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Superscattering emerging from the physics
of bound states in the continuum

Adrià Canós Valero 1,2 , Hadi K. Shamkhi2,3, Anton S. Kupriianov4,
Thomas Weiss 1, Alexander A. Pavlov5, Dmitrii Redka 6,
Vjaceslavs Bobrovs 7, Yuri Kivshar 8 & Alexander S. Shalin 9,10

We study theMie-like scattering from an open subwavelength resonatormade
of a high-indexdielectricmaterial, when itsparameters are tuned to the regime
of interfering resonances. We uncover a novel mechanism of superscattering,
closely linked to strong coupling of the resonant modes and described by the
physics of bound states in the continuum (BICs). We demonstrate that the
enhanced scattering occurs due to constructive interference described by the
Friedrich-Wintgen mechanism of interfering resonances, allowing to push the
scattering cross section of a multipole resonance beyond the currently
established limit. We develop a general non-Hermitian model to describe
interfering resonances of the quasi-normal modes, and study subwavelength
dielectric nonspherical resonators exhibiting avoided crossing resonances
associated with quasi-BIC states. We confirm our theoretical findings by a
scattering experiment conducted in the microwave frequency range. Our
results reveal a new strategy to boost scattering from non-Hermitian systems,
suggesting important implications for metadevices.

Non-Hermitian physics offers a wide range of unusual phenomena not
accessible for purely Hermitian systems1. In recent years, there has
been tremendous progress in the implementations of non-Hermitian
platforms in optics, with discoveries of many intriguing effects that
may occur in lossy or gain-compensated optical structures. Being
motivated by the studies of parity-time (PT ) -symmetric systems, a
novel field of non-Hermitian photonics emerged1, taking advantage of
new degrees of freedomoffered by complex energy landscapes2–6. The
advancements are particularly exciting for subwavelength photonics,
allowing to study of unconventional regimes of light-matter interac-
tion such as exceptional points7,8 and dark states9–11.

Importantly, the eigenvalues of an isolated optical resonator
with uncompensated radiative losses are always complex.

Nevertheless, they can be controlled by engineering the resonator
parameters to achieve the regime of bound states in the continuum
(BIC) with ultrahigh quality factors (Q-factors) and strong energy
localization12. This regime arises due to the destructive interference
within themodes of the same radiation channel, as a consequence of
the Friedrich-Wintgen (FW) mechanism of interfering resonances13.
While a bimodal system coupled to one channel of the continuum is
well understood, the subtleties underlying multiple-channel inter-
actions are yet to be exploited in photonics. Destructive interference
leads to a quasi-BIC regime and the suppression of radiation in one
channel. Here, we pose the question, of whether constructive inter-
ference of a quasi-BIC state and a low-Q mode in a multi-channel
structure can boost radiation beyond the limit for an isotropic
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scatterer, realizing superscattering14,15. Until now, superscattering
was known to originate only from a degeneracy of multipolar
resonances14–22, which, when spectrally overlapped, exceeded the
single-channel cross-section.

In this work, we demonstrate that strong coupling between two
modes can lead to a previously unknown regime of superscattering in
subwavelength resonators, in addition to the quasi-BIC states (see
Fig. 1a). We reveal that mode coupling induces power redistribution
between two scattering channels, allowing to overcome the single-
channel scattering limit and control not only the Q-factor, but also
enhance the power scattered by a multipole, (e.g., the electric dipole)
beyond the limit, as demonstrated in Fig. 1b. Unlike the recent pro-
posal in23, there is no need to introduce gain in the resonator. We first
formulate a general phenomenological model and later employ rig-
orous perturbation theory for quasi-normal modes (QNMs) of non-
Hermitian resonators24,25 to design several examples of subwavelength
cavities with broken spherical symmetry.

Results
Enhancing scattering by finite objects
We start our analysis by overviewing how superscattering arises
through the mechanism originally proposed in16. Consider a particle
possessing either spherical symmetry, or dimensions much smaller
than the incident wavelength, illuminated along the z axis by an inci-
dent plane wave. In all that follows, we consider its center of mass is
taken as the origin of the coordinate system.

In or outside the smallest spherical region surrounding such
particle, the electromagnetic fields can be expressed as a combination
of multipolar waves, i.e., E rð Þ= P

τ
cτW τ rð Þ. The triplet τð Þ � l,m,pð Þ

represents a scattering ‘channel’, through which the particle can
exchange power with the environment. The first number indicates the
total angular momentum, so that l = 1 is a dipole, l = 2 a quadrupole,
and so forth. The second is the absolute value of the projection of
angular momentum to the z-axis, while p denotes the magnetic or
electric character of themultipole (p = 1 for electric or p = 2magnetic).
Eachmultipolar wave can be decomposed further into an outgoing (−)
and an incoming (+) wave, so that the field in one channel is alter-
natively expressed as Eτ rð Þ= s +τ W +

τ rð Þ+ s�τ W�
τ rð Þ. s + �ð Þ

τ are the
incoming (outgoing) coefficients in channel τ. With a suitable nor-
malization, ∣s + �ð Þ

τ ∣
2
corresponds to the power carried towards or away

from the particle in every multipole channel.

The effect of the scatterer is completely described by the ‘reflec-
tion’ coefficients Rτ � s�τ =s

+
τ . Furthermore, energy conservation dic-

tates ∣Rτ∣≤ 1 for passive scatterers. The scattering cross section for
each channel is then given by

στ =
2l+ 1
8π

λ2∣1� Rτ∣
2 ð1Þ

The limit is attained for Rτ = � 1, and yields σMax = 2l+ 1ð Þλ2=2π.
For example, in the case of a dipole (electric or magnetic), the limit is
σMax = 3λ

2
=2π. In a scatterer with negligible absorption losses, this

limit can be achieved at a multipolar resonance16. To each resonance,
one can associate an underlying quasinormal mode (QNM), with a
complex eigenfrequency eωm =ωm � iγm. For small γm, a multipolar
resonance appears in the real frequency spectrum, centered around
ωm and having a linewidth of 2γm.

To design a superscatterer, the resonant frequencies of several
QNMs associated to different multipolar channels must be brought
together by a smart design of the particle geometry, so that the total
scattering cross section, given by the sum of their contributions,
exceeds the limit. This is typically done so by addingmaterial layers of
different thickness to a sphere or an elongated rod14,21,26. The super-
scattering regimewas very recently experimentally verified for thefirst
time14.

What happens in the absence of spherical symmetry? Intriguingly,
it was shown that larger bounds on total extinction could be attained
for lossy nonspherical shapes27, even for deeply subwavelength plas-
monic particles. The enhancement, however, was mostly delivered by
absorption from such particles, and still remained significantly below
the single-channel limit (for a detailed comparison, we refer the reader
to the Supplementary Information S12 and Figure S6). Finite plasmonic
nanorods were also numerically investigated22, exhibiting enhanced
cross-sections for some well-chosen geometrical parameters (Fig-
ure S6). Despite these works, focused in plasmonic cavities with large
absorption cross-sections, there appeared to be no qualitative differ-
ences between a spherical shape and the general case.

In fact, scattering by nonspherical objects, even with sub-
wavelength dimensions, is described by a matrix R with potentially
nonzero off-diagonal components of the form Rττ0 � s�τ =s

+
τ0 . They

relate the incomingwave in channel τ0, to theoutgoingwave in channel
τ. This has an important consequence: since the limit in Eq. (1) relies on
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Fig. 1 | Superscattering from the physics of BICs. a Concept of BIC-inspired
superscattering in an isolated resonator. Strong coupling of two modes reshapes
both their near fields and scattering patterns as a function of a tuning parameter.
The interfering resonances lead to a quasi-BIC state (destructive interference) and
induce power redistribution between multipolar scattering channels leading to
super-dipole radiation (constructive interference). b Super-dipole resonance

arising in the scattering cross-section of a dielectric cylinder with refractive index
np ∼ 3:8, radius 130nm, and height 180nm. The scattering cross-section of the
electric dipole channel significantly exceeds the single-channel limit. This is in
contrast with conventional superscattering, where several multipole resonances
need to be overlapped.
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the R-matrix being diagonal, (i.e., there is no power exchange between
the multipole channels), the latter, in principle, ceases to be valid.

Werealize that, ingeneral, dependingon the symmetryof theobject,
the scattering cross section of one multipole can receive contributions
from other multipoles. Intriguingly, this suggests that the strength of a
multipole could, in theory, be boosted beyond the conventionally
accepted limit, as depicted in Fig. 2a. In stark contrast with conventional
superscattering, by being able to enhance the cross section of a single
multipole, we could not only enhance overall scattering, but also
manipulate the radiation pattern, for instance making it larger without
significantlyaltering its shape, as illustrated inFig. 2a. So far, this effecthas
proven to be elusive, and has not been reported in the literature.

Super-multipole resonances
To verify this possibility, we assume only two scattering channels
(multipoles) τ = 1, 2 are important, and, after some assumptions we
derive an ad-hoc expression for the scattering cross section of channel
1 (derivation provided in the Supplementary Information S3):

σ1=σMax =
1
4
∣1� R11 � R12∣

2 � ∣ f ωð Þ∣2 ð2Þ

The function f(ω) can be complex, and its modulus will determine
the ultimate limit for scattering in this case. Namely, if ∣ f ωð Þ∣>1, the

single-channel limit could be exceeded, since σ1 would then be larger
than σMax. To derive an analytical expression for it, we investigate a
hypothetical structure supporting a single QNM ∣ai which, due to an a
priori unknownmechanism, is coupled to the two scattering channels.
The radiation rate of is the sum of radiation rates to the two channels,
i.e., γa = γ1 + γ2. According to temporal coupled mode theory18,28

(TCMT), we get f ωð Þ= i
ffiffiffiffiffiffiffi
γ1γ2

p
+ γ1

ωa�ω�i γ1 + γ2ð Þ (refer to Supplementary Infor-
mation S4 for details).

What happens when the radiation rate to the second channel
increases? Fixing γ1 = 1 (in normalized units), we plot f ωð Þ as a function
of detuning from resonanceωa �ω, for different values of γ2 (Fig. 2b).
In all cases, the maximum occurs at resonance (zero detuning). If
γ2 = 0, ∣ f ωð Þ∣= 1, since theQNMcanonly radiate to one channel. This is
the conventional case. Strikingly, there exists a critical γ2 for which
∣ f ωð Þ∣ reaches a maximum exceeding 1 (green curve in Fig. 2b).
Interestingly, for radiation rates larger than the critical (pink curve in
Fig. 2b) we observe a progressive degradation of the enhancement,
confirming that there indeed exists an optimal, small γ2 where the
cross section is maximized beyond the limit.

To provide more insight, the scattering cross section of channel 1
is displayed in Fig. 2c, for the different cases shown in Fig. 2b. It can be
clearly seen that the green spectrum exceeds the limit by almost 1.5
times. It shouldbenoted that this is the casedespite a clearbroadening
of the resonance due to the additional losses. Thus, contrary to what is
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Fig. 2 | Boosting scattering of a multipolar resonance. a Artistic picture illus-
trating the question at hand: can symmetry break enhance the scattering cross-
section of a multipole beyond the limit? Red lobes represent the scattering pattern
characteristic of an electric or magnetic dipole. On the left-hand side, a spherical
scatterer is illuminated by a planewavewithmomentum k. On the right-hand side, a
nonspherical scatterer displays a similar dipolar scattering pattern, but significantly
enhanced. b, c General model of a single QNM ∣ai compatible with two scattering
channels τ = 1, 2. b Shows the evolution of the real and imaginary parts of f ωð Þ,
whose modulus determines the scattering enhancement (see details in text), as a

function of the detuning ωa �ω, for fixed γ1 = 1 (radiation rate to channel 1 in
normalized units) and increasing γ2 (radiation rate to channel 2). Dark blue: γ2 =0,
green: γ02 =0:017, pink: γ

’’
2 =0:06. Resonance takes place when ωa �ω =0. A max-

imum of f ωð Þ occurs for a critical value of radiation rate to the second channel
(green curve), and then progressively decreases. c Scattering cross section to
channel 1 for the same cases studied in b, normalized by the single-channel limit,
denoted as σMax. When γ02 =0:017, the scattering cross section of the channel sig-
nificantly exceeds the limit, leading to a ‘super’ multipole resonance.
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widely accepted, radiation losses can contribute to an enhancement of
the channel cross section, instead of degrading it. We refer to this
novel regime as a ‘super-multipole’, in contrast with conventional
superscattering, where several QNMs need to be overlapped in the
spectrum.

With this first model, we have predicted the existence of super-
multipole resonances capable of enhancing the cross section of one
channel beyond the limit. Symmetry breaking is a necessary but not
sufficient condition for their formation. In particular, a careful control
of the radiation rate to each of the multipoles involved is required for
their realization. It is not evident how this control can be achieved in
practice.

In the following section, we show that, in the vicinity of a quasi-
BIC, symmetry breaking has a strong impact on the scattering cross
section.QNMsbelonging todifferentmultipoles can couple strongly in
the near field, leading to an avoided crossing and acquiring a mixed
multipolar character, which allows to easily modify their radiation
rates. Then, defying conventional intuition, a single super-multipole
resonance can drive the scattering cross section of amultipole beyond
the single-channel limit (as well as the total scattering cross section).
Super-multipoles exist as a natural counterpart of a quasi-BIC, where
the contribution of a QNM to one or more scattering channels is
forbidden.

Super-multipoles emerging from quasi-BICs
We now extend our TCMT model above to the case of a structure
supporting two QNMs ∣ai, ∣b�, each compatible, respectively, with a
single scattering channel τ = 1, 2. These can be, for instance, two mul-
tipolar QNMs of a suitably designed spherical scatterer (e.g., the
electric dipole and magnetic quadrupole modes). In a real system,
theremight also be contributions from non-resonant QNMs forming a
‘background’, as shown later. These are, however, neglected in our
preliminary analysis. Themodel is used solely for illustration purposes.
Later, the results are verified with rigorous cavity perturbation theory
in a realistic nanoresonator, as well as with microwave experiments.

After breaking the spherical symmetry in some fashion, the two
QNMs can couple in the nearfield, leading to an ‘effective’Hamiltonian
of the form (refer to the Supplementary Information S2):

H0 ζð Þ= eωa ζð Þ κ ζð Þ
κ ζð Þ eωb ζð Þ

� �
ð3Þ

Diagonalizing H0 ζð Þ results in two new hybrid QNMs ∣ui,∣d� that
are a combination of the original ones. Thus, the new modes have a
mixed multipolar nature. Accidentally, (or due to symmetry), the
coupling coefficient can vanish, and the hybrid QNMs become ∣ui= ∣ai
and ∣d

�
= ∣b

�
. We consider that, in general, the uncoupled eigen-

frequencies and the coupling coefficient (here assumed to be real), are
a function of a geometrical parameter ζ. In ourfirst example in the next
section, ζ will be related to the ellipticity of the particle.

In general, Eq. (3) does not only describe the hybridization of the
QNMsof a sphere, but that of any particle without spherical symmetry,
such as a finite cylinder, as shown later. If we assume that channel 1 is a
low order multipole (for instance a dipole), while channel 2 is a higher
order one, (for instance a quadrupole), radiative losses in channel 2 are
significantly lower. Then, for κ =0,QNM ∣b

�
corresponds to a quasi-BIC

with high Q-factor. This is because ∣b
�
is, by assumption in our model,

completely unmatched from the lowest order multipoles12,29.
Assuming time-harmonic dependence of all fields in the form

e�iωt , we can derive an expression for the R-matrix28,30, (in the
remainder of this work, unless written explicitly, we omit the ζ
dependence for the sake of brevity):

R ωð Þ= I2 + 2T ωð Þ ð4Þ

T ωð Þ= iD H0 ζð Þ � I2ω
� ��1DT ð5Þ

where I2 is the 2× 2 identity matrix, and D is a matrix connecting the
QNMs to the multipole fields31. In the absence of any scatterer, I2
guarantees the incoming waves are perfectly reflected to the
outgoing ones.

In this first scenario,D =diag d1,d2

� 	
. This ensures that the original

QNMs arematched to differentmultipolar channels. Inparticular, ∣ai is
matched only with multipole 1, and ∣b

�
with 2. The radiative losses of

each uncoupled mode are given by γa,b =d
2
1,2. Emulating a realistic

situation (as shown in the next section), we consider channel 1 corre-
sponds to a dipole (electric or magnetic), and channel 2 to a quadru-
pole (magnetic or electric). Since dipolar QNMs leak strongly to the far
field, d1≫d2, hence it follows that γa≫γb. Due to this, as mentioned
earlier, when κ =0, QNM ∣d

�
= ∣b

�
and displays a peak in its Q-factor,

which corresponds to a quasi-BIC.
Based on the model [Eq. (4)], we derive an expression for the

scattering cross section of the dipole channel (channel 1), normalized
by its conventional limit, σMax =3λ

2
=2π:

σ1=σMax = ∣ f ωð Þ∣2 ð6Þ

f ωð Þ= id2
1 eωu � eω0

� 	
eωu � eωd

� 	
ω� eωu

� 	� id2
1 eωd � eω0

� 	
eωu � eωd

� 	
ω� eωd

� 	 ð7Þ

For details, see the Supplementary Information S4. Each of the
two terms in Eq. (7) accounts for the contribution of a hybrid QNM to
the channel cross section. On the other hand, ~ω0 = ~ωb � κd2=d1 is a
zero of the cross section. Near the resonance frequencies of the hybrid
QNMs, only one of the terms in Eq. (7) is dominant. The mechanism
through which the single-channel limit can be exceeded is illustrated
in Fig. 3.

In the absence of coupling (κ = 0), eωu = eωa, eωd = eωb and eω0 = eωb,
so that the contribution of QNM ∣d

�
in Eq. (7) vanishes, as shown in

Fig. 3a. We provide a scheme of this situation in Fig. 3b. The pole of
f ωð Þ associated with ∣d

�
annihilates with the zero, cancelling its

contribution to the cross section. In other words, QNM ∣d
�
leaks

only through the quadrupole channel and exhibits a high Q-factor (a
quasi-BIC). Then, the maxima in the cross section for the dipole
channel occurs only at Re eωu

� 	
=ωa and is bounded to σMax, as in the

usual case.
Introducing coupling (κ ≠0), results in several interesting effects,

as shown in Fig. 3c, d. Firstly, in Fig. 3d, the pole associatedwith ∣d
�
and

the zeroof f ωð Þ are shifted away fromone another. Thus, both the zero
and the new pole contribute to the dipole channel (Fig. 3c). The dipole
channel is now ‘open’ for QNM ∣d

�
. Consequently, its radiative losses

are increased (i.e., lower Q-factor), and the pole is pushed deeper into
the complex plane (see Fig. 3d). Remarkably, we notice that at Re eωu

� 	
or Re eωd

� 	
, the maxima in the cross section of the channel is no longer

bounded toσMax in Eq. (6). This is also true if one of the terms in Eq. (7)
is dominant. Thus, by inducing coupling between two multipole
resonances, we can create a hybrid mode that is able to enhance
scattering by itself beyond the established limit.

Such peculiar behavior can be observed in Fig. 3e, where we
plotted the normalized dipole cross section as a function of the tuning
parameter ζ. The functional form of the different elements inH0 ζð Þ is
given in the caption of Fig. 3. They are justified by first order QNM
perturbation theory25,32,33 (see Supplementary Information S2). In par-
ticular, κ ζð Þ=a3ζ, where a3 is a constant. Due to the nonzero coupling
for any ζ ≠0, the hybrid QNMs ‘avoid’ the crossing due to strong
interaction between the original modes (i.e., strong coupling). This is a
particular example of the Friedrich-Wintgen mechanism13, which has
been shown to lead to true BICs in extended structures34, or extremely
high-Q quasi-BICs in isolated cavities12,29,35. For the case under
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consideration, the quasi-BIC appears in the lower branch at ζ = 0, since
κ(0) = 0 and the contribution of QNM ∣d

�
to the dipole vanishes, while

a resonance arises in the quadrupole channel (Fig. 3f). Only the lossy
QNM ∣ui is matched to the dipole. This corresponds to the usual sce-
nario, where the dipole cross section cannot exceed the
traditional limit.

For any ζ ≠0, there is coupling between the QNMs, and the lower
branch can scatter as a dipole (Fig. 3e), which, from the mechanism
discussed above, can largely exceed the limit in a sphere.We therefore
refer to this unusual resonance as a ‘super dipole’. We bear in mind
that, due to the mixed multipolar nature of the resonance, there is a
small contribution to the quadrupole channel. We also remark
that QNM ∣ui can display similar features for positive ζ, as shown
in Fig. 3e.

Summarizing, we have derived a simple theory that allows us to
describe the Friedrich-Wintgen mechanism leading to quasi-BICs in
isolated cavities.We have demonstrated the occurrence of yet another
surprising effect, namely, the possibility to create a resonance capable
of enhancing scattering beyond the accepted limit in a subwavelength
object, reaching the superscattering regime.

We stress again that our mechanism is in stark contrast with the
conventional way to achieve superscattering. Typically, several
orthogonal resonances (several QNMsmatched to different multipole
channels) must be overlapped at the same spectral position. Instead,
here we exploit the Friedrich-Wintgen mechanism to ‘open’ the dipole
channel to a quasi-BIC, forming a super dipole mode. So far, however,
our predictions remain purely theoretical. In what follows, we employ
multipolar theory and group-theoretical arguments to design two
subwavelength scatterers displaying super dipole modes. We then

verify our results in the microwave range, confirming their existence
for the first time.

Subwavelength nanoresonators
We consider a Si nanosphere in air, illuminated with a normally inci-
dent, linearly polarized plane wave, with radius 100nm. In the visible
range, it supports two QNMs matched to the electric dipole (ED) and
magnetic quadrupole (MQ) channels, respectively. Their electric field
distributions are shown in the lower panel of Fig. 4c. We use the same
notation as in the previous section, and label them as ∣ai, ∣b�. The far-
field projections of theQNMscorrespond to an x-polarized ED (px) and
the yz component of theMQmoment (Myz). The reason for our choice
of QNMs will become clear in the following. Note that the chosen
scatterer is deeply subwavelength, with the radius being at least five
times smaller than the incident wavelength.

In order to couple both QNMs, it is necessary to break the sphe-
rical symmetry in some fashion. A simple way to do so is by reducing
the rotational symmetry in the plane parallel to the direction of pro-
pagation, (refer to schematic insets in Fig. 4b). Formally, the point
group of the resonator changes from O(3) (spherical symmetry) to Dh

(cylindrical symmetry). Then, multipolar modes with the same parity
(as in the case for the chosen QNMs), can couple36.

As depicted in Fig. 4b, we perform a controlled symmetry
breaking by changing the ratio between the twoorthogonal axes of the
resonator rk,r?. In this case ζ � 1� r?=rk. Cavity perturbation theory25

(see Sec. S1 of the Supplementary Information), predicts the formation
of hybrid QNMs, whose far fields are now a combination of px andMyz .
This results in an avoided crossing in the eigenfrequency spec-
trum (Fig. 4a).
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2
=2π. For illus-

tration purposes, we consider ωa ζð Þ=ω 0ð Þ
a = 1 +a1ζ

� 	
,ωb ζð Þ=ω 0ð Þ

b = 1 +a2ζ
� 	

,κ ζð Þ=a3,
with ω 0ð Þ

a =0:6,ω 0ð Þ
b =0:4, a1 = 0:4,a2 =0:38, a3 =0:5. White dashed lines indicate

the path followed by the hybrid eigenfrequencies eωu,d . At the quasi-BIC, scattering
to the dipole channel by QNM ∣d

�
is completely suppressed. Once coupling ‘opens’

the channel to ∣d
�
, the scattering energy is transferred from the quadrupole

channel to the dipole channel, exceeding its limit and reaching the ’super dipole’
regime.
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Now, an incoming ED orMQwavewill excite a QNM, but the latter
will radiate as a combination of ED and MQ. Thus, the R-matrix is no
longer diagonal, and energy can leak from one channel to another. At
some critical values of r?=rk, this results in the appearance of super
dipoles. For instance,when the spheroid is oblate, the EDchannel atωd

almost doubles its allowed bound (Fig. 4b), while we observe the same
effect at ωu when the spheroid becomes prolate. Thus, depending on
the sign of the deformation, we can enhance dipole scattering beyond
the limit in one resonance or the other. This can also be confirmed in
Figure S5 of the Supplementary Information, where the super-ED
resonance is seen to exceed the single-channel limit, in contrast to the
ED resonances of the perfect sphere.

We gain insight into themechanism by evaluating the influence of
each QNM to the ED scattering cross section (Fig. 4c, d). We consider
three contributions: the resonant QNMs ∣u,d

�
and a non-resonant

background composed of modes outside the spectral range of inter-
est.With the expressions of themultipoles given in the Supplementary

Information S4, the ED cross section is

σED =
X
m

pm













2

=I0 ð8Þ

pm is the ED moment of the m-th QNM, and I0 is the intensity of the
incident planewave. The reconstruction is in excellent agreementwith
the exact analytical results of Mie theory for the sphere (Fig. 4c), and
full-wave numerical simulations for the ellipsoid (Fig. 4d). It is
important to note that the ‘direct’ cross section of each QNM, (i.e.,
∣pm∣

2=I0) by itself, is not bounded by any limit. However, there is a
bound in the total ED cross section, as given by Eq. (8), in the case of
the sphere.

In the upper panel of Fig. 4c, the scattering cross section at the
resonance of ∣ui is clearly bounded to 3λ2=2π. However, once the
sphere is deformed to an ellipsoid with r?=rk =0:85, ∣d

�
inherits an ED
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Fig. 4 | Super-ED resonance in a dielectric nanoellipsoid. a Evolution of the
resonant frequencies of the ED and MQ modes of a silicon nanosphere (100 nm
radius),whenbreaking the rotational symmetry alongoneof its axis, [generating an
ellipsoid with semiaxis rk,r? indicated in the insets of b]. An avoided crossing, the
hallmark of strong coupling, can be clearly observed. b Scattering cross-section of
the ED channel at the two resonance maxima as a function of ellipticity, under
normally incident, linearly polarized plane wave illumination, with momentum
oriented along the axis with broken rotational symmetry. For r?=rk = 1 (a sphere),
the cross-section is bounded to 1, and QNM |d〉 features a quasi-BIC. For an oblate
ellipsoid (left inset), QNM |d〉 becomes a super-ED, and vice versa forQNM |u〉 (right
inset). c, d Contributions of the QNMs to the scattering cross-section of the ED
channel in a sphere and a perturbed spheroid. c Sphere (r?=rk = 1). Upper panel: ED
scattering cross section obtained with conventional Mie theory and its recon-
struction with QNMs (Rec.). The curves labeled Bckg, u,d are evaluated as ∣pm∣

2=I0

wherem=Bckg,u,d correspond to the non-resonant term52,53, the |u〉 and |d〉QNMs,
respectively. Inset: Normalized ED content of QNMs |u〉,|d〉, calculated as in ref. 54.
They provide an estimation of the matching of a QNM to the ED channel. At the
quasi-BIC there is no matching, thus epx =0. Lower panel: eigen wavelengths of |u〉,
|d〉, in the complex plane, defined as eλm = 2πc=eωm, and their field distributions in
the x–z plane (∣eEm∣, in arbitrary units). d Same as in c, but for an ellipsoid with
r?=rk =0:85. Note that QNM |d〉 is now matched to the ED channel, since its ED
content isnonzero (upper panel inset). Thus, it contributes to the cross section, and
a super dipole appears in the spectra. The dashed circle in the lower panel indicateseλd , which has been pulled deeper in the complex plane due to the additional
radiation losses, in accordance with the mechanism described in the previous
section. Due to coupling with |u〉, the field distribution of |d〉 is drastically reshaped
in comparison with the sphere. More details on the coupling mechanism can be
found in Figure S1 of the Supplementary Information.
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moment due to coupling, and manifests as a sharp peak in the ED
scattering cross section (Fig. 4d, upper panel), which gives rise to a
super dipole.

The lower panels in Fig. 4c, d show the eigen-wavelengthseλm =2πc=eωm of the two resonant QNMs in the complex plane, as
well as their field distributions. For r?=rk = 1,

eλd is very close to the real
axis. Once the spherical symmetry is broken, the additional radiative
losses to the ED channel push eλd deeper into the complex plane, as
originally predicted in the previous section. In addition, the hybridi-
zation between the two QNMs leads to a drastic reshaping of the
internal field distributions of QNM ∣d

�
(compare the fields in the lower

panels of Fig. 4c, d).
One important drawback of conventional superscattering is the

fast degradation of the effect with intrinsic losses. Indeed, spectrally
overlapping high order multipole resonances strongly maximizes
scattering, but only when Ohmic losses are negligible. Unfortunately,
even high-index dielectrics display small Ohmic losses in the visible,
since their refractive index np features a small imaginary part δ. In
general, wewill write it as np =n+ iδ. As we show in the Supplementary
Information S5, largeQ-factors imply a rapid drop of the cross section
maxima, yielding a slope for small δ of dσ=dδ∼ � 4Q=ω0, whereω0 is
the resonance frequency. Since high-order multipole resonances are
associated with large Q-factors, their maximum scattering cross sec-
tion decreases rapidly with increasing δ. Herein the reasonwhy almost
a decade passed since the original proposal until the experimental
demonstration of superscattering14.

As an example, consider the quasi-BIC resonance for the sphere
case, displayed in Fig. 5a (indicated by the dashed line). In the lossless
scenario, a strong scattering peak can be observed, reaching the
maximum allowed for the MQ, i.e., 5λ2=2π. Thus, if one is only
interested in the overall scattering cross section, there is no apparent
need to ‘transform it’ into a super-dipole resonance, since the quasi-
BIC already provides a significant scattering enhancement beyond
the dipole limit. Moreover, by adding a shell of a different material,
one could spectrally overlap the quasi-BIC with, e.g., the electric
dipole, to yield a large enhancement. However, there is a caveat:
increasing δ of the sphere by only 0.03 results in a drastic drop of the
scattering cross section by more than 80%, even below that of a
conventional dipole resonance. Therefore, in a practical scenario,
high-order multipole resonances are not ideally suited to deliver the
desired cross section.

Critically, super-multipole resonances, when formed through the
FW mechanism, offer the ability to control the Q-factor. As discussed
earlier, if the QNM is compatible with two scattering channels, the
radiation losses increase, but contrarily to common belief, the total
scattering cross section is not degraded, and can even increase at a
super-multipole resonance. As a result, these novel states are more
resilient to intrinsic losses, since the slope dσ=dδ is smaller than the
original uncoupled resonances. Figure 5b illustrates this with the
example of the super-ED resonance. The sphere of Fig. 5a is deformed
into an ellipsoid, and the quasi-BIC evolves into a super-ED with lower
Q-factor (dashed line in Fig. 5b). Inorder tomake a fair comparison, the
volume of the nanocavity is kept constant. In stark contrast with the
quasi-BIC, the drop in the cross section is appreciably smaller, and for
δ = 0.03 it still remains above the single-channel limit.

A comparison between the maximal cross section attained by the
quasi-BIC and the super-EDwith increasing δ is displayed in Fig. 5c. For
small δ, we confirm that the quasi-BIC maximum has a much steeper
slope as a function of δ, while from the start, the super-ED keeps a
much higher cross section. Thus, due to their inherent robustness to
losses, super-multipole resonances are better candidates to enhance
the scattering cross section at the nanoscale.

Scattering from a dielectric nanorod
The previous example illustrates nicely the formation of a super dipole
from a symmetry-breaking perturbation. However, spheroids are in
general not fabrication-friendly at the nanoscale. Instead, we can also
reach this regime in a similar fashion in a silicon nanorod under nor-
mally incident illumination (refer to inset of Fig. 6a), since the latter
also has cylindrical symmetry.

To do so, we perturb the height of the resonator by an amount of
Δh, starting from a height of h0 = 180nm, for which two modes
radiating as ED and MQ are spectrally close. As in the spheroid, we
obtain a system of two coupled resonant QNMs of relatively high Q-
factor. We also remark the presence of two additional QNMs of very
low Q, associated with the scattering background. The role of the
backgroundmodes is disregarded inmost analysis since their spectral
signature is barely appreciable. However, the correct eigenfrequencies
and the scattering response cannot be accurately reconstructed
without taking them into account.

In Fig. 6a theQ-factors of the resonant QNMsdisplay two peaks as
a function of Δh=r. The most pronounced one corresponds to the
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hybridization of the resonant QNMs, while the second is due to the
hybridization of a resonant QNM with the low-Q modal background.
Superscattering in the ED channel (a super dipole) arises in the red-
shaded regions. Interestingly, the super dipole appears for both
resonant QNMs at relatively low Q-factors (points A and C). Near the
quasi-BIC (point B), the dipole strength becomes quenched and the
radiation leaks solely through the MQ channel, (blue-shaded region)
with high-Q. This peculiarity can also be clearly seen in the 2Dmaps of
the ED andMQcross-sections shown in Fig. 6c, d. In points A andC, the
most appreciable signature of ED radiation is the appearance of a
central electric field hotspot inside the nanorod, together with side
lobes. As shown in the field insets of Fig. 6a, at the quasi-BIC, the
hotspot disappears. This behavior is exactly analogous to what took
place in the nanoellipsoid from Fig. 4. In all cases, the incident plane
wave is significantly distorted by the scattered field (Fig. 6b).

In the super dipole regime, the ED is shown once again to almost
double its established bound (Fig. 6c). Similarly, we observe a peak in
the Q-factor (Fig. 6a) and an enhanced MQ scattering cross section
(Fig. 6d) at the quasi-BIC. Thus, wehavedemonstrated the feasibility to
obtain super dipoles in an experimentally accessible platform. This
result reveals a new versatile strategy that can be used to engineer the
Q-factor, scattering efficiency and radiation pattern of an isolated,
subwavelength object in practical applications.

Experimental demonstration
We perform a proof-of-concept experiment by measuring the extinc-
tion cross-section and scattering patterns of disk-shaped resonators in
themicrowave range.We reproduce the geometrical parametersof the
rod in Fig. 6 using a set of ceramic resonators with fixed 4.0mm radii,
and permittivity ε = 22with loss tangent 0.001. As shown in the inset of
Fig. 7b, three samples are assembled from several disks to obtain the
desired aspect ratios for the resonators. The measurement results of
both the total extinction cross-section and electric near-field patterns
are collected in Fig. 7 (for more details in the experiment, refer to
section S8 of the Supplementary Information). The spectra are

normalized by the ED single-channel limit (σMax = 3λ
2
=2π). The

experimental measurements are in a reasonable agreement with the
numerical simulations, albeit the resonances appear suppresseddue to
material losses in the ceramic. Evenwith the latter, the ED cross section
at the super ED is still significantly higher than the limit, as we show in
Figure S3 of the Supplementary Information.

Since the resonances redshift with increasing size, the observa-
tions were performed in a broad frequency range. In the highlighted
frequencies of Fig. 7a, c, we observe wide resonances with large
extinction values, characteristic of the proposed super dipole modes.
Indeed, the plane wave is seen to be strongly distorted in the near field
(lower panels of Fig. 7). Furthermore, numerical calculations confirm
that the ED exceeds its limit, even when considering losses, (refer to
Fig. S3 of the Supplementary Information). The quasi-BIC appears at
the expected value of Δh=r =0:48, manifesting itself as a sharp peak in
the spectra (Fig. 7b). The results provide experimental evidence of the
control of both the Q-factor and scattered power between two reso-
nances to achieve the superscattering regime with just a single mode.

Boosting a super-multipole even further
In what follows, we discuss the possibility to enhance the cross-section
of a single multipole beyond what has been achieved so far. For that
purpose, we study a subwavelength rectangular prism with refractive
index n = 3.3 in the near-IR part of the spectra (inset of Fig. 8a). The
prism has unequal sides in all x, y, and z dimensions. Starting from an
initial prism, we vary the y and z sides by the same amount δ, keeping
the x side constant. Tuning δ towards negative or positive values
results in the appearance of the quasi-BIC or the super MD resonance.
In both cases, a drastic reshaping of the near fields takes place, parti-
cularly pronounced in the case of the lower (high-Q) branch (Fig. 8d).

As in theprevious cases,we identify two coupledQNMs ∣ui and ∣d
�

(Fig. 8a). Now, however, the Q-factor at the quasi-BIC is two times
larger. This is because the new quasi-BIC is associated not with a
quadrupole, but with a pure magnetic octupole response, similar to
the one investigated in5. On the other hand, QNM ∣d

�
has a
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limit. We observe a remarkable enhancement of theMD cross-section of >2.6 times
the conventional limit. The latter is almost equivalent to the cross section of three
magnetic resonances of isolated spheres at the same wavelength (see inset). Inci-
dentally, we also observe the accidental overlap of the high-Q branch, radiating as a
combinationof electric quadrupole (EQ) andMD,with a super ED resonance similar
to the nanorod in the previous section. c Comparison between the scattered fields
produced by a perfect electric conductor (PEC) cavity (upper panel) and the
designed superscatterer (lower panel), both with the same dimensions. The fields
are recovered at the wavelength of 935 nm, corresponding to the largeMD peak in
b. dNear-field distribution of the involvedQNMs for selected δ (refer to discussion
in text).
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predominant magnetic dipole (MD) response. When changing δ, we
observe the emergence of a strong MD peak, with a cross section
equivalent to almost three magnetic spheres (Fig. 8b). Interestingly,
the super MD resonance appears in the ∣d

�
branch, which does not

feature the quasi-BIC. This is not surprising since the branches are
coupled and as discussed earlier, super-multipole resonances are not
generally restricted to appear in either one of the two.

The reason for the stronger enhancement can be understood
from noticing that, according to Eq. (1), the magnetic octupole with
l = 3 is bounded to σMax = 7λ

2
=2π, while the magnetic quadrupole

bound is 5λ2=2π. Thus, the higher the order of the multipole that
couples to the dipole, the larger the enhancement of the dipolar cross
section that can be achieved. In addition, numerical and experimental
evidence has shown that quasi-BICs with high order multipole
response have an increasingly larger Q-factor37. It is possible to utilize
this fact as a handwaving design rule for super-multipole resonances:
the larger the Q-factor at the quasi-BIC, the larger the potential
enhancement of the low order multipole.

To visualize the strong scattering response of the super MD
resonance, we compare itwith a rectangular prismof the same size but
composed of perfect electric conductor (PEC). Figure 8c shows the
amplitudeof the scattered electricfield inboth cases. It isworth noting
that a significant enhancement can be appreciated for the dielectric
prism, both in the forward and in the backward directions. This con-
stitutes an important difference with respect to conventional

superscattering. In the vastmajority of designs only forward scattering
can be maximized14,18,23,26. Thus, super-multipole resonances offer an
attractive strategy to enhance backscattering without the need to
sacrifice the overall scattering efficiency, as is the case for the anti-
Kerker effect38.

In principle, the strategy above allows to enhance scattering by a
single multipole to arbitrarily large values. Another approach is to
combine super-multipoles with Fan et al.’s original method16. Namely,
we can spectrally overlap the super-multipole resonance with other
conventional resonances. As a proof-of-concept, we designed a
dielectric nanocylinder with np =3:3 where a super-ED accidentally
crosses with the MD resonance as a function of height. The combina-
tion of both resonances leads to very large cross-sections, in the order
of 5 times the single-channel limit [Fig. 9b]. This result is more than
three times what can be achieved when overlapping the conventional
ED andMD resonances [Figure S4c in the Supplementary Information].
Moreover, we notice that 70% of the enhancement is entirely due to
the super-ED.

Figure 9c shows simulations of the strong field distortion pro-
duced by such superscatterer. The latter leaves a large ‘shadow’where
field intensity is significantly lowered. In addition, Fig. 9d shows a
comparison between the far fields of our superscatterer and a PEC
cavity of the same dimensions. The superscatterer clearly exhibits
superior performance, displaying enhanced forward and backward
scattering.

Fig. 9 | Combining the old and the new mechanisms of superscattering. Com-
bining the old and the newmechanisms to achieve evenmore superscattering from
passive, subwavelength nanostructures. aCalculated resonancewavelengths of the
even and odd QNMs for a dielectric nanocylinder with np = 3:3 and radius 160 nm.
The evenQNMs are spectrally close and they couple, resulting in the formation of a
quasi-BIC anda super-EDas a functionof height (h). Now,however,wedesigned the
nanoparticle such that the super-ED spectrally overlaps with an odd QNM (acci-
dental crossing), following the original strategy by Fan et al.16. Squares and dots
denote the dispersions of different modes. b Scattering cross section for

h = 300nm. The super-ED boosts the ED cross-section by three times the single-
channel limit. In combination with the MD and higher-order multipolar contribu-
tions, the total cross-section reaches five times the limit. c x-component of the
electric field at λ = 565 nm. The field can be seen to be strongly distorted by the
scatterer. d Comparison between the far fields produced by a perfect electric
conductor (PEC) cavity (green pattern) and the designed superscatterer (purple
pattern), both with the same dimensions. The fields have been normalized to the
maximum of the superscatterer.
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Shielding nanoparticles from scattering forces
Finally, we provide a glimpse on the possibilities that can be unlocked
in optics with the realization of the superscatterers introduced in this
study. As an exemplary application, we propose a strategy to ‘protect’
an ensemble of nanoparticles (or one particle, but geometrically sig-
nificantly larger than the superscatterer) from radiation. In particular,
as a figure of merit we will consider parasitic scattering forces induced
by an incident beam. Reducing the influence of scattering forces is
essential for efficient optical traps for experiments in atom cooling or
modern biology39,40.

Figure 10a illustrates the main idea. Due to the strong scattering,
the Poynting vector lines (purple) near the superscatterer are strongly
distorted, leading to a large ‘shadow’ area behind it. Several scatterers
can be ‘hidden’ in the shadow, which significantly reduces the scat-
tering force experienced by them (red).

In particular, we consider the scatterers can be modeled as point
electric dipoles with an effective polarizability α. In the case under
consideration, the dominant scattering force experienced by dipolar
particles is given by41 Fz / Im αð ÞSz , where Sz is the z-component of the
Poynting vector. The black arrows in Fig. 10b show the distribution of
Fz as a function of position near the superscatterer presented in Fig. 9.
Inside the shadow region, the latter can be seen to be strongly sup-
pressed. Figure 10c shows the calculated ratio of optical forcewith and
without the superscatterer at a fixed height. Remarkably, scattering
forces can be decreased in a region much larger than the diameter of
the superscatterer. Hence, several scatterers can be simultaneously
hidden in the shadow.

Discussion
We have demonstrated how strong coupling of two resonances can be
harnessed to achieve novel superscattering regimes with sub-
wavelength, nonspherical resonators. We have observed super-
scattering originating from an electric super dipole moment, being
almost two times stronger than the currently established limit. In
resonators without spherical symmetry, this effect arises when
breaking the quasi-BIC condition by tuning some parameter. Then,
power exchange between the scattering channels allows to engineer
both Q-factors and multipolar contents of the resonances, while
maintaining a high scattering cross-section. The new super-multipole
resonances are more robust to Ohmic losses than their conventional
counterparts. Furthermore, we have shown how the enhancement can
be boosted even further when quasi-BICs associated with high order
multipoles are involved. This enables the formation of super magnetic
dipole moments with a cross-section equivalent to almost three mag-
netic spheres. Besides their fundamental interest, such exotic scat-
tering can be employed in biosensing42,43 or energy harvesting44–46

devices. In the near future, strongly scattering dielectric nanoanten-
nas, operating in a selective polarization regime, can replace their
plasmonic counterparts as ultra-compact demultiplexers for on-chip
circuitry47. Furthermore, the ability to selectively enhance the scat-
tering pattern of a givenmultipole can unlock newdegrees of freedom
for optical manipulation48,49. In this direction, by taking advantage of
the designed superscatterer, we have proposed a new strategy to
shield an ensemble of particles from radiation, namely—parasitic
scattering forces. Beyond optics, we expect super-multipoles to also
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Fig. 10 | Protecting other scatterers from radiation. a Conceptual scheme. The
superscatterer interacts with photons in a much larger area than itself. As a result,
the Poynting vector field lines (purple arrows) are deflected, and the superscatterer
leaves a large ‘shadow’, much larger than its diameter16. The scatterers placed
within that shadow (gray shapes) are ‘protected’ from the radiation pressure (red
arrows) induced by the incident beam. b Electric field norm in the vicinity of the
superscatterer (same parameters as in Fig. 9), and calculated radiation pressure

experienced by dipolar particles (black arrows). The scattering force (and, conse-
quently, visibility) is significantly decreasedwithin the shadow. cRatio between the
scattering force with and without the superscatterer, experienced by dipolar par-
ticles positioned at a distance z = −1200nm from the superscatterer. The origin of
coordinates is at the position of the superscatterer. Inset: artistic view of the
superscatterer, scaled to match the grid dimensions of the x axis.
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arise in acoustics and other areas of wave physics, paving a way to a
venue of applications in strong forward or backward scattering,
cloaking, energy harvesting, etc.

Methods
Temporal coupled-mode theory
General predictions on the interaction of the scattering channels with
theQNMscan bemade through awidely applicable phenomenological
theory known as the TCMT. The formalism was originally used to
introduce the concept of superscattering16. Here, we briefly introduce
the theory, (whose details can be found in a number of seminal works,
e.g., 50,51. The coupled mode equations can be written as

d
dt

a

b

� �
= � iH0 ζð Þ a

b

� �
+ i

ffiffiffi
2

p
DTs + ð9Þ

and

s� = s + + i
ffiffiffi
2

p
D

a

b

� �
ð10Þ

For the derivation of the effective HamiltonianH0 as in Eq. (2), we
refer the reader to the Supplementary Information S4. In addition,
arguments based on time reversal symmetry and energy conservation
constraints51 lead to the relation

DTD= Γ ð11Þ

where Γ= � Im H0

� �
is a diagonal matrix containing the radiative

losses γa,b in its diagonal. Equation (11) implies that γa,b =d
2
1,2, di being

the i-th element in the diagonal ofD. It accounts for the coupling of the
eigenmodes to the i-th multipole channel. The R-matrix, (Eq. (4) in the
main text), can be derived by assuming time-harmonic dependence
[d=dt ! �iω in Eq. (9)], and substituting Eq. (9) into Eq. (10) to
eliminate a b

� 	T . Further details on the connection between TCMT
and rigorous QNM perturbation theory can be found in the
Supplementary Information S2.

Numerical simulations
Scattering and eigenmode simulations have been performed with the
commercial finite element solver COMSOL Multiphysics ©.

Experimental methods
ATaizhouWangling TP-seriesmicrowave ceramic composite is used as
a dielectricmaterial for the fabrication of the cylindrical resonators. To
measure the total extinction cross section, the samples are placed in an
anechoic chamber and illuminated by normally incident, linearly
polarized waves radiated and received by a pair of HengDaMicrowave
HD-10180DRA10horn antennas. A LINBOUnear-field imaging system is
used for the near-field mapping. More details on the fabricated sam-
ples and the experimental setup can be found in the Supplementary
Information S8 and Figure S2.

Data availability
All data needed to evaluate the conclusions in this study ispresented in
the manuscript and in the Supplementary Information.
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