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Mechanisms underlying pathological
cortical bursts during metabolic depletion

Shrey Dutta 1,2,3 , Kartik K. Iyer 1, Sampsa Vanhatalo 4,
Michael Breakspear3,5 & James A. Roberts 1,2

Cortical activity depends upon a continuous supply of oxygen and other
metabolic resources. Perinatal disruption of oxygen availability is a common
clinical scenario in neonatal intensive care units, and a leading cause of lifelong
disability. Pathological patterns of brain activity including burst suppression
and seizures are a hallmark of the recovery period, yet the mechanisms by
which these patterns arise remain poorly understood. Here, we use compu-
tational modeling of coupled metabolic-neuronal activity to explore the
mechanisms by which oxygen depletion generates pathological brain activity.
We find that restricting oxygen supply drives transitions from normal activity
to several pathological activity patterns (isoelectric, burst suppression, and
seizures), depending on the potassium supply. Trajectories through para-
meter space track key features of clinical electrophysiology recordings and
reveal how infants with good recovery outcomes track toward normal para-
meter values, whereas the parameter values for infants with poor outcomes
dwell around the pathological values. These findings open avenues for
studying and monitoring the metabolically challenged infant brain, and dee-
pen our understanding of the link between neuronal and metabolic activity.

The brain is an energy-demanding organ whose activity depends upon
a rich supply of metabolic resources, including oxygen and glucose.
Compromised supply of oxygen and other critical resources is a cen-
tral factor inmany neurological disorders such as epilepsy, movement
disorders, and dementia1. Neurological complications that are com-
mon consequences of stroke, cardiac arrest, asphyxia are also likely
caused bymetabolic disturbances2–4. Compromised oxygen supply is a
common perinatal insult, with crucial consequences for
neurodevelopment5,6. Yet, the dynamic interdependence of cortical
activity and metabolic supply—and the ways in which this can be dis-
rupted—are not well understood.

Scalp electroencephalography (EEG) is routinely used in the
neonatal intensive care unit (NICU), with monitoring of pathological
patterns such as seizures and burst suppression (BS)7 a part of stan-
dard care. The hallmark of BS during recovery from acute oxygen

deprivation is high amplitude bursts of activity separated by quiescent
periods. Neonatal BS exhibits scale-free dynamics underlying highly
variable amplitudes. Bursts initially have asymmetric shapes that
becomemore symmetric as recovery progresses8. Another form of BS
is seen in adults under anesthesia, where cortical bursts have relatively
constant amplitude9.Modeling of anesthesia-inducedBS has identified
a mechanism of fast-slow bursting driven by metabolic resource
depletion9,10. In contrast, the mechanisms of neonatal post ischemic-
hypoxic BS remain poorly explored.

Despite the high clinical relevance of metabolic insults, models of
brain network activity have largely focused solely on neural activity.
But neurons do not exist in a vacuum: their activity is intertwined with
the metabolic, synaptic, and ionic resources available to them. The
main energy expenditure for signaling is the active transport of intra-
and extracellular ions to maintain the resting membrane potential11–13.
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Neurons source energy from hydrolysis of adenosine 5’-triphosphate
(ATP), primarily derived from aerobic oxidation of glucose14,15. Per-
turbations of oxygen availability lead to cascades of cellular-level
changes in neuronal function. Despite knowledge of these cellular
processes, their propagation to the scales of larger networks is not
understood.

Here, we use clinical neurophysiological recordings to study the
interdependenceof neural activity and itsmetabolic resourcepool.We
first develop a network model of neurons coupled to their available
oxygen and ionic resources. We next simulate conditions of hypoxia,
and analyze the ensuing neuronal dynamics. We then examine trajec-
tories through parameter space that correspond to different recovery
scenarios, and validate the model against empirical clinical EEG data.

Results
Modeling metabolically constrained cortical dynamics
Local field potentials reflect activity in local neural populations. We
hence model a local neuronal circuit composed of 400 modified
Hodgkin-Huxley neurons coupled to theirmetabolic supply16,17 (Fig. 1a;
see Methods). Neuronal activity is coupled to O2 dynamics via Na+-K+

pumps, reflecting the fact that most of the brain’s energy expenditure
for signaling is associated with maintaining the functioning of Na+-K+

pumps12,13. Each neuron receives input from ~80 synaptically coupled
neurons (~64 excitatory and ~16 inhibitory) through local random
connectivity (see Methods). This random network architecture has
been shown to generate self-sustaining activity18–20. Therefore, we do
not include a (deterministic or stochastic) external drive.

We investigate the parameter space of external potassium and
oxygen supply to understand the effect of metabolism on neural
activity. The oxygen supply from the blood vessels is modeled as dif-
fusion from a reservoir of concentration [O2]Buffer

16. Similarly, the dif-
fusionofpotassium into the extracellular space frombloodvessels and
other sources ismodeled by the concentration ([K+]Buffer) of potassium
in the reservoir16,21. Previous research has identified [O2]Buffer and
[K+]Buffer as important control parameters for single-neuron dynamics
and experimental preparations16,17,22.

The activity of the energy-consuming Na+-K+ pumps (Eq. (4)) is
influenced by several factors (Fig. 1i). The extracellular potassium
([K+]o), intracellular sodium ([Na+]i), and extracellular oxygen ([O2]o)
concentrations directly impact the pump currents (Eqs. (1–3)). Mean-
while, [O2]Buffer and [K+]Buffer set the baseline values for [O2]o (Eq. (4))
and [K+]o (Eq. (5)), respectively. As a result, an increase in [K+]Buffer
indirectly increases the baseline energy demand by raising the equili-
brium value of [K+]o.

To benchmark our model of the resource-depleted cortex, we
analyzed scalp EEG acquired in routine clinical care (Fig. 1b) from 17
infants following birth asphyxia. Modeled cortical dynamics simulated
for metabolically challenged hypoxic conditions (Fig. 1c) were com-
pared to physiological metrics derived from infant EEG exhibiting
pathological activity during recovery from asphyxia (Fig. 1d–f)8,23. We
mapped the emergent dynamical regimes in the parameter space of
[K+]Buffer and [O2]Buffer (Fig. 1g), and through parameter estimation,
identified trajectories of model parameters corresponding to the EEG
time series (Fig. 1h).

Scale-free burst suppression
Burst suppression activity in infants following ischemic-hypoxic injury
exhibits stereotypical, high amplitude bursts of highly variable sizes
interspersed with periods of low EEG activity (Fig. 2a–d; zoomed 5min
windows in Fig. 2e–h). We quantified these bursty EEG patterns using
burst metrics sensitive to scale-free dynamics. It has previously been
shown that these data exhibit approximately scale-free distributions of
burst areas and durations, and that the average shape of these bursts is
asymmetric8. Here, we fitted strictly truncated power law distributions
(see Methods) to burst area distributions (Fig. 2i–l) and burst duration

distributions (Fig. 2m–p). We calculated the number of orders of
magnitude (O) and scaling exponent (E) of each fit.We found that even
short 5 min windows exhibit scale-free distributions over several
orders of magnitude. The scale-free nature of these bursts enables the
averaging together of bursts to seek a common underlying shape24.
This revealed asymmetric burst shapes, which can be quantified by
calculating the burst asymmetry (Σ) andburst sharpness (K) (Fig. 2q–t).
These sixmetrics provide clinically relevant, quantitative comparators
between NICU-monitored EEG and model-derived simulations.

In the next section, we explore the types of dynamics the model
generates. Then, we infer the model’s physiological parameters and
their trajectories through parameter space reflecting the progression
towards continuous EEG in infants recovering from birth asphyxia.

Physiological regime: self-sustaining asynchronous irregular
(AI) activity
We explored the model’s activity during healthy and pathological
values of metabolic parameters, starting with the healthy (physiolo-
gical) case. Randomly connected neuronal networks have been shown
to generate self-sustaining asynchronous (i.e., pairwise cross-
correlation CC <0.1) and irregular (i.e., coefficient of variation of the
inter-spike interval CVISI > 1) activity18–20, similar to cortical activity of
awake cats, monkeys, and humans18,19,25. Therefore, we consider asyn-
chronous irregular (AI) activity as physiologically healthy. We first
examined the caseof adequatemetabolic supply and sought a network
regime corresponding to AI activity.

Setting [O2]Buffer to a physiological value of 32 mg/L16,17, and
[K+]Buffer to its physiological value of 3.5 mM17, yields self-sustaining AI
activity states, when the maximum synaptic conductances are inhibi-
tion dominated (maximum excitatory synaptic conductance Gex =
0.022 mS/cm2, and maximum inhibitory synaptic conductance Ginh =
0.374mS/cm2), consistent with prior work18–20. Themaximum synaptic
conductances are fixed to these values for the remainder of the paper.

With this network connectivity, the model generates self-
sustaining AI dynamics (with CVISI = 1.01 and CC =0.04, computed
from 60 s simulation) without any external source of noise or external
current (Fig. 3a). The only source of randomness comes from the static
random connectivity, also termed quenched noise19. The average
instantaneous firing rate time series (ϕfr(t); see Methods) and the
average of post-synaptic currents of the excitatory neurons (Φsyn(t);
see Methods) are widely used as estimates of local field potentials26,
representing population-level activity of a network of neurons. The
asynchronous and irregular nature of the dynamics can also be seen in
ϕfr(t) (Fig. 3b), and ϕsyn(t) (Fig. 3c). While spiking activity is irregular, it
nevertheless exhibits beta-band oscillations with a broad spectral peak
around 31 Hz, reflecting a periodic modulation of the sporadic spike
rate (Fig. 3d).

This network rhythm emerges through the interaction between
excitatory and inhibitory neurons. Increasing the time constant of
inhibitory synapses slows down the response of the inhibitory neurons
to incoming input. This delay allows excitatory neurons to increase
their firing rate transiently before inhibition reduces it again, which
drives a roughly oscillatory modulation of the network firing rate. The
peak frequency of ~31 Hz varies roughly linearly with τinh in the vicinity
of our nominal parameter set (Supplementary Fig. S1).

Balanced excitatory and inhibitory activity is an indicator of a
healthy brain state, as observed experimentally in vitro27, in vivo28, and
in human electrophysiological data25. Deviations from this balance are
an important marker of pathological states25. We estimate E-I balance
by calculating the logarithm of the ratio of the mean excitatory post-
synaptic current (EPSC) and mean inhibitory post-synaptic current
(IPSC) of excitatory and inhibitory neurons. An E-I balance of 0 indi-
cates a perfect balance between EPSC and IPSC; positive values indi-
cate more excitation and negative values indicate more inhibition.
Within the AI state, we observe that the E-I balance ismaintained close
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to 0 indicating healthy dynamics (Fig. 3e). Small fluctuations away
from zero are common to both populations, yielding a zero reverting
effect.

Themetabolically well-resourced state in our model thus exhibits
statistics consistent with experimentally observed self-sustaining AI

states. In the subsequent results, we keep the synaptic strengths (Gex

and Ginh) fixed to the values of the self-sustaining AI activity state.

AI regime co-exists with an isoelectric regime. An isoelectric state
with no firing activity exists when [K+]Buffer or [O2]Buffer are very low.

Fig. 1 | Overviewof the analysis. a Local brain activity ismodeledwith a networkof
400 modified Hodgkin-Huxley neurons (320 excitatory in black and 80 inhibitory
in red) with O2 dynamics. O2 and K+ diffuse into the extracellular space from
reservoirs with concentrations [O2]Buffer and [K+]Buffer. b Two channel, biparietal
electroencephalogram (EEG) was recorded from 17 infants during recovery from
ischemic-hypoxic insults at birth. c Simulated local field potentials (LFP) under
hypoxic conditions. d Infant EEG instantaneous power exhibiting burst suppres-
sion. e, f Sixmeasures of burst statisticswere estimated from the EEGand simulated
time series (see Fig. 2 for details): orders of magnitude and exponents of both the
distribution of burst area and the distribution of duration (total 4 statistics); and
asymmetry and sharpness of average burst-shapes from duration 1280 ms to 5120
ms (total 2 statistics).gWesystematicallymapped the emergentdynamical regimes
(denoted by colors) in the parameter space of [K+]Buffer and [O2]Buffer. h By trian-
gulating the infant EEG metrics within the corresponding model parameter space,

we inferred likely parameter trajectories of individual infants. i Model schematics.
We use a network of 400 neurons (320 excitatory and 80 inhibitory) such that each
neuron receives synaptic inputs (Sj) from 80 random neurons. The dendritic
summation of these inputs results in the postsynaptic current (Isyn) for the neuron.
Isyn modulates the neuron’s membrane potential (V). V is also modulated by the
intrinsic ion currents (IK and INa), which result from the net ion flow between the
intracellular and extracellular spaces. Intracellular and extracellular ion con-
centrations ([K+] and [Na+]) establish gradients across the membrane (reversal
potentials EK and ENa). Ion pumps (Ipump and Igliapump) modulate ion concentrations
to maintain concentration gradients, expending energy derived from O2 bonds

81.
The extracellular concentration of O2 is mediated by [O2]Buffer. The model also
incorporates diffusionof potassium fromdistal sources parameterizedby [K+]Buffer.
Panel (b) illustration by Madeleine Kersting Flynn.
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This state is similar to the clinically observed iso-electric state having
negligible neuronal activity, classified by clinicians as a flat EEG trace.
This state also co-exists within the vicinity of the self-sustaining AI
activity state, when [O2]Buffer and [K+]Buffer are near their normal values
(Fig. 4a) and, as such, is a stable fixed point attractor. Moreover, this
isoelectric state is bistable with the AI state, such that the observed
dynamics depend on initial conditions. The isoelectric state is
observed when the initial conditions are in a non-AI regime, otherwise
the stable AI regime emerges.

Note that these conditions arise in the absence of an external
stochastic drive. To assess the stability of the isoelectric state, we
performed additional simulations in the setting where the network
receives external stochastic drive. We find that the coexisting iso-
electric state is only stable (non-spiking) in the presence of very small
perturbations (≲1.5 μA/cm2 amplitude; Supplementary Fig. S3). Exter-
nal noise of greater amplitude shifts the dynamics to the AI regime
(Supplementary Fig. S3b–d). In contrast, under normal physiological
conditions in theAI state, the amplitudes of spontaneous post-synaptic
currents are approximately 50–100 μA/cm2 (Supplementary Fig. S4,
left panels), hence up to 2 orders of magnitude stronger than required
to disrupt the isoelectric state (Supplementary Fig. S4, right panels).
Therefore, while the isoelectric state co-exists as an attractor in this
region of parameter space, it has a very small basin of attraction and as
such is unlikely to be observed under normal physiological conditions.

Hypoxia triggers pathological dynamics
Next, we explored the departure of the model dynamics from the
healthy regime as [O2]Buffer and [K+]Buffer deviate from their normal
values.

Pathological dynamics due to hypoxia. Reducing [O2]Buffer to simu-
late metabolic conditions of hypoxia in the model results in patholo-
gical dynamics. We quantified the network’s synchronization using the
Kuramoto order parameter (〈R(t)〉; see Methods). The healthy regime
exhibits low synchronization as expected for an AI state (Fig. 4b).
Decreasing [O2]Buffer results in a transition to highly synchronized
dynamics, on the border between theAI and isoelectric states at higher
[K+]Buffer (Fig. 4b). We refer to this highly synchronized region as the
pathological regime.

Inspection of the firing rate time series in the pathological regime
reveals bursting dynamics (bursts interspersedwith silence). However,
the bursts are diverse in nature, forming two zones in the pathological
regime (Fig. 4c). We show exemplar single-neuron membrane poten-
tial time series for all states in Supplementary Fig. S2. In the first zone,
bursts take the form of neuronal avalanches in the firing rate time
series (labeled BS state), similar to the pattern of BS seen in neonates
recovering from an ischemic-hypoxic insult (e.g. birth asphyxia)8,23. In
the second zone, bursts are composed of a series of synchronous
spikes in the firing rate time series, similar to electrophysiological
recordings of seizures (labeled SZ state). The transition between BS
and SZ is not sudden but rather consists of an intermediate region
where seizures and bursts occur simultaneously. In the present work,
we do not explore this intermediate region and include it in the BS
zone. Next, we examine the BS and SZ states separately.

Hypoxia-induced BS. In newborn infants, perinatal ischemia-hypoxia
generates the pathological EEG phenomenon of BS8. In the model, we
observe BS while reducing [O2]Buffer for values of [K

+]Buffer higher than
17.5 mM (i.e., highly elevated K+) (Fig. 4c). The BS regime exhibits
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Fig. 2 | Exemplar EEG time series of a neonate recovering from birth asphyxia.
a–d Four different epochs of BS recorded sequentially within the first 14 h post
birth. The density of bursts increases with epochs, consistent with a progression
towards continuous EEG. Green rectanglesmark the 5min windows analyzed in the
subsequent panels. A small number of the largest bursts in panels a and d are
truncated for clarity. e–h Zooms of the green windows shown in (a–d). i–l Burst
area probability densities for the bursts extracted from the time series in (e–h).

Logarithmically binned probability density functions (PDFs) of burst area (green)
with maximum likelihood fits to strictly truncated power-law distributions (black).
The orders of magnitude (O) and the exponent (E) of the fit are displayed in each
figure panel. m–p Burst duration probability densities (green) for the bursts
extracted from the time series in (e–h), with strictly truncated power-law fits
(black). q–t Average shape of bursts (y(t,T)) of duration from 1280 s to 5120 s. The
estimates of asymmetry (Σ) and sharpness (K) are shown as insets.
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bursts with a wide range of degrees of synchronization (Fig. 4b). A
gradual increase in a narrow range of [O2]Buffer results in phase-
transitions from ordered BS to scale-free BS to disordered BS (Sup-
plementary Fig. S6).

An example ofmodeledBSdynamics is shown in Fig. 5 at [K+]Buffer =
20 mM and [O2]Buffer = 7.05 mg/L. For each burst, neurons fire in a
relatively synchronized (CC = 0.18) but irregular (CVISI = 11.32) fashion,
before falling silent for a variable duration until the next burst (Fig. 5a).
These synchronized and irregular firings give bursts their long duration
and hence dynamic spectra are dominated by low frequencies, lacking
harmonic structure (Fig. 5d). The number of neurons involved in each
burst is highly variable, reflected in highly variable amplitudes of
LFP/EEG proxy signals (Fig. 5b, c).

Due to the low availability of O2 from [O2]Buffer, the local extra-
cellular [O2]o dynamics are tightly intertwined with the corresponding
neural activity (Fig. 5c).While on the time scale of hundreds of seconds
themodel exhibits bursts and suppressions as is characteristic of burst
suppression in EEG.Whenviewed inmoredetail, thesebursts comprise
clusters of briefer bursts. A single brief burst may not necessarily
involve all neurons, and is typically followed by another brief burst
involving different neurons after a short suppression phase, giving rise
to a cluster of bursts. The clusters of bursts appear around local
maximaof [O2]o (Fig. 5c). [O2]o decreaseswith eachburst in the cluster.
Whenmore or less every neuron has participated in the cluster, a long
suppression phase is observed during which oxygen replen-
ishes (Fig. 5c).
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[O2]o. d Spectrogram showing the wavelet-based time-frequency distribution of
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TheseBS dynamics derive from the complex interplay of neuronal
and network dynamics across three distinct time scales (Supplemen-
tary Fig. S5). The fast timescale of individual spikes (V) derives from the
classic Hodgkin-Huxley-type membrane capacitance (Supplementary
Fig. S5b). The second time scale corresponds to the repetitive firing of
many cells within a burst timelocked to the recovery dynamics of
potassium (Supplementary Fig. S5c). The third time scale reflects the
interplay of slow metabolic ([O2]o, Supplementary Fig. S5d) and ionic
([Na+]i, Supplementary Fig. S5e) processes, yielding the duration of the
bursts and the intervalbetween them.The secondand third timescales
emerge because the ionic concentrations change in response to neu-
ronal firing. The characteristics of the network bursts (such as size and
duration) depend on the number of recruited neurons and the timing
of the onsets of the bursts in relationship to the recovery of [O2]o and
[Na+]i. As the number of recruited neurons varies within each network
burst, the systemfluctuates between small (fewneurons recruited) and
large bursts (most neurons recruited). Small bursts typically occur
when a burst is initiated when the metabolic states of most of the
system’s neurons are still recovering from the previous burst (see
example in Supplementary Fig. S5 at ~150 s). Conversely, larger bursts
occur when [O2]o and [Na+]i have recovered in most neurons (see
example in Supplementary Fig. S5 at ~100 s). The timescales associated
with BS bursts are longer than those of the activity fluctuations in the
AI state, which do not exhibit large network-wide changes in ionic
concentrations and thus do not engage these slower time scales.

In a clear departure from the AI state (Fig. 3e), the E-I balance is
highly disrupted in the BS state (Fig. 5e). The bursts exhibit large

deflections in E-I balance, alternating between excitation-dominated
and inhibition-dominated fluctuations.

Hypoxia-induced seizure-like activity (SZ). Decreasing [O2]Buffer in
combination with values of [K+]Buffer between ~7 and 17 mM (i.e.,
moderately elevated K+) results in the emergence of seizure-like
activity (SZ regime, Fig. 4c). This activity exhibits several features
present in human seizures. First, there is substantial activation of
neurons across the network during the model seizures (Fig. 6a). The
example SZ state shown at [K+]Buffer = 8 mM and [O2]Buffer = 11.33 mg/L
has CVISI ~ 3.7 and CC ~0.15. This implies that the SZ state is more
irregular but also more synchronous than the AI state. The increased
synchrony translates into higher amplitudes for the LFP/EEG traces:
the firing rate time series (Fig. 6b) and PSC time series (Fig. 6c) in the
SZ state are substantially higher than in the AI state; large amplitude
LFP/EEG is a hallmark of epileptic seizures.We also note that unlike the
AI state, the seizure depletes locally available oxygen. Almost every
neuron participates during a seizure event. A suppression phase
occurs post seizure termination during which time oxygen replen-
ishes (Fig. 6c).

A rapid slowing of frequencies (chirps) and their harmonics in the
time-frequency spectrogram is a highly specific and sensitive signature
of epileptic activity in adults29. Here we find that the model seizures
exhibit this slowing of frequencies and their harmonic content
(Fig. 6d). Similar to the BS state, E-I balance in the SZ state is highly
disrupted (Fig. 6e). This observation is consistent with previous
reports of E-I imbalance during epileptic seizures in humans25.
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Role of potassium in recovery from hypoxic insults
Wenext simulated the conditions for a successful recovery following a
hypoxic insult—that is, as a return to the healthy AI state following
imposition of brief hypoxia. A hypoxic insult was introduced by
decreasing [O2]Buffer from its normal value of 32 mg/L to values where
the network enters the isoelectric state. Because extracellular K+ is
known to increase in the brain post hypoxic insults30–42, we also
explored the effect of increased [K+]Buffer during the post hypoxic
recovery.

Conditions for recovery at normal [K+]Buffer. In the simplest case
where [K+]Buffer stays at its normal value (Fig. 7a), healthy activity can
persist for short hypoxic insults but not for insults of duration >10 s
(Fig. 7b, c). Recovery from an insult of durations <10 s depends on the
severity of the insult: The maximum survivable duration of insult

decreases with the magnitude of the decrease in [O2]Buffer (Δ[O2]Buffer)
from its normal value (Fig. 7c). This reproduces the expected behavior
that mild hypoxia can be tolerated for longer than severe hypoxia.

Conditions for recovery via high [K+]Buffer. Increasing extracellular K+

has been shown to assist recovery in the heart cells of guinea-pigs
deprived of oxygen43. We hence examined recovery from hypoxia via
an increase of K+. We observed that recovery to the AI state via high
[K+]Buffer (Fig. 7d–f) occurs if the duration of high [K+]Buffer exceeds a
minimum survivable duration (Fig. 7e, f). The minimum survivable
duration decreases with the magnitude of the increase in [K+]Buffer
(Δ[K+]Buffer) from its normal value (Fig. 7f). That is, in this scenario,
inducing high K+ is protective against a poor post-hypoxia outcome.
Two other features of the dynamics concord with phenomena seen
experimentally: brief periods of synchronous activity occur at the
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transition to isoelectric activity and during the recovery of normal
irregular activity upon re-oxygenation: These are similar to thewave of
death and wave of resuscitation that have been observed in animal
neurophysiological recordings following hypoxia44–46.

Recovery fromhypoxia viaBSathigh [K+]Buffer. Neonates recovering
from ischemia-hypoxia exhibit periods of BS often lasting many
hours8,47. In our model the BS pathological regime occurs at high
[K+]Buffer (Fig. 4c) supporting the view that an increase in K+ fol-
lowing hypoxia may play a protective role. Therefore, we simulated
hypoxic recovery via the BS regime (Fig. 7g). This was achieved by
moving the [K+]Buffer and [O2]Buffer parameters into the BS regime
following a brief hypoxia (Fig. 7g). We then gradually increased
[O2]Buffer to simulate reperfusion of the neural tissue (Fig. 7g, bot-
tom panel). We select a range of [O2]Buffer where the observed

dynamics span from ordered BS to scale-free BS and disordered BS
(Fig. 4b and Supplementary Fig. S6).

After a long quiescent period, the model exhibits bursts inter-
spersed with silent periods (Fig. 7h). As [O2]Buffer gradually increases,
the inter-burst-interval decreases, hence increasing the density of
bursts (Fig. 7h). This is the characteristic feature of recovery from
ischemic-hypoxic insults widely observed in infant EEG8.

Mechanisms for the role of K+ in successful recovery. In sum, we
observe an apparently protective role of increased K+ (whether or not
BS is involved). To gain an understanding of this, we performed
numerical simulations (Fig. 7i–k) straddling the maximum survivable
duration of hypoxia, which is in between the hypoxia duration of 1 s
(Fig. 7b, top) and 2 s (Fig. 7b, bottom). During the period of hypoxia,
[O2]o decreases, and [K+]o and [Na+]i increase due to the impact of low
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extracellular oxygen on the Na+-K+ pumps. When the hypoxia ends,
[O2]o slowly recovers allowingNa+-K+ pumps to restore [Na+]i and [K+]o.
Irrespective of whether activity persists or ceases, [K+]o returns to its
pre-hypoxia values prior to the return of [Na+]i because of the differ-
ences in their respective time scale parameters. Thereafter, [K+]o
continues to decrease below its pre-hypoxia range. This is because as
theNa+-K+ pump continues to restore [Na+]i, it exchanges 3Na

+ for 2 K+,
decreasing [K+]o below its equilibrium value. This decreases the

reversal potential of K+ (EK), and, therefore also decreases the resting
membrane potential. Numerical simulations (Fig. 7i–k) suggest that if
the over-correction of K+ is too large, neural activity in the system
exhibits the delayed “collapse"—that is, it suddenly converges to the
isoelectric state. Conversely, if the hypoxia is sufficiently brief so that
sodium recovers before any overcorrection of K+, the system remains
in the AI state. The critical value of K+—the separatrix—appears
to be ~4 mM.
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Inferred trajectories from neonatal BS data
Finally, we inferred trajectories inmodel parameter space from clinical
EEG recordings of BS. For this, we restricted attention to the region in
the parameter space with a diversity of BS patterns (Fig. 7g [bottom
panel] and Supplementary Fig. S6). Each location in this region is
represented as a vector of six burst metrics (Fig. 2i–t). Similarly, each
300 s non-overlapping window in an EEG epoch (Fig. 2a–h) is repre-
sented by a vector of six burst metrics. Trajectories were inferred by
projecting the time series of empirical feature vectors onto the para-
meter space such that the difference between the modeled and
empirical feature vectors isminimized subject to a constraint ensuring
smoothness of the resulting trajectory (see Methods for details).

These parameter space trajectories were assessed in 17 infants
who had developmental outcomes available: 10 infants with good
recovery were either normal or had mild neuromuscular disorders
(mild injury) by age 1–3 years, while 7 infants with poor recovery either
died, had severe neuromuscular disorders (severe injury), or had a
thalamic lesion. The parameters of an exemplar infant with a good
recovery (Fig. 8a; left panel) yield a trajectory thatmoves incrementally
(from blue to red) towards the healthy regime. The inferred para-
meters of an exemplar infant with poor recovery (Fig. 8b; left panel)
yield a trajectory that dwells around thepathological values of [K+]Buffer
and [O2]Buffer. We also estimated average (median) trajectories (Fig. 8a,
b; right panels) from the inferred trajectories of infants with good
versus poor recovery after scaling individual trajectories to unit time.
Overall we found that the trajectories for babies with good recovery
tended to travel toward normal values of [K+]Buffer and [O2]Buffer—i.e.,
toward the healthy region—whereas for babies with poor recovery the
trajectories dwelled near the pathological region. Quantitatively, the
mean Δ[K+]Buffer of the last epoch of babies with good outcome was
significantly lower than that of babies with poor outcome (two-tailed t-
test p = 0.0077, t-statistic = −3.0756, df = 14.9771, Fig. 8c). By repeating
these analyses using the instantaneous power time series of Φsyn (i.e.,
the square of the absolute values of the Hilbert-transform-derived
analytical signal), we obtain trajectories that broadly resemble those
derived from the Φfr time series. However, burst metrics are sensitive
to the choice of the LFP proxy, resulting in some differences between
the two sets of trajectories (Supplementary Figs. S7 and S8). Never-
theless, the inferred changes in potassium levels differentiating good
versus poor outcomes remain largely preserved (Supplemen-
tary Fig. S9).

In addition, we examined potential redundancies between burst
metrics by removing one parameter at a time and reconstructing the
inferred trajectories using the remaining five metrics. We found that
these five-parameter trajectories are broadly similar to their original
six-parameter trajectories, implying partial redundancy, though there
is no universally redundant parameter (Supplementary Figs. S10
and S11).

As a sanity check, we simulated time series using the inferred
model parameter trajectories. For each window in the epochs of the

exemplar infant (Fig. 2), we generated time series of 5 min (matching
the duration of the window) parameterized by the corresponding
inferred model parameters (Fig. 8b; left panel). The model generated
instantaneous power time series (Fig. 9a) that are in close agreement
with the original EEG power (Fig. 9b). The sample windows in the
epochs of exemplar data time series (Fig. 2 and 9a; green windows),
and the same windows in the corresponding model-generated time
series (Fig. 9b; pink windows) are also in close agreement in terms of
qualitative closeness of time series and of the six-burst metrics
(Fig. 9c–f). In the supplementarymovies (SupplementaryMovies 1–17),
we show the evolution of trajectories, matching of simulated time
series and data time series, and the matching of their corresponding
six features.On thewhole, themodel anddata agreewell across the full
set of time windows, although there is some variability. For example,
trajectories for some of the infants with good recovery do not track
towards the healthy region, and a trajectory for one infant with poor
recovery appears to move towards healthy region. Nevertheless, the
average trajectories follow the expected trend (Fig. 8a, b).

To assess the validity of the trajectory inference Algorithm 1, we
inferred metabolic parameters from three distinct synthetic trajec-
tories: a straight line, a kinked trajectory, and a loop (Supplementary
Fig. S12a). We then estimated burst statistics from the simulated time
series and used the same algorithm employed for the empirical data to
infer the optimal parameter trajectory. We found that the inferred
parameters captured the basic trends present in the ground truth
synthetic trajectories and are distinguishable from one another (Sup-
plementary Fig. S12b). Notably, the straight and kinked trajectories can
be easily disambiguated from the looped curve, an important property
observed in the good (straighter) versus poor (more looped) outcome
neonates.

These proof-of-principle results support the possibility of model-
based state estimation for tracking the evolution of brain dynamics
following birth asphyxia.

Discussion
Computational modeling of brain activity and function has over-
whelmingly focused on complex neuronal activity considered in a
metabolic vacuum—that is, without incorporating the close inter-
dependence of neuronal activity and its metabolic support23. Both as a
functional constraint—such as the energy sparing notion of sparse
spiking48—and as a dynamic and coupled compartment—as explored
here—biophysical modeling of neural systems needs to overcome this
limitation. Here, using the resource-depleted state of perinatal
hypoxia, we show that such anapproach is able to capture key formsof
normal andpathological activity, and identify keyprotective responses
(such as increased K+). As a proof-of-principle, we have shown that
tracking the parameters of recovering versus poor-outcome neonates
is possible, and yields predicted dynamics that indeed mimic those
seen in the clinic. This argues for integrated models of neural-
metabolic activity and suggests translational opportunities.

Fig. 7 | Trajectories following hypoxic insults. a–c Recovery failure. a Rapid
[O2]Buffer decrease from the healthy state to a hypoxic isoelectric state (1), followed
by delayed rapid return (2). b Network firing rate for brief (1 s, top) and long (2 s,
bottom) hypoxic insults. Dotted lines indicate start (1) and end (2) of hypoxia.
cMaximumduration at low [O2]Buffer (labeled asmaximum survivable duration) for
which dynamics return to the AI state as a function of hypoxic insult depth
Δ[O2]Buffer. d–f Recovery via high ½K+ �Buffer d Rapid [O2]Buffer decrease from the
healthy state to a severe hypoxic isoelectric state (1), followed by a high-[K+]Buffer AI
state (2), then recovery (3). eNetwork firing rate for brief (20 s, top) and long (30 s,
bottom) elevated [K+]Buffer (=19.5 mM) periods. Dotted lines indicate the start (1)
and end (2) of hypoxia, and start (2) and end (3) of high [K+]Buffer, returning to the
healthy state (3). f Minimum duration of high [K+]Buffer to return to the AI state
(labeled asminimum survivable duration) as a function of increase in [K+]Buffer from
its normal value 3.5 mM (Δ[K+]Buffer). g, h Recovery via BS at high ½K+ �Buffer. g Top:

Rapid [O2]Buffer decrease from the healthy state to a severe hypoxic isoelectric state
(1), followed by traversing the BS state (2), an intermediate [K+]Buffer state (3), and
recovery (4). Bottom: Zoom of the BS regime where [O2]Buffer increases gradually
over ~5h (solid black arrow).hNetworkfiring rate. Top: Entire trajectory. Redboxes
denote zooms in panels below. Middle: Hypoxic insult (1) and start of the [O2]Buffer
increase during BS (2). Bottom: Final recovery. Dotted lines denote the rapid
transition from the endofBS to the high [K+]Buffer AI state (3) and rapid return to the
healthy state (4). i–k Activity termination in panel (b) due to K+ over-correction.
Simulations for hypoxia durations between 1 s (cf. panel (b), top row) and 2 s (cf.
panel (b), bottom row) hypoxia; onset denoted by black line. Activity survival
shown in green, cessation in red. i Mean K+ across neurons. j Mean Na+ across
neurons. k Mean [O2]o across neurons. Shading in panels (a), (d), and (g) is as
per Fig. 4.
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To our knowledge, the pathological pattern of scale-free burst
suppressiondue to ischemic-hypoxic insult seen in neonates8,23 has not
been previously modeled. We find an important role for coupling of
metabolic variables with neuronal dynamics, as has been considered in
several studies modeling anesthesia-induced burst suppression9,10,49,
and hypoxia-induced seizures16,17. We find that interplay between the
local oxygen availability ([O2]o) and brain activity gives rise to three
pathological regimes and a self-sustaining asynchronous irregular (AI)
regime, depending on the values of [K+]Buffer and [O2]Buffer.

Our exploration of recovery trajectories revealed that in addition
to timely reoxygenation, an increase in [K+]Buffer facilitates the
restoration of healthy dynamics by preventing the over-correction of
[K+]o during re-oxygenation. This suggests that a substantial increase in
potassium following hypoxia (as observed empirically30–41,50) could be
a protective mechanism that brings the dynamics closer to the BS
regime. In the BS regime, the estimatedparameter trajectories inferred
from EEG data suggest effective potassium clearance during reox-
ygenation for babies with good recovery, and its failure for babies with
poor recovery. Various proteins facilitating potassium clearance are
up-regulated after ischemic injury in astrocytes51 in response to mas-
sive [K+]o increase. Our modeling suggests an important role of these
K+-clearance mechanisms for infants with good recovery. However,
thesemechanisms apparently fail for babies with poor recovery. While
mechanistic studies are clearly needed, this finding highlights the
potential therapeutic insights provided by coupled neuronal-
metabolic modeling.

Several limitations of the present work could be addressed
through future work. First, several model assumptions could be
revisited. Although Na+-K+ pumps account for a majority of the energy
expenditure for signaling, it has recently been found that ~44% of the
brain’s energy is used to maintain the integrity of the synaptic vesicles

independent of signaling52. Therefore, further extensions could
incorporate this non-signaling energy budget. Second, due to model
complexity and computational constraintsweonly explored a network
of 400 neurons. Scaling up to the large scales of EEG and whole-brain
dynamics would likely be better suited to mean field models that pool
the collective activity of neurons and hence reduce model
dimensionality49,53. Such developments will be crucial to study spatial
patterns54 or the regional effects of local ischemic-hypoxic insults.
Moreover, comparison with EEG (and other modalities) would be
improved using a detailed forward (observation) model that maps
neuronal variables to measured quantities (e.g., taking into account
electrode geometry and tissue properties). Third, state estimation
techniques (e.g., maximum a posteriori estimation, Markov chain
Monte Carlo, variational inference, etc.) could be used to find better
estimates of parameters than the current look-up method, and could
also return the full parameter probability likelihoods. Such methods
have recently been applied in developing computational modeling of
epilepsy into a clinically useful tool55,56. Fourth, changes in pH and
temperature are important clinical factors during recovery57,58. Future
modeling steps could include these variables and their effects on
dynamics; for instance, hypothermic cooling is part of the standard
care following perinatal asphyxia. Future work could also usemachine
learning tools to identify optimal personalized or global sets of burst
metrics. Finally, we indirectly inferred oxygen and ionic dynamics,
which can be measured directly in experimental systems, enabling
more powerful calibration and validation of the model. In humans,
further calibration would be possible for a large scale version of the
model using positron emission tomography to infer metabolic activity
directly, in concert with observed in vivo neural activity.

Seizures and BS both pose significant metabolic challenges to
the cortex and can occur together after birth hypoxia. Our model
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can quantitatively reproduce essential seizure properties, including
high-amplitude waveforms, variable durations, oscillations, and
slowing of frequency harmonics. For quantitative model parameter
estimation, it remains an open question whether six BS features
used in this study capture clinically meaningful properties of sei-
zures. While it is likely that the six features capture some funda-
mental characteristics such as duration, we expect that the
oscillatory nature of seizures contains unique information that
would be best captured by measures sensitive to the fundamental

frequency, harmonics, and gradual intra-ictal slowing (chirps),
which will be explored in future work.

Validation of model predictions and calibration of model para-
meters can be achieved through future experiments. Although we are
not aware of experiments that have investigated changes in neural
activity across multiple controlled values of [K+]Buffer and [O2]Buffer,
independent evidence supports the emergence of seizure-like activity
for higher [K+]Buffer

59,60, and conversely, for lower [O2]Buffer
22.Moreover,

substantial evidence suggests that hypoxia increases extracellular
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Fig. 9 | Model generated time series using inferred parameters from data.
a Time series of an infant with poor recovery outcome (shown in Fig. 2). b Model
simulated time series using the inferred parameters in Fig. 8b left panel. Green and
pink boxes in a and b indicate 5 min windows analyzed in (c–f). Color in the time
series becomeswarmer with time as per the accompanying trajectory in Fig. 8b left

panel. c–f Burst metrics of the four sample windows highlighted in panels (a) and
(b), expanded here in the left panels (data in green, model in pink). Right panels
show probability density functions (PDFs) for burst areas (BA) and durations (BD),
along with average burst shapes.
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potassium9,30–42,61–66, thus supporting our fundamental approach that
understanding the response to hypoxia activity requires a joint mod-
eling of both [K+]Buffer and [O2]Buffer. More broadly, we suggest that
systematically mapping out the [K+]Buffer-[O2]Buffer plane in experi-
mental systems could prove fruitful in understanding dynamics under
metabolically challenged conditions and provide independent valida-
tion of our model.

We have exploited the dramatic metabolic depletion that occurs
following birth asphyxia to understand models of coupled neuronal-
metabolic activity. However, coupling between metabolic and neuro-
nal dynamics is a growing area applicable to many brain states,
including other pathological conditions such as adult stroke, and the
altered neurovascular coupling in dementia. The brain’s energy
budget also imposes a strong constraint on the healthy brain12,52,67,68,
suggesting that future extensions could extend beyond pathological
conditions to more deeply understand how energy constraints shape
healthy neural activity.

Methods
Computational model
Our model comprises a network of excitatory and inhibitory Hodgkin-
Huxley (HH) type neurons coupled with local O2 dynamics via sodium-
potassium (Na+-K+) pumps. It has previously been shown that a single
neuron with these dynamics generates bursts when the supply of O2 is
constricted16,17. These bursts are similar to the observed seizures
induced by hypoxia in rat hippocampal slices16,22. We use thismodel as
the starting point of our exploration.

TheWei et al.16 model was built on an earlier model incorporating
sodium (Na+) and potassium (K+) concentration dynamics into the
Hodgkin-Huxley equations21. Wei et al.16 bidirectionally coupled
metabolic resources (O2) to the membrane potential (V) via
electroneutral69 effects of Na+-K+ pumps, maintaining the resting-state
ion concentrations (Fig. 1i). The electroneutral effects are the indirect
effects of Na+-K+ pumps of a neuron and its neighboring glia on the
membrane potential of the neuron by regulating ion concentrations
(Fig. 1i). Electrogenic effects of the pump directly influence the mem-
brane potential due to an outward sodium current that make the
membrane potential more negative, as Na+-K+ pumps transfer 3 Na+

ions outside the cell for every 2 K+ ions inside the cell. These electro-
genic effects are considered in the later versions of the model17. In this
paper, we consider the electroneutral effects of the Na+-K+ pumps. Na+-
K+ pumps maintain homeostasis of the resting membrane potential of
neurons and glia by replenishing the intracellular K+ and extracellular
Na+ discharged during action potentials and synaptic transmission.
This process entails moving ions against their concentration gradient,
and requires a consistent supply of energy (ATP/O2) (Fig. 1i). Wemodel
Na+-K+ pump currents of neuronal (Ipump) and glia cells (Igliapump) as
sigmoidal functions of intracellular Na+ concentration ([Na+]i) and
extracellular K+ concentration ([K+]o), such that

Ipump =
ρ

1 + exp 25� ½Na+ �i
� �

=3
� �� �

1 + expf5:5� ½K+ �og
� � , ð1Þ

Igliapump =
ρ

3
�
1 + exp

��
25� ½Na+ �gi

�
=3

��
1 + exp

�
5:5� ½K+ �o

�� � , ð2Þ
where ½Na+ �gi is the intracellularNa+ concentration of glia cells, and ρ is
the maximum value of the sigmoid. Here ρ is itself modeled as a sig-
moidal function of the extracellular O2 concentration ([O2]o), obeying

ρ=
ρmax

1 + expf 20� ½O2�o
� �

=3g , ð3Þ

whereρmax is themaximumpump rate attained in the fully oxygenated
state. These sigmoidal relationships for Ipump and Igliapump increase the

pump currents when [Na+]i (or ½Na+ �gi) or [K+]o increase due to action
potential generation and synaptic transmission, thus increasing the
energy demand. The role of oxygen is to limit the maximum pump
current when the locally available [O2]o is low (i.e., hypoxia), thus
limiting the energy demand.

The dynamics of [O2]o depend on O2 consumption by Ipump and
Igliapump, such that as Ipump and Igliapump increase, [O2]o decreases. Thus,
Ipump and Igliapump represent energy demand. The supply of O2 locally
to a neuron is modeled as diffusion from the cerebral circulation,
assumed to be ametabolic reservewith fixed concentration [O2]Buffer

16.
Incorporating this, the [O2]o dynamics around a single neuron obeys.

d½O2�o
dt

= � αλðIpump + IgliapumpÞ+ ϵoð½O2�Buffer � ½O2�oÞ, ð4Þ

where α is the conversion factor between pump current (mM/s) and
oxygen consumption rate (mg/L/s) (see ref. 16 for details), λ is the
relative cell density between excitatory and inhibitory neurons, and ϵo
is the oxygen diffusion rate.

The ion concentrations depend on the ionic currents in and out of
the cell, with [K+]o and [Na+]i obeying

d½K+ �o
dt

= γβIK � 2βIpump � Iglia � 2Igliapump � ϵk ½K+ �o � ½K+ �Buffer
� �

,

ð5Þ

d½Na+ �i
dt

= � γINa � 3Ipump, ð6Þ

where γ is the unit conversion factor16,21, ϵk is the potassium diffusion
rate21, and β is the ratio of the intracellular volume to the extracellular
volume. Iglia is the current due to glial uptake of the surrounding
potassium governed by

Iglia =
Gglia

1:0+ expf 18� ½K+ �o
� �

=2:5g , ð7Þ

where Gglia is the glial uptake strength of potassium.
For potassium, we also model diffusion from blood vessels and

surrounding tissues into the extracellular space. These distal sources
have previously been modeled as a potassium reserve with fixed
concentration [K+]Buffer

16,21. The parameter [K+]Buffer is an effective value
describing the collective buffering capacity of various sources of
potassium, particularly crucial during metabolically challenged states.
For example, during hypoxic insult, a decrease in potassium con-
centration of the tissue and its simultaneous increase in surrounding
areas have been observed in vitro30–34 and in vivo35–37. Hypoxia also
induces a five-to-ten-fold increase in potassium concentration more
distally in the subarachnoid fluid38,39, with moderate increases in the
blood plasma38,40, cisterna magna fluid38,40, cortical cerebrospinal
fluid41, andon the cortical surface42. It has also been observed thatATP-
sensitive potassium channels (KATP) open during metabolically chal-
lenged conditions leading to the leakage of potassium outside the
cell9,61–63. AlongwithKATP channels, K

+ also leaks fromcalcium-sensitive
potassium channels which activate with the increase in the entry of
calcium to the cell during hypoxia62,64–66. All these sources, along with
the vasculature, contribute to the buffering capacity parameterized by
[K+]Buffer in our model.

All else being equal, increasing [K+]Buffer increases [K+]o (Eq. (5)),
which increases the neural and glial Na+-K+ pump currents (Eqs. (1) and
(2)). This in turn increases O2 consumption (Eq. (4)); i.e., increases in
[K+]Buffer increase the baseline energy demand on top of which are
superimposed the dynamically changing demands, which derive from
neural firing.
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Assuming that the inward flow of Na+ is compensated by the
outwardflowofK+16,21, the intracellular concentrationofK+ ([K+]i) obeys

½K+ �i = 140+ ð18� ½Na+ �iÞ, ð8Þ

and assuming the total amount ofNa+ is conserved16,21, the extracellular
concentration of Na+ ([Na+]o) obeys

½Na+ �o = 144� βð½Na+ �i � 18Þ: ð9Þ

The extracellular and intracellular concentrations of Na+, K+, and
Cl−determine the reversal potentials of the respective ions (ENa, EK, and
ECl) governed by the following Nernst equations:

ENa = 26:64 ln
½Na+ �o
½Na+ �i

, ð10Þ

EK = 26:64 ln
½K+ �o
½K+ �i

, ð11Þ

ECl = 26:64 ln
½Cl��i
½Cl��o

: ð12Þ

The reversal potentials shape the respective ion currents passing
through the voltage-gated ion channels, such that

INa =GNam
3hðV � ENaÞ+GNaLðV � ENaÞ, ð13Þ

IK =GKn
4ðV � EKÞ+GKLðV � EKÞ, ð14Þ

ICl =GClLðV � EClÞ, ð15Þ

where GNa, GNaL, GK, and GKL represent conductances of sodium and
potassium currents and their respective leak currents, GClL is the
conductance of the leak chloride current, V is the membrane
potential, m and n are activation gating variables for sodium and
potassium channels, and h is the inactivation gating variable for
sodium channels. The dynamics of the gating variables are gov-
erned by

dm
dt

=αmð1�mÞ � βmm, ð16Þ

dh
dt

=αhð1� hÞ � βhh, ð17Þ

dn
dt

=αnð1� nÞ � βnn, ð18Þ

where parameters αm, αn, αh, βm, βn, and βh are the opening and the
closing rates of the ion channel state transitions. These rates depend
on membrane potential (V in mV) according to

αm =0:32
V + 54

1� expf� V + 54ð Þ=4g , ð19Þ

βm =0:28
V +27

expf V +27ð Þ=5g � 1
, ð20Þ

αn =0:032
V + 52

1� expf� V + 52ð Þ=5g , ð21Þ

βn =0:5 expf� V + 57ð Þ=40g, ð22Þ

αh =0:128 expf� V + 50ð Þ=18g, ð23Þ

βh =
4

1 + expf� V +27ð Þ=5g , ð24Þ

The couplingofmetabolic resources (O2) toV is completed via the
Hodgkin-Huxley formalism of a single neuron, where ion currents (IK,
INa, and ICl) influence the dynamics of V obeying

C
dV
dt

= �INa � IK � ICl � Isyn
� �

, ð25Þ

where C is the membrane capacitance, and Isyn is the postsynaptic
current from presynaptic neurons.

Wei et al.16 also presented a minimal extension of the model to
two coupled neurons, one excitatory and one inhibitory. Their aim
was to model a phenomenon of excitatory-inhibitory interplay
during seizures. They modeled synaptic coupling using a coupling
scheme applicable to many neurons as given in ref. 70. Here, we
extend the formalism to model networks of 400 neurons
(320 excitatory and 80 inhibitory71), allowing us to explore the
dynamics of small populations of neurons relevant to the genera-
tion of local field potentials. Each neuron receives input from ~80
randomly connected neurons (~64 excitatory and ~16 inhibitory);
i.e., a connection probability of 0.272. As shown in the Results, the
model activity is self-sustaining even in the absence of external
noise or external current.

The post synaptic current for a neuron (Isyn) is the sumof synaptic
currents from P presynaptic neurons70,73,74, obeying

Isyn =
X

j = f1,:::,Pg
Gex=inh

�
V � Eex=inh

�
Sje
�χj

5 , ð26Þ

whereGex is the excitatorymaximum synaptic conductance,Ginh is the
inhibitorymaximumsynaptic conductance, Eex is the reversal potential
for excitatory synapses, Einh is the reversal potential for inhibitory
synapses, and Sj is the fraction of open receptors at the jth synapse,
contributing to the overall synaptic conductance, modeled with first
order kinetics16,73,74 such that

τex=inh
dSj
dt

=
20

1 + expf��Vj + 20
�
=3g ð1� SjÞ � Sj , ð27Þ

where τ is the time constant for synaptic dynamics. The synapses can
be either excitatory or inhibitory. For excitatory synapses Eex = 0 mV,
τex = 4 ms, and for inhibitory synapses Einh = − 80 mV, τinh = 8 ms. Here
χj models attenuation of the synapses when the presynaptic neuron is
in the depolarization block70, obeying

dχ j
dt

= ηðVj + 50Þ � 0:4χ j , ð28Þ

where η = 0.4 when −30 mV<Vj < −10 mV and η =0 otherwise.
As per the Results, we found values of Gex = 0.022 mS/cm2 and

Ginh = 0.374 mS/cm2 that generated self-sustaining asynchronous irre-
gular (AI) states. It has previously been noted that networks of hun-
dreds of neurons require ~10 times higher synaptic conductances than
observed in real cells to exhibit self-sustained activity18,20, whichwould
otherwise require much larger networks (e.g., 16,000 neurons)18.
Computational complexity of our model restricts us to work with
small-scale networks.
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Finally, for comparison with phenomena observed at the meso-
and macroscale via LFP or EEG, we consider two measures of the
summed network activity at time t. The first measure is the average
firing rates (Φfr(t)) of the excitatory population and inhibitory
population26, given by

Φ f rðtÞ= 1
N

XN
j = 1

ϕf r
j ðtÞ, ð29Þ

whereN is the total number of neurons, andϕ f r
j is the firing rate of the

jth neuron. The second measure is the average of the post-synaptic
currents (Φsyn(t)) of the excitatory neurons26, given by

ΦsynðtÞ= 1
Nex

XNex

j = 1

Isyn,jðtÞ, ð30Þ

where Nex is the number of excitatory neurons, and Isyn,j(t) is the post-
synaptic current (PSC) of the jth excitatory neuron at time t.

A 60 s simulation takes ~784 s on a Linuxworkstationwith 3.7GHz
octa core processor. Parameter values and their descriptions are given
in Table 1.

Numerical simulationswere performedusing the Runge-Kutta 4th
order method with a time-step of 0.05 ms.

Coefficient of variation of inter-spike interval (CVISI) and pair-
wise correlation coefficient (CC)
The coefficient of variation of the inter-spike interval (CVISI) is defined
as

CVISI =
σISI
i

ISIi

* +
, ð31Þ

where 〈⋅〉 denotes an average over all the neurons, and ISIi and σISI
i are

the mean and standard deviation, respectively, of the ISIs of neuron i.
The averaged pairwise cross-correlation (CC) between neurons in

the network is given as19

CC=
Cov ðni,njÞ
σðniÞσðnjÞ

* +
, ð32Þ

where 〈⋅〉 indicates an average over all pairs of neurons, spike count ni
is the number of spikes in sliding windows (non-overlapping 5 ms
windows) of neuron i, Cov(ni, nj) is the covariance between two spike
counts ni and nj, and σ(ni) is the standard deviation of neuron i’s spike
counts.

Kuramoto order parameter of synchronization, R(t)
To quantify synchronization, we used the Kuramoto order parameter
R(t) given by75

RðtÞ= 1
N

XN
k = 1

eiϕk ðtÞ
�����

�����, ð33Þ

where ϕk(t) is the instantaneous phase calculated assuming linear
phase (from 0 to 2π) between two spikes such that the phase resets to
0 at every spike76; i.e.,

ϕkðtÞ=2π
t � tkn

tkn+ 1 � tkn
, ð34Þ

where t 2 ðtkn,tkn+ 1Þ, and tkn is the timeof thenth spike in the kth neuron.

Estimating asymmetry and sharpness of the averageburst shape
To quantify the shapes of bursts, we averaged together burst time
series for individual bursts, after rescaling to a common time axis.
Asymmetry, Σ, is given by8,77

ΣðTÞ=
1
T

R T
0 dt yðt,TÞ	 
ðt � �tÞ3

1
T

R T
0 dt yðt,TÞ	 
ðt � �tÞ2

h i3=2 , ð35Þ

and sharpness, K, is given by,

KðTÞ=
1
T

R T
0 dt yðt,TÞ	 
ðt � �tÞ4

1
T

R T
0 dt yðt,TÞ	 
ðt � �tÞ2

h i2 � 3, ð36Þ

where 〈y(t, T)〉 is the average burst shape of duration T,
�t = 1

T

R T
0 dthyðt,TÞit, and we evaluate the integrals using the

trapezoidal rule.

Identification of different regimes in the [K+]Buffer-[O2]Buffer plane
To identify states (Iso, AI, Bistable, BS, SZ) the average firing rate time
series was estimated using a moving window of 500 ms duration. The
state was defined as (i) isoelectric (Iso) if the average (across neurons)
firing rate in each moving window is 0 spikes per 500 ms per cell;
(ii) asynchronous-irregular (AI) if the average firing rate in each win-
dow is >0.75 spikes per 500 ms per cell; (iii) Bistable if both AI and Iso
states are reachable depending on the initial conditions; and (iv)
burst-suppression (BS) or seizure (SZ) if the averagefiring rate in anyof

Table 1 | Values and descriptions of model parameters

Parameter Value Description

½Na+ �gi 18 mM Intracellular Na concentration of glia

ρmax 1.25 mM/s Maximum pump rate

α 5.3 g/mol Conversion factor from pump current
(mM/s) to O2 consumption rate (mg/L/s)

λ 1 and 0.5 Relative cell density for excitatory and
inhibitory neurons

ϵo 0.17 s−1 O2 diffusion rate

γ 0.0445 (mM/s)
/(μA/cm2)

Conversion factor from the current to
concentration units

β 7 Ratio of intracellular volume to extra-
cellular volume

ϵk 0.33 s−1 K diffusion rate

Gglia 8 mM/s Glial uptake strength of potassium

½Cl��i 6 mM Intracellular Cl concentration

½Cl��o 130 mM Extracellular Cl concentration

GNa 30 mS/cm2 Maximal conductance of Na current

GK 25 mS/cm2 Maximal conductance of K current

GNaL 0.0175 mS/cm2 Conductance of leak Na current

GKL 0.05 mS/cm2 Conductance of leak K current

GClL 0.05 mS/cm2 Conductance of leak Cl current

Gex 0.022 mS/cm2 Conductance of excitatory synapses

Ginh 0.374 mS/cm2 Conductance of inhibitory synapses

Eex 0 mV Reversal potential of excitatory synapses

Einh −80 mV Reversal potential of inhibitory synapses

τex 4 ms Time constant of excitatory synapses

τinh 8 ms Time constant of inhibitory synapses

C 1 μF/cm2 Membrane capacitance

N 400 Total number of neurons

Nex 320 Total number of excitatory neurons

Nin 80 Total number of inhibitory
neuronsinhibitory

½K + �Buffer 3.5 mM K buffer concentration (normal value)

½O2�Buffer 32 mg/L O2 buffer concentration (normal value)
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themovingwindows is ≤0.75 spikes per 500msper cell. In particular, a
seizure in this context is further defined by the sudden onset of high
firing with marked synchronicity among neural spikes and sustained
fluctuations in the firing rate time-series. With an increase in [K+]Buffer
the SZ regime transitions into BS. The transition point from SZ to BS
was identified by visual inspection of the simulated firing rate time
series, according to the presence or absence of bursts. These were
identified as a sudden onset of high firing, followed by a decay to zero
in the firing-rate time series.

Estimation of trajectories of individual subject time-series in the
[K+]Buffer-[O2]Buffer plane
To test the validity of ourmodel, we estimatedmodel parameters that
yield dynamics consistent with infant EEG during recovery from
hypoxia. To do this, we analyzed scalp EEG recordings from 17 infants
admitted to the tertiary level neonatal intensive care unit (NICU)
in Helsinki University Central Hospital due to perinatal asphyxia
(see Ref. 8 for details on this pre-existing dataset). The use of the
retrospectively collected, archived patient data was approved by the
Ethics Committee of the Hospital for Children and Adolescents, Hel-
sinki University Central Hospital. Neurodevelopmental outcome
categories were identified previously8, such that good recovery (10
infants) denotes either normal development or only mild neuro-
muscular disorders as assessed at their last visit to a routine neonatal
outpatient clinic (age 12-39 months), while poor recovery (7 infants)
denotes either death, severe neuromuscular disorders (severe injury),
or a thalamic lesion. The EEG signals are collected in epochs fromeach
infant in the NICU. The nature and duration of these epochs are at the
discretion of the clinician in the NICU and are subject to interruption
according to the clinical needs of each neonate. As such, the duration
and timing available for analysis here vary across neonates. Each EEG
recording (epochs) was represented using six features estimated
using sequential non-overlapping windows. These features quantify
the shapes of bursts and the distributions of their sizes and durations
in two-channel infant EEG8,78. We computed the asymmetry (Σ) and
sharpness (K) of the average burst shape computed from the bursts
with duration (T) from 1280 ms to 5120 ms; i.e., duration bins repre-
sentative of the characteristic average burst shape changes during
pathological brain activity such as burst suppression8,78. For burst size
and duration distributions, we calculated the width of the power-law
scaling regime (given by the number of orders of magnitude, O) and
the exponent (E) of the power law. For O we use the fitted range
identifiedby thefitting of a strictly truncatedpower lawdistribution79.
The slope of the fit is used as the exponent (E). Calculating O and E of
fits to the burst area and burst duration distributions, respectively,
yields four features.

We then estimated each infant’s trajectory in the [K+]Buffer-
[O2]Buffer plane. Our approach uses a dynamic programming frame-
work to minimize differences between EEG features captured from
infants and those predicted by our model. We summarized the ith

window from the jth epoch with a vector of these six features (Dj
i).

Similarly, for each point in the [K+]Buffer-[O2]Buffer plane, we calculate
the same six features on the model time series of 5000 s, yieldingQ as
an N ×M × 6 array, where N is the resolution of [K+]Buffer, and M is the
resolution of [O2]Buffer. Here, the burst extraction threshold for the
firing rate time series was set at 0 spikes/s/cell, and for the post-
synaptic current time serieswe select the threshold thatmaximizes the
number of bursts8.

Constrained optimal projection of the data time-series on the
model plane. An optimal projection is the one that minimizes the
projection score defined as the sum of the Euclidean distances
(∑i∣∣Di −qi∣∣) between the feature vectors of windows (Di) and the fea-
ture vector of the corresponding entries (qi) in the [K+]Buffer-[O2]Buffer
plane. An optimal projection is equivalent to a set of entries in the

[K+]Buffer-[O2]Buffer plane q1, . . . ,qP

	 

such that

q1, . . . ,qP

	 

= argmin

q1 ,...,qPh i2Q
XP
i = 1

∣∣Di � qi∣∣: ð37Þ

Next, we assume that biologically plausible trajectories are rela-
tively smooth; i.e., consecutive epochs are near one another in the
[K+]Buffer-[O2]Buffer plane. We thus impose a constraint that the pro-
jections of two consecutive windows arewithin a radius of R = 10 apart
in the [K+]Buffer-[O2]Buffer plane.

We adopted a dynamic programming framework, a validated
methodology for solving such non-trivial optimization problems80, in
Algorithm 1 to map each epoch onto the [K+]Buffer-[O2]Buffer plane. In
essence, the algorithmsystematically searches the vast spaceofpossible
trajectories, keeping track of the projection scores for subsets of points
in the trajectory. In detail, the information about the partial trajectories
is stored in tables s and d of size (P + 1) × (NM). Table s stores the
projection scores of the partial trajectories such that si+1,k is the pro-
jection score of the optimal projection for D1, � � � ,Di

	 

when Di is pro-

jected onto the kth entry in Q (step 6 in Algorithm 1). Therefore, the
projection score of the partial optimal projection, q1, . . . ,qi

	 

, is the

minimumvalue in the (i+ 1)th rowof table s. Tabled stores the indices of
the partial projections. For a partial optimal projection q1, . . . ,qi

	 

, if the

index ofqi is k, then di+1,k contains the index ofqi−1. This way the optimal
projection can be traced from the table d (step 19 to 21 in Algorithm 1).

Algorithm 1. Dynamic programming algorithm for finding constrained
optimal projection

Data:
s - table of size (P + 1) × (NM) for storing partial projection scores
d - table of size (P + 1) × (NM) for tracking the optimal projection
1: function FINDCONSTRAINEDOPTIMALPROJECTION(Q, 〈D1,⋯ ,DP〉,R)

⊳ Input: Q — model plane of size M ×N,
〈D1,⋯ ,DP〉 — data time-series,
R — radius for constraint

⊳ Output: 〈z1,⋯ , zP〉 — indices of the optimal projection
2: Initialize 1st row of s and d to 0
3: for i← 1 to P do
4: for k← 1 to NM do
5: (value, index)←CONSTRAINEDMIN(si, k, R)
6: si+1,k← ∥Di −Qk∥ + value
7: di+1, k← index
8: end for
9: end for
10: return TRACEINDEXOFOPTIMALPROJECTION(d, sP+1)
11: end function

12: function CONSTRAINEDMIN(si, k,R)
13: Finds the minimum value of partial score (si) and its index

in the vicinity (defined by R) of index k
14: return (value, index)
15: end function

16: function TRACEINDEXOFOPTIMALPROJECTION(d, sp)
17: z - array of size P for storing the indices of the optimal

projection
18: zP  argminðspÞ
19: for i← (P − 1) to 1 do
20: zi  di+ 2,zi+ 1
21: end for
22: return z
23: end function

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The raw and processed simulation data generated in this study, which
are plotted in the figures, have been deposited in the Figshare data-
base, accessible via https://doi.org/10.6084/m9.figshare.23514531.v1.
The EEG data from human infants are sensitive data that cannot be
distributed without pertinent preprocessing to ensure anonymity as
well as relevant data sharing agreements with Helsinki University
Hospital (via author S.V.).However, the anonymized analytic derivative
of this EEGdata (EEGpower, such as in Fig. 2a–d) has beendeposited in
theFigsharedatabase, accessible via the samehttps://doi.org/10.6084/
m9.figshare.23514531.v1.

Code availability
MATLAB code is accessible via https://doi.org/10.5281/zenodo.
8013692.
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