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COMPASS: joint copy number and mutation
phylogeny reconstruction from amplicon
single-cell sequencing data

Etienne Sollier 1,2, Jack Kuipers 1,3, Koichi Takahashi 4,5,
Niko Beerenwinkel 1,3 & Katharina Jahn1,3,6

Reconstructing the history of somatic DNA alterations can help understand
the evolution of a tumor and predict its resistance to treatment. Single-cell
DNA sequencing (scDNAseq) can be used to investigate clonal heterogeneity
and to informphylogeny reconstruction. However,most existing phylogenetic
methods for scDNAseq data are designed either for single nucleotide variants
(SNVs) or for large copy number alterations (CNAs), or are not applicable to
targeted sequencing. Here, we develop COMPASS, a computational method
for inferring the joint phylogeny of SNVs and CNAs from targeted scDNAseq
data. We evaluate COMPASS on simulated data and apply it to several datasets
including a cohort of 123 patients with acute myeloid leukemia. COMPASS
detected clonal CNAs that could be orthogonally validated with bulk data, in
addition to subclonal ones that require single-cell resolution, some of which
point toward convergent evolution.

Intratumour heterogeneity plays a key role in the failure of targeted
cancer therapies1. Obtaining a comprehensive picture of the clonal
architecture and the mutational history of a patient’s tumour at the
timepoint of diagnosis therefore offers great potential to improve
treatment choices and predict disease progression. Single-cell DNA
sequencing (scDNAseq) generally provides a higher resolution of
intratumour heterogeneity than sequencing bulk tumour samples.
However, this advancement comes at the cost of higher levels of noise
primarily introduced during DNA amplification, an essential pre-
paratory step for scDNAseq. As tumours typically evolve through a
combination of single-nucleotide variants (SNVs) and copy number
alterations (CNAs), it has been a critical limitation that current DNA
amplification technologies do not permit the reliable calling of SNVs
and CNAs simultaneously from the same cells. Multiple displacement
amplification (MDA)2, which is used in most scDNAseq protocols,
provides a high coverage and has a low error rate and is therefore well
suited to detect SNVs. However, MDA results in amplification biases,
which preclude reliable detection of CNAs3. Other protocols are better

suited to detect CNAs but not SNVs, for example a shallow whole-
genome sequencing (WGS) as introduced by 10x Genomics4. Recently,
a high-throughput microfluidics approach was introduced, which
processes thousands of single cellswhile sequencingonly a small set of
disease-specific genes5, and later commercialised by Mission Bio, Inc.
as the Tapestri® platform. While the limited physical coverage of the
genome is far from ideal for calling copy number events, which can
stretch anywhere from a small number of bases to whole chromo-
somes, this approach allows for the use of targeted PCR in the ampli-
fication step which does not introduce the strong amplification biases
observed in MDA and therefore allows, in principle, to infer both SNVs
and CNAs from the same cells6.

Method development for inferring the evolutionary history of
tumours from scDNAseq data closely followed the technology devel-
opment (Table 1). Initially, approaches have been developed to
reconstruct SNV-based mutation histories7–13. Later methods were
introduced that analyse the history of copy number variants14,15.
SCARLET16 was the first method for single-cell data that tried to bridge
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the gap between SNV- and CNA-based tumour phylogeny reconstruc-
tion. It infers an SNV phylogeny with CNA-constrained loss of hetero-
zygosity (LOH), but the CNA tree has to be obtained separately, from
different cells of the same tumour. BiTSC217 is the only existingmethod
that can jointly infer the phylogeny of SNVs and CNAs. Its main
drawback is that it assumes that in the absenceof copy number events,
the coverage is uniform across the genome, which, in our experience,
is not the case for amplicon sequencing data. BiTSC2 also does not
model copy number-neutral loss of heterozygosity (CNLOH), and
might therefore falsely interpret such events as copy number losses,
and does not scale well to a large number of cells.

Here, we introduce COMPASS (COpy number and Mutation
Phylogeny from Amplicon Single-cell Sequencing), a probabilistic
model and inference algorithm that can reconstruct the joint phy-
logeny of SNVs andCNAs from single-cell amplicon sequencing data.
Its key features are that it models amplicon-specific coverage fluc-
tuations and that it can efficiently process high-throughput data of
thousands of cells. We show in simulation studies that COMPASS
vastly outperforms BiTSC2 in settings where coverage variability
resembles targeted scDNAseq. On data with uniform coverage, both
methods perform very well with a slight advantage for COMPASS in
most settings. We apply COMPASS to three datasets: a large cohort
of 123 patients with acutemyeloid leukemia (AML)18, 4 TP53-mutated
AML patients before and after venetoclax treatment19 and 8 TP53-
mutated myeloproliferative neoplasms (MPN)20. Furthermore, we
orthogonally validate our findings with bulk sequencing and SNP
array data.

Results
Probabilistic model for joint SNV and CNA single-cell tumour
phylogenies
We have developed COMPASS, a likelihood-based approach to infer
the evolutionary tree of somatic events in a tumour from single-cell
panel sequencing data. The set of somatic events considered by
COMPASS comprises SNVs and CNAs: gains, losses and CNLOH
(Fig. 1A). CNAs affect regions and for panel-sequencing data we con-
sidered as regions genes, by grouping together amplicons targeting
the same gene. One regionmay contain no variant (like region B in the
example of Fig. 1C), one variant (region C) or several variants (region
A). When variants are present in a region, the CNA calls are allele-
specific. SNVs are acquired only once, while one region can be affected
by several CNAs, but at most once per lineage (Fig. 1B). We limited the
number of CNAs to at most once per lineage because the noisiness of
single-cell data makes it difficult to infer exact copy numbers beyond

three, and because a loss followed by a gain (or vice-versa) in the same
region would be difficult to detect with targeted sequencing data. An
SNV can be lost multiple times in different lineages, which correspond
to theDollomodel21. Germline SNPs can also be included in addition to
somatic SNVs to improve the CNA inference (blue SNV in Fig. 1C).
When this is done, COMPASS will automatically detect that these var-
iants are present in the non-neoplastic cells and will place them at the
root of the tree.

COMPASS uses as input the reference and mutated read counts,
for each variant in each cell, and the number of reads covering each
region (Fig. 1C). The total number of reads in a region is used by the
probabilisticmodel to infer copy-number gains and losses (Fig. 1E) and
the variant read count is used to detect SNVs and is also taken into
account for CNAs which lead to an allelic imbalance (Fig. 1D).

In a tree of somatic evolutionary events, each node implies a
genotype, which is obtained by altering the wild-type diploid genome
by the sequence of events defined by the path from the root to the
node. By assigning cells to a genotype associated with a tree node, the
likelihood of the observed cell-specific read count profiles can be
computed, as is described in themethods section. In order to compute
the likelihood of the tree of somatic events, COMPASS marginalises
out the assignment of cells to node genotypes, which is much more
computationally efficient than sampling the attachments of cells to
nodes when the number of cells is high. To account for the major
sources of noise in scDNAseq data, COMPASS models sequencing
errors, allele-specific dropout rates, and doublets. For tree inference,
we define a prior distribution on trees that penalises the number of
nodes and of CNAs to explain the observed sequencing data. A simu-
lated annealing algorithm is then used to infer the tree that maximises
the posterior probability.

Evaluation on synthetic data
We evaluated COMPASS on synthetic data and compared it against
BiTSC217, which is the only othermethod that can infer a joint SNV- and
CNA-based tumourphylogeny.Wealso includedSCITE7, anestablished
method of SNV-based tumour phylogeny, in order to highlight the
benefits of joint SNV and CNA inference over SNV-only inference. We
generated data that resembles data produced by the Tapestri® plat-
form, as described in Supplementary Note 4.1. We used 3000 cells, 30
regions and trees with 6 nodes and different numbers of SNVs and
CNAs. Surprisingly, we noticed that BiTSC2 performed worse with a
large number of cells (Supplementary Fig. 12), in addition to having a
very long runtime (Fig. 2F). To accommodate for this, we subsampled
BiTSC2’s input to 200 cells. The Tapestri® platform produces data

Table 1 | List of methods for tumour phylogeny inference from scDNAseq data, with their main features

Method SNVs CNAs Doublets SNV Recurrence SNV loss Homozygous mutations Est. max # cells Est. max # loci

∞SCITE7, 8 Yes No Yes Yesa Yesa No 10,000 100

SCIΦN9, 10 Yes No No Yes Yes No 100 1000

OncoNEM11 Yes No No No No No 100 100

SiCloneFit12 Yes No Yes Yes Yes No 100 100

SPhyr13 Yes No No No Yes No 100 100

SCICoNE14 No Yes No – – – 100 –

CHISEL15 Yesb Yes No – – – 1000 –

SCARLET16 Yes Noc No No Yesd No 100 100

BiTSC217 Yes Yese No No Yes Yes 100 100

COMPASS Yes Yes Yes No Yesf Yesf 10,000 100

The maximum number of cells and loci are estimates for reasonable runtimes and performance.
aHowever model selection is not automated.
bCan assign SNVs to clones after the CNA-tree is inferred by aggregating all cells assigned to each clone.
cRequires CNA tree as input, which must be obtained with another method.
dIf supported by copy-number loss; which could miss CNLOH.
eAssumes that all loci have the same coverage (in the absence of CNAs), which is not the case for targeted sequencing.
fWith copy number loss or CNLOH.
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where the coverage is not uniform across amplicons, since each pair of
primers has its own efficiency (Supplementary Figs. 6–7). In order to
evaluate the impact of this uneven coverage on the performanceof the
different methods, we generated data with uniform and non-uniform
coverage across amplicons. We evaluated the performance by MP3
similarity22 between the inferred and the true tree. TheMP3 similarity is
defined on mutation trees where each node contains a set of muta-
tions, and can be applied to trees which do not have exactly the same
set of mutations. Here, we assigned a unique label to each SNV and to

each CNA (defined by the affected region and whether the CNA is a
gain or a loss), such that theMP3 similarity captures the correctness of
both the detected CNAs and the inferred tree topology. In order to
better understand the impact of SNVs and CNAs on theMP3 similarity,
we also computed the MP3 similarity where we included only SNVs or
only CNAs in the trees. Furthermore, we evaluated the correct
assignments of cells to nodes, by first mapping each node of the
inferred tree to the node of the true tree with the most similar
genotype.
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Fig. 1 | Overview of COMPASS. A Four types of somatic events included in the
mutation tree. The CNAs (loss, gain and CNLOH) are allele-specific and can affect
any of the two alleles, provided that the affected allele is already present in the
node. B SNVs are acquired exactly once and CNAs can affect the same region
multiple times, but at most once per lineage. C Input and output of the COMPASS
algorithm. COMPASS needs the number of reads in each region in each cell and the
number of reads supporting the reference (REF) and alternative (ALT) allele for
each variant. COMPASS infers a tree of somatic events (SNVs and CNAs). These

somatic events imply a genotype for each node, which is depicted in the lower part
of each node. D Likelihood of the variant allele frequency for different copy
numbers of the reference and alternative alleles (here for a fixed total number of
reads covering the locus), based on a beta-binomial distribution with dropouts.
E Likelihood of the total read counts in a region depending on the copy number of
that region (here for a mean sequencing depth of 20 for a diploid region), which is
based on a negative binomial distribution.
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COMPASS was found to perform best in all settings we analysed
(Fig. 2A, B). BiTSC2’s performance was close to COMPASS when the
coverage was uniform, but its performance dropped sharply when the
coverage was non-uniform. BiTSC2 assumes that in the absence of
CNAs, all loci have the same coverage, which is not a valid assumption

for targeted sequencing. In addition, BiTSC2 does not model CNLOH
events. Although COMPASS performed very well, we observed that its
performance for CNA inference was lower when the number of SNVs
was lower. As described in the “Methods” section, COMPASSfirst infers
the best tree without gains and losses, identifies regions whose

A B

C

E

D

F

Uniform coverage Non-uniform coverage

7 SNVs, 3 CNAs

CNLOH

SNV

Loss Loss

Fig. 2 | Evaluation of COMPASS, BiTSC2 and SCITE on synthetic data. The box-
plots represent the median and first and third quartiles, crosses indicate means,
whiskers show the rest of the distribution up to 1.5 times the interquartile length,
and outliers not within this range are shown as diamonds. A, BMP3 similarity (full,
only SNVs or only CNAs) between the inferred and true trees, and accuracy of cell
assignments, for different number of SNVs and CNAs, with uniform (A) or non-
uniform (B) coverage. For each setting, we generated 50 different trees. C False

positive rate (FPR) and false negative rate (FNR) for the CNA calls of COMPASS and
BiTSC2, when 7 SNVs and 3 CNAs were used. D Sketch explaining our definition of
CNAs supported by SNVs: these CNAs contain in the same node, or in one of their
descendant, a SNV or a LOH. E Evaluation of SCITEwith different dropout rates and
concentration parameters for the node probabilities (the higher the concentration
parameter is, the more similar the node sizes are). The highlighted value (0.3)
corresponds to the one estimated from real data. F Runtimes.
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coverage at one node differs from their coverage at the root, and
selects those regions as candidate regions thatmight harbour a gain or
a loss. COMPASS then looks for the best tree, but allowing only gains
and losses in these selected regions. This approach drastically reduces
the number of false positive CNA calls, but decreases the sensitivity to
detect subclonal CNAs. If a CNA is located in a subclone that contains
an SNV or LOH event, the subclone will be present in the tree without
gains and losses, and the corresponding region should be selected,
enabling the detection of this CNA. However, if a subclone is only
defined by a gain or loss which does not result in a LOH, it will be
missing from the treewithout gains and losses, and the CNAwill not be
detected. To quantify this phenomenon, we say that a CNA is sup-
portedbySNVs if theCNA is in anode that contains anSNVor a LOH, or
that has a descendant containing such an event (Fig. 2D). As expected,
the false negative rate of COMPASS for CNAs not supported by SNVs is
high (Fig. 2C), but for CNAs supported by SNVs it is much lower than
that of BITSC2 with non-uniform coverage. The decreased ability of
COMPASS to detect CNAs in subclones not supported by SNVs is
counterbalanced by a very low false positive rate. In contrast, BiTSC2 is
significantly less conservative in calling CNAswhen the coverage is not
uniform, as indicated by its very high false positive rate.

SCITE performed well in the absence of CNAs, but its perfor-
mance droppedwhenCNAs were included, which is expected since it
does notmodel CNAs. Interestingly, theMP3 similarity based only on
SNVs was already negatively affected by the presence of CNAs,
highlighting the benefit of a joint inference. Even in the absence of
CNAs, we observed that COMPASS slightly outperformed SCITE. As
described in the methods section, COMPASS computes the like-
lihood of a tree by assigning a prior attachment probability to each
node, whereas SCITE uses the same probability for each node, which
is not a valid assumption when different clones have different sizes.
We generated trees with different values for the Dirichlet con-
centration parameter for the node probabilities (high values: all
nodes have the same number of cells attached to them; low values:
variable number of cells for each node) and without CNAs. We
observed that SCITE performed worse when nodes have different
numbers of cells attached to them, including for the typical value
observed in real data, and this effect wasmore pronounced when the
dropout rate was higher (Fig. 2E).

All methods were found to be very robust to the presence of
doublets in the data (Supplementary Fig. 13). Only when the doublet
rate is very high does the performance drop, and this can be alleviated
by using themodels of COMPASS or SCITEwhich explicitly account for
doublets (at the cost of an increased computational time).

Correlations between the coverage at different amplicons
When there are no CNAs, we would expect the sequencing depth on
each amplicon to be independent. However, we observed strong cor-
relations between the relative sequencing depth on different ampli-
cons (Supplementary Fig. 9). Such correlations in Tapestri® data have
not been reported before. The biological explanation for these cor-
relations is not clear, but they have the potential to confound the CNA
inference, since we could interpret the two main clusters as two dif-
ferent cloneswith very different copy number profiles. However, these
correlations are independent from the actual clonal architecture of the
tumour, so by jointly inferring SNVs and CNAs, only the true CNAs
should be detected.We simulated datawith such correlations between
the coverage of different regions, and verified that these correlations
did not affect the results of our method (Supplementary Fig. 14).

Overview of CNAs detected in real AML data
We applied COMPASS to a cohort of 123 AML patients that were
previously profiledwith the Tapestri® platform18. These sampleswere
sequenced using two different panels: 67 sampleswith a 50-amplicon
panel covering 19 genes and 53 samples with a 279-amplicon panel

covering 37 genes (the genes covered by the panels are listed in
Supplementary Table 1). In total, COMPASS detected CNAs in
42 samples (Supplementary Table 2): 31 CNLOHs, 26 deletions, 12
gains. Themost commonCNAs detected by COMPASS correspond to
alterations which are known to be common in AML (Fig. 3). For
example, the most common CNA detected by COMPASS in this
cohort was CNLOH of FLT3 (N = 12 samples, 9.8%), and FLT3 is indeed
known to be commonly affected by CNLOH in AML, especially when
there is an internal tandem duplication23,24. Likewise, COMPASS
detected many deletions of EZH2 (N = 8 samples, 6.5%), and deletion
of the long arm of chromosome 7 is indeed a common alteration in
AML25. Interestingly, all samples with the JAK2 p.V617F mutation also
had a CNLOH, and this often occurred in a very small subclone
(Supplementary Fig. 20), in agreement with previous reports of
CNLOH for this mutation26. In AML, mutations in the TP53 gene are
known to be associated with a complex karyotype (at least three
cytogenetic alterations)27. We tested if we could also find such an
association based on our analysis. Reassuringly, we indeed detected
mutations in TP53 in 9 samples, 5 of which also had at least one gain
or loss (p = 0.009, Fisher’s exact test, one-sided, oddsratio = 6.96,
95%CI = [1.7; +∞), with 17 samples with gains and losses without TP53
mutation and 97 samples with neither). We note that the ability of
COMPASS to detect CNAs depend on howmany regions are covered
by the targeted panel used. Not surprisingly, more CNAs were
detected in samples analysed with the 279-amplicon panel than with
the smaller 50-ampliconpanel. For example,we found4 sampleswith
CNAs on chromosome 8 with the larger panel, but the smaller panel
does not contain any amplicon on this chromosome. The long arm of
chromosome 5 is frequently deleted in AML, but in both panels there
was only one amplicon targeting it (on NPM1) which had a low cov-
erage, and could therefore not be used for CNA inference.

Orthogonal validation of COMPASS-derived CNA calls with
bulk data
Bulk-targeted sequencing covering 297 genes was available for 85 out
of 123 samples. We used CNVkit28 to detect CNAs (only gains and los-
ses, no CNLOH) in these samples. In addition, we had SNP array data
available for 32 samples, for which we used ASCAT29 to detect CNAs
(including CNLOH). These bulk data provide an opportunity to
orthogonally validate the CNA calls of COMPASS with more estab-
lished (but lower resolution) approaches. We restricted the validation
to events present inmore than 50% of the cells, since bulk data cannot
reliably detect CNAs present in a small percentage of the cells.

Among the 17 samples for which we detected gains or losses, bulk
SNP array data was available for 2 of them and bulk targeted sequen-
cing for 6 of them. Among these 8 samples, all of the CNAs present in a
majority of the cells identifiedbyCOMPASSwere also detected by bulk

Fig. 3 | NumberofCNAsdetectedbyCOMPASSoneachgene in the cohort of 123
AML patients. Asterisks indicate genes covered only by the larger panel.
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sequencing, except for a gain affecting ASXL1 in sample AML-60-001
(Fig. 4 and Supplementary Fig. 15). In the 85 samples with bulk
sequencing, only one contained CNAs detected in bulk data on regions
covered by the single-cell panel that were not detected by COMPASS
(trisomy 8 for sample AML-81-001, Supplementary Fig. 16).

Among the 32 samples for which reliable SNP array data was
available, six of them contained CNLOH events detected by both
COMPASS and ASCAT, one sample contained a CNLOH event detected
by COMPASS but not ASCAT, and four samples contained CNLOH
events detected by ASCAT but not COMPASS, but those were either in
regions not targeted by any amplicons or where we did not detect any
SNVs (Supplementary Fig. 17).

For sample AML-59-001, COMPASS inferred a tree containing
twomain clones, each of which has a differentmutation in the RUNX1
gene (Fig. 4B). In addition, the dominant clone has one deletion of
EZH2 on chromosome 7, and one amplification of WT1 on chromo-
some 11, while the smaller clone has a loss ofTP53 on chromosome 17,
which results in a LOH for one germline variant (the sample might
also have a somaticmutation on TP53 not captured by the panel). The
ASCATprofile inferred fromSNP array data also contains the deletion
on chromosome 7 and the amplification of chromosome 11, but does
not contain any loss on chromosome 17 (Fig. 4A). This is expected, as
this deletion is only present in 5% of the cells and hence cannot be
detected from a bulk sample. This example supports the correctness
of our tree since the CNAs found in the dominant clone are also
detectedwith anorthogonalmethod.We investigated theplausibility
of the CNAs inferred by COMPASS further by plotting the coverage
on the three genes affected by CNAs depending on the cells’ geno-
types (Fig. 4E). The cells with theRUNX1 p.D198Nmutation do indeed
have a lower coverage on TP53, while those with the RUNX1 p.N153fs
have a lower coverage on EZH2 and a higher coverage on WT1. For
this sample, BiTSC2 inferred many CNAs which were not validated by
SNP array data (Fig. 4C), which are likely due to BiTSC2 not
accounting for the uneven coverage in different regions. In addition,
COMPASS placed the two different RUNX1 mutations in different
subclones, which is in accordancewith the fact that very few cells had
both mutations (Fig. 4F, top-right), probably corresponding to
doublets. However, BiTSC2 and SCITE placed these two mutations in
the same lineage (Fig. 4C, D). For SCITE, this is because the RUNX1
p.D198Nmutation is present in aminority of cells and SCITE assumes
that all nodes have the same prior attachment probability, which
results in a higher likelihood when the RUNX1 p.D198N mutation is
placed below the other RUNX1mutation. This highlights the benefits
of the more complex model used by COMPASS over SCITE, even in
the absence of CNAs. Other examples where COMPASS and SCITE
produce different results, even in the absence of CNAs, are provided
in Supplementary Figure 21.

The inferred tree for sample AML-99-001 displays a linear evolu-
tion and contains a gain of two genes on chromosome 8, as well as a
CNLOH of RUNX1 on chromosome 21 (Fig. 4H), both of which are
validated by the bulk SNP array data (Fig. 4G). One germline variant on
RAD21 was covered by the targeted panel, which improves the relia-
bility of the CNA call on chromosome 8, since it is based both on the
total coverage in the region as well as on the allelic fraction of the
RAD21 SNP which increases from 1/2 to 2/3 after the gain (Fig. 4K).
Interestingly, there are 5 longitudinal samples available for this patient,
and we detect the copy number gain on chromosome 8 and the
CNLOH on RUNX1 in all 5 of them, although the CNLOH on RUNX1 is
only present in a small subclone on the fourth and fifth samples
(Supplementary Fig. 19).

New insights in clonal evolution of myeloid neoplasms
After validating that the CNAs detectedbyCOMPASS in single-cell data
match the ones detected in bulk sequencing, we set out to investigate
new insights that could be gained by this method. An obvious benefit

of detecting CNAs in single-cell data is the ability to infer subclonal
events. For example, the subclonal TP53 deletion inferred by COM-
PASS in sample AML-59-001 (Fig. 4A) is not detected in bulk data, but
might be very relevant for therapy resistance30. The detection of sub-
clonal JAK2 CNLOH (Supplementary Fig. 20) also requires single-cell
data, since the bulk variant allele frequency cannot distinguish
between 5% of the cells being homozygous for the mutation or 10% of
the cells being heterozygous, whereas these two different statesmight
be clinically different, as homozygous JAK2 mutations result in a
stronger phenotype31. The ordering ofmutations andCNAs inferred by
COMPASS can also be very enlightening to understand disease evo-
lution. For example, in sample AML-83-002, COMPASS inferred that
the trisomy 8 occurred after the DNMT3A and IDH2 mutations, but
before the mutations in FLT3 and NRAS (Fig. 5A).

Sample AML-101-001 provides an interesting illustration of the
benefits of joint SNV and CNA phylogeny inferred from single-cell data
for understanding the evolution of a tumour. This sample contains two
different mutations in TP53 (on the two different allelic copies) and
COMPASS inferred two independent deletions on chromosome 17
(Fig. 5B). In the first deletion, all three genes present in the panel on
this chromosome (TP53, NF1 and PPM1D) were lost, and in the second
deletion only TP53 and NF1 were lost. Such double TP53mutations are
not rare in AML, although they are less common than one TP53
mutation followed by a LOH32. Once both TP53 alleles are mutated we
would not expect any additional fitness advantage from losing one
copy, whereas here if two deletions on chromosome 17 were inde-
pendently selected, it seems likely that this deletion drives oncogen-
esis. A possible explanation is that the fitness advantage provided by
these deletions on chromosome 17 does not come from the loss of
TP53, but rather from the loss of NF1. NF1 codes for the protein neu-
rofibromin, which is a GTPase-activating protein that can accelerate
the hydrolysis of RAS-bound GTP into GDP, thus downregulating the
RAS pathway. Consequently, a loss of NF1 could result in an increased
activity of the RAS pathway33, which has been shown to synergise with
TP53mutations and leads to a dismal outcome in AML34. This proposed
mechanism would be consistent with the fact that there are two
additional clones which also contain mutations upregulating the RAS
pathway (mutations inKRAS and PTPN11). Thus, this would be a case of
convergent evolution where there are four co-existing clones with
different genotypes, but all of these genotypes have the same con-
sequenceon theRASpathway. In this example, integrationof SNVs and
CNAs into the phylogeny is critical because based on the coverage
information alone, it would not be possible to detect that two different
copies of TP53 were lost independently.

To further validate our method, we applied it to two indepen-
dently generated targeted scDNAseq cohorts19,20. The first cohort
consists of four TP53-mutated AML patients which were analysed
with the Tapestri® platform, before and after venetoclax treatment
for seven days19. Two patients (AML-CAL-012 and AML-CAL-030)
were sequenced with a 127-amplicon panel and the two other
patients (AML-CAU-001 and AML-CVC-001) were sequenced using a
312-amplicon panel. In all four patients, COMPASS detected CNAs
(Fig. 5C and Supplementary Fig. 21), with in particular loss of EZH2 in
all four cases. The authors of the original publication noted that
these four patients experienced an increase in the TP53-mutated
clone size after venetoclax treatment, which is also reflected in the
cell attachments of the trees generated by COMPASS. In addition,
the presence of CNAs in COMPASS-inferred trees can help under-
stand the growth of specific clones. Although we did not observe the
emergence of new CNAs during this short treatment, a spectacular
decrease of the TP53-wt fraction from 46% to 18% in only seven days
for sample AML-CAL012 (Fig. 5C) could indicate that the 7q and 12p
deletions as well as the TP53 CNLOH played a role in this evolution.
Then, we applied COMPASS to the second cohort, eight TP53-
mutated MPN samples analysed with the Tapestri® platform20.
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Fig. 4 | Orthogonal validation of the inferred CNAs with bulk data and
comparison with BiTSC2 and ∞SCITE. A ASCAT profile for sample AML-59-001.
B–D Trees inferred by COMPASS, BiTSC2 and ∞SCITE for sample AML-59-001.
E Boxplots showing the fraction of reads falling on the three genes affected by
CNAs in sampleAML-59-001, for different genotypes,wheren indicates the number
of cells with each genotype. The boxplot indicate themedian and the first and third
quartiles, the whiskers show the rest of the distribution up to 1.5 times the

interquartile length, and outliers were removed for clarity. F Table indicating the
number of cells having each possible genotype for the two RUNX1 mutations in
sample AML-59-001.GASCATprofile for sample AML-99-001.H–JTrees inferredby
COMPASS, BiTSC2 and ∞SCITE for sample AML-99-001. K Variant allele frequency
of the SNP on RAD21 (chr8) for cells with or without the DNMT3A and IDH2 muta-
tions, in sample AML-99-001. n indicates the number of cells with each genotype
(only cells with a clear genotype for DNMT3A and IDH2 were kept).
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Fig. 5 | New insights in clonal evolution of myeloid neoplasms. A Tree inferred
by COMPASS for sample AML-83-002, and copy-number plot generated with
CNVkit from bulk sequencing. B Tree inferred by COMPASS for sample AML-101-
001 (top), with a sketch showing the two deletions on chr17 (bottom-left) and the
fraction of reads falling on the three targeted genes on chr17 (bottom-right), where
n indicates the number of cells with each genotype. C Trees inferred by COMPASS
for sampleAML-CAL012, before and after venetoclax treatment,with the fraction of

reads in regions affected by CNAs, where n indicates the number of cells with each
genotype. D Tree inferred by COMPASS for sample MPN1, with the sequencing
depth on EZH2 for TP53-mut and TP53-wt cells, where n indicates the number of
cells with each genotype. All boxplots show the median and the first and third
quartiles, the whiskers show the rest of the distribution up to 1.5 times the inter-
quartile length, and outliers were removed for clarity.
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Compared to the trees shown in the original publication, those
inferred by COMPASS are generally more compact and do not con-
tain mutation recurrences (Fig. 5D and Supplementary Fig. 23). This
is because the presence of cells exhibiting two mutations occurring
in different lineages can be explained by COMPASS’ doublet model.
All eight samples had JAK2 mutations, and COMPASS detected
CNLOH of JAK2 in three of them (Fig. 5D and Supplementary Fig. 23).
Interestingly, COMPASS detected one subclonal deletion of EZH2 in
sample MPN1 (Fig. 5D), and a different subclone harboured an EZH2
p.N693K mutation, which might be a case of convergent evolution
where haploinsufficiency of EZH2was acquired twice independently,
once with a deletion and once with a point mutation. This con-
vergent evolution would have been missed by a phylogeny based
only on SNVs. Consequently, COMPASS can help understand MPN
evolution, which is crucial since MPN frequently progresses
into AML.

Discussion
We have developed COMPASS, a probabilistic model for inferring
clonal phylogenies based on point mutations and copy number
events from single-cell DNAseq data. COMPASS is geared towards
the use of read count data from high-throughput amplicon-based
sequencing, for example, as generated by the MissionBio Tapestri®
platform. Unlike BiTSC2 which is currently the only other method to
infer tumour phylogenies based on SNVs and CNAs from single-cell
sequencing data, COMPASS can also detect copy-neutral loss of
heterozygosity, an important prognostic marker in AML. Our simu-
lation experiments illustrate two further key advantages of COM-
PASS over BiTSC2. First, COMPASS is able to process larger datasets
with thousands of cells, and second, it is more robust to systematic
local coverage fluctuations between amplicons that are independent
of copy number changes. These patterns are most likely introduced
by variability in primer pair efficiency in the targeted amplicon-
based sequencing. This feature constitutes a critical improvement
over BiTSC2, whose read count model assumes a uniform coverage
over all loci (in the absence of CNAs). Even though BiTSC2 performs
well with a uniform coverage, we observed that it generated a large
amount of false CNA calls in real amplicon-based data with non-
uniform coverage, making it inapplicable to Tapestri® data. In gen-
eral, SNVs are easier to call from deep-targeted sequencing than
copy number states. This stands in contrast to shallow WGS which is
better suited for detecting large CNAs than SNVs. Looking at CNA
detection alone, our results show that COMPASS has a similar per-
formance as BiTSC2 with a uniform coverage, but outcompetes
BiTSC2 with regard to both false negative and false positive rate with
a non-uniform coverage. We also observe that it is particularly
challenging to detect subclones characterised only by CNAs, and in
our simulations, COMPASS mostly fails to detect them. This is ana-
logous to how CHISEL can only detect SNVs in subclones containing
CNAs15, for shallowWGS data. The same trend is observed for BiTSC2

but less pronounced due to the overall less conservative CNA calling
strategy of this method. In practice, we still managed to detect
subclonal CNAs because these subclones also harboured SNVs. In
addition, many of the subclones seemingly characterised only by
CNAs will in fact be supported by SNVs located outside the small set
of genes currently targeted in high-throughput assays. Therefore
sequencing a larger part of the genomewill likely reduce the number
of these hard to detect CNAs.

We applied COMPASS to a large real-world dataset of 123 AML
samples. Previously, clonal architecture of these samples was only
inferred based on SNVs. Jointly analysing SNVs and CNAs with
COMPASS allowed for a more complete characterisation of the
clonal heterogeneity in these samples. The CNAs that were detected
by COMPASS are in agreement with current AML knowledge, for
example frequent CNLOH of FLT3 and deletion of the long arm of

chromosome 7, as well as the association between TP53 mutations
and CNAs. In addition, the clonal CNAs could be orthogonally vali-
dated by bulk data. The main scientific advance provided by COM-
PASS is the ability to delineate the order of SNVs and CNAs in a
branching evolution pattern, which can help analyse the fitness of
clones that are evolving in parallel. In the original publication
describing the dataset of 123 AML samples18, the authors observed
several cases of convergent evolution where several subclones had
independently acquired mutations leading to a similar phenotype,
like one IDH1 and one IDH2 mutation in parallel. Here, through a
more comprehensive analysis encompassing both SNVs and CNAs,
we could detect new cases of convergent evolution that weremissed
by only considering SNVs, showing that this phenomenon is more
prevalent than previously thought. For example, we found cases
where a deletion of NF1 occurred in parallel with mutations in KRAS
or PTPN11, and all these events can lead to the activation of the RAS
pathway. Similarly, we found a case of an EZH2 deletion which
occurred in parallel with an EZH2 mutation.

We applied COMPASS to three independently generated tar-
geted scDNAseq datasets which highlights that the method is
applicable to different amplicon panels. While we focus here on AML
and MPN, for which a lot of Tapestri® data is currently available,
COMPASS is not generally restricted to blood malignancies,
although performance on other types of datasets could not be
evaluated. More complex copy number events like whole genome
duplications which are uncommon in leukemias but occur in many
solid tumours could be modelled in COMPASS by adding one event
which doubles every copy number.

Methods
Probabilistic model
COMPASS defines a probability distribution over trees of somatic
events (SNVs and CNAs). The prior on trees penalises the number of
nodes and CNAs, and the likelihood takes into account both the total
number of reads in each region and the number of reads at each locus
supporting the mutated or wild-type alleles. The two components of
this likelihood are described in more detail below. A simulated
annealing algorithm is used to infer the tree with the highest prob-
ability. A complete description of the probabilistic generative process
defined for COMPASS is provided in the Supplementary Note 1.

Likelihood for the number of reads in each region
We observed in targeted sequencing data that the read depth varied a
lot from region to region (Supplementary Fig. 6) and for each region,
there was a lot of variability across cells (Supplementary Fig. 7).

The non-uniform coverage across amplicons was modelled by
giving aweightρk to each region k, which represents theprobability for
a read to fall on this region when there is no CNA.When there are copy
number alterations, the probability for a read to fall on region k
depends on the copy number of that region, as well as on the copy
numbers of the other regions. Thus, if cell j has a total ofDj reads and is
attached tonodeσjwhich has a copynumber cl(σj) for region l, then the

expected read depth on region k for cell j is EðDkjÞ=Dj
ck ðσj ÞρkP

l
cl ðσj Þρl

.

The high variability of read depth across cells for each amplicon
was modelled with a negative binomial distribution (Gamma-Pois-
son), which is commonly used for modelling read counts35 and
allows for overdispersion. We parameterise the negative binomial
distribution with a mean μ and inverse dispersion parameter θ. This
corresponds to sampling the read counts from a Poisson distribu-
tion, where the rate of the Poisson distribution is first sampled from
a Gamma distribution with shape parameter θ and scale parameter μ

θ.
Compared to a Poisson distribution whose variance would be equal
to the mean μ, the Gamma-Poisson distribution has a higher var-
iance μ+ 1

θ μ
2.
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The likelihood for the read depth in region k for cell j is:

PðDkj ∣Dj

ckðσjÞρkP
lclðσjÞρl

ρk , θÞ=
ΓðDkj +θÞ

ΓðDkj + 1ÞΓðθÞ
θ

θ+Dj
ck ðσj ÞρkP

l
cl ðσj Þρl

0
B@

1
CA

θ

Dj
ck ðσj Þ
2 ρk

θ+Dj
ck ðσj ÞρkP

l
cl ðσj Þρl

0
B@

1
CA

Dkj
ð1Þ

Likelihood for the number of mutated reads at each
variable locus
COMPASS does not take as input called genotypes, but instead works
directly with the allelic read counts, similar to SCIΦ9. Even when the
coverage is low, COMPASS can harness all of the available information
while taking the uncertainty into account. In addition, a copy number
alteration can lead to one allele having a higher copy number than the
other, resulting in an unbalanced allelic proportion, which can be
detected from the allelic read counts (Supplementary Fig. 11), making
the CNA inference more precise. We model allelic read counts with a
beta-binomial distribution to account for overdispersion. Let D be the
sequencing depth at a position and A be the counts of alternative
reads, f be the frequency of the alternative nucleotide and ω be the
concentration parameter. The beta-binomial likelihood is given by

PðA∣D, f , ωÞ= D
A

� �
BðA+ωf ,D� A+ωð1� f ÞÞ

Bðωf ,ωð1� f ÞÞ ð2Þ

where B is the beta function.
Let c(r) and c(a) be the number of copies of the reference and

alternative allele, respectively. The true proportion of the alternative
nucleotide is cðaÞ

cðrÞ + cðaÞ. Let ε be the sequencing error rate. If we exclude
the two other nucleotides different from ref and alt, the proportion of
alternative reads should be cðaÞ

cðrÞ + cðaÞ ð1� εÞ+ cðrÞ
cðrÞ + cðaÞ ε. Each of the two

alleles can independently be dropped out: Let k and l, respectively, be
the number of reference and alternative allele copies which got
amplified. We observed that in real data, different variants had dif-
ferent dropout rates (Supplementary Figure 10), so we allowed in our
model each variant i to have its own dropout rate μi, which is inferred
using an EM algorithm described below. Taking into account all of the
dropout possibilities, the probability of the observed read counts for
cell j at locus i is

P Aij ∣Dij , c
ðrÞ, cðaÞ, μ, ε, ωhom, ωhet

� �
=
X

0≤ k ≤ cðrÞ
0 ≤ l ≤ cðaÞ
ðk,lÞ≠ð0,0Þ

cðrÞ

k

� �
cðaÞ

l

� �
μcðrÞ + cðaÞ�k�l
i ð1� μiÞk + l

P Aij ∣Dij ,
l

k + l
ð1� εÞ+ k

k + l
ε, ωðk, lÞ

� �
ð3Þ

where ω(k, l) =ωhom if k = 0 or l =0 and ω(k, l) =ωhet otherwise (the
overdispersion is higher in case of heterozygosity).

Marginalisation over the attachments of cells to nodes
Instead of sampling the attachments of cells to nodes as part of the
MCMC scheme, we compute the likelihood of a tree by marginalising
over the attachments and we only sample trees as in SCITE7. This
makes the inference much faster when the number of cells is high,
which is typically the case for Tapestri® data. Unlike SCITE, COMPASS
does not use a uniform prior over nodes in the marginalisation, but
instead learns the probability πn to sample a cell from a node n. This
improves the inference, especially when some clones aremuch smaller

than others, and this is feasible for Tapestri® data because we have a
high number of cells and a small number of nodes. The node weights
πn are learnt using an EM procedure described below. If σj denotes the
node to which cell j is attached, then the likelihood of a tree can be
written as

PðD, A∣T Þ =
Y
cell j

X
σj

πσj

Y
region k

PðDkj ∣ckðσjÞ, ρk Þ
Y

locus i

PðAij ∣Dij , c
ðrÞ
i ðσjÞ, cðaÞi ðσjÞ, μiÞ

ð4Þ

Doublets
Doublets can optionally be modelled. In case they are included, we
compute separately the probability of a cell to attach to a single node,
and to attach to a doublet, and we mix them with the doublet prob-
ability δ, as is done in ∞SCITE8.

The general formula of Eq. (4) remains valid, but the attachment σj
of cell j can either be a single node or a pair of nodes. In case σj is a
single node n, the probability to attach to it is P(σj) = (1 − δ)πn. In case σj
is a doublet ðn, n0Þ, the probability to attach to it is PðσjÞ= δπnπn0 . The
genotype of a doublet is computed by adding the copy numbers of the
alleles of the two nodes, and averaging the copy numbers of the
regions. If we explicitly separate singlets from doublets, we obtain

PðD, A∣T Þ=
Y
cell j

ð1� δÞ
X
n

πnPðDj, Aj ∣nÞ+δ
X
n

X
n0

πnπn0PðDj, Aj ∣n, n
0Þ

 !

ð5Þ

PðD, A∣T Þ=
Y
cell j

ð1� δÞ
X
n

πn

Y
region k

PðDkj ∣ckðnÞ, ρkÞ
0
@

Y
locus i

PðAij ∣Dij , c
ðrÞ
i ðnÞ, cðaÞi ðnÞ, μiÞ

+ δ
X
n

X
n0

πnπn0
Y

region k

P Dkj ∣
ckðnÞ+ ckðn0Þ

2
, ρk

� �

Y
locus i

PðAij ∣Dij , c
ðrÞ
i ðnÞ+ cðrÞi ðn0Þ, cðaÞi ðnÞ+ cðaÞi ðn0Þ, μiÞ

!
ð6Þ

Tree prior
The tree prior penalises the number of nodes in the tree, as well as the
number of CNA events.

The penalty for the number of nodes is proportional to the
number of mutations in the tree because if the tree contains many
mutations, it is more likely that each node will contain several
mutations.

When several CNA events affect contiguous regions, they are
counted as one event, because such events typically affect large
genomic regions, often whole chromosomes. When a CNA results in a
LOH, it has a stronger impact on the likelihood. Consequently, a
stronger penalty is used forCNAeventswhich lead to LOH. Thepenalty
for CNAs has an affine relationship with the number of cells, because
when more cells are present, such events have a higher impact on the
likelihood, but we also need a minimum evidence to be able to detect
such events.

Since COMPASS allows the inclusion of germline variants in the
tree (to improve the inferenceof CNAs, in case they are part of a region
affected by a CNA), mutations which are not at the root of the tree are
penalised. Optionally, COMPASS can take as input the frequency of
variants in the 1000 Genomes database. Variants present in this data-
base are penalised more heavily (proportionally to their population
frequency) for not being at the root, since they are more likely to be
germline variants.

Article https://doi.org/10.1038/s41467-023-40378-8

Nature Communications |         (2023) 14:4921 10



The prior of a tree depends on parameters for the penalties p1, p2,
p3 and p4, which are chosen empirically. The main one is p2 which
controls the addition of CNAs. Its default value works well on Mis-
sionBio datasets, but might have to be adjusted in case there are too
many false positives or false negatives on other datasets. The default
value of p1 is low because the node probabilities already remove most
of the benefits of having additional nodes, but it could be increased if
we wanted to reduce the number of nodes in the tree. The values of p3
and p4 are not critical because this part of the prior does not play a
significant role in most cases. The formula for this log-prior is:

logðPðT ÞÞ= � p1nmutsnnodes

� ð1500+ncellsÞp2 nCNA LOH +
1
2
nCNA no LOH

� �
�
X
locus i

1i not attached at the root p3 +p4freq1000GenomesðiÞ
� �

+Constant

ð7Þ

Simulated annealing
Even though the number of mutations with targeted DNA sequencing
is small, the tree space is still very large, which precludes an exhaustive
search over the whole tree space. Consequently, we use a simulated
annealing (SA) approach. We start from a randomly generated tree.
The number of nodes nnodes of the initial tree is randomly chosen
between 3 and 10. We generate a random sequence of nnodes − 2 inte-
gers in [0, nnodes] which we interpret as a Prüfer sequence to assign a
parent to each node. The SNVs are randomly assigned to the nodes,
and the initial tree does not contain any CNA. Then, at each iteration,
we propose a new tree T 0 from the current tree T by sampling it from a
proposal distribution qðT , T 0Þ. The MCMCmoves are described in the
Supplementary Note 2. Then, we compute the likelihood of the new
tree, and accept the new tree with probability
min 1, exp logðPðT ÞPðD∣T ÞÞ

T

� �n o
where T is a temperature parameter.

Otherwise, we reject the new tree and start a new iteration from tree T .
The temperature is progressively lowered, which prevents being stuck
in a local optimum initially.

In practice, we first run SA without CNAs. That way, we can
identify the cells that are attached to the root as non-neoplastic cells,
and use those cells to estimate the weight of each region ρk, which is
the probability for a read to fall into region k for a diploid cell without
any CNAs. In addition, in the inferred tree without CNAs, we look for
regions which have a lower or higher average normalised sequencing
depth in some nodes compared to the root, and we select those
regions as potential regions which might harbour copy number var-
iants. Then, we run the SA with CNAs, but we restrict the addition of
CNA events to the selected regions. We also exclude regions which
have a very low amplification rate from the CNA inference, as their
sequencing depth is very unreliable. This selection might lead to false
negative CNAs, but reduces the number of false positives and
decreases the number of iterations required in the SA, since it reduces
the set of possible events that can be proposed.

Estimation of the node probabilities and dropout rates
The model contains two parameters which need to be estimated: the
weight πn of each node n and the dropout rate μi of each variant i.
Ideally, we would like to marginalise over these parameters. However,
the space is too large to integrate over, and sampling these parameters
with theMCMCwould be very inefficient: when a new tree is proposed,
the old parameters might not work well for this new tree, which would
lead to the tree being refused with a very high probability. Alter-
natively, we could jointly propose a new tree and new node weights
and dropout rates, but the probability to obtain good parameters
would be extremely low.

Thus, instead of marginalising over the node probabilities and
dropout rates, we use the parameters which maximise the posterior
probability. This can be efficiently performed with an EM algorithm,
which has to be performed inside eachMCMC step.We have two types
of latent variables: the attachments of cells to nodes, σj, and for each
cell j and each locus i, the number of reference and alternative alleles
that did not get dropped out, CðrÞ

ij and CðaÞ
ij . We use a beta prior centred

on 0.05 for the dropout rates and a flat Dirichlet priorD(1,…, 1) for the
node weights.

During the E-step, we compute the probabilities Q of the latent
variables, given the current parameters.

Qðσj =nÞ=Pðσj =n∣Dj , Aj, π, μÞ=
πnPðDj, Aj ∣σj =n, π, μÞP
n0πn0PðDj, Aj ∣σj =n0, π, μÞ ð8Þ

QðCðrÞ
ij = k, CðaÞ

ij = l∣σj =nÞ =PðCðrÞ
ij = k, CðaÞ

ij = l∣Dij , Aij , σj =n, μÞ

=
μ
cðrÞi ðnÞ+ cðaÞi ðnÞ�k�l
i ð1� μiÞk + lPðAij ∣Dij , k, lÞP

k0 , l0μ
cðrÞi ðnÞ+ cðaÞi ðnÞ�k0�l0

i ð1� μiÞk
0 + l0PðAij ∣Dij , k, lÞ

ð9Þ

During the M-step, we update the parameters (node probabilities
πn and dropout rates μi) in order to maximise the sum of the log-prior
and of the expected hidden log-likelihood.

πn =
1

ncells

X
cell j

Qðσj =nÞ ð10Þ

μi =

α � 1 +
P

node n

P
cell jQ σj =n

� �P
k,lQ CðrÞ

ij = k, CðaÞ
ij = l∣σj =n

� �
cðrÞi ðnÞ+ cðaÞi ðnÞ � k � l
� �

α +β� 2+
P

node n

P
cell jQ σj =n

� �
cðrÞi ðnÞ+ cðaÞi ðnÞ
� �

ð11Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new data was generated in this study, but we used scDNAseq data
that had been previously generated for three different publications
using the Tapestri® platform fromMissionBio. The data ofMorita et al.18

is available on the SRA under the project ID PRJNA648656 and the
authors shared the processed loom files with us. The raw data for the
TP53-mutated AML samples treated with venetoclax19 and for the TP53-
mutated MPN samples20 are not publicly available, but the authors
kindly shared the loom files with us. For all three datasets, the pre-
processeddata that is used as input forCOMPASS is available onGitHub
at https://github.com/cbg-ethz/COMPASS. For figures, source data are
provided as a SourceDatafile. Source data are providedwith this paper.

Code availability
COMPASS has been implemented in C++ is freely available under a
GPL3 license at https://github.com/cbg-ethz/COMPASS. The reposi-
tory also contains preprocessing python scripts, as well as the snake-
make pipeline that was used to run all simulations.
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