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Pinging the brain to reveal the hidden
attentional priority map using
encephalography

Dock H. Duncan 1,2 , Dirk van Moorselaar1,2 & Jan Theeuwes 1,2,3

Attention has been usefully thought of as organized in prioritymaps –putative
maps of space where attentional priority is weighted across spatial regions in a
winner-take-all competition for attentional deployment. Recent work has
highlighted the influence of past experiences on the weighting of spatial
priority – called selection history. Aside from being distinct from more well-
studied, top-down forms of attentional enhancement, little is known about the
neural substrates of history-mediated attentional priority. Using a task known
to induce statistical learning of target distributions, in an EEG study we
demonstrate that this otherwise invisible, latent attentional priority map can
be visualized during the intertrial period using a ‘pinging’ technique in con-
junction with multivariate pattern analyses. Our findings not only offer a
method of visualizing the history-mediated attentional priority map, but also
shed light on the underlying mechanisms allowing our past experiences to
influence future behavior.

The immense complexity of our visual surroundings presents a fun-
damental challenge to ourfiniteminds. Fortunately, our brains are able
to take advantage of two general principles of the world to greatly
simplify this perceptual problem: first, the world is highly repetitive
and therefore predictable; and second, much of what we perceive at
any moment can be safely ignored. The brain’s propensity to auto-
matically learn environmental regularities is often referred to as “Sta-
tistical Learning”1. Recently it has been claimed that uncovering the
underlying correlational structure of perceptual input may be a key
method by which the brain simplifies the perceptual problem space by
sharpening percepts around robust predictions, thereby reducing
computational costs2–5. Selective attention, on the other hand, is the
process whereby relevant information is prioritized while task-
irrelevant information is suppressed. Attention plays a crucial role in
structuring perception as the majority of what we initially perceive is
filtered out by this system, thereby greatly reducing the redundancy of
perceptual experience6–8.

Given the importance of these two cognitive mechanisms in
shaping our perceptual experience, it may come as no surprise that
these mechanisms are deeply interconnected. For instance; while

driving, it is important to direct attention to some stimuli (e.g.,
crossing pedestrians) but little-to-no, attention to others (e.g. irrele-
vant billboards). When driving in unfamiliar roads, sorting relevant
from irrelevant stimuli is an attentionally demanding task; however,
when driving on familiar roads the experience is quite different.
Through our past experiences, the visual system can be tuned in space
and time to expect relevant stimuli to appear in certain places (e.g.
familiar pedestrian crossings) as well as where distractors are likely to
be (e.g. familiar billboards), thereby combining the cognitive tools of
attention and statistical learning into an integrated system which
sharpens perception to maximize performance.

The influence of past experience on current behavior in attention
is knownas selectionhistory - a categorywhich encompasses statistical
learning processes as well as other history-based effects such as value-
driven attentional capture or intertrial priming9–12. Together with top-
down (goal-driven) and bottom-up (saliency-driven) attentional
mechanisms, selection history is thought to converge inwhat is known
as the attentional priority map – a real-time representation of the
behavioral relevance and saliency of the stimulus present in the visual
field11–14. While thesemaps can exist in any feature space, they are often
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studied in the context of spatial features, where attentional priority is
coded as weights on a topographic representation of physical space,
and attentional selection is ultimately awarded in a winner-take-all
fashion to the region with the highest activity15,16. Selection history can
then be thought of as a layer in this system, continuously up-regulating
weights to locations which contained relevant information in the past,
and down-regulating locations that frequently contain distracting
information12,17.

While the concept of a prioritymap that drives attention selection
has been a prominent notion in many theories on attentional
selection8,13,15,18–21, neuroimaging research on priority maps has notably
focused almost exclusively on top-downorbottom-up influences (for a
selection, see22–25). Preliminary studies investigating the influence of
selection history on the attentional priority map have noted that,
unlike top-down attention, there is little evidence that the neural
processes underlying the effects of selection history can be described
in terms of sustained neural processes26–29(see30 for contrary evi-
dence). Instead, it has been suggested that selection history effects
exist on the network level, where processes of synaptic plasticity
strengthen or weaken neural connections in an emergentmanner26,31,32

(see16 for a discussion on possible neural mechanisms). Due to this
latent characteristic, history-based influences on attentional selection
may fall into the category of ‘activity-silent’ cognitive mechanisms;
named such because these effects are invisible to common neural
imaging techniques which measure the downstream traces of action
potentials (i.e., ERP’s or BOLD-responses). As a result, the study of
selection history effects on the priority map has generally been
restricted to the study of differences in evoked responses to pre-
dictable and unpredictable stimuli as a proxy for latent expectations in
the brain30,32,33, and their study in their pure form has remained out
of reach.

Recently, in the field of working memory, a novel approach has
been proposed to visualize activity-silent neural structures; synaptic
theories of working memory propose that working memory may be
partially (or fully) mediated by modifying synaptic weights such that
remembered information is primed for reactivation in the near
future34,35. In this energetically efficient model, memories can be
retrieved in subsequent sweeps of network activity in the brain, where
the stored memory will be primed to reactivate36,37. Critically, it has
recently been demonstrated that these latent memories can also be
incidentally mis-activated simply by flooding the perceptual system
with sudden input; often in the form of high-contrast visual
‘pings’38,39(see40 for an example using TMS). This salient input causes
neurons to fire in discernable patterns associated with currently
retained memory items, possibly due to memory-related primed
neurons incidentally firing at a higher rate than other neurons (see
discussion), thereby leading to systematic neural activity patterns
which can be used to decode contents of otherwise activity-silent
memory41,42.

While statistically learned attentional priority and synaptic work-
ing memory are clearly distinct processes with unique underlying
cognitive mechanisms, they arguably share the feature of being latent
neural structures mediated by features of network connectivity at the
synaptic level (see discussion for further debate). As there is no a priori
reason to believe that memory-relevant primed neural structures
should be vulnerable to an impulse perturbation (“pinging”) while
similar latent structures related to the spatial priority map should not
be, we postulate that the ‘ping’ technique may be appropriated to
visualize learned attentional priority in a behaviorally independent
manner. Such a finding would both inform the neural mechanisms
underlying history influences on attentional selection as well as
represent the first time the latent attentional priority map was imaged
in a neutral way using a task-irrelevant ping.

In the current study, we employed the additional singleton task43

with imbalanced target distributions, a paradigm that can be used to

implicitly train participants to expect relevant information (i.e., tar-
gets) to appear in certain regions of space14,44–46. We then showed that
while the ongoing EEG signal did not contain information regarding
the current high-probability location, we could robustly decode this
high-probability target location based on the ping’s evoked response.
Control analyzes showed that this decoding could not be attributed to
temporal confounds or eye movements, suggesting instead that the
ping-evoked neural responses revealed a latent, implicitly learned
spatial bias operating as a silent layer of the attentional priority map.

Results
Behavior: Flexible learned prioritization at high-probability
target locations in a changing environment
Participants (N = 24) performed a variant of the additional singleton
task43(Fig. 1a), with sequences of biased blocks where the target
appearedwith a higher probability at specific locations (i.e., four out of
eight possible target locations served as high probability target loca-
tion throughout the experiment; Fig. 1a) intermixed with neutral
blocks without a spatial target location imbalance serving to reset the
learned priority landscape (Fig. 1b; see methods for full details). Cri-
tically, on half of all trials, participants would encounter task-irrelevant
high-contrast visual ‘pings’ in the intertrial period in between visual
searches (see Fig. 1c, d).

As visualized in Fig. 2a–c, behavioral results indicated that parti-
cipants were sensitive to the distributional properties of the targets
across the various high-probability locations throughout the experi-
ment - as indicated by faster responses when targets appeared in high
probability target locations relative to all other locations (t (23) = 10.62,
p <0.001, dZ = 2.17, 95% CI [40.72, 60.48]; Fig. 2a). Furthermore, a
reliable intertrial target location effect was observed when the target
location repeated from one trial to the next (t (23) = 5.956, p <0.001,
dZ = 1.22, 95% CI [37.21, 76.82]; Fig. 2b). Controlling for this intertrial
priming effect, the observed speed up of RT’s at high probability
locations remained highly reliable after excluding all trials where the
target repeated from one trial to the next (t (23) = 9.882, p <0.001,
dZ = 2.02, 95% CI [29.56, 47.25]; 18% of all trials excluded, Fig. 2a, c
exclude target repetitions). Additionally, in line with selective changes
in attentional priority as a function of the introduced statistical reg-
ularities, trials in which a distractor was presented in the high prob-
ability target location had especially slow response times, indicating
that distractors interference was more pronounced when the dis-
tractor appeared in location participants had been trained to expect
targets to be present (t (23) = 3.442, p = 0.002, dZ =0.7, 95% CI [10.41,
41.79]; Fig. 2c).

To examine whether the learning effect differed across experi-
mental phases, a repeated measure analysis of variance (ANOVA)
within subjects’ factors target location (high probability vs. low prob-
ability) and experiment phase (high probability location 1–4, see
Fig. 1b) was conducted. This yielded two main effects (all F’s > 8.7,
all p’s < 0.001, all η2 > 0.033), but no interaction (F(3, 69) < 1;
BF10 = 0.073), indicating that theobserved speedupat highprobability
locations was invariable throughout the experiment (all t’s > 2.2, all
p’s < 0.036, all dZ >0.46; see Supplementary Fig. 1). To further test
whether the neutral blocks led to extinction of previously acquired
attentional bias, mean reaction times were compared in the neutral
blocks between trials in which the target appeared at the high-
probability location of the previous block with all seven other loca-
tions. No statistically significant difference was found between these
trial types, indicating a successful extinction of bias (t (23) = 1.444
p =0.162; displayed per-block in Supplementary Fig. 1).

Out of the 24 participants, 11 indicated that they noticed targets
were presentedmore frequently at one location than any other. Seven
out of these 11 participants were also able to correctly identify the HP
location of the preceding block. When excluding these 11 participants,
our remaining dataset continued to show strong target enhancement
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Fig. 1 | Trial timecourse and experiment design. a Example of a stimulus display.
Note that the yellow markings were not present in the actual experiment. Partici-
pants were tasked to find a uniquely shaped shape singleton and report the
embedded line’s orientation using the ‘z’ key for horizontal or ‘/‘ key for vertical.
Colors and shapes randomly varied between trials, keeping the target character-
istics unknown. Salient color singletons served as distractors in 2/3 of the trials.
b Experiment blockorder anddecoding regime. Biased blocks hadone significantly
more likely target location (37.5% of trials), while neutral blocks had no high-
probability location, distributing targets equally among eight locations. Partici-
pants encountered four biased blocks followed by a neutral block. The subsequent
four biased blocks used different high-probability locations, cycling among four
(top, bottom, left, and right) with the order counterbalanced across participants

(the order shown in the figure is just one example). The rightmost panel presents
the ‘dummy decoding’ regime: as a control analysis, decoders received fake cate-
gory labels representing random time intervals without a consistent high-
probability location. Temporal features of EEG signals were preserved while
removing categorical features of a shared high-probability location. c Examples of
the two types of pings used in the experiment.d Timecourses for no-ping (top) and
ping (bottom) trials. Pre-stimulus periods were time-matched (1500–2200ms).
Trials beganwith ablack screen, followedby afixationdot. Inhalf the trials, a salient
ping appeared for 200ms. The stimulus display required participants to identify a
unique shape and report the line orientation, lasting until a response or 2500ms.
Trials without pings still recorded a trigger event for baselining in the no-ping
decoding analysis.

Fig. 2 | Behavioral and decoding results (N = 24). In box plots: grey lines indicate
individual participant results; shaded box extends over IQR; the middle line
represents mean; whiskers extend to mini/maximum values; diamonds indicate
condition means; notches indicate confidence interval of median; plot size indi-
cates data volume; all stars represent results of two-sided, preregistered t-tests; * =
p <0.05; ** = p <0.01; *** = p <0.001.a Participantswere faster to respond to targets
at high-probability (HP) locations than at low-probability (LP) locations.
b Participants were faster when targets were presented at the same location on
sequential trials (repeat trials) than when they switched to a new location (switch
target). c Participants were slower when distractors were present than when they

were absent. Participants were, additionally, especially slow when distractors were
present at the HP target location. d Decoder results comparing ping and no-ping
trials. Data was baselined in the −200 to 0mswindowpre-ping onset. Shaded areas
represent the standard error of participant means. Lines are smoothed using the
scipy function gaussian_filter with an alpha of 1.5. Lower red bars represent sig-
nificant clusters identified where decoding of ping trials was above chance. Black
bars represent clusters identified in which ping and no-ping decoding differed
significantly. Posthoc analysis additionally showed that all four locations con-
tributed to this above chance decoding (see Supplementary Fig. 5 for the confusion
matrix, as well as decoding without boosting as per preregistration).
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at the high probability location (t (12) = 6.751, p < 0.001, dZ = 1.9, 95%CI
[25.27, 52.76]) suggesting that our observed results were not solely
driven by a subset of aware participants (see Supplementary Fig. 2 for
the decoding results from the next section excluding these same 11).
While this does not rule out the possibility that participants had some
explicit knowledge regarding the underlying manipulation47,48, it does
appear that both behavioral and decoding results were consistent
regardless of reported awareness levels. These results further support
recent findings that participants utilize statistically learned attentional
strategies even regardless of explicit awareness49.

Decoding: Visual pings reveal the priority landscape in
anticipation of search display onset
After having validated that locations with a higher target probability
were prioritized over other locations via reaction timemeasurements,
we set out next to examine whether this prioritization could be
revealed in anticipationof searchdisplay onset, and, critically, whether
such decoding was dependent on the presentation of high-contrast
visual ‘pings’. For this purpose, we trained a classifier on the response
pattern of 64 electrodes using all four high-probability target location
as classes (see Methods for full detail) separately for ping and no-ping
trials. As visualized in Fig. 2d, we observed robust above chance
decoding of the high-probability target location, but critically only
from the evoked activity elicited by visual pings. By contrast, in the
absence of a visual impulse, ongoing EEG signals appeared to contain
little to no information about the current high-probability target
location. Indeed, cluster-based permutation tests across time con-
firmed that decoding in ping trials not only reliably differed from
chance, but also from no-ping trials. The observed high probability
target location decoding following visual pings is in line with the idea
that learned attentional priority is encoded in a latent layer of the
attentional priority map, mediated by dynamic changes of synaptic
weights underlying spatial attention networks leading to priming of
learned responses in preparation for new sensory input. The current
results show that it is then possible to decode the weights of this
otherwise activity-silent spatial priority map via a salient, task-
irrelevant ping. However, before reaching this conclusion, a mix of
several pre-planned and unplanned alternative explanations were
investigated (see also Supplementary Fig. 6 for an additional pre-
registered ERP analysis. While alpha lateralization was not a primary
concern for this study as these effects are only robustly seen for hor-
izontally presented stimuli - while the current study also included
laterally presented stimuli - for a further analysis of pre-stimulus alpha
focusing on horizontal high-probability conditions using this data-
set, see50).

Decoding effects cannot be explained by temporal correlation
A concern in the present design is the blocked nature of the high
probability distractor location, such that classification labels not only
signaled a unique spatial high probability location but also temporally
separate phases in the experiment (see Fig. 1b). While the absence of
reliable decoding in the no-ping trials rules out that decoding is driven
by oscillatory temporal artifacts, it is nevertheless possible that the
evoked response elicited by the ping varied over time resulting in
spurious decoding51–53. To explore whether the ping-evoked response
produced meaningful decoding, in an unplanned control analysis we
repeated themain analysis, but rather than classifying high-probability
target locations, the model was trained to decode the position of the
target in the preceding search display. This analysis included all eight
possible target locations and additionally included the neutral blocks.
Although less pronounced, this analysis again resulted in selective
decoding following ping onset, and critically this decoding could not
be explained by temporal artifacts as trials were now randomly sam-
pled from various time points (Fig. 3a). To further rule out temporal
structure as a confound, in another unplanned control analysis, we

exploredwhether it waspossible todecodedistinct temporal phases in
the experiment. That is, we artificially split the experiment in three
separate phases, with each phase containing the final block in a high
probability location sequence, the subsequent neutral block, and the
first two blocks of the following regularity (‘dummy decoding’ in
Fig. 1b). We chose these blocks specifically to minimize overlap with
the high-probability conditions while matching trial volume as closely
as possible to the original decoding (224 trials). Additionally, we chose
to make this window overlap slightly more with the subsequent high-
probability condition than the preceding one as there was a chance
that participants would be in the act of un-learning the previous
high-probability for some time after the regularity was no longer
present54–57. We sought to proactively counteract such lingering biases
by sliding the dummy window more in favor of the second high-
probability condition. When these ‘dummy’ labels were passed to the
exact same decoding pipeline as in the preceding analyzes decoding
collapsed, never deviating significantly fromchance level for both ping
and no-ping trials (Supplementary Fig. 3A). Together, these analyzes
suggest that the observed decoding was indeed driven by learned
latent attentional biases in response to the high probability location
manipulation, and the following analyzes treat the results as such.

Decoding was driven both by statistical learning and inter-trial
effects
It is well known that in visual search response times are affected by
intertrial priming in a similar way as statistical learning affects
response times58,59. Indeed, consistent with previous studies on inter-
trial priming, the current experiment also shows that response times
were significantly faster when the target location repeated from one
trial to the next (Fig. 2b). Critically, the ping which was presented
during the intertrial interval of the current trial was able to also retrieve
which location contained the target location on the preceding trial
(Fig. 3a). Therefore, due to our experimental design in which there is a
higher proportion of ping trials preceded by targets at the high
probability location, it is possible that the observed decoding does not
reflect learning across longer time scales, but instead solely reflects
intertrial priming effects. To determinewhether thiswas the case, in an
unplanned analysis we repeated the main analysis after excluding all
trials in which the preceding trial contained a target at the current
high-probability (HP) location (37.5% of trials, called HP-exclusionary).
Under these conditions, ping trials continued to show significant
decoding of the high-probability location (Fig. 3b). A further explora-
tory analysis was done to test whether decoding would remain high
when decoders were trained only on pings following trials in which the
target was at the current high-probability location (called HP-only
decoding). Decoding continued to remain high despite a significantly
lower trial count than the HP-exclusion analysis, indicating that the
decoding contribution was approximately equal between HP trailing
andnon-trailing trials despite the trial imbalance (Fig. 3b). Importantly,
while intertrial effects can be separated from statistical learning effect
via trial exclusions, statistical learning effects cannot be separated
from intertrial effects as they are present in all trials. Decoding in the
HP-exclusionary condition of Fig. 3b should thus be thought of as a
combination of statistically learned enhancement and serial biases,
while Fig. 3a better reflects the pure intertrial effect. Overall, these
results match the behavioral results, where significant effects of inter-
trial priming were found on top of statistically learned spatial
enhancement, and indicate that the ping is able to retrieve the priority
landscape both induced by serial priming from the previous trial and
statistical learning across longer timescales.

Decoding effects cannot be explained by systematic shifts in
gaze position
Acommonconcern inmulti-variate EEGanalyzes is the influence of eye
movements on decoding60. For example, the position of the eye can
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influence neural decoding when participants make (small) eye move-
ments, affecting how the image is projected to early visual cortex and
thus possibly leading to distinct patterns of activity60,61. There is some
reason to believe that if eye movements were significantly influencing
decoding, then they should have also influenced decoding in no-ping
trials as the fixation cross remained present on the screen, thus leading
to patterns of activity which should have been picked up by the
decoders. This assertion is further supported by the fact that foveal
receptive fields are much denser than parafoveal fields, meaning
minute movements should have evoked an outsized response to the
foveal fixation point in comparison to the peripherally presented ping
stimuli62,63. Despite this reasoning, and to address the issue of eye
movements, we systematically investigated the extent to which the
decoding results could be attributed to eye-related artifacts. First,
we examined whether gaze was shifted relative to the high-probability
target locations. To do this, we calculated average gaze position for
each of the HP trials across participants to form density maps of gaze
positions per condition. As is evident from the heat maps of gaze
density, this analysis yielded no evidence that gaze was systematically
shifted towards the high-probability target location (Fig. 3b). The only
significant cluster found was a negative cluster to the left of the fixa-
tion dot when the high-probability location was the top of the screen
(cluster-based permutation test, p <0.05). Excluding this condition
from themain analysis did not change the overall pattern of results. To
build on the results of the heatmap analysis, we next calculated a
‘towardness score’64 to quantify how eye position changed system-
atically across time in relation to the high-probability locations. This

score quantifies systematic gaze shifts as a numeric score, and is sen-
sitive enough to both microsaccades as well as overall shifts in resting
gaze position in eye tracking data64. The results of this analysis are
shown in Supplementary Fig. 4A; eye deviations did not systematically
differ from zero, indicating no systematic gaze bias towards (or away)
from the high-probability locations. Furthermore, to assess whether
individuals whose eyes drifted more had higher decoding scores, a
correlation analysis was also done between each participants toward-
ness score and their decoder performance over the 300–400ms
window post ping (where decoding was highest). This correlation
analysis is shown in Supplementary Fig. 4B, and shows that resting eye
position did not predict decoder performance.

While the heatmaps and towardness scores did not suggest any
systematic eye movements across participants in relation to the high-
probability location, there is still the possibility that eye movements
differed between high-probability target locations, but in a way that
does not generalize across participants. To test this with an unplanned
analysis, we adopted the same procedure as in the preceding EEG
decoding analysis, but instead entered the horizontal and vertical gaze
position as features. As visualized in Supplementary Fig. 4C there was
reliable above chance decoding, independent of ping presence. When
decoder results from the eye-tracker-trained decoders was compared
to the EEG-trained decoders, no significant correlation was found,
indicating high decoder accuracy in the eye-tracker decoders did not
predict high decoder accuracy in the post ping window in the EEG-
trained decoders (Supplementary Fig. 4D). Because eye-movements
seemed to differ systematically on a participant level, but not at the

Fig. 3 | Control Analyses. Solid colored bars below decoding results indicate sig-
nificant clusters as identified via permutation tests (see Methods). All results were
smoothed using a gaussian filter. Shaded areas represent standard error of mean.
a Decoder results when passed preceding trial target location as labels instead of
current high-probability target location. Note that this decoding took all 8 locations
as factors and included the neutral blocks. This analysis also included trials that
could have been at the current high-probability location (32% of total trials). Trial
averaging for this analysis was done over five trials (see Decoding methods).
b Decoding results when decoders are trained and tested only on ping epochs
which followed a trial in which the targetwas at aHP location (blue) or excluding all

such HP trailing epochs (red). Note that due to low trial counts, no trial averaging
was possible for HP-only decoding (See Methods). c Eye-density plots showing
average eye position in the 600mswindow following pings. Red represents regions
with higher densities than combined average of other three conditions. Blue
represents regions with lower densities. Black outlines indicate significant clusters
identified using permutation tests (see methods). X and Y-axis ticks indicate pixel
distance. Color bar indicates proportion out of 1. The fixation dot has been
superimposed over the densities for reference. See Supplementary Fig. 4A for an
un-baselined towardness analysis of eye data in the intertrial period.
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group level, it was plausible that these drifts represented temporal
artifacts rather than meaningful evoked movements. To examine this
possibility, the same ‘dummy’ control analysis was done for the eye
tracking decoding as for the EEG decoding to test for temporal con-
founds. Eye tracker datawaspassed to a decoder trained on labelswith
no meaningful overlap with experimental conditions (Supplementary
Fig. 3B) and produced the same pattern of results as when passed
meaningful labels, a result thatwas not found for the EEG analysis. This
indicates that the decoding observed in the EEG analysis was not the
result of ping-related eye confounds, but rather that above chance eye
tracker decoding likely represents temporal noise in the eye
tracking data.

General discussion
How does our past experience influence future behavior, and how can
we study this latent bias? We sought to answer this question on the
level of attentional deployment by testing whether the ping technique
(a method used previously to reveal latent working memory content)
could be used to visualize the layer of the attentional priority map
maintained by selection history. Consistent with an activity-silent
model of learned attentional bias, here we demonstrate that when
observers learned to prioritize a given location in space (as indexed by
faster target selection and increased distractor interference at that
location), the ongoing EEG signal did not contain information about
the current high probability location. Critically, however, this other-
wise hidden latent priority landscape could be revealed by inserting
neutral visual ping displays in between search displays. This above
chance decoding could not be attributed to temporal artifacts, nor
could it be explained by systematic biases in gaze. Instead, high
probability location decoding indicates that the ping technique can be
used to visualize not only latent memory representations but also our
latent attentional biases.

The current evidence suggests that updating local priorities
across visual searches accrues extremely fast57, which makes spatial
probability learning very flexible12. Indeed, in the current study where
the high probability location was not static but systematically varied
across time, learned priority was quickly adjusted in response to a
location change. One cannot exclusively attribute this observed ben-
efit to statistical learning, however, as such statistical learning is
naturally conflated with intertrial priming effects56,65. Interestingly, it
was recently observed in monkeys and humans that intertrial effects
are mediated by activity-silent mechanisms similar to those proposed
for working memory27. Consistent with this notion, we found that the
target location on the preceding trial could also be decoded in
response to the onset of a visual ping. Critically, our control analyzes
demonstrated that the observed high probability decoding could not
exclusively be attributed to such intertrial priming effects, as decoding
showed more or less identical time courses when high probability
location decoding was limited to trials with a target on that location or
after excluding those same trials.We thus conclude that the visual ping
is able to both envision selection history effects on a very short time
scale (i.e., intertrial priming) and effects that arise across longer time
scales (i.e., statistical learning). These results support the notion that
intertrial effects are mediated by synaptic mechanisms, as well as
provide for the first time, neural evidence that statistical learning may
also be mediated by such network-level mechanisms in the brain.
Furthermore, these findings suggest that ‘pinging’ may become a
useful tool for the study of both statistical learning as well as intertrial
effects, and may be expanded to the study of other selection history
effects (e.g. reward-based history effects66).

Dynamic shifts in synaptic weights have previously been pro-
posed as a viable mechanism for spatial attention16,18, and pinging
techniques have been proposed as candidates for visualizing these
network-level attentional changes in the past40. However, the enthu-
siasm for the study of these network-level influences has been blunted

by the fact that top-down attention does, in fact, produce ongoing,
measurable neural activity67–69. Selectionhistory effects, however, have
recently been shown not to be driven by similar active neural
mechanisms26–29. The current results build upon these findings by
demonstrating that the ping technique can be used to reveal activity-
silent history-modulated attentional bias. While these findings seem to
suggest that selection history influences exert themselves at the level
of synaptic weight changes, some caution is called for in this inter-
pretation as several open questions remain over the neural mechan-
ism’s underlying ping-revealed structures as well as why these
structures are usefully revealed via these transient pings.

As decoding is by itself uninformative about the underlying neural
representation70,71, the nature of these activity-silent states that the
ping succeeds in visualizing remains an open question. In the field of
working memory, the debate over why pings reveal otherwise hidden
memory content has focused on the question of whether the decoded
memories are encoded in truly latent networks, mediated by neuro-
plasticity, and which are then reactivated by the ping39,72–74, or alter-
natively whether these memories are simply mediated by ongoing
neural activity below a certain detection threshold in which case, the
ping would simply serve to reduce signal variance such that these
states canbe visualized75–77.While these questions areultimately better
answered via neurophysiology, in the current case of ping-evoked
decoding of learned attentional preparation the existing literature
favors the former interpretation, as selection history, whether in a
formof statistical learningor intertrial priming, hasgenerally exhibited
none of the characteristics of active neural processes26–28,32. In fact (and
in sharp contrast with the field of working memory) there exists no
major theory of the underlying mechanisms of statistical learning that
is explicitly built on a concept of sustained, continuous neural activity.
This is because, while active traces may in principle be a plausible
neural mechanism for driving intertrial priming over relatively short
timescales, such active mechanisms seem unlikely to drive statistically
learned spatial biases which are known to persist over very long time
periods ranging fromminutes54,55,57, to weeks56,78,79. As a result, models
of statistical learning have generally resembled models of long-term
memory (where synaptic models are favored for their durability over
time) rather than working memory (where active firing models are
more normal)14,80–83. Despite this, it is important to realize that the
current results should not be taken as an outright refutation of any
model of history-modulated attentional bias which might propose
ongoing neural activity as the central neural mechanism underlying
the effect. While our results are consistent with amodel where there is
nomeaningful ongoing activity in the intertrial window, due to our use
of baselining and filtering, we cannot definitively rule out that there is
some activity still present. While further work is needed to clarify this
point, what remains clear is that the pinging approach offers a novel
tool for studying the underlying changes occurring in the brain which
allow for history-mediated behavior to arise.

A further important unanswered question remains: why exactly
do these otherwise hidden structures produce discernable activity
patterns in response to a neutral, salient ping? In the case of working
memory, it has been proposed that the observed reactivation mirrors
the way that active sonar uses reflections of audio pulses to reveal
underwater structures38,39,72,73. While a useful tool for conceptualizing
the pinging technique, the reflections of audio pulses underwater is
clearlymechanically very different than the interaction of visual pulses
with hidden states in the brain72. Alternatively, it has been proposed
that a latent history-dependent filter may drive decoding in working
memory versions of ping experiments37,39, an explanation which is
loosely valid in our attention variant of the paradigm and which has
support in various template theories of attention18,21,84. However, a fil-
ter match model does not necessarily imply irrelevant stimuli should
also activate these templates; thus, further work must be done to
justify this filter-correlated activity. We propose that the most
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parsimonious explanation for this decoding is that the sudden, salient
stimulation of the ping drives systematic mis-activation patterns by
dynamically task-primed neurons (Fig. 4). Firstly, the influence of
selection history is proposed to lower activation thresholds of pre-
dicted stimulus tuned neurons, this liberalization would then account
both for speeded responses when targets were correctly predicted,
but also increased distractor interference when present at expected
target locations. Secondly, this lowered activation threshold should
also lead to increased incidental firing of primed neurons when pre-
sented with the task-irrelevant ping (Fig. 4b). Incidental firing of neu-
rons to thepresentationofnon-tuned stimuli is a familiarphenomenon
in research using single-unit recordings (see, for instance85,). If latent
learned attentional priority ismediated by neural structures entering a
‘primed’neural state viaprocesses of neural plasticity, then the passing
of irrelevant but high-contrast pings through the visual cortex may
incidentally activate these primed neurons at a high rate. This rate of
activation, then, would be the weak signal to which the decoders are
sensitive (Fig. 4b).

Our findings also inform the debatewhether learned expectations
exert their influence already in advance86 or, alternatively, only
become apparent in response to sensory stimulation3,87. Based on
behavioral studies that randomly intermix search displays with probe
displays, where the latter allows one to take a peek at selection prio-
rities immediatelyprior to searchdisplay onset, it hasbeen argued that
learned attentional biases are already evident pre-stimulus46,88. Con-
sistent with such proactive enhancement in the spatial priority map,
here the ping evoked decoding indicates preparatory spatial tuning
towards the high probability location before the onset of the actual
search display. At the same time, however, this proactive tuning was
not evident in ongoing oscillatory activity and only became apparent
in response to sensory stimulation by the visual pings. Therefore, it
appears that while statistical learning proactively adjusts the spatial
priority map, this priority landscape only becomes apparent after the
integration of bottom-up sensory input, such as a probe display, or in
this case visual pings (but see30).

A number of influential new theories of attentionhavehighlighted
the need to integrate selection history into models of dynamic atten-
tional priority10,12,89–91. The current results advance this project by
providing a novel method of visualizing the history-mediated layer of

the attentional priority map while also suggesting the neural
mechanisms underlying such latent biases. While priority maps have
typically been studied in their influence on spatial attention, it has also
been noted that they can easily be thought of as a general cognitive
tool useful in the conceptualization of any goal-directed behavior16.
Under this view, the currentfindingsmay represent just thefirst step in
expanding the application of the ping technique to reveal latent biases
in the brain. Fields of study that have previously been excluded from
neuroimaging research should now reconsider the possibility of
undertaking the study of latent neural states using similar pinging
approaches, as much future research will undoubtedly reveal the
extent of the ability of the pinging technique to reveal previously
hidden structured in the brain.

Methods
The experimental design and all analysis methods were preregistered
on Open Science Framework on September 27, 2021. Preregistration
can be found at https://osf.io/5vw7t. All deviations from preregistra-
tion are noted.

Participants
This study was conducted at Vrije Universiteit Amsterdam and con-
formed to the Declaration of Helsinki and was approved by the Ethical
Review Committee of the Faculty of Behavioral and Movement Sci-
ences, Vrije Universiteit Amsterdam. All participants provided written
informed consent prior to participation and were compensated with
25 euros or course credits. All participants indicated normal or
corrected-to-normal vision and reported no history of cognitive
impairments. Based on previous pinging studies on working
memory38,39,92 we included 24 participants (17 female, mean age 24) in
our final dataset after replacement of eight participants. No statistical
method was used to predetermine the sample size. Two participants
were replaced because of accuracies 2.5 standard deviations (SD’s)
below the group average on the behavioral task; two as a result of
overall response times slower than 2.5 SD’s from the group mean; two
for producing low-quality encephalography as revealed through visual
inspection, and two for failing to maintain fixation during the task as
revealed through the electro-oculogram and eye-tracking analysis
(saccades detected on more than 30% of trials, see eye-tracing

Fig. 4 | Possible mechanisms underlying search priority and ping evoked
activity. Cells tuned to HP locations are proposed to adopt a more liberal activity
threshold, thereby leading to faster correct RT’s as well as distractor capture when
presented in that location. Importantly, this shifted bias also leads to more inci-
dental activity when pings are presented. This differential in incidental activity is
proposed as driving ping decoding. a Integrated activity from top-down, bottom-

up and selection history effects driving attentional selection in an example search
task. Attention isdirected to the regionwith the highest activity, in this case, the far-
left location (note: the brain schematic is based on the figure used in Theeuwes
et al., 2022). b Ping-evoked incidental activity integrating bottom-up and selection
history effects. Top-down effects are absent as no task goals were present in rela-
tion to pings.
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acquisition andpreprocessing below). Sexwas not taken as a factor for
analysis as we had no a priori reason to expect sex differences in
cognition.

Apparatus and task
Participants were seated in a dimly lit sound-attenuated room with a
chinrest 60 cm away from a 23.8 inch, 1920x1080 pixel ASUS ROG
STRIX XG248 LED monitor with a 240 hz refresh rate upon which all
stimuli were presented. The behavioral task was programmed using
OpenSesame93 and utilized functions from the Psychopy library of
psychophysical tools94. EEG data were recorded with default Biosemi
settings at a sampling rate of 512 Hz using a 64-electrode cap with
electrodes placed according to the international 10–10 system (Bio-
semi ActiveTwo system; biosemi.com) with two earlobe electrodes
used as offline reference. Vertical (VEOG) and horizontal EOG (HEOG)
were recorded via external electrodes placed ~2 cm above and below
the right eye, and ~1 cm lateral to the left and right lateral canthus. Eye-
tracking data were collected using an Eyelink 1000 (SR research v.
4.594) eye tracker tracking both eyes. Participants used a headrest for
stability positioned 60 cm from the screen. Sampling differed between
participants between 500, 1000, and 2000hz due to the different EEG
labs used having different versions of the Eyelink 1000 with variable
sampling limits. All participant data was later standardized to 500 hz
during preprocessing. Calibration was done before the first block and
at the halfway point for all participants. For some participants, addi-
tional calibrations occurred due to subtle changes in resting position
in the chinrest or other factors which caused noticeable drift in the
calibrated signal.

The task was a modified version of the additional singleton task
with underlying stimulus regularities known to provoke statistical
learning43,95. All stimuli were presented on a black background.
Each trial started with a blank screen randomly jittered between
200–500ms in length. A circular fixation point (40 px diameter, ~1.1°)
was then presented alone between 1300–1700ms at the center of the
screen. The fixation point design was taken from Thaler et al. 96. who
showed their fixation dot design provided the most stable fixation
results from a range of possible designs. Participants were informed to
maintain fixation throughout the trial and not to saccade towards any
peripheral stimuli. Participants received feedbackwhen the eye tracker
detected a fixation deviation above 1.5° away from fixation in the form
of a low-volume audio beep.

During the fixation period, on 50% of trials a high-salience visual
‘ping’, which appeared at a time point randomly jittered between
700–900ms after fixation onset, was presented for 200ms (Fig. 1c).
Pings were comprised of four white (rgb 0,0,0) high contrast shapes,
either all diamonds (diagonal length 116 pixels; ~3°) or all circles (dia-
meter 90 pixels; ~2.4°), presented in the four cardinal directions (up,
down, left and right) on the same locations where subsequent search
shapes appeared (see below). The ping shapes comprised of a large
outer shape with three smaller shapes recursively embedded within
the outer shape. We chose to use pings that closely resembled the
search targets in location and form as this is typically done when this
procedure is applied to investigate working memory38,39,92,97 (but
see40,98 for exceptions). Following ping offset, the fixation point
remained on screen for a randomly jittered duration of 400–600ms.
To contrast ping and no-ping trials, a ping trigger was created on both
trial types, but onno-ping trials, these triggers did not correspondwith
an actual ping presentation; instead, the screen remained blank except
for a fixation dot until the next trial began.

An additional singleton search display43 was next presented,
which remainedon screen for 2000msor until participants provided a
response (Fig. 1a). Each search display contained eight equidistantly
placed shapes on an imaginary circle (radius 185 pixels; ~4.8°) centered
on fixation. The shapes, which could either be circles (diameter 90 px,
~2.4°) or diamonds (82 x 82 px or ~ 2.1° x 2.1° square rotated 45

degrees) and could either be colored red (rgb 255,0,1) or green (rgb
0,128,0), all contained a white (rgb 255,255,255) line (70px; ~1.8°)
oriented horizontally or vertically bar. On each display, one shape was
unique from the rest (either one circle among seven diamonds or vice
versa) and participants were instructed to report the orientation of the
line inside this target shape via button press on a standard keyboard
(‘z’ for horizontal lines; ‘/’ for vertical lines). On a subset of trials (70%)
one of the homogenous shapes was assigned a unique color (e.g., if the
shapes were green, the distractor was red, or vice versa) rendering it a
colored singleton distractor. The sole purpose of these distractors was
to make the task more challenging, thereby making the target prob-
ability manipulation less apparent (see below). Distractors' presenta-
tion was controlled such that a distractor appeared in each of the eight
locations exactly the same number of times per block.

Critically, target locations were not selected at random, but
instead, the experiment was structured such that for several experi-
ment blocks in a sequence, one location would be more likely to
contain the target than the other locations (see Fig. 1a). Specifically, in
high probability target blocks, one location was disproportionately
more likely to contain a target, with targets appearing at this high-
probability location on 37.5% of trials, making them 4.2 times more
likely to contain a target than any of the other, low-probability loca-
tions. To be able to decode the high-probability target location, high-
probability locations did not remain static for an entire experimental
session, but instead periodically shifted across the cardinal locations
(up, down, left, and right). Specifically, in every four blocks the high
probability location changed to anew location (order counterbalanced
across participants), with every change being preceded by a neutral
block, in which targets appeared in each of the eight locations with
equal probability (see Fig. 1b). These neutral blocks served to, at least
partly, unlearn the acquired spatial priority settings such that obser-
vers entered a new sequence of learning blocks without robust lin-
gering attentional biases54–57.

Each of the 19 experiment blocks and the precedingpractice block
consisted of 56 trials. Breaks were offered in-between experimental
blocks where participants were informed of their progress, accuracy,
and average reaction time and were encouraged to rest their eyes.
Following the completion of the experiment, the participant was asked
to answer an additional four debrief questions (for three participants
the debrief was collected verbally). Firstly, they were asked if they
noticed the target tended to appear in certain locations more fre-
quently than others. Secondly, they were asked to indicate where they
believed the target was most frequently present on the final experi-
ment block which they had just completed. If they were not sure they
were instructed to provide a best guess. Thirdly they were asked if they
felt any of the other seven locations at some point in the experiment
was more likely to hold a target. Finally, the participant was asked if
they had ever performeda task similar to theone they had justfinished.

Analysis
All analyzes involving EEG and eye-tracking data were done using
custom Python scripts. All behavioral analyzes were programmed
using R. All preprocessing and analysis scripts are available online and
can be downloaded at https://github.com/dvanmoorselaar/DvM.
Functions from the open-source MNE analysis package were heavily
used and central to our analyzes99. All analysis steps followed those
listed in our preregistration unless otherwise stated.

Behavioral preprocessing
If a participant’s overall accuracy was 2.5 SD’s below groupmean, then
that participant was excluded from our dataset and replaced. The
average accuracy after exclusions was 89% (range 81–97%). Next, par-
ticipant datawas restricted to correct trials, andmeanandSDbasedon
each individual participant’s RT data were then calculated. Trials 2.5
SD’s faster and slower than each participant’s average RT were
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excluded, resulting in an average of 1.1% of abnormally slow/fast trials
excluded per participant. The group average reaction time (RT) was
then calculated and participants 2.5 SD’s away from this mean were
excluded and replaced. Combined exclusion of incorrect responses
( ~ 11%) and data trimming ( ~ 1%) resulted in an overall loss of
approximately 12% of total trials

EEG acquisition and preprocessing
Following re-referencing of all EEG data to the average of the two
earlobe electrodes, the data were high-pass filtered at 0.01Hz using
Hammingwindowed FIRfilter to remove slow signal drifts. Continuous
EEG was then epoched from −700 to 1100ms relative to ping display
onset, or relative to matching timepoints on no ping trials, with trial
rejection procedures being limited to a smaller time window (i.e.,
−200–600ms). Prior to subsequent trial rejection and artefact cor-
rection,malfunctioning electrodesmarked asbadby the experimenter
during recording were temporarily removed. First, EMG contaminated
epochs were identified with an adapted version of an automated trial-
rejection procedure as implemented in Fieldtrip100. To specifically
capture muscle activity we used a 110–140 Hz band-lass filter and
allowed for variable z-score thresholds per subject based on within-
subject varianceof z-scores101.Moreover, to reduce thenumber of false
alarms, rather than immediate removal of epochs exceeding the
z-score threshold, the algorithm first identified the five electrodes that
contributed most to the accumulated z-score within the time period
containing the marked EMG artefact (We chose to deviate from our
preregisteredmethod here as the new interpolatedmethod allowed us
to preserve more data. Results were also analyzed using the pre-
registered exclusion criteria and did not differ in the pattern of
results.). Then in an iterative procedure, the worst five electrodes per
marked epoch were interpolated using spherical splines102 one by one,
checking after each interpolation whether that epoch still exceeded
the determined z-score threshold. Epochs were selectively dropped
when after this iterative interpolation procedure the z-score threshold
was still exceeded. Second, Independent Component Analysis (ICA) as
implemented in theMNE (using the ‘picard’method) wasfitted on 1 Hz
high pass filtered epoched data to remove eye-blink components from
the cleaned data. Third, manually marked malfunctioning electrodes
were interpolated using spherical splines.

Lastly, we excluded trials in which a saccade was detected by the
eye tracker, or significant drift was recorded through the course of
the trial. To detect drift in our eye tracking data, we first baselined our
eye tracking data on the 300ms pre-ping window. We then observed
the maximum deviation from zero measured in segments of data
40ms long for each trial. If this maximum exceeded 1° then the trial
wasmarked for exclusion ( ~ 8% of data per participant). If the number
of trials excluded due to saccades or drift exceeded 30% of the total
trials, their eye tracking data was further examined. If it was revealed
that eye tracking data was exceptionally low quality, then their eye
tracking data was ignored and their data was cleaned based on the
HEOG recordings instead (one participant had their data treated in this
way). If their eye tracking data was found to be of high quality, then the
participant was excluded from the analysis and their data replaced
with a newparticipant (twoparticipantswereexcluded in thisway). For
participants with no reliable eye tracking, we identified trials with
sudden jumps in the recorded EOG facial electrodes using a step
method with a window of 200ms, a step size of 10ms and a threshold
of 20 μV, and excluded these trials.

Eye-tracking acquisition and preprocessing
One participants eye data was excluded due to poor quality tracking
(see above). For the remaining 23 datasets, eye datawasfirst converted
from the native EDF format to the ASC format before further proces-
sing. The eye-tracking data was then epoched around the ping onset
event, or relative to matching timepoints on no ping trials, including

−200ms before onset and 600ms after onset to match EEG data
epochs. Blinks were then identified in the eye-tracking signal and lin-
early interpolated using custom scripts. A 200ms pad was applied
before and after any identified blink timewindow to ensuremovement
artifacts before and after blinks were not accidentally preserved. All
eye data was then baselined relative to the 200ms window prior to
ping onset when participants held fixation. If the sampling rate of the
participant was above 500 hz, their data was next down-sampled to
500 hz using scipy resample function. Eye tracking data was then trial
matched to the processed EEGdata such that only trials included in the
EEG analysis were also included in any eye tracking analysis.

Eye-density calculation
For each participant, eye data from the 600 milliseconds post ping
were first separated between the four HP conditions and con-
catenated. Next, each datapoint was rounded to the nearest quarter of
a pixel and centered around zero. Density was then calculated for
every quarter pixel by dividing the count of the number of timepoints
at each (x,y) location by the total number of timepoints. Next, density
differences were calculated by cycling through each of the four con-
ditions and subtracting every cell of the current density matrix by the
averaged density matrix of the other three conditions. The group
average density figure was then generated by averaging across the 24
individual density matrixes for each HP condition. Finally, a cluster
permutation test was done for each of the four locations, across the 24
datasets (see statistics).

Eye towardness calculation
The eye towardness analysis shown in Supplementary Fig. 4A is based
on that used in van Ede et al.64 In this preregistered analysis, un-
baselined eye tracking data was used. Data was first epoched in a
-700ms to600mswindowcentered around (hypothetical) pingonset.
This window extended from the earliest fixation onset to the earliest
next search trial onset, and thus represents the majority of the inter-
trial window on every trial. Trials were then split into ping and no ping
trials to be analyzed separately. Following the methods of van Ede
et al.64. Experiment 2, we next separated our trials into those in which
the high probability location was on one of the vertical positions (top
or bottom), or one of the horizontal positions (left or right). Separately
for each participant, for every individual timepoint we then averaged
the x-axis channel values for the horizontal trials and the y-axis channel
values for the vertical trials (see van Ede et al.64 eye-tracking analysis
for further information) to get the average xor y-axis behavior through
the intertrial period. Next, we subtracted the right from the left values,
or the top from the bottom values, and divided by two to get a dif-
ference score, with positive values representing the average eye
positional bias towards the high probability location, and negative
values representing bias away. Next, we further divided these values by
the actual possible target locations and multiplied by 100 to get a
percentage deviation towards the target locations. Finally, we aver-
aged between our vertical and horizontal conditions to get a general
towardness score for ping and no-ping trials.

Decoding analysis
To test whether the ping evoked discernable activity based on the
different high-probability locations used across various blocks, we
applied multivariate pattern analysis (MVPA) using a cross-validated
linear discriminant analysis (LDA) on ping and no-ping trials separately
with all 64 electrode channels as features and block high probability
locations as classes. EEGdatawasfirst baselined in awindow from -200
to 0ms prior to ping onset trigger (for no-ping trials, no stimuli was
actually presented but instead the screen remained blank except for a
fixation point), and subsequently down-sampled to 128 Hz. While not
preregistered, to further increase the signal-to-noise ratio in our
data103, we adopted a trial-averaging approach and subsequently
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transformed our data using principal component analysis (PCA). Spe-
cifically, we averaged over three trials of the same exemplars, after
which the data was PCA transformed in each cross-validation run (see
below) with a model fitted on the training data only. The main
decoding results without these additional signal-to-noise boosting
effects are included in Supplementary Fig. 5.

The data was next randomly split into 10 equally sized subsets
where each class (i.e. the four possible high probability locations)were
selected equally often in each condition so that training would not be
biased towards any one class. Next, a leave-one-out procedure was
used such that each classifier was trained on nine folds and tested on
the one excluded fold until each fold was tested once; thus, ensuring
that training and testing never occurred using the samedata. Classifier
performance was then averaged across the ten folds. We used an Area
Under the Curve (AUC) approach to rate classifier performance, which
is an approach considered a sensitive, nonparametric and criterion-
free measure of classification performance104. Using AUC, a rating of
0.5 is considered chance level classification. An analysis score was
collected for every time point, showing how decoding performance
fluctuated across time. We chose to decode over the time period from
-200ms before ping onset until 600ms after ping onset (or 400ms
after ping offset, theminimumamount of time that couldpass before a
search display appeared, see Fig. 1d).

ERP analysis
An additional event-related potential (ERP) analysis was conducted to
investigate whether the ping displays produced a lateralized evoked
component, such as the N2pc, which is known to indicate lateral
attentional capture105–107.While the results did not produce anything of
real interest, this analysis was included in the preregistration and thus
is included as Supplementary Fig. 6 for completeness.

Two separate ERP analyzes were conducted for ping and search
displays. Data was 30Hz low-pass filtered and baseline corrected using
a 200ms window prior to ping or search onset We first investigated
whether an N2pc component could be found during search as a sanity
check. Trials were thus restricted in our search analysis to those in
which the target appeared on the left or right side of the horizontal
midline. Furthermore, interference from thedistractorswas controlled
by restricting trials of interest to those in which the distractor was
present on the vertical meridian or trials in which no distractor was
presented at all. For our analysis of the ping data, the primary factor of
interest was block HP conditions, so analysis was restricted to trials in
which the HP location was either the left or right locations in space, as
therewas no reason to expect top and bottomconditions to produce a
perpendicular lateralized component. For each analysis, waveforms
were computed for ipsilateral and contralateral scalp regions relative
to the relevant horizontal factor using the PO7/PO8 electrodes of
interest. Data was then 30 Hz low-pass filtered and baseline corrected
using a 200ms window prior to ping or search onset.

Statistics
RT and accuracy were analyzed using simple within subject, two-sided
t-tests and analyzes of variance (ANOVA’s). For all frequentist statistics,
the appropriate tests for assumptions were carried out (e.g. Shapiro-
Wilke, Mauchly etc.). In the case that a test failed an assumption check,
this violation would have been reported and the appropriate revised
test carried out. In case of insignificant results, where applicable, we
run Bayesian equivalents of the above specified tests using the default
prior settings of the JASP analysis toolbox108. Decoding scores were
evaluated for both ping and no-ping trials via cluster-based permuta-
tion tests and paired sampled two-sided t-tests with cluster correction
(p = 0.05 and 1024 iterations) using MNE functionality99. A similar
permutation testwasused to comparewhether thedifferencebetween
decoding on ping and no-ping trials was significant across time.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The anonymized raw EEG and behavioral data generated in this study
have been made publicly available on OSF (https://doi.org/10.17605/
OSF.IO/V7YHC; https://osf.io/v7yhc/).

Code availability
All scripts related to EEG preprocessing and analysis, behavioral
data preprocessing and analysis, as well as the experiment code
have been made available on the project’s OSF page (https://osf.
io/v7yhc/) and the associated toolbox’s Github (https://github.
com/dvanmoorselaar/DvM).
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