as shown in Fig. 6c, d, we did not find any sig-
nificant difference in these trends between the neurotypical and
autistic groups, but the normalized cerebellar GM volumes have
small effect size at 6 and 24 months (6 months: Cohen’s d = 0.2735;
24 months: Cohen’s d = 0.2477), indicating that the difference
between groups is not so small as to be trivial. This difference needs
to be further investigated when more subjects are available in the
future.

Please note that the above analysis is proof of the principle that
more accurate segmentations at early ageswill advance insight into the
neural and biological bases. The corresponding findings should be

Fig. 3 | The segmentation quality assessment on 208 subjects at different time
points by two raters. a The number distribution of 208 subjects at different time
points. b Three representative examples for the quality of WM rendering results,

i.e., “good”, “fair”, and “poor”. cAssessment by two raters. Source data are provided
as a Source Data file.
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Fig. 4 | Segmentation comparison of five methods for 6-month-old subjects
acquired using Siemens and Philips scanners. a Segmentation results on a
representative 6-month-old subject acquired with a Philips scanner: T1w, T2w
images, manual labels and WM segmentation results obtained by volBrain22, Infant
FreeSurfer23, ASD-Net25, ADU-Net26, and the proposed method. b Comparison of
Dice ratios of cerebellar GM and WM segmentation results between ten testing

subjects fromBCP (Siemens) and five testing subjects fromVanderbilt U (Philips) at
6 months of age. In each box plot, the midline represents themedian value, and its
lower andupper edges represent thefirst and thirdquartiles. Thewhiskers go down
to the smallest value and up to the largest. Source data are provided as a Source
Data file.
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further validated and should not be regarded as definitive conclusions
due to the limitations imposed by the available data.

Is it easier to identify WM than GM?
The results presented inTable 1 andFig. 4 indicate that theDice ratioof
WM obtained by the proposedmethod is generally higher than that of
GM. This trend is also reflected in the HD95 measurements. The pos-
sible reasons for this phenomenon are twofold. First, GM is a narrow
layer between CSF and WM, which makes it more challenging to seg-
ment as it involves identifying both the CSF/GM and GM/WM bound-
aries. On the other hand, segmenting WM only requires the
identification of the GM/WM boundaries. Thus, identifying GM can be
more challenging than identifying WM. Second, the tissue contrast
between CSF and GM is generally lower than that between GM and
WM, which can also be observed from the lower CSF accuracy. As a
result, identifying the CSF/GM boundaries can be more difficult than

identifying the GM/WM boundaries, leading to lower accuracy in GM
segmentation.

Early cerebellum development
To the best of our knowledge, this might be among the first attempts
to compare the GM and WM trajectories of early cerebellum devel-
opment in terms of sex during the first two postnatal years. Our results
indicate that the first six months of life may be the most rapid and
dynamic period of cerebellum development and GM plays a dominant
role in the rapid growth of cerebellum than WM. Our results also
indicate that both GM and WM volumes are larger in males compared
with females from 0 month to 24 months. Moreover, our longitudinal
analysis in the subsection “Longitudinal cerebellar volume analysis of
autistic infants” reveals abnormal growth trajectories of GM and WM
for autistic boys from6months to 24months of age.With limited data,
ourfindings indicate that theGMandWMvolumes are larger in autistic
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Fig. 5 | Cross-sectional and longitudinal cerebellar analysis for neurotypical
(NT) and autistic subjects in the first two postnatal years. Cross-sectional ana-
lysis based on 174 neurotypical subjects (78M/96F): a Scatterplots and fitted
development trajectories (solid lines) of cerebellar gray matter volumes between
male and female infants in the first two postnatal years. b Scatterplots and fitted
development trajectories (solid lines) of cerebellar white matter volumes between
male and female infants in the first two postnatal years. Longitudinal analysis based
on 95 male subjects from 6 months to 24 months (neurotypical subjects: 73M;

autistic subjects: 22M): c Longitudinal trajectories of cerebellar gray matter
volumes for autistic and neurotypical males from 6 months to 24 months, and the
fitted trajectories represented by solid lines. d Longitudinal trajectories of cere-
bellar white matter volumes for autistic and neurotypical males from 6 months to
24 months, and the fitted trajectories represented by solid lines. The error bands
represent the 95% confidence interval. The p values and effect sizes are available in
Supplementary Table 3. Source data are provided as a Source Data file.

Cerebellum volume
a b c d

Normalized cerebellum volume Normalized cerebellar GM volume Normalized cerebellar WM volume

NT       Autism NT       Autism NT       Autism NT       Autism NT       Autism NT       Autism NT       Autism NT       Autism NT       Autism NT       Autism NT       Autism NT       Autism

6 months       12 months     24 months 6 months       12 months     24 months 6 months       12 months     24 months6 months       12 months
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Fig. 6 | Volume analysis for 95 male subjects from 6 months to 24 months: 73
neurotypical (NT) male subjects and 22 autistic male subjects. a Cerebellum
volumes for neurotypical and autistic infants at 6, 12, and 24months. bNormalized
cerebellum volumes in terms of total brain volume (TBV) for neurotypical and
autistic infants at 6, 12, and 24 months. c Normalized cerebellar GM volumes in
terms of TBV for neurotypical and autistic infants at 6, 12, and 24 months.

dNormalized cerebellarWM volumes in terms of TBV for neurotypical and autistic
infants at 6, 12, and 24months. In each box plot, themidline represents themedian
value, and its lower and upper edges represent the first and third quartiles. The
whiskers go down to the smallest value and up to the largest. The p values and
effect sizes are available in Supplementary Table 3. Source data are provided as a
Source Data file.
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boys than in neurotypical boys from 6months to 24months. Accurate
segmentation results obtained by our method on a larger sample size
may provide additional valuable information.

Limitations and future work
Several limitations need to be considered to further improve the cur-
rent framework. First, the size of the training samples remains rela-
tively small. Collecting more neuroimaging data from multi-site MRI
studies and using generative models to augment training samples is
desirable. Second, the cerebellum has a fairly regular folded
structure33, than the cerebrum with highly variable folds across
individuals34. Hence, a cerebellum atlas, providing important prior
knowledge, may help guide the segmentation, especially for challen-
ging newborn subjects. Third, the growth trajectory suffers from a
limited number of cross-sectional/longitudinal subjects. As a result,
the corresponding findings and conclusions need to be further vali-
dated when more subjects become available in the future. Fourth, we
only segment the cerebellum intoWM,GMandCSF in thiswork. In our
future work, we will further parcellate the cerebellum into smaller
regions of interest. Furthermore, modeling the appearance trajectory
in terms of varying tissue contrast at different time points will also be
our future work to boost the performance.

Methods
We propose a self-supervised learning (SSL) framework for multi-site
infant cerebellum MRI segmentation to characterize early cerebellar
development. The framework has two steps: (1) supervised segmen-
tation and confidence learning based on imaging data with manual
labels in the source domain and (2) self-supervised segmentation
learning in the to-be-analyzed target domain. In thefirst step,we train a
segmentation model based on eighteen 24-month-old BCP subjects
withmanual labels, considering the high tissue contrast of MRIs at this
time point. The confidence map, which is the difference between the
automated segmentation predicted by the trained segmentation
model and the corresponding manual label, is used to train a con-
fidence network that predicts the reliability of the automated seg-
mentation. In the second step, we use the confidence map predicted
by the trained confidence network to generate reliable training sam-
ples for the target domain, based on which we train a domain-specific
segmentation model guided by a proposed spatially-weighted cross-
entropy loss. This step is performed in a self-supervised learning
manner to alleviate the domain shift between different sites/time
points and improve the generalization ability of the trained model.
More details on the proposed SSL framework can be found in the
following sections. Figure 1b, c provide an overview of the framework.

Data and MRI preprocessing
In this study, we used T1w and T2w infant brain MRIs from three data-
sets,which are listed inTable 2. It shouldbenoted that, unlessotherwise
defined herein, the term “image” is used interchangeablywith “subject”.

(1) The first dataset includes 276 subjects, with 18 labeled images used
for training, and 50 labeled images and 208 unlabeled images used for
validation. These images were obtained from the UNC/UMN Baby
ConnectomeProject (BCP)30, where imageswere acquired at≤3, 6, 9, 12,
18, and 24months of age using a Siemens Prisma scanner. Parents of all
participants in BCP provide permission and informed consent prior to
participation. All procedures were approved by the University of North
Carolina at Chapel Hill and the University of Minnesota Institutional
Review Boards. Subjects fromBCP are all neurotypical subjects, and the
data exclusion criteria during collection can be found in ref. 30. (2) The
seconddataset includesfive6-month-oldMRIs thatwere acquiredusing
a Philips scanner. All procedures were approved by the Vanderbilt
University Institutional Review Board and all participating subjects had
informed consent provided by their parent or legal guardian. These
images were used to test the generalization ability of the proposed
method and all competing methods. It is worth noting that a total of 55
testing subjects were used for quantitative evaluation in this study.
This is currently the largest sample size used for infant cerebellum
analysis, as indicated in Supplementary Table 2, which provides a
summary of available cerebellum tissue segmentation methods for
brain MRIs. (3) The third dataset is from the National Database for
Autism Research (NDAR)31,32 (https://nda.nih.gov/edit_collection.html?
id=19/) and includes 95 male subjects. This dataset was used to inves-
tigate whether there are differences in cerebellar growth trajectories
between neurotypical subjects and autistic subjects during the first two
postnatal years. The infantswere recruited, scanned, and accessed from
four clinical data collection sites, a Data Coordinating Center, and two
image processing sites (University of North Carolina at Chapel Hill,
University of Washington, Children’s Hospital of Philadelphia,
WashingtonUniversity in St. Louis,McGill University, University of Utah
and UNC). The data collection sites obtained study protocol approval
from their respective Institutional Review Boards, and all participating
subjects had informed consent provided by their parent or legal guar-
dian. The data exclusion criteria during collection is available in Sup-
plementaryNote9. Thediagnosisof autismwasmadeusing theDSM-IV-
TR (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition,
Text Revision) criteria35 at 24 or 36 months old. All images were
acquired by a Siemens 3T Siemens Tim Trio scanner with a 12-channel
head coil. Quality control procedures were employed to ensure image
quality across different sites, times, and procedures, as described in
Supplementary Note 9. More information on the subjects studied31,32,
including behavioral assessment and data exclusion criteria during
collection, can be found in Supplementary Note 9. Of all the subjects
available in NDAR, only 95 were longitudinally scanned at all three time
points (6, 12, and 24months of age), with 22meeting clinical criteria for
autism and 73 included as neurotypical subjects. In the Supplementary
Information, SupplementaryTables 5, 6 list sex, race, and related clinical
measures (e.g., Mullen36 and ADOS37) for each subject. We have dili-
gently complied with all applicable ethical regulations during the utili-
zation of these datasets in our study.

Table 2 | Information of three infant cerebellum datasets: (1) Baby Connectome Project (BCP) with a Siemens scanner; (2) 6-
month-old MRIs acquired from Vanderbilt University with a Philips scanner; and (3) longitudinal subjects from the National
Database for Autism Research (NDAR) with a Siemens scanner

Group Scanner (3T) Modality TR/TE (ms) Resolution (mm3) Number Age (month)

Training Siemens T1w 2400/2.2 0.8 × 0.8 × 0.8 18 24

(BCP) T2w 3200/564 0.8 × 0.8 × 0.8

Testing Siemens T1w 2400/2.2 0.8 × 0.8 × 0.8 258 ≤3, 6

(BCP) T2w 3200/564 0.8 × 0.8 × 0.8 9, 12, 18

Philips T1w 10/4.6 1.0 × 1.0 × 1.0 5 6

(Vanderbilt U) T2w 2500/310 0.8 × 0.8 × 0.8

Siemens T1w 2400/3.16 1.0 × 1.0 × 1.0 95 6, 12, 24

(NDAR) T2w 3200/499 1.0 × 1.0 × 1.0
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For image preprocessing, the resolution of all images was resam-
pled to 0.8 ×0.8 ×0.8mm3, and T2w images were linearly aligned with
their corresponding T1w images. Skull stripping and cerebellum
extraction were performed using an infant cerebrum-dedicated pipe-
line (iBEAT V2.038, http://www.ibeat.cloud). Since there is no available
“ground truth” segmentation for in vivo subjects, manual annotation
was used as the “ground truth” for training and quantitative validation.
Manual annotation was performed by a medical student (Yue Sun)
trained specifically for this task and then further corrected by amedical
images analysis expert (Dr. LiWang)with 12 years of experience in infant
brain MRI processing, under the guidance of a neuroradiologist (Dr.
Valerie Jewells). Representative examples of manual annotations for
BCP subjects are shown in Supplementary Fig. 15. The first and second
columns show the original T1- and T2-weighted images, with the initial
(by Yue Sun) and final annotations (by Dr. Li Wang and Dr. Valerie
Jewells) shown in the third and fourth columns. The last column shows
the difference between the initial annotations and the final annotations.
Compared with the initial annotations, for each subject, 21,318 ± 11,411
voxels (10.42 ± 5.57% of total cerebellum volume) were finally corrected
by the expert and the neuroradiologist. Averagely, it took 5 ~ 6 h to
perform manual annotation for a 24-month-old subject. Finally, eigh-
teen 24-month-old subjects fromBCPweremanually annotated. Due to
the difficulty and time-consuming nature ofmanual annotation editing,
a limitednumber of younger subjects (i.e., ten subjects per timepoint in
the first dataset and five 6-month-old subjects in the second dataset)
were manually annotated for testing data, while the remaining data
without manual annotations were visually inspected by two medical
students (Yue Sun and Limei Wang).

Supervised learning (source domain)
Segmentation model at 24 months old (SegM-24). In this work,
various network architectures could be considered for supervised
segmentation, including SegNet39, U-Net40, DenseNet41 ADU-Net26, and
nnU-Net42. ADU-Net was chosen as the backbone segmentation model
due to its ability to capture contextual features fromglobal to local and
its useofdenseblocks to strengthen feature propagation. ADU-Net has
also been successfully used in the iBEAT V2.038, processing over
18,000 infant cerebrum scans from 150+ institutes with various ima-
ging protocols and scanners. ADU-Net consists of a contracting path
and an expanding path, going through seven dense blocks. Each dense
block includes three BN-ReLU-Conv-Dropout operations, and each
convolution layer has 16 kernels with a dropout rate of 0.1. The final
layer in ADU-Net is a Conv layer, followed by a softmax non-linearity to
provide the per-class probability for each voxel in theMRI. As shown in
Fig. 1c, a cross-entropy loss Lseg is used in the ADU-Net, defined as

Lseg = �
XC

i = 1

Y i lnXi ð1Þ

where C is the number of categories (C = 4 in this work, i.e., back-
ground, CSF, GM, andWM), Xi denotes the predicted probability map,
and Yi is the target of segmentation.

In this study, we fed patches from 18 BCP subjects at 24months of
age along with their corresponding manual labels into the ADU-Net.
Thenetwork generated four tissue probabilitymaps of the same size as
the inputs, and the final segmentation results were determined using
the softmax strategy. However, the trained segmentation model
(SegM-24) could not achieve satisfactory results when directly applied
to other time points or sites due to the domain shift issue. To tackle
this challenge, wedeveloped a self-supervised strategy that leverages a
confidence model to automatically generate a set of reliable training
samples for a target domain. This approach helps to mitigate the
domain shift issue and improve the performance of the segmentation
model in the target domain.

Confidencemodel (ConM). To assess the reliability of the automated
segmentation at each voxel, we designed a confidencemodel (ConM).
Since this task is relatively straightforward compared to segmentation,
we use a U-Net architecture40 for simplicity. We feed the automated
segmentations and corresponding tissue probabilitymaps as inputs to
the U-Net. The confidence map, which is defined as the difference
between manual labels and automated segmentations, is used as the
target for training the confidence network. The confidence value
Xc∈ [0, 1] in the confidence map is lowest (0) when the automated
segmentation differs from themanual label, and highest (1) otherwise.
We design a loss Lcp to learn whether the segmentation results are
reliable, defined as follows

Lcp = � ðYc lnXc +a � ð1� YcÞ lnð1� XcÞÞ ð2Þ

where Xc is the predicted confidence value, and Yc is the target. A
constant parameter a is empirically set as a = 0.1 to alleviate the
volume bias between correctly classified and misclassified voxels.

In this study, we applied the ConM, which was trained on 24-
month-old subjects, to all age groups. This strategy was motivated by
the consistent topological errors observed in the label space across
different sites and time points, as reported in previous studies43–46. To
provide further insight into this strategy, we plotted the histogram of
tissue probabilities for cerebellar WM and GM, as depicted in Fig. 1d.
Our analysis revealed a distinct pattern: correctly classified voxels
typically exhibited probabilities of belonging to WM or GM that were
close to either 0 or 1, while misclassified voxels tended to have prob-
abilities around 0.5. This distinction in probabilities between correctly
and misclassified voxels remained consistent across different time
points, motivating us to use the ConM trained on 24-month-old sub-
jects for other age groups.

To illustrate the effectiveness of our approach, Fig. 7 shows the
confidence maps and automated segmentations for 18- and 6-month-
old subjects in the first and second columns, while the last column
shows the correspondingmanual labels. The confidencemaps for both
age groups were generated using the same ConM trained on 24-
month-old subjects. The confidence score is represented by a color
scale, where darker colors indicate lower confidence and vice versa.
The 3D rendering results show that the confidence maps accurately
reflect the reliability of the automated segmentation, as topological
errors circled by red dashed lines in the 3D rendering are consistently
reflected by dark colors in the confidencemap at different ages. This is
further supported by the quantitative validation performed on
45 subjects, as detailed in Supplementary Note 5.

Self-supervised learning (target domain)
In the self-supervised learning strategy, the reliability of automated
segmentation for each voxel is taken into account through the
spatially-varying weights w(x), which are calculated based on the
confidence map,

wðxÞ= McpðxÞ, McpðxÞ ≥ 0:5

0, McpðxÞ<0:5

(
ð3Þ

where Mcp is the confidence map, i.e., the output of the confidence
model. Voxels with higher confidence scores are assigned higher
weights. We propose a spatially-weighted cross-entropy loss function
that uses these weights to select reliable voxels for training in the
target domain, which is defined as

Lseg weights = �w
XC

i = 1

Y i lnXi ð4Þ

With the weighted automated segmentations as pseudo-labels, we
train a new segmentation model on the unlabeled subjects from the
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target domain. This loss function effectively supervises the training
process with these reliable labels, allowing themodel to learn domain-
specific features and adapt to the domain shift issue. The influence of
the spatially-weighted cross-entropy loss function is available in
Supplementary Note 4.

It is worth noting that these reliable labels can be not only from
inside the tissues, but also from the boundaries between tissues. A
justification for including boundary samples in the training set can be
found in Supplementary Note 8.With this approach, we can generate a
set of training samples for each target domain and train a domain-
specific segmentation model.

Implementation details
We randomly extracted 1000 MR image patches (size: 32 × 32 × 32)
from each subject, treating the T1w and T2w images as two channels in
the proposed networks. The influence of the number of training
samples was explored in Supplementary Note 7. The kernels were
initialized by Xavier, and we used the Stochastic Gradient Descent
(SGD) strategy for network optimization. The learning rate was set to
0.005 and multiplied by 0.1 after each epoch.

To train the confidencemodel, we split the training subjects into
K folds, and trained a segmentation model based on subjects from
any K − 1 folds, testing on subjects from the remaining fold to derive
their automated segmentations and corresponding tissue probability
maps. We repeated this procedure until every fold was indepen-
dently tested, finally deriving automated segmentations and
corresponding tissue probability maps for all subjects, which were
used to train the confidence model. We set K = 2 for simplicity. It is
important to highlight that we optimized the segmentation model
and the confidence model separately. If these models were jointly
trained, the segmentation model would initially exhibit a large error,
making it difficult to effectively train the subsequent confidence

model. Additionally, before the convergence of the segmentation
model, the target for the confidencemodel would constantly change,
presenting significant challenges for training the confidence model.
By decoupling the training process and optimizing each model
independently, we were able to achieve more stable and effective
results.

In the infant cerebellum segmentation task, we treated 24-
month-old BCP subjects with manual labels as the source domain,
and any other time points/sites as the to-be-analyzed target domain.
Given the large distribution gap between 24-month-old and 0-
month-old subjects, we proposed a gradual label propagation strat-
egy (24→ 18→ 12→ 9→ 6→0∽ 3). Specifically, we applied our self-
supervised learning framework first to 18-month-old subjects,
and regarded 18-month-old subjects with automated segmentations
as a source domain for 12-month-old subjects. We repeated this
procedure until reaching 0-month-old subjects. The influence of the
gradual label propagation strategy is available in Supplemen-
tary Note 3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data from BCP30 and NDAR31,32 in this study are available in the
NIMHData Archive (NDA) through standard request procedures (BCP:
https://nda.nih.gov/edit_collection.html?id=2848, NDAR: https://nda.
nih.gov/edit_collection.html?id=19). The five Philips scans are available
at https://github.com/YueSun814/Philips_data. The multi-site infant
cerebrum data used in this study are available in the iSeg-2019
challenge19 (https://iseg2019.web.unc.edu) through standard request
procedures. Source data are provided with this paper.
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Fig. 7 | Confidencemaps and automated segmentation results at different time
points.Thefirst column shows the confidencemaps, the second column shows the
segmentation results, and the last column shows the correspondingmanual labels.
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confidence score and vice versa. The automated segmentations are accompanied
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Code availability
The source code and training subjects withmanual annotations for the
proposed SSL are available online (https://github.com/DBC-Lab/Self_
Supervised_Learning.git, https://zenodo.org/record/8050825). In
detail, the proposed networkwas trainedusing theCaffe deep learning
framework (Caffe 1.0.0-rc3). For deployment, a custom Python code
(Python 2.7.17) was developed. The image preprocessing step,
including skull stripping and cerebellum extraction, was performed by
using a public infant-dedicated pipeline (iBEAT V2.0 Cloud38, http://
www.ibeat.cloud). CERES V1.0 pipeline27 was used to analyze the cer-
ebellumwhen submitting testing data to the volBrain website (https://
www.volbrain.net). The Infant FreeSurfer pipeline (https://surfer.nmr.
mgh.harvard.edu/fswiki/infantFS), updated in Feb 2020, was used to
analyze testing data.
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