
Article https://doi.org/10.1038/s41467-023-40380-0

A neural-mechanistic hybrid approach
improving the predictive power of genome-
scale metabolic models

Léon Faure1, Bastien Mollet2,3, Wolfram Liebermeister 4 &
Jean-Loup Faulon 1,5

Constraint-basedmetabolic models have been used for decades to predict the
phenotype of microorganisms in different environments. However, quantita-
tive predictions are limited unless labor-intensive measurements of media
uptake fluxes are performed. We show how hybrid neural-mechanistic models
can serve as an architecture for machine learning providing a way to improve
phenotype predictions. We illustrate our hybrid models with growth rate
predictions of Escherichia coli and Pseudomonas putida grown in different
media and with phenotype predictions of gene knocked-out Escherichia coli
mutants. Our neural-mechanistic models systematically outperform
constraint-based models and require training set sizes orders of magnitude
smaller than classicalmachine learningmethods.Our hybrid approach opens a
doorway to enhancing constraint-based modeling: instead of constraining
mechanistic models with additional experimental measurements, our hybrid
models grasp the power of machine learning while fulfilling mechanistic
constrains, thus saving time and resources in typical systems biology or bio-
logical engineering projects.

In this study, we present an approach that combines machine learning
(ML) and mechanistic modeling (MM) to improve the performance of
constraint-based modeling (CBM) on genome-scale metabolic models
(GEMs). Our hybrid MM-ML models are applied to common tasks in
systems biology and metabolic engineering, such as predicting quali-
tative and quantitative phenotypes of organisms grown in various
media or subjected to gene knock-outs (KOs). Our approach leverages
recent advances in ML, MM, and their integration, which we briefly
review next.

The increasing amounts of data available for biological research
bring the challenge of data integration with ML to accelerate the
discovery process. The most compelling achievement within this
grand challenge is protein folding, recently cracked by AlphaFold1,
which in the last CASP14 competition predicted structures with a
precision similar to structures determined experimentally. Following

this foot step, one may wonder if in the future we will be able to use
ML to accurately model whole-cell behaviors. The curse of
dimensionality2, i.e. the fact thatfittingmanyparametersmay require
prohibitively large data sets, is perhaps the biggest hurdle that pre-
vents using ML to build cell models. Obviously, cells are far more
complex than single proteins and since the amount of data needed
for ML training grows exponentially with the dimensionality2, as of
today, ML methods have not been used alone to model cellular
dynamics at a genome scale.

For the past decades, MM methods have been developed to
simulate whole-cell dynamics (cf. Thornburg et al.3 for one of the latest
models). These models encompass metabolism, signal transduction,
as well as gene and RNA regulation and expression. Cellular dynamics
being tremendously complex, MM methods are generally based on
strong assumptions and oversimplifications. Ultimately, they suffer

Received: 1 December 2022

Accepted: 19 July 2023

Check for updates

1MICALIS Institute, INRAE, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France. 2Ecole Normale Supérieure of Lyon, 69342 Lyon, France.
3UMR MIA, INRAE, AgroParisTech, University of Paris-Saclay, 91120 Palaiseau, France. 4MaIAGE, INRAE, University of Paris-Saclay, 78350 Jouy-en-
Josas, France. 5Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK. e-mail: Jean-loup.Faulon@inrae.fr

Nature Communications | (2023) 14:4669 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0003-4274-2953
http://orcid.org/0000-0003-4274-2953
http://orcid.org/0000-0003-4274-2953
http://orcid.org/0000-0003-4274-2953
http://orcid.org/0000-0003-4274-2953
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40380-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40380-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40380-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40380-0&domain=pdf
mailto:Jean-loup.Faulon@inrae.fr

from a lack of capacities to make predictions beyond the assumptions
and the data used to build them.

Flux balance analysis (FBA) is themainMMapproach to study the
relationship between nutrient uptake and the metabolic phenotype
(i.e., themetabolic fluxes distribution) of a given organism, e.g., E. coli,
with a model iteratively refined over the past 30 years or so4. FBA
searches for a metabolic phenotype at steady state, i.e., a phenotype
that is constant in time and inwhich all compounds aremass-balanced.
Usually, such a steady state is assumed to be reached in the mid-
exponential growth phase. The search for a steady state happens in the
space of possible solutions that satisfies the constraints of the meta-
bolic model, i.e., the mass-balance constraints according to the stoi-
chiometric matrix as well as upper and lower bounds for each flux in
the distribution. The steady state search is performed with an optim-
ality principle, with one principal objective (usually the biomass pro-
duction flux) and possibly secondary objectives (e.g., minimize the
sum of fluxes in parsimonious FBA, or the flux of a metabolite of
interest). As we shall see later and as discussed in O’Brien et al.5, FBA
suffers from making accurate quantitative phenotype predictions.

TheMMandML approaches are based on two seemingly opposed
paradigms. While the former is aimed at understanding biological
phenomena with physical and biochemical details, it has difficulties
handling complex systems; the latter can accurately predict the out-
comes of complex biological processes even without an under-
standing of the underlyingmechanisms, but require large training sets.
The pros of one are the cons of the other, suggesting the approaches
should be coupled. In particular, MMs may be used to tackle the
dimensionality curse ofMLmethods. For instance, one can useMMs to
extend experimental datasets with in silico data, increasing the train-
ing set sizes for ML. However, with that strategy, if the model is inac-
curate,MLwill be trainedon erroneous data.One can also embedMMs
within the ML process, in this strategy, named hybrid-modeling, ML
and MM are trained together and the model parameters can be esti-
mated through training, increasing themodel predictive capacities. To
improve FBA phenotype predictions, ML approaches have been used
to couple experimental data with FBA. Among published approaches,
one can cite Plaimas et al.6 whereML is used after FBA as apost-process
to classify enzyme essentiality. Similarly, Schinn et al.7 used ML as a
post-process to predict amino acid concentrations. Freischem et al.8

computed amassflowgraph running FBAon the E. colimodel iML15159

and used it with a training set of measured growth rates on E. coli gene
KO mutants. Several ML methods were then utilized in a post-process
to classify genes as essential vs. non-essential. As reviewed by Sahu
et al.10, ML has also been used to preprocess data and extract features
prior to running FBA. For instance, data obtained from several omics
methods can be fed to FBA, after processing multi-omics data via
ML11–13.

In all these previous studies, and as discussed in Sahu et al.10, the
interplay between FBA andML still shows a gap: some approaches use
ML results as input for FBA, others use FBA results as input forML, but
none of them embed FBA into ML, as we do in this study with the
artificial metabolic network (AMN) hybrid models.

The main issue with hybrid modeling is the difficulty of making
MM amenable to training. Overcoming this difficulty, solutions have
recently been proposed under different names in biology for signaling
pathways and gene-regulatory networks (Knowledge Primed Neural
Network14, Biologically-Informed Neural Networks15) with recent solu-
tions based on recurrent neural networks (RNNs)16. Hybrid models
have also been developed in physics to solve partial differential
equations, such as Physics InformedNeural Network17 (PINN), available
in open-source repositories like SciML.ai18. The goal of these emerging
hybridmodeling solutions is to generatemodels that comply well with
observations or experimental results via ML, but that also use
mechanistic insights from MM. The advantages of hybrid models are
two-fold: they canbe used to parametrizeMMmethods through direct

training and therefore increasing MM predictability, and they enable
MLmethods toovercome thedimensionality cursebybeing trainedon
smaller datasets because of the constraints brought by MM.

In the current paper we propose a MM-ML hybrid approach in
which FBA is embedded within artificial neural networks (ANNs). Our
approach bridges the gap between ML and FBA by computing steady-
state metabolic phenotypes with different methods that can be
embedded with ML. All these methods rely on custom loss functions
surrogating the FBA constraints. By doing so, our AMNs are mechan-
istic models, determined by the stoichiometry and other FBA con-
straints, and also ML models, as they are used as a learning
architecture.

We showcase our AMNs with a critical limitation of classical FBA
that impede quantitative phenotype predictions, the conversion of
medium composition to medium uptake fluxes5. Indeed, realistic and
condition-dependent bounds onmedium uptake fluxes are critical for
growth rate and other fluxes computations, but there is no simple
conversion from extracellular concentrations, i.e., the controlled
experimental setting, to such bounds on uptake fluxes. With AMNs, a
neural pre-processing layer aims to capture, effectively, all effects of
transporter kinetics and resource allocation in a particular experi-
mental setting, predicting the adequate input for ametabolicmodel to
give the most accurate steady-state phenotype prediction possible.
Consequently, AMNs provide a new paradigm for phenotype predic-
tion: instead of relying on a constrained optimization principle per-
formed for each condition (as in classical FBA), we use a learning
procedure on a set of example flux distributions that attempts to
generalize the best model for accurately predicting the metabolic
phenotype of an organism in different conditions. As shown in the
results section, the AMN pre-processing layer can also capture meta-
bolic enzyme regulation and in particular predict the effect of gene
KOs on phenotype.

Results
Overview of AMN hybrid models
When making predictions using FBA, one typically sets bounds for
medium uptake fluxes, Vin, to simulate environmental conditions for
the GEM of an organism (Fig. 1a). Each condition is then solved inde-
pendently from each other by a linear program (LP), usually making
use of a Simplex solver. In most cases, one sets the LP’s objective to
maximize thebiomass production rate (i.e., the growth rate), under the
metabolic model constraints (i.e., flux boundary and stoichiometric
constraints). FBA computes the resulting steady-state fluxes, Vout, for
all the reactions of the metabolic network, which we use later in our
reference “FBA-simulated data”, for the benchmarking of the hybrid
models developed in this study.While FBA is computationally efficient
and easy to use through libraries likeCobrapy19, FBA cannot directly be
embedded within ML methods, like neural networks, because gra-
dients cannot be backpropagated through the Simplex solver.

To enable the development of hybrid models and gradient back-
propagation, we developed three alternative MMmethods (Wt-solver,
LP-solver and QP-solver) that replace the Simplex solver while produ-
cing the same results (Fig. 1b). The three solvers, further described in
the next subsection, take as input any initial flux vector that respect
flux boundary constraints.

We next used the MM models as a component of AMN hybrid
models that can directly learn from sets of flux distributions (Fig. 1c).
These flux distributions used as learning references (i.e., training sets)
are either produced through FBA simulations or acquired experi-
mentally. The AMNmodel comprises a trainable neural layer followed
by a mechanistic layer (composed of Wt-solver, LP-solver or QP-sol-
ver). The purpose of the neural layer is to compute an initial value, V0,
for the flux distribution to limit the number of iterations of the
mechanistic layer. The initial flux distribution is computed from
medium uptake flux bounds, Vin, when the training set has been

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 2

generated through FBA simulations, or medium compositions, Cmed,
for experimental training sets. For all AMNs, the training of the neural
layer is based on the error computation between the predicted fluxes,
Vout, and the reference fluxes, as well as on the respect of mechanistic
constraints. It is important to point out that AMNs attempt to learn a
relationship between Vin (or Cmed) and the steady-state metabolic
phenotype, generalizing this relationship for a set of conditions and
not just only one as in FBA. In the upcoming subsections, Fig. 2 pre-
sents results for FBA-simulated training sets and Figs. 3 and 4 results
for experimental training sets.

Finally, we developed a non-trainable AMN-Reservoir to showcase
how the predictive power of classical FBA can be improved (Fig. 1d).
This architecture is based on a two-step learning process with the
specific goal of finding the best bounds on uptake fluxes for FBA, by
extractingVin after training. Indeed, once the AMNhas been trained on
adequate FBA-simulated data, we can fix its parameters, resulting in a
gradient backpropagation compatible reservoir that mimics FBA. The
AMN reservoir can then be used to tackle the above-mentioned issue
of unknown uptake fluxes: adding a pre-processing neural layer and
training this layerwith an experimental dataset, one canpredictuptake
fluxes from the media composition. Results of the pre-processing
neural layer can directly be plugged into a classical FBA solver and the
neural layer can be reused by any FBA user to improve the predictive
power of metabolic models with an adequate experimental set-up.
We showcase AMN-Reservoir results in Fig. 5 using experimental
measurements acquired on E. coli and P. putida.

Alternative mechanistic models to surrogate FBA
Let us first recall that the methods described in this subsection are
mechanisticmodels (MMs) that replace the Simplex-solver used in FBA
and allow for gradient backpropagation, but without any learning
procedure performed. As far as medium uptake fluxes are concerned,
we consider in the following two cases: (1) when exact bound values
(EB) for medium uptake fluxes are provided, and (2) when only upper
bound values (UB) for medium uptake fluxes are given.

Our first method (Wt-solver), inspired by previous work on sig-
naling networks16, recursively computes M, the vector of metabolite
production fluxes, and V, the vector of all reaction fluxes (cf. “Wt-
solver” in “Methods” and in Supplementary Information for further
details). The vectors M and V are iteratively updated using matrices
derived from themetabolic network stoichiometric matrix S and from
a weight matrix, Wr, representing consensual flux branching ratios
found in example flux distributions (i.e., reference FBA-simulated data
or experimental measurements). Since the mass conservation law is
the central rule when satisfying metabolic networks constraints, these
ratios play a key role in the determination of themetabolic phenotype,
i.e. the paths taken by metabolites in the organism. In this approach,
we assume that the flux branching ratios remain similar between flux
distributions with different bounds on different uptake fluxes. A sim-
ple toymodel network is shown to demonstrate the functioning of the
Wt-solver in Supplementary Fig. S1.

While the Wt-solver is simple to implement it suffers from a
drawback. As discussed in Supplementary Information “AMN-Wt

Reference
FBA-simulated

data

Simplex
solver

Reference
Experimental

data

AMN-
Reservoir
Pretrained on

FBA-simulated
data

Vin

a
Classical FBA

d
AMN-Reservoir

c
AMN

Vin : bounds on uptake fluxes

Vout
 : steady-state solution

for all fluxes

bounds on
uptake fluxes

Vin

medium
composition

Cmed

Trained on
experimental
data

Maximize
growth rate

under
constraints

Custom Loss

Fit reference fluxes
and mechanistic

constraints

b
Mechanistic Layer
surrogating FBA

Wt-solver
LP-solver
QP-solver

Neural layer

Custom Loss

V

V 0 : initial flux values
respecting Vin bounds

for different media

Update all fluxes
while respecting

mechanistic
constraints

Vout

Neural layer

V 0

Mechanistic Layer

Vout

Neural layer

V 0

Mechanistic Layer

or
Reference

FBA-simulated
data

Reference
FBA-simulated

data

Reference
Experimental

data

medium
composition

Cmed

and

Vout
 : steady-state solution

for all fluxes and all media

Fig. 1 | Computing and learning frameworks for FBA, alternative mechanistic
models, AMN, andAMN-Reservoir. aComputing framework for classical FBA. The
process is repeated for each medium, computing the corresponding steady state
fluxes. Blue circles represent different bounds on metabolites uptake fluxes and
each red circle represents a flux value at steady-state. b Computing framework for
MM methods surrogating FBA. The methods can handle multiple growth media at
once. Disregarding the solver (Wt, LP and QP), the MM layer takes as input an
arbitrary initial flux vector, V0, respecting uptake flux bounds for different media,
and computes all steady-state fluxes values (Vout) through an iterative process.
c Learning framework for AMN hybrid models. The input (for multiple growth
media) can be either a set of bounds on uptake fluxes (Vin), when using simulation
data (generated as in a), or a set of media compositions, Cmed, when using

experimental data. The input is then passed to a trainable neural layer, predicting
an initial vector, V0, for the mechanistic layer (a MM method of b). In turn, the
mechanistic layer computes the final output of the model, Vout. The training is
based on a custom loss function (cf. “Methods”) ensuring the reference fluxes are
fitted (i.e., Vout matches simulated or measured fluxes) and that the mechanistic
constraints (on flux bounds and stoichiometry) are respected. d Learning frame-
work for an AMN-Reservoir. The first step is to train an AMN on FBA-simulated data
(as in c), after which parameters of this AMN are frozen. This AMN model, which
purpose is to surrogate FBA, is named non-trainable AMN-Reservoir. In the second
step, a neural layer is added prior to Vin taking as input media compositions, Cmed,
and learning the relationship between the compositions and bounds on
uptake fluxes.

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 3

architecture”, a consensus set of weights leads to a solution when
upper bounds (UB) for uptake fluxes are provided, but not when exact
bounds (EB) for uptake fluxes are given (cf. Supplementary Fig. S2).
Consequently, we cannot assume that the Wt-solver can handle all
possible flux distributions in the EB case. To overcome this short-
coming, we next present two alternativemethods that aremuch closer
to the optimizations behind FBA and that can accommodate both EB
and UB cases for uptake fluxes. The twomethods address two distinct
tasks in flux modeling: optimizing a flux distribution for maximal
growth rate (LP-solver), as in classical FBA, and fitting a stationary flux
distribution to partial flux data (QP-solver).

The secondmethod (LP-solver), derived from amethod proposed
by Yang et al.20, handles linear problemsusing exact constraint bounds
(EBs) or upper bounds (UBs) for uptake fluxes (Vin). That method
makes use of Hopfield-like networks, which is a long-standing field of
research21 inspired by the pioneering work of Hopfield and Tank22. As
with the Wt-solver, the LP-solver iteratively computes fluxes to come
closer to the steady-state solution (Vout). However, calculations are
more sophisticated, and the method integrates the same objective
function (e.g. maximize growth rate) as the classical FBA Simplex sol-
ver. The solver iteratively updates the flux vector,V, and the vector,U,
representing the dual problem variables also named metabolites sha-
dow prices23 (cf. “LP-solver” in “Methods” and in Supplementary
Information for further details).

The third approach (QP-solver), is loosely inspired by the work on
physics-informed neural networks (PINNs), which has been developed

to solve partial differential equations matching a small set of
observations24. With PINNs, solutions are first approximated with a
neural network and then refined to fulfill the constraints imposed by
the differential equations and the boundary conditions. Refining the
solutions necessitates the computation of three loss functions. The
first is related to the observed data, the second to the boundary con-
ditions and the third to the differential equations. As detailed in
“Methods”, we similarly compute losses for simulated or measured
referencefluxes,Vref, the flux boundary constraints, and themetabolic
network stoichiometry. As in PINN we next compute the gradient on
these losses to refine the solution vector V. Unlike with the LP-solver,
we do not provide an objective to maximize in the present case, but
instead reference fluxes, consequently the method is named QP
because it is equivalent to solving an FBA problem with a quadratic
program.

To assess the validity of the LP and QP solver, we used the E. coli
core model25 taken from the BiGG database26. To generate with
Cobrapy package19 a training set of 100 growth rates varying 20 uptake
fluxes, following the procedure given in “Methods”. Results can be
found in Supplementary Fig. S6, showing excellent performances after
10,000 iteration steps.

AMNs:metabolic andneural hybridmodels for predictive power
with mechanistic insights
While the above solvers perform well, their main weakness is the
number of iterations needed to reach satisfactory performances. Since

a b c

Fig. 2 | BenchmarkingAMNswithdifferent training sets andmechanistic layers.
All results were computed on 5-fold cross-validation sets. Plotted is the mean and
standard error (95% confidence interval) over the five validation sets of the cross-
validation. Toppanels show the custommechanistic loss values, andbottompanels
plot the Q² values for the growth rate, over learning epochs (Q² is the regression
coefficient on cross-validation datapoints not seen during training). All AMNs have
the architecture given in Fig. 1c, with Vin as input, and a neural layer composed of
one hidden layer of size 500. For all models, dropout = 0.25, batch size = 5, the
optimizer is Adam, the learning rate is 10−3. The architecture for ANN (a classical
dense network) is given in the “Methods” section it takes as input the uptake fluxes

bounds Vin and produce a vector Vout composed of all fluxes with which the loss is
computed. a–c show results for different training sets: a, b for 1000 simulations
training sets generated with the E. coli core model, respectively with UB and EB as
inputs, whereas c is for a 1000 simulations training set generated with the iML1515
model, with UB as input (for more details on the training set generations, refer to
“Methods”). As mentioned in subsection “Alternative mechanistic models to sur-
rogate FBA”, AMN-Wt cannot be used to make predictions when exact bounds (EB)
are used and is therefore not plotted in (b). Source data are provided as a Source
Data file (cf. “Data availability”).

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 4

our goal is to integrate such methods in a learning architecture, this
drawback has to be tackled. As illustrated in Fig. 1c, our solution is to
improve our initial guesses for fluxes, by training a prior neural layer (a
classical dense ANN) to compute initial values for all fluxes (V0) from
bounds on uptake fluxes (Vin) or media compositions (Cmed). This
solution enables the training of all AMNs with few iterations in the
mechanistic layer. In the remainder of the paper, we name AMN-Wt,
AMN-LP and AMN-QP, the hybrid model shown in Fig. 1c composed of
a neural layer followed by a mechanistic layer, i.e., a Wt, LP or QP
solver.

The performances of all AMN architectures (Wt, LP, QP) and a
classical ANN architecture (cf. Methods “ANN architecture”, for further
details) are given in Fig. 2, using FBA-simulated data on twodifferent E.
coli metabolic models, E. coli core25 and iML15159. These models are
composed respectively of 154 reactions and 72 metabolites, and 3682
reactions and 1877 metabolites (after duplicating bi-directional reac-
tions). In all cases, the training sets were generated by running the
default Simplex-based solver (GLPK) of Cobrapy19 to optimize 1000
growth rates for asmany differentmedia. Eachmediumwas composed
of metabolites found in minimal media (M9) and different sets of
additional metabolites (sugars, acids) taken up by the cell (more
details in Methods “Generation of training sets with FBA”). These
training sets have as variables a vector of bounds on uptake fluxes (20
for E. coli core, 38 for iML1515) along with the Cobrapy19 computed
growth rate. For the ANN training set, to enable loss computation on
constraints, we replaced the growth rate by the whole flux distribution
computed by Cobrapy19 (cf. Methods “ANN architecture”).

Figure 2 shows the loss values onmechanistic constraints and the
regression coefficient (Q²) for the growth rates of the aforementioned
models. All results shownare computedon 5-fold cross-validation sets.
Additional information on hyperparameters and results on indepen-
dent test sets are found in the Supplementary Information. In parti-
cular, Supplementary Fig. S7 shows performances obtained with AMN-
QP and the E. coli core model with different neural layer architectures
and hyperparameters, justifying our choices for the neural layers of
AMNs (one hidden layer of dimension 500 and a training rate of 10−3).
Similar results were found for AMN-LP and AMN-Wt. Additionally, in
Supplementary Table S1, more extensive benchmarking is provided
comparing MMs, ANNs and AMNs. This table shows performances for
training, validation, and independent test sets of more diverse data-
sets, along with all training sets parameters and the models’
hyperparameters.

All AMN architectures exhibit excellent regression coefficients
and losses after a few learning epochs, and this for both models E. coli
core25 and iML15159. It is interesting to observe the goodperformances
of AMN-Wt when UB training sets are provided. Indeed, while coun-
terexamples can be found for which AMN-Wt will not work with EB
training sets (cf. Supplementary Fig. S2), we argue in the Supplemen-
tary Information “AMN-Wt architecture” that AMN-Wt is able to handle
UB training sets because the initial inputs (UB values for uptake fluxes)
are transformed into suitable exact bound values during training (via
the neural layer).

We recall that in Fig. 2, ANNs were trained on all fluxes to enable
loss computation (154fluxes for E. coli core and 550fluxes for iML1515),

U, V V

b c

Q²=0.78 ± 0.01 Q²=0.77 ± 0.01

Cmed Cmed

V

a

Q²=0.78 ± 0.03

Cmed

← ← ←

← + ∇ ← + ∇

← + ∇
← →

← (→ ⊙) +

Fig. 3 | Benchmarking growth rate predictions by AMNs with experimental
measurements. In all panels, the experimental measurements were carried out on
E. coli grown in M9 with different combinations of carbon sources (strain DH5-
alpha, model iML1515). Training and 10-fold stratified cross-validation were per-
formed three times with different initial random seeds. All points plotted were
compiled from predicted values obtained for each cross-validation set. In all cases,
means are plotted for both axes (measured and predicted), and error bars are
standard deviations. For the measured data, means and standard deviations were
computed based on three replicates, whereas for predictions, means and standard
deviations were computed based on the 3 repeats of the 10-fold cross-validation.
a Architecture and performance of AMN-QP. The neural layer (gray box) is com-
posed of an input layer of size 38 (Cmed), a hidden layer of size 500, and an output

layer of size 550 corresponding to all fluxes (V) of the iML1515 reducedmodel. The
mechanistic layer (green box) follows the neural layer and minimizes the loss
betweenmeasured and predicted growth rate, as well as the losses of themetabolic
network constraints. The model was trained for 1000 epochs with dropout =0.25,
batch size = 5, and the Adam optimizer with a 10−3 learning rate. b Architecture and
performance of AMN-LP. This model hyperparameters are identical to those of (a).
The neural layer computes the initial values for the 550 reaction fluxes (vector V),
the initial values for the 1083 metabolite shadow prices (vector U) are set to zero.
c Architecture and performance of the AMN-Wt architecture. The model hyper-
parameters are those of the previous panels and the size of the Wr matrix is
550 × 1083 (sizes ofV andU vectors). Source data are provided as a Source Data file
(cf. “Data availability”).

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 5

thus the number of training data points is substantially larger than for
AMNs (154,000 or 550,000 for ANNs, instead of 1000 for AMNs).
Despite requiring larger training sets, ANNs also need more learning
epochs than AMNs to reach satisfying constraint losses and growth
rate predictions for E. coli core (Fig. 2a, b) and do not handle well the
large iML1515GEM (i.e., the growth rate cannot beaccuratelypredicted
and the oscillatory behavior in Fig. 2c demonstrates 100 epochs are
not enough to reach convergence).

AMNs can be trained on experimental datasets with good
predictive power
To train AMNson anexperimental dataset, wegrew E. coliDH5-alpha in
110 different media compositions, with M9 supplemented with four
amino acids as a basis and ten different carbon sources as possibly
added nutrients. From 1 up to 4 carbon sources were simultaneously
added to the medium at a concentration of 0.4 g l−1 (more details in
Methods “Culture conditions”).Wedeterminedwhich compositions to
test by choosing all the 1-carbon source media compositions and
randomly picking one hundred of the 2-, 3- and 4-carbon sources
media compositions (more details in Methods “Generation of an
experimental training set”). The growth of E. coliwas monitored in 96-
well plates, by measuring the optical density at 600nm (OD600) over
24 h. The raw OD600 was then passed to a maximal growth rate
determination method based on a linear regression performed on
log(OD600) data (more details in Methods “Growth rate
determination”).

The resulting experimental dataset of media compositions, Cmed,
and growth rates,Vref, was used to train all AMN architectures (LP, QP,
Wt). These architectures are those shown in Fig. 1c with Cmed as input.
In all cases the mechanistic layer was derived from the stoichiometric
matrix of the iML151520 E. coli reduced model (cf. Methods “Making
metabolic networks suitable for neural computations”). Following
Fig. 1c, Cmed was entered as a binary vector (presence/absence of
specific metabolites in the medium), the vector was then transformed
through the neural layer into an initial vector,V0, for all reaction fluxes
(therefore including themedium uptake fluxes) prior to be used in the
mechanistic layer and the loss computations. Prediction performances
are provided in Fig. 3, alongside schematics for each of the
architectures.

For displaying meaningful results and to avoid any overfitting
bias, we show in Fig. 3 predictions for points unseen during training.
More precisely, we computed the mean and standard deviation of
predictions over 3 repeats of stratified 10-fold cross-validations, each
repeat having all points predicted, by aggregating validation sets
predictions of each fold. Overall, results presented in Fig. 3 have been
compiled over 3 × 10 = 30 different AMNmodels, each having different
random seeds for the neural layer initialization and the train/validation
splits.

As a matter of comparison, a decision tree algorithm predicting
only the growth rate from Cmed (the RandomForestRegressor function
from the sci-kit learn package27 having 1000 estimators and other
parameters left with default values) reach a regression performance of

b

c

d

e

Neural layer

Mechanistic layer

a

Fit reference fluxes
and constraints with
reaction KOs

Custom
Loss

AUC=0.90

AUC=0.71

Cmed RKO

V 0

Vout

Fig. 4 | AMNs growth rate predictions for E. coli gene KOs mutants. An AMN
model was trained on a set of 17,400measured growth rates of E. coli grown in 120
unique media compositions and 145 different single metabolic gene KOs. a AMN
architecture integrating metabolic gene KOs. This architecture is similar to Fig. 1c,
except for a secondary input (RKO) for the neural layer, alongside the medium
composition Cmed. The RKO input is a binary vector describing which reactions are
KO. The custom loss function ensures that reference fluxes (i.e., the E. colimutants
measured growth rates) and mechanistic constraints are respected and that reac-
tions experimentally KO have in Vout a null flux value. The neural layer comprised
one hidden layer of size 500 and the model was trained for 200 epochs with

dropout = 0.25, batch size = 5, and the Adam optimizer with a 10−3 learning rate.
b AMN regression performance on aggregated growth rate predictions from a 10-
fold cross-validation. The mechanistic layer used for this architecture was the QP
solver. c Regression performance of classical FBA with scaled upper bounds for
compounds present in the medium and setting the upper bound and lower bound
to zero for reactions that are KO (having a value of 0 in RKO). d ROC curve of AMN
results. We thresholded themeasured growth rates (continuous values) in order to
transform them into binary growth vs. no growth measures. e ROC curve of clas-
sical FBA results. The same thresholding as for (d) was applied. Source data are
provided as a Source Data file (cf. “Data availability”).

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 6

0.71 ± 0.01 with the same dataset and cross-validation scheme, indi-
cating AMNs can outperform regular machine learning algorithms.

As one can observe in Fig. 3, the experimental variability on the
measured growth rates is relatively high, and the Q² values could be
interpreted differently if taking this variability into account. To study
this further, we estimated the best possibleQ² that can be reached at a
given experimental variability. Precisely, for each experimental data
point, we randomly drew a newpoint froma normal distributionwith a
mean and variance equal to what was experimentally determined for
the original point. This point can be considered as an experimental
randomizedpoint. After doing this for all points and computing theQ²,
repeating this process 1000 times, we obtain a mean Q² = 0.91 with a
standard deviation of 0.02. Consequently, the best possible Q²
accounting for experimental variability is 0.91, and the performance of
Q² = 0.77 (or 0.78) must be interpreted considering that value. Fur-
thermore, substituting each point by a box defined by standard
deviations of both measurement and prediction, we find that 79% for
AMN-QP (76% for AMN-LP and 74% for AMN-Wt) of the boxes intersect
the identity line indicating that these points are correctly predicted
within the variances.

Our results show that AMNs can learn on FBA-simulated training
sets and make accurate predictions while respecting the mechanistic
loss, as shown in Fig. 2. AMNs can also perform well on a small
experimental growth rates dataset as shown in Fig. 3. To demonstrate
capabilities of AMNs beyond these tasks, we extracted from the ASAP
database28 a dataset of 17,400growth rates for 145E. colimutants. Each
mutant had a KO of a single metabolic gene and was grown in 120
media with a different set of substrates. Our AMNs training set, were

therefore composed of medium composition and reaction KOs, both
encoded as binary vectors, alongside themeasured growth rates.More
details can be found in Methods “External training sets acquisition”.
Results are presented in Fig. 4 and comparedwith classical FBA results,
which were obtained running Cobrapy using the same dataset and
setting scaled upper bounds (cf. Methods “Searching uptake fluxes
upper bounds in FBA”) corresponding to medium uptake fluxes and
constraining KO reactions to zero fluxes in the metabolic model. The
AMN architecture (Fig. 4a) used with this dataset is similar to the
architecture shown in Fig. 1c, with an added input for reaction KOs
(RKO). Importantly, we also added a term to the custom loss in order to
respect the reactionKOs (cf.Methods “Derivationof loss functions” for
more details).

The AMN regression performance in Fig. 4 (aggregated predic-
tions from a 10-fold cross-validation) reaches Q² = 0.81 (Fig. 4b). For
comparison, a decision tree algorithmpredicting only the growth rates
from Cmed and RKO (the XGBRegressor function from the XGBoost
package29 with all parameters set to default values) yields a regression
performance of 0.75, with the same cross-validation scheme and
dataset.

The performance of classical FBA is poor, as no correlation can be
found between measured and calculated growth rate (Fig. 4c). Such
performance is expected as classical FBA relies on fixed uptake fluxes.
In contrast, FBA should performbetter to predict growth vs. no growth
(a classification task), this is due to the fact that the network structure
of GEMs already provides a lot of information on reaction essentiality,
growth yields on different substrates, and other qualitative insights
about metabolism. Indeed, in the most recent GEM of E. coli, iML15159,

b

Vin

AMN-Reservoir
uptake fluxes bounds

Scaled uptake fluxes
bounds

Simplex
solver

Growth Rate

c

d f

Neural layer

Neural layer

Mechanistic layer N
on

-tr
ai

na
bl

e
AM

N
-R

es
er

vo
ir

Vin

V 0

Vout

Cmed

Growth Rate
Regression
Classification

a R²=0.97

R²=0.51

e

or

Regression
Classification

Fig. 5 | Reservoir computing for improving the predictive power of FBA mod-
eling (strain E. coli DH5-alpha, model iML1515 and strain P. putida KT2440,
model iJN1463). For (c, d), plotted are the measured growth rates means and
standard deviations, computed from replicates (cf. “Methods”). a Learning archi-
tecture. The two-step learning is similar to what is shown in Fig. 1d. Here an AMN
with QP-solver is trained either on iML1515 (c, d) or iJN1463 (e, f) with FBA simu-
lations. The AMN (with frozen parameters) is then connected to a prior trainable
network that computes medium uptake fluxes (Vin) from themedium composition
(Cmed). From Vin the non-trainable reservoir returns all fluxes (Vout) including the
growth rate. Next, a regression or classification is carried out on the growth rate.
For results presented in (c, e), the neural layer comprised one hidden layer of size

500, themodelwas trained for 1000epochswith dropout = 0.25, batch size = 5, and
the Adam optimizer with a 10−4 learning rate. b Scheme showing the two possible
inputs for Cobrapy (running a simplex solver), either using Vin extracted from (a),
or using scaled upper bounds on uptake fluxes. c Regression performance of
Cobrapy for the E. coli dataset when using Vin. d Regression performance of
Cobrapy when using scaled upper bounds on corresponding uptake fluxes.
e Accuracy performance of Cobrapy for the P. putida dataset when using Vin.
f Accuracy performance of Cobrapy when using original values of the study from
Nogales et al. For the results in (e, f), accuracies are given for the whole dataset (All)
composedof carbon source assays (Carbon) andnitrogen source assays (Nitrogen).
Source data are provided as a Source Data file (cf. “Data availability”).

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 7

an accuracy >90% was found for a dataset of growth assays based on
media compositions (classification task predicting growth vs. no
growth). Consequently, we also show in Fig. 4 the performances of
AMN and FBA for classification. Precisely, we treat the growth rate
value predicted by either the AMN or FBA as a classification score for
growth vs. no growth, to that end and following Orth et al.30, we
threshold the growth rate measures (continuous values) to binary
values (1 when the growth rate is above 5% of the maximum growth
rate of the dataset, 0 otherwise).With classifications, one can compute
ROC curves, and these are shown in Fig. 4d for AMN and Fig. 4e for
classical FBA.

Overall, the results presented in Fig. 4 show that for both
regression and classification tasks, AMNs, which integrates learning
procedures, outperforms classical FBA, which is based on maximizing
a biological objective only. Indeed, as mentioned in the introduction,
one main issue of classical FBA is the unknown uptake fluxes, which
have a large impact on the predicted growth rate value, while AMNs
can handle this problem because of their learning abilities. To further
showcase AMN capabilities, in particular when multiple fluxes are
measured, we provide in Supplementary Fig. S8 the performance of an
AMNonadataset fromRijsewijk et al.31.With this dataset, composedof
31 fluxes measured for 64 single regulator gene KO mutants of E. coli
grown in 2media compositions, our AMN reaches a variance averaged
Q² value of 0.91 in 10-fold cross-validation.

AMNs can be used in a reservoir computing framework to
enhance the predictive power of traditional FBA solvers
As already mentioned in the introduction section, the uptake fluxes of
E. coli nutrients, as well as their relation to external nutrient con-
centrations, remain largely unknown: the uptake flux for each com-
pound may vary between growth media. In classical FBA calculations,
this is usually ignored and the same upper bound (or zero, if a com-
pound is absent) is used in all cases. Our results for KO mutants sug-
gest that this strongly reduced regression performance of classical
FBA, while in classification the effect is less severe. Nonetheless, for
regression or classification the problem remains: how can realistic
uptake fluxes be found?

In the following, we show a way to find these uptake flux values
and improve the performances of classical FBA solvers (for both
regression and classification). Once an AMN has been trained on a
large dataset of FBA-simulated data, we can fix its parameters and
exploit it in subsequent further learning in order to find uptake flux
values that can be used in a classical FBA framework. Loosely inspired
by reservoir computing32, we call this architecture “AMN-Reservoir”
(Figs. 1d and 5a). Let us note that we are not using usual reservoirs32

with random weights and a post-processing trainable layer. As a
matter of fact, we do not reach satisfactory performances when we
substitute the AMN-Reservoir weights (learned during training) by
random weights.

Webenchmarkedour AMN-Reservoir approachwith twodatasets.
The first one is the one used in Fig. 3, composed of 110 E. coli growth
rates, and the second is a growth assay of P. putida grown in 296
different conditions33 (more details in Methods “External training sets
acquisition”). The procedure used for the two datasets is the same.
First, the AMN-Reservoir is trained on FBA simulations. For E. coli we
used as an AMN-Reservoir the AMN-QP of Supplementary Table S1
trained on an iML1515 UB dataset, for P. putidawe used the AMN-QP of
Supplementary Table S1 trained on an iJN146333 UB dataset. Second, as
shown in Fig. 5a, the whole experimental dataset is used to train the
neural layer, setting up either a regression task for E. coli growth rates
and a classification task for P. putida growth assays (growth vs. no-
growth). After training on media compositions and measured growth
rates (for both E. coli and P. putida), we extract the corresponding
uptake fluxes (Vin). These uptake fluxes are then taken as input for a
classical FBA solver for growth rate calculation, as shown in Fig. 5b.

The output of FBA was used to produce the results shown in
panels c and e. As amatter of comparison,we show theperformance of
FBA for the E. colidataset (Fig. 5d)with scaleduptakefluxes bounds (cf.
Methods “Searching uptake fluxes upper bounds in FBA”), and for P.
putida (Fig. 5f) where we used the same flux bounds as given in the
reference study33.

Overall, results shown in Fig. 5 indicate that the usage of AMN-
Reservoirs substantially increases the predictive capabilities of FBA
without additional experimentalwork. Indeed, after applying theAMN-
Reservoir procedure to find the best uptake fluxes, we raised the R² on
E. coli growth rates from 0.51 (panel d) to 0.97 (panel c) and we raised
the accuracy on P. putida growth assays from 0.81 (panel f) to 0.96
(panel e). We note that these uptake fluxes were found for the training
set of the AMN-Reservoir, but we also show the performance of FBA
with uptake fluxes found for cross-validation sets (Supplementary
Fig. S9). As expected, Fig. S9 displays the same level of performance as
the AMNs directly trained on experimental data (Fig. 3).

Discussion
In this study we showed how a neural network approach, with meta-
bolic networks embedded in the learning architecture, can be used to
address metabolic modeling problems. Previous work on RNNs and
PINNs for solving constrained optimization problems was re-used and
adapted to develop three models (AMN-Wt, -LP and -QP) enabling
gradient backpropagation within metabolic networks. The models
exhibited excellent performance on FBA generated training sets (Fig. 2
and Supplementary Table S1). We also demonstrated that the models
can directly be trained on an experimental E. coli growth rate dataset
with good predictive abilities (Fig. 3).

In classical FBA, all biological regulationmechanismsbehind aflux
distribution are ignored and flux computation relies entirely on
bounds set on uptake or internal fluxes. Therefore, when performing
classical FBA, one needs to set uptake bounds individually for each
condition to reliably predict metabolic phenotypes. AMNs attempt to
capture the overall effects of regulation via the neural layer while
keeping themechanistic layer for themetabolic phenotype. Indeed, as
shown in Fig. 4 and Supplementary Fig. S8, gene KOs of metabolic
enzymes or regulators can be taken into account via the neural layer.
Such AMNs can potentially be trained on a variety of experimental
inputs (wider than the carbon source composition shown in our stu-
dies) to grasp the effects of complex regulation processes in the cell
and to better explain the end-point metabolic steady-state phenotype
of an organism.

For improved adaptability, we also trained AMN-Reservoirs on
large FBA-simulated training sets and used these to improve FBA
computations on twoexperimental datasets (E. coli growth rates and P.
putida growth assays). Figure 5 shows that our hybrid models sub-
stantially enhance classical FBA predictions both quantitatively and
qualitatively, and this without any additional flux measurements.

One issue that impairs phenotype predictions with FBA is the lack
of knowledge on media uptake fluxes and determining bounds on
these fluxes is a core experimental work required for making classical
FBA computations realistic. These bounds depend on cell transporters
abundances, which may vary between conditions and depend on the
cell’smetabolic strategy. satFBA34 is a variant of FBA that assumes fixed
transporter levels and converts medium concentrations to possible
uptake fluxes by kinetic rate laws, relying on a Michaelis-Menten value
for eachuptake reaction. Inmore sophisticatedCBMapproaches, such
as molecular crowding FBA35 or Resource Balance Analysis36, con-
straints on the resource availability and allocation are added to obtain
more biologically plausiblemetabolic phenotypes, but parameterizing
suchmodels requires additional data. Toprovide the necessary data to
the aforementioned CBMmethods and to validate results, fluxomics37,
metabolomics38, or transcriptomics39 have been used in the past.
Because additional experimental work is needed with sophisticated

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 8

CBM approaches, many users rely on classical FBA, which as we have
seen, has limitations as far as quantitative predictions are concerned.

AMNs are used in this study for tackling the same issue as satFBA:
predicting metabolites uptake fluxes from medium metabolite com-
position. To do so, where satFBA uses transporter kinetics with para-
meters that need to be acquired through additional measurements,
AMNs use a pre-processing neural layer that is accessible for learning.
Our AMN hybrid models get rid of additional experimental data for
reaching plausible fluxes distributions. We do so by backpropagating
the error on the growth rate or any other measured flux, to find
complex relationships between the medium compositions and the
medium uptake fluxes. To this end, we demonstrated the high pre-
dictive power of AMNs, and their re-usability in classical FBA approa-
ches. Indeed, FBA developers and users may now make use of our
AMN-Reservoir method for relating medium uptake fluxes to growth
medium compositions. In this regard, a Source Data file (cf. Data
availability) gives uptake fluxes for the metabolites used in our
benchmarking work with E. coli and P. putida (Fig. 5), and these upper
bounds for uptake fluxes can directly be used by Cobrapy to repro-
duce Fig. 5c, e.

Making FBA suitable for machine learning as we have done in this
study opens the door to improve GEMs. For instance, in addition to
estimating uptake fluxes, AMNs could be used to estimate the coeffi-
cients of the biomass reaction based on measurements. So far, these
coefficients are derived based on literature, but also using experi-
mental data: growth rate, fluxes, and macromolecular fractions mea-
sures can help finding optimal coefficients9. However, these
experiments are limited in number, and biomass coefficients are
usually determined only once, for a single experimental setup, and are
hardly extrapolated to all possible conditions. Some studies already
underline this issue and attempt to efficiently integrate experimental
data in the biomass reaction parametrization40. With AMNs, a trainable
layer containing the biomass coefficients could be added, adapting the
biomass reaction to any experimental setup. Another possible appli-
cation of AMN is to enhance GEMs reconstruction based on quantita-
tive prediction performance. Indeed, the method we developed for
KOs could be adapted to screen putative reactions in a metabolic
model so that its predictions match experimental data. This task
should be performed after a manual curation, of course, to rely on
existing literature knowledge and databases.

Returning to the curse of dimensionality issue mentioned in the
introduction, we systematically studied at which training set sizes
‘black-box’MLmethods would yield performances similar to our AMN
hybrid models. To that end, we trained a simple dense ANN model on
training sets of increasing sizes. Results obtained with E. coli core25

show that at least 500,000 labeled data (reference fluxes) are needed
in the training sets to reach losses below 0.01 (cf. in Supplementary
Fig. S10), which according to Fig. 2 andSupplementary Table S1 are still
one order of magnitude higher than all AMNs losses trained on only
1000 labeled data. This clearly demonstrates the capacity of hybrid
models to reduce training set sizes by constraining the search space
through the mechanistic layer. Other black-box models can also be
used, indeed the experimentalmeasurements used in Figs. 3 and 4 can
be fitted with decision tree algorithms (Random Forests27 and
XGBoost29) with performances slightly under those of AMN. However,
with these algorithms, nothing is learned regarding the mechanistic
constraints and results producedby thesemethods cannotbe fedback
to classical FBA, as we do in Fig. 5 with the AMN-Reservoir.

Beyond improving constraint-based mechanistic models and
black-box ML models, AMNs can also be exploited for industrial
applications. Indeed, since arbitrary objective functions can be
designed and AMNs can be directly trained on experimental mea-
surements, AMNs can be used to optimize media for the bioproduc-
tion of compounds of interest or to find optimal gene deletion and
insertion strategies in typical metabolic engineering projects. In this

latter case, reactions would be turned off via a trainable layer, which
would be added prior to the mechanistic layers of our AMNs. Another
potential application is the engineering of microorganism-based
decision-making devices for the multiplexed detection of metabolic
biomarkers or environmental pollutants. Here, AMNs could be used to
search for internal metabolite production fluxes enabling one to dif-
ferentiate positive samples containing biomarkers or pollutants from
negative ones. Such a device has already been engineered in cell-free
systems41, and AMNs could be used to build a similar device in vivo by
adding a trainable layer after the mechanistic layer whose purpose
would be to selectmetabolite production fluxes that best split positive
from negative samples.

Methods
Making metabolic networks suitable for neural computations
The set-up of our AMNs requires all reactions to be unidirectional; that
is, the solutions must show positive-only fluxes (which is not guaran-
teed by usual GEMs). To split reactions of a given metabolic network
into separate forward and reverse reactions, we wrote a standardiza-
tion script that loads an SBMLmodel into Cobrapy19 and screens for all
two-sided reactions, then duplicating them into two separate reac-
tions; and writes a new version of the model with bi-directional reac-
tions split into separate forward and backward reactions. To avoid
confusion, we add a suffix to these reaction names, either “for” or “rev”
respectivelydesignating theoriginal forward reaction and the reversed
reaction. The uptake reactions were also duplicated, even if encoded
as one-sided, and their suffix was set to “i” for inflow reactions (adding
matter to the cell), and “o” for outflow reactions (removing matter
from the system).

As detailed in the next subsection, our unidirectional models are
used to build flux data training sets. The duplicated iML15159 model is
large, comprising 3682 reactions and 1877 metabolites. A substantial
number of reactions in this model have zero fluxes for many different
media, and it is unnecessary to keep these reactions during the training
process. Prior to training, we therefore generated a reduced model by
removing reactions having zero flux values along with the metabolites
no longer contributing to any reactions.Using thatprocedure,wewere
able to reduce iML15159 model to only 550 reactions and 1083
metabolites.

Generation of training sets with FBA
Our reference flux data were obtained from FBA simulations, using the
GNU Linear Programming Kit (GLPK, a simplex-based method) on
Cobrapy19, with different models of different sizes. Throughout this
paper, when “reference FBA-simulated data” is mentioned, it refers to
data computed with this method.

Reference FBA-simulated data for metabolic flux distributions
were generated using models downloaded from the BiGG database26.
The models were used to generate data using Cobrapy19 following a
precise set of rules. First, we identified essential uptake reactions for
the models we used (E. coli core25 and iML15159) which we defined in
the followingway: if one of these reactions has its flux upper bound set
to 0mmol gDW−1 h−1, the biomass reaction optimization is impossible,
even if all other uptake fluxes bounds are set to a high value, e.g.,
1000mmol gDW−1 h−1. In other words, we identified the minimal
uptake fluxes enabling growth according to the models. For E. coli
core25 we found seven of such obligate reactions (for the uptake of
CO2,H+,H20,NH4,O2, Phosphate, andGlycerol as the carbon source).
For iML151520 we had the same 7 obligate reactions and additional salt
and ions uptake reactions (for the uptake of Fe2+, Fe3+, Mn2+, Zinc,
Mg, Calcium, Ni2+, Cu2+, Selenate, Co2+, Molybdate, Sulfate, K+,
Sodium, Chloride, Tungstate, Selenite). With iML15159, we also added
as obligate reactions the uptake of four amino acids (Alanine, Proline,
Threonine and Glycine) in order to be consistent with our experi-
mental training set where the four amino acids were systematically

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 9

added to M9 (cf. subsection “Generation of an experimental training
set”). During reference FBA-simulated data generation, the upper
bounds on these obligate reactions were set to 10mmol gDW−1 h−1.

To generate different media compositions, we added to the
obligate reactions a set of variable uptake reactions. For the E. coli core
model25 we added 13 variable uptake reactions (for Acetate, Acet-
aldehyde, Oxoglutarate, Ethanol, Formate, Fructose, Fumarate, Gluta-
mine, Glutamate, Lactate, Malate, Pyruvate, and Succinate). For each
generated medium, a set of variable uptake reactions was selected,
drawn with a binomial distribution B(n, p) with n = 13 and p = 0.5, p
being a tunable parameter related to the ratio of selected reaction.
Consequently, the mean number of selected variable uptake reactions
was n × p = 6.5. Next for each selected reaction, the upper bound
continuous value of the reaction flux was randomly drawn from a
uniform distribution between 2 and 10mmol gDW−1 h−1. For the
iML15159 model, to limit the combinatorial search space, the selected
variable uptake reactions were those of the experimental training set
and consequently between 1 and 4 variable uptake reaction were
added (cf. subsection “Generation of an experimental training set”).
The upper bound values for each selected variable reaction were
chosen randomly between 0 and 2.2mmol gDW−1 h−1 (0 excluded). The
2.2 threshold was chosen to produce predicted growth rates that were
in the range of those observed experimentally. For the P. putida
iJN146333 model, we used the same approach with variable uptake
reactions selected from the experimental training set, and conse-
quently 1 variable uptake reaction was added to obligate reactions
(described as the minimal medium in the reference study33) for each
element of the training set. The upper bound values for each selected
variable reaction were chosen randomly between 0 and
10mmol gDW−1 h−1 (0 excluded).

After generating the set of growthmedia forE. coli core25, iML15159

and iJN146333 we ran FBA in Cobrapy19 for each medium and recorded
all steady-state fluxes including the growth rate (flux of the biomass
reaction). These fluxes were used as a training set for all models pre-
sented in Fig. 2 and in Supplementary Table S1. All AMN architectures
were trained on the biomass flux (i.e. the growth rate), while ANN
architectures were trained on all fluxes. For all UB training sets, the
variable uptake flux values were those used by Cobrapy19 to generate
the training set. For EB training sets, the variable uptake flux values
were those calculated by Cobrapy19 at steady state.

Derivation of loss functions
Loss functions are necessary to assess the performances of all MM
solvers and all AMN architectures (AMN-Wt, -QP, and -LP) and also to
compute the gradients of the QP solvers. In the following and sub-
sequent subsections, all vectors and matrices notations are defined
when they are first used and can also be found in Supplementary
Table S2.

To compute loss, we consider a metabolic model with n reactions
andmmetabolites. Let V = v1, . . . ,vn

� �T be the reaction flux vector and
S the m × n stoichiometric matrix of the model. We assume some
metabolites can be imported in the model through a corresponding
uptake reaction. Let Vin be the vector of nin upper bounds (or exact
values) for these uptake reactions, and let Pin the nin × n projection
matrix such that Vin = PinV . We further assume that some reaction
fluxes have been experimentally measured, let Vref be the vector of
reference flux data (FBA-simulated or measured). With Pref the nref × n
projection matrix for measured fluxes. V is calculated by solving the
following quadratic program (QP):

minð∣Pref V � Vref ∣
2Þ

s:t: S V =0

PinV ≤Vin

V ≥0

ð1Þ

For each solution,V, of Eq. (1), four loss terms are defined. L1 is the
loss on the fit to the reference data. L2 ensures the respect of the
network stoichiometric constraint (S V = 0). L3 ensures the respect of
the constraints on input fluxes that depend on medium composition
(PinV ≤Vin). Finally, L4 ensures the respect of the fluxpositivity (V ≥0).
The losses are normalized, respectively by nref for the fit to reference
data, m for the stoichiometric constraint, nin for the boundary con-
straints, and n for the flux positivity constraints.

Summing the four terms, the loss L is:

L = L1 + L2 + L3 + L4

= 1
nref

∣Pref V � Vref ∣
2 + 1

m ∣SV ∣2 + 1
nin

∣ReLUðPinV � VinÞ∣
2
+ 1

n ∣ReLUð�V Þ∣2 ð2Þ

More details about each loss term can be found in the Supple-
mentary Information “QP-solver equations”.

When reaction KOs are added to the input of AMNs (as in Fig. 4),
we add a term to the loss function, L5, for ensuring a null value for
fluxes that have their reaction KO:

L5 =
1

nKO
∣ReLU PKOV � RKO

� �
∣2 ð3Þ

where RKO is a vector of length nKO describing which reactions are KO,
and PKO the projection matrix mapping the whole flux vector V to
KO fluxes.

Wt-solver
The Wt-solver describes a metabolic state by two vectors V and M,
representing respectively the reaction fluxes and the metabolite pro-
duction fluxes. The initial value (V0) for vector V can be arbitrary as
long as the uptakemediumbounds are respected. VectorsV andM are
iteratively computed until convergence using the following equations:

M =Pv!mV

V = Pm!vV / �W r

� �
M +V0 ð4Þ

where Wr is a consensus weight matrix representing flux branching

ratios, Pv!m =ReLUðSÞ, Pv!m =ReLU �1
zisj,i

h i� �
, S is the stoichiometric

matrix, sj,i the stoichiometric coefficient of row j and column i, zi the
number of strictly negative elements in column i of S, and ⊙ the
Hadamard product operation. Additional details on the procedure and
the associated matrices are provided in Supplementary Information
section “Wt-solver equations”.

LP-solver
The LP method aims at solving linear constrained problem similar to
the ones solved by FBA. It relies on the results from Yang et al.20 where
the authors used gradient descent on both primal and dual variables of
the problem.

When the uptake fluxes are known (EBmethod), the FBA problem
can be written as:

max : cTFBAV

s:t: SintV = � bFBA

V ≥0

ð5Þ

where Sint is the stoichiometric matrix with uptake fluxes zeroed out
(i.e. fluxes that add matter in the system). In other words, Sint is the
internal stoichiometric matrix. Let us consider bFBA, a vector of
dimension m with bi corresponding to uptake fluxes of medium
metabolite mi (either as an exact value for EB or an upper bound for
UB) and cFBA, the objective vector of dimension n (in this work this
vector has non-zero elements only for referencefluxes like thebiomass
reaction flux, i.e., the growth rate.

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 10

This problem can be written in its dual formwith U being the dual
variable of V:

min : �bT
FBA U

st : ST
intU ≤ cFBA

ð6Þ

As mentioned before, the problem given by Eq. (5) can be solved
conjointly with problem given by Eq. (6) by iteratively updating V and
its dual U through gradient descent:

V t + 1ð Þ =V tð Þ � dt ∇V

U t + 1ð Þ =U tð Þ � dt ∇U

V 0ð Þ =PT
inV in andU

0ð Þ =0

ð7Þ

where t is the iteration number and dt the learning rate.
Note that initialization of LP with uptake fluxes is not mandatory

with themethod fromYang et al.20 as it has beenproven to converge to
global optimum independently from the initial values of V and U.
Detailed expressions and derivations of gradients for U and V are
provided in Supplementary Information “LP-solver equations” along
with Figs. S4 and S5.

QP-solver
The QP solver solves the quadratic program given by Eq. (1). While the
QP system can be solved by a simplex algorithm, solutions can also be
approximated by calculating the vector V that minimizes the loss (L in
Eq. (2)). The gradient ∇V for vector V can thus be found by solving
∂L
∂V =0 and, as in Eq. (7),V is computed iterativelywith iteration number
t and learning rate dt.

Detailed expressions and derivations for the gradient ∇V , when
exact bounds (EBs) or upper-bounds (UBs) are provided for uptake
flux medium, can be found in the Supplementary Information “QP-
solver equations”.

ANN architecture
The ANN architecture is a “black box” dense neural network. As with
the other architectures the input layer corresponds to the medium
uptake fluxes, Vin, and the output layer corresponds to the set of all
fluxes Vout. In order to assess losses with the ANN architecture, which
does not have any mechanistic layer, each entry of the training set
contained all flux values (in other words, Vref contains all fluxes).
Consequently, the training process with ANN consists in fitting all
predicted fluxes to reference flux data (computing the MSE on all the
fluxes). To compare results with the other architectures, R² andQ² are
computed for the growth rate, and constraint losses are computed
using predictions for all fluxes, using the formulation given in the
subsection Methods “Derivation of loss functions”.

AMN architectures
As shown Figs. 1 and 3, we propose three AMN architectures: AMN-Wt,
AMN-LP and AMN-QP. The AMNs are run with training sets using exact
values (EB) or only upper bound values (UB) formediumuptake fluxes.
All AMNs take as their input a vector of bounds of size nin for medium
uptakefluxes (Vin) and then transform it via a denseneural network the
input vector into an initial vector of size n for all fluxes (V0), which is
refined through an iterative procedure computing V ðt + 1Þ from V ðtÞ.
With all AMNs a nin× nweight matrix transforming Vin to V0 is learned
during training, and we name this transforming layer the neural layer.
With AMN-LP/QP, V ðtÞ is iteratively updated in a mechanistic layer by
the gradient (∇V) of LP/QP solvers (cf. previous subsections in
“Method”). With AMN-Wt, themechanistic layer computes V ðt + 1Þ from
V ðtÞ using the transformations shown in Fig. S1, which include a n ×m
weightmatrix (Wr). Thatweightmatrix can be directly computed from
training data when all fluxes are provided or can be learned during

training, when only a fraction of fluxes are provided (like the growth
rate with experimental datasets). In our implementation (cf. “Code
availability” section) AMN-Wt is embedded in a RNN Keras cell42 and
bothmatricesWi andWr are learnedduring training. ANN-Wt is further
detailed in Supplementary Information “AMN-Wt architecture”.

With all AMN architectures, the values of V corresponding to Vin

are not updated in the neural nor mechanistic layers when training
with exact values for medium uptake (EB training sets).

ANN and AMN training parameters
For ANN and AMN architectures, we use the mean squared error (L1 in
Eq. (2)) for measured fluxes as the objective function to minimize
during training. In all AMN architectures we add to the L1 loss function
the terms corresponding to the 3 losses derived from the constraints
of the metabolic model (L2, L3 and L4 in Eq. (2)).

The parameters used when training ANNs and AMNs, there are
two types:
(1) Reference data parameters: reference data can either be FBA-

simulated or experimental. For FBA-simulated data, we can tune
the size of the training set to be generated.We canalsomodify the
mean number of selected variable intake medium fluxes, and the
number of levels (i.e. the resolution) of the fluxes. We can also
modify the variable uptake reactions list, but this modifies the
architecture of the model (initial layer size), so we kept the same
list for each model in the present work. The lists can be found in
the subsection “Generation of training sets with FBA”.

(2) Model hyperparameters: during learning on FBA-simulated or
experimental data, ANN and AMN have a small set of parameters
to tune: the number and size of hidden layers, the number of
epochs, the batch size, the dropout ratio, the optimizer and
learning rate, and the number of folds in cross-validation. These
numbers are provided in Supplementary Table S1 for models
trained on FBA-simulated data and in the captions of Figs. 3–5 for
models trained on experimental data.

Searching uptake fluxes upper bounds in FBA
The goal of this optimization was to find the best scaler for fluxes to
best match experimentally determined growth rates, by using “out-of-
the-box” FBA, simply informing the presence or absence of the flux
according to the experimental medium composition. The optimal
scaler used in Figs. 4 and 5 was found using the Cobrapy software
package19 by simply searching for the maximum R² between experi-
mental and FBA-predicted growth rates for scalers ranging between
1 and 10.

Generation of an experimental training set
Ten carbon sources were picked for being the variables of our training
sets: Ribose (Sigma-Aldrich, CAS:50-69-1), Maltose (Sigma-Aldrich,
CAS:6363-53-7), Melibiose (Sigma-Aldrich, CAS:585-99-9), Trehalose
(Sigma-Aldrich, CAS:6138-23-4), Fructose (Sigma-Aldrich, CAS:57-48-7),
Galactose (Sigma-Aldrich, CAS:59-23-4), Acetate (Sigma-Aldrich,
CAS:127-09-3), Lactate (Sigma-Aldrich, CAS:867-56-1), Succinate
(Sigma-Aldrich, CAS:150-90-3), Pyruvate (Sigma-Aldrich, CAS:113-24-6).
These could ensure observable growth as a sole carbon source with a
concentration of 0.4 g l−1 in our M9 preparations. The selected carbon
sources enter different parts of the metabolic network: 6 sugars enter
the upper glycolysis pathway, and 4 acids enter the lower glycolysis
pathway or the TCA cycle. With a binary (i.e., presence or absence of
each carbon source) approach when generating the combinations to
test formaking the experimental training set, we generated all possible
combinations of 1, 2, 3 or 4 carbon sources simultaneously present in
the medium. Naturally, we picked all 1-carbon source media combina-
tions for experimental determination (only 10 points). Then, we ran-
domly selected 100 more combinations to experimentally determine,
by randomly picking 20 points from the 2-, 40 points from the 3- and

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 11

40 points from the 4-carbon source combinations sets. The python
scripts to generate these combinations and pick the ones for making
our experimental training set are available on our Github package43 (cf.
“Codes availability” section). After picking the combinations to test, we
experimentally determined themaximum specific growth rate of E. coli
for each combination of carbon sources in M9 (cf. next two subsec-
tions). The mean over replicates for each media composition was
computed as the corresponding growth rate value to make the final
experimental training set (cf. Methods “Growth rate determination”).

Culture conditions
The base medium for culturing E. coli DH5-α (DH5a) was a M9medium
preparedwith thosefinal concentrations: 100 µMCaCl2 (Sigma-Aldrich,
CAS:10035-04-8); 2mM MgSO4 (Sigma-Aldrich, CAS:7487-88-9); 1X
M9 salts: 3 g l−1 KH2PO4 (Sigma-Aldrich, CAS: 7778-77-0), 8.5 g l−1

Na2HPO4 2H2O (Sigma-Aldrich, CAS:10028-24-7), 0.5 g l−1 NaCl (Sigma-
Aldrich, CAS:7647-14-5), 1 g l−1 NH4Cl (Sigma-Aldrich, CAS:12125-02-9);
1X trace elements: 15mg l−1 Na2EDTA 2H20 (Sigma-Aldrich, CAS:6381-
92-6), 4.5mg l−1 ZnSO4 7H2O (Sigma-Aldrich, CAS:7446-20-0), 0.3mg l−1

CoCl2 6H2O (Sigma-Aldrich, CAS:7791-13-1), 1mg l−1 MnCl2 4H2O
(Sigma-Aldrich, CAS:13446-34-9), 1mg l−1 H3BO3 (Sigma-Aldrich,
CAS:10043-35-3), 0.4mg l−1 Na2MoO4 2H20 (Sigma-Aldrich, CAS:10102-
40-6), 3mg l−1 FeSO4 7H2O (Sigma-Aldrich, CAS:7782-63-0), 0.3mg l−1

CuSO4 5H2O (Sigma-Aldrich, CAS:7758-99-8), solution adjusted at
pH= 4 and stored at 4 °C; 1mg l−1 Thiamine-HCl (Sigma-Aldrich,
CAS:67-03-8); 0.04 g l−1 amino acid mix so that L-Alanine (Sigma-
Aldrich, CAS:56-41-7), L-Proline (Sigma-Aldrich, CAS:147-85-3),
L-Threonine (Sigma-Aldrich, CAS:72-19-5), Glycine (Sigma-Aldrich,
CAS:56-40-6) were each at a final concentration of 5mg l−1 in the
medium. The additional carbon sources that could be added were
individually set to a final concentration of 0.4 g l−1. The pHwas adjusted
at 7.4 prior to a 0.22 µm filter sterilization of the medium. Pre-cultures
were recovered from glycerol −80 °C stocks, grew in Luria-Bertani (LB)
broth overday for 7 h, then used as 5 µl inoculate in 200 µl M9 (sup-
plemented with variable compounds) in 96 U-bottom wells plates
overnight for 14 h. Then 5 µl of eachwell was passed to a replicate of the
plate on the next day for growth monitoring. The temperature was set
to 37 °C in a plate reader (Agilent Technologies, BioTek HTX Synergy),
with continuous orbital shaking at maximum speed, allowing aerobic
growth for 24 h. A monitoring every 10min of the optical density at
600nm (OD600) was performed. A figure for summarizing the experi-
mental workflow is available in Fig. S11.

Growth rates determination
The maximal growth rate was determined by sliding a window of 1 h-
size, performing a linear regression on the log(OD600) data in each
window. We then retrieve the maximum specific growth rate as the
maximum regression coefficient over all windows. If several growth
phases are visible, one can omit a part of the growth curve for the
maximal growth rate determination (for this study we always retrieved
themaximal growth rate on the first growth phase, so aswe are certain
that the media contains all added carbon sources). Eight replicates for
each medium composition were performed (on a single column of a
96-well plate). Outliers were manually removed after visual inspection
of the growth curves or clear statistical deviation of the computed
growth rate from the remaining replicates. The numbers of replicates
kept range from 2 to 8, with an average of 4.6 (±1.6) replicates per
medium composition. Means and standard deviations over replicates
were computed to be used for training AMNs and making figures. All
raw data and the code to process it are available in the Github
repository43 (cf. “Code availability”).

External training sets acquisition
Growth rates of E. colimetabolic gene KOmutants. The dataset was
downloaded from the ASAP database (Mutant Biolog Data I for K-12

mutant strains)28. That dataset was pre-processed by applying several
filtering steps: removing substrates that do not appear in iML1515 as
possible substrates for uptake fluxes, removing genes not found in
iML1515, and removing all data duplicates to obtain a balanced and
coherent dataset. The filtered dataset contains 17,400 growth rates:
145 E. colimutants (each having aKOof a singlemetabolic gene) grown
in 120 conditions (each with a different set of substrates) from Biolog
phenotype microarrays44. The final training set can be found in the
source data, provided as a Source Data file (cf. “Data availability”).

For practical reasons, we converted the information about meta-
bolic gene KOs information into binary vectors describing which
reactions are directly affected by a gene KO, called RKO in Fig. 4. This
mapping was automated with iML1515’s ability to link genes and
reactions. For reactions performed by enzymes encoded bymore than
one gene, we make the assumption that when any of these genes is
knocked-out, the reaction is also knocked-out.

For the FBA computation (Fig. 4c, e), we set an arbitrary upper
bound on uptake fluxes (11mmol gDW−1 h−1 was found to be the best
value in terms of regression performance) for each substrate in the
dataset when it is present (otherwise 0). To simulate a KO, we set the
lower and upper bound of a reaction to zero.

To transform the measured growth rates from continuous values
into binary values (for the ROC curves in Fig. 4d, e), following Orth
et al.30, we applied a threshold of 0.165 h−1, which is equal to 5% of the
maximum growth rate (3.3 h−1) found in the dataset. Therefore, the
classification task can be seen as the ability for the model to classify
growth rates below and above the threshold value.

P. putida growth assays. The dataset used to generate Fig. 5 (panels e
and f) was taken from the study of Nogales et al.33 presenting iJN1462
(anupdated version called iJN1463 is availableonBiGG26) for P. putida’s
GEM. This state-of-the-art GEM of P. putida KT2440 contains a few
hundredmore genes and reactions from thepreviousmodels, allowing
better coverage. The dataset corresponds to growth assays with 188
carbon and 108 nitrogen sources. For each condition, we verified that
an uptake reaction flux was present in the iJN146333 model. Fifty-five
conditions contained a nutrient source without a corresponding
uptake reaction in the model. For all those conditions, the AMN input
would be the minimal medium. In order to avoid biasing the training
set with 55 identical conditions, we kept one condition describing the
minimalmedium for carbon sources and one condition describing the
minimal medium for nitrogen sources. The 55 conditions were added
back to compute the final score. The training set can be found in the
source data, provided as a Source Data file (cf. “Data availability”).

The minimal medium assumed in our simulations was taken from
Nogales et al.33, reporting a set of uptake fluxes upper bounds. When
testing a carbon (nitrogen) source, glucose (NH4) was removed from
the minimal medium, and the respective nutrient source metabolite
was added. Using these simulated growthmedia, accuracies on growth
predictions using Cobrapy (Fig. 5f) were calculated considering as
positive all non-zero growth predictions. Results presented in Fig. 5e
were obtained by training a reservoir on simulations as explained in
Methods “AMNand ANN training parameters”. Thus, this reservoir was
used to fit experimental data, and Vin was directly used as an input
for Cobra.

Statistics and reproducibility
As stated in theprevious section “Generationof training setswith FBA”,
the exchange reactions upper bounds were randomized to produce
FBA-simulated training sets. No statistical method was used to pre-
determine the sample size, which was chosen based on time and
resources. Blinding was not relevant to generate these training sets.

As stated in the previous section “Generation of an experimental
training set”, the media of the experimental training set were rando-
mizedby randomlydrawing carbon sources combinations. Thegrowth

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 12

rate measures were computed as means over 2 to 8 technical repli-
cates. In all figures displaying this dataset, we show the standard
deviation over replicates as the error bars. No statistical method was
used to predetermine the sample size of 110. This size was chosen
based on time and resources. Blinding was not relevant to generate
this training set.

As stated in the previous section “External training sets acquisi-
tion”, we used two publicly available datasets, for which the authors
did not specify any statisticalmethod to predetermine the sample size.
To our knowledge, there was no replication scheme for these external
training sets. Incompatible data were excluded in the pre-processing
steps of the training set stemming from the ASAP database (cf.
“External training sets acquisition” section). For more details on the
statistics and reproducibility of these external training sets, please
refer to the original studies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Metabolic models used in this study can be found with the following
accessions on the BiGG database26: E. coli core (http://bigg.ucsd.edu/
models/e_coli_core), iML1515, iJN1463. Unidirectional versions of these
models can be found on our repository at https://github.com/brsynth/
amn_release/tree/main/Dataset_input/. The original dataset from the
ASAP database28 can be found under the accessionMutant Biolog Data
I (https://asap.genetics.wisc.edu/asap/experiment_data.php). The ori-
ginal dataset from Nogales et al.33 can be found in Supporting Infor-
mation’s Table S2 of the study. The source data underlying all figures
presented in the main manuscript and Supplementary Information
(including training sets used in Figs. 3–5), are provided with this paper
as a downloadable archive. Additional datasets and raw data are
available on our Github repository (cf. “Code availability”), or from the
corresponding authors upon request. Source data are provided with
this paper.

Code availability
All scripts and data for generating results presented in this paper are
available within a documented repository. For a citable and stable
version of the repository supporting this article, refer to our
repository43 hosted on Zenodo with the https://doi.org/10.5281/
zenodo.8056442 (https://zenodo.org/record/8056442). Alternatively,
to access future releases and interactwith the repository authors, refer
to Github (https://github.com/brsynth/amn_release). The repository
includes tutorials in Google Colab notebooks. The released codes
make use of Cobrapy19, numpy45, scipy46, pandas47, tensorflow48, sci-kit
learn27 and keras42 libraries. Figures were generated using the
matplotlib49 and seaborn50 libraries.

References
1. Jumper, J. et al. Highly accurate protein structure prediction with

AlphaFold. Nature 596, 583–589 (2021).
2. Bellman, R. Dynamic Programming (Princeton University

Press, 1957).
3. Thornburg, Z. R. et al. Fundamental behaviors emerge from simu-

lations of a living minimal cell. Cell 185, 345–360.e28 (2022).
4. Reed, J. L. & Palsson, B. Ø. Thirteen years of building constraint-

based in silico models of Escherichia coli. J. Bacteriol. 185,
2692–2699 (2003).

5. O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale
models to predict biological capabilities. Cell 161, 971–987 (2015).

6. Plaimas, K. et al. Machine learning based analyses on metabolic
networks supports high-throughput knockout screens. BMC Syst.
Biol. 2, 67 (2008).

7. Schinn, S.-M., Morrison, C., Wei, W., Zhang, L. & Lewis, N. E. A
genome-scale metabolic network model and machine learning
predict amino acid concentrations in Chinese Hamster Ovary cell
cultures. Biotechnol. Bioeng. 118, 2118–2123 (2021).

8. Freischem, L. J., Barahona, M. & Oyarzún, D. A. Prediction of gene
essentiality using machine learning and genome-scale metabolic
models. bioRxiv https://doi.org/10.1101/2022.03.31.486520 (2022).

9. Monk, J. M. et al. iML1515, a knowledgebase that computes
Escherichia coli traits. Nat. Biotechnol. 35, 904–908 (2017).

10. Sahu, A., Blätke, M.-A., Szymański, J. J. & Töpfer, N. Advances influx
balance analysis by integrating machine learning and mechanism-
basedmodels.Comput. Struct. Biotechnol. J. 19, 4626–4640 (2021).

11. Kim, M., Rai, N., Zorraquino, V. & Tagkopoulos, I. Multi-omics inte-
gration accurately predicts cellular state in unexplored conditions
for Escherichia coli. Nat. Commun. 7, 13090 (2016).

12. Lewis, J. E. & Kemp, M. L. Integration of machine learning and
genome-scale metabolic modeling identifies multi-omics bio-
markers for radiation resistance. Nat. Commun. 12, 2700 (2021).

13. Zampieri, G., Vijayakumar, S., Yaneske, E. & Angione, C. Machine
and deep learning meet genome-scale metabolic modeling. PLoS
Comput. Biol. 15, e1007084 (2019).

14. Fortelny, N. & Bock, C. Knowledge-primed neural networks enable
biologically interpretable deep learning on single-cell sequencing
data. Genome Biol. 21, 190 (2020).

15. Lagergren, J. H., Nardini, J. T., Baker, R. E., Simpson,M. J. & Flores, K.
B. Biologically-informed neural networks guide mechanistic mod-
eling from sparse experimental data. PLoS Comput. Biol. 16,
e1008462 (2020).

16. Nilsson, A., Peters, J.M.,Meimetis, N., Bryson, B. & Lauffenburger, D.
A. Artificial neural networks enable genome-scale simulations of
intracellular signaling. Nat. Commun. 13, 3069 (2022).

17. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural
networks: a deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations.
J. Comput. Phys. 378, 686–707 (2019).

18. Rackauckas, C. et al. Diffeqflux, V. jl-A julia library for neural dif-
ferential equations, arXivpreprint arXiv:1902.02376https://doi.org/
10.48550/arXiv.1902.02376 (2019).

19. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy:
constraints-based reconstruction and analysis for Python. BMC
Syst. Biol. 7, 74 (2013).

20. Yang, Y., Cao, J., Xu, X., Hu, M. & Gao, Y. A new neural network for
solving quadratic programming problems with equality and
inequality constraints. Math. Comput. Simul. 101, 103–112 (2014).

21. Jin, L., Li, S., Hu, B. & Liu, M. A survey on projection neural networks
and their applications. Appl. Soft Comput. 76, 533–544 (2019).

22. Hopfield, J. J. & Tank, D. W. “Neural” computation of decisions in
optimization problems. Biol. Cybern. 52, 141–152 (1985).

23. Varma, A. & Palsson, B. O.Metabolic capabilities of Escherichia coli:
I. synthesis of biosynthetic precursors and cofactors. J. Theor. Biol.
165, 477–502 (1993).

24. Cuomo, S. et al. Scientific machine learning through
physics–informed neural networks: where we are and what’s
next. J. Sci. Comput. 92, 88 (2022).

25. Orth, J. D., Fleming, R.M. T. & Palsson, B. Ø. Reconstruction and use
of microbial metabolic networks: the core Escherichia coli meta-
bolic model as an educational guide. EcoSal Plus 4, 1–47 (2010).

26. Norsigian, C. J. et al. BiGGModels 2020: multi-strain genome-scale
models and expansion across the phylogenetic tree. Nucleic Acids
Res. 48, D402–D406 (2020).

27. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

28. Glasner, J. D. et al. ASAP, a systematic annotation package for com-
munity analysis of genomes. Nucleic Acids Res. 31, 147–151
(2003).

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 13

http://bigg.ucsd.edu/models/e_coli_core
http://bigg.ucsd.edu/models/e_coli_core
http://bigg.ucsd.edu/models/iML1515
http://bigg.ucsd.edu/models/iJN1463
https://github.com/brsynth/amn_release/tree/main/Dataset_input/
https://github.com/brsynth/amn_release/tree/main/Dataset_input/
https://asap.genetics.wisc.edu/asap/experiment_data.php
https://doi.org/10.5281/zenodo.8056442
https://doi.org/10.5281/zenodo.8056442
https://zenodo.org/record/8056442
https://github.com/brsynth/amn_release
https://doi.org/10.1101/2022.03.31.486520
https://doi.org/10.48550/arXiv.1902.02376
https://doi.org/10.48550/arXiv.1902.02376

29. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system.
arXiv [cs.LG] https://doi.org/10.1145/2939672.2939785 (2016).

30. Orth, J. D. et al. A comprehensive genome-scale reconstruction of
Escherichia coli metabolism–2011. Mol. Syst. Biol. 7, 535 (2011).

31. Haverkorn van Rijsewijk, B. R. B., Nanchen, A., Nallet, S., Kleijn, R. J.
& Sauer, U. Large-scale 13C-flux analysis reveals distinct tran-
scriptional control of respiratory and fermentative metabolism in
Escherichia coli. Mol. Syst. Biol. 7, 477 (2011).

32. Tanaka,G. et al. Recent advances in physical reservoir computing: a
review. Neural Netw. 115, 100–123 (2019).

33. Nogales, J. et al. High-quality genome-scalemetabolicmodelling of
Pseudomonas putida highlights its broad metabolic capabilities.
Environ. Microbiol. 22, 255–269 (2020).

34. Müller, S., Regensburger, G. & Steuer, R. Resource allocation in
metabolic networks: kinetic optimization and approximations by
FBA. Biochem. Soc. Trans. 43, 1195–1200 (2015).

35. Beg, Q. K. et al. Intracellular crowding defines the mode and
sequence of substrate uptake by Escherichia coli and constrains its
metabolic activity. Proc. Natl Acad. Sci. USA 104,
12663–12668 (2007).

36. Goelzer, A. et al. Quantitative prediction of genome-wide resource
allocation in bacteria. Metab. Eng. 32, 232–243 (2015).

37. Niedenführ, S., Wiechert, W. & Nöh, K. How to measure metabolic
fluxes: a taxonomic guide for 13Cfluxomics.Curr. Opin. Biotechnol.
34, 82–90 (2015).

38. Willemsen, A. M. et al. MetDFBA: incorporating time-resolved
metabolomics measurements into dynamic flux balance analysis.
Mol. Biosyst. 11, 137–145 (2015).

39. Alghamdi, N. et al. A graph neural network model to estimate cell-
wise metabolic flux using single-cell RNA-seq data. Genome Res.
31, 1867–1884 (2021).

40. Lachance, J.-C. et al. BOFdat: generating biomass objective func-
tions for genome-scale metabolic models from experimental data.
PLoS Comput. Biol. 15, e1006971 (2019).

41. Pandi, A. et al. Metabolic perceptrons for neural computing in
biological systems. Nat. Commun. 10, 3880 (2019).

42. Chollet, F. et al. Keras. https://keras.io (2015).
43. Faure, L., Mollet, B., Liebermeister, W. & Faulon, J. L. A neural-

mechanistic hybrid approach improving the predictive power of
genome-scale metabolic models. amn_release: v1.0.1. https://doi.
org/10.5281/zenodo.8056442 (2023).

44. Mackie, A. M., Hassan, K. A., Paulsen, I. T. & Tetu, S. G. Biolog
phenotype microarrays for phenotypic characterization of micro-
bial cells. in Environmental Microbiology: Methods and Protocols
(eds. Paulsen, I. T. & Holmes, A. J.) 123–130 (Humana Press, 2014).

45. Harris, C. R. et al. Array programming with NumPy. Nature 585,
357–362 (2020).

46. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020).

47. McKinney, W. Data structures for statistical computing in Python. in
Proceedings of the 9th Python in Science Conference (eds. van der
Walt, S. & Millman, J.) (SciPy, 2010).

48. Abadi, M. et al. TensorFlow: large-scale machine learning on het-
erogeneous distributed systems. arXiv [cs.DC] https://doi.org/10.
48550/arXiv.1603.04467 (2016).

49. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci.
Eng. 9, 90–95 (2007).

50. Waskom, M. seaborn: statistical data visualization. J. Open. Source
Softw. 6, 3021 (2021).

Acknowledgements
J.L.F. would like to acknowledge funding provided by the ANR funding
agency grant numbers ANR-18-CE44-0015 (SynBioDiag project) and

ANR-21-CE45-0021-01 (AMN project) and the UE HORIZON BIOS pro-
gram (grant number 101070281). L.F. is supported by INRAE’s MICA
department and by INRAE’s metaprogram DIGIT-BIO. B.M. is supported
by an Ecole Normale Supérieure (ENS) Scholarship. We thank Aymeric
Gaudin (CentraleSupélec Engineering School) for early development in
reservoir computing with AMN, Ivan Radkevich (University of Paris
Saclay) for his work on custom RNN cells and Tom Lorthios and Hadi
Jbara (AgroParisTech and University of Paris Saclay) for their help on
collecting data for experimental training sets. We thank Anne Giralt and
Laetitia Laversa (INRAE) for reading and improving our manuscript.

Author contributions
L.F. and J.L.F. wrote the core of the text of the manuscript. J.L.F.
designed the study andwrote theWt andQP-solver and all the AMN and
AMN-Reservoir codes used to produce results presented in Figs. 1–5.
B.M. wrote the LP-solver and the corresponding part in the “Methods”
section and Supplementary Information. L.F. benchmarked all codes,
wrote the codes transformingSBMLmodels into unidirectional networks
and processing experimental data, and handled the Colab and Git
implementations. L.F. also performed the experimental work reported in
Fig. 3, acquired the data and run the AMN and AMN-Reservoir codes to
produce Figs. 4 and 5 and wrote the corresponding “Methods” section.
W.L. contributed to designing the project and was involved in the dis-
cussions and writing the manuscript. All authors read, edited, and
approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-40380-0.

Correspondence and requests for materials should be addressed to
Jean-Loup Faulon.

Peer review information Nature Communications thanks the anon-
ymous, reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-40380-0

Nature Communications | (2023) 14:4669 14

https://doi.org/10.1145/2939672.2939785
https://keras.io
https://doi.org/10.5281/zenodo.8056442
https://doi.org/10.5281/zenodo.8056442
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.1038/s41467-023-40380-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models
	Results
	Overview of AMN hybrid models
	Alternative mechanistic models to surrogate FBA
	AMNs: metabolic and neural hybrid models for predictive power with mechanistic insights
	AMNs can be trained on experimental datasets with good predictive�power
	AMNs can be used in a reservoir computing framework to enhance the predictive power of traditional FBA solvers

	Discussion
	Methods
	Making metabolic networks suitable for neural computations
	Generation of training sets with FBA
	Derivation of loss functions
	Wt-solver
	LP-solver
	QP-solver
	ANN architecture
	AMN architectures
	ANN and AMN training parameters
	Searching uptake fluxes upper bounds in FBA
	Generation of an experimental training set
	Culture conditions
	Growth rates determination
	External training sets acquisition
	Growth rates of E. coli metabolic gene KO mutants
	P. putida growth assays
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

