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A contracting Intertropical Convergence
Zone during the Early Heinrich Stadial 1

Yiping Yang 1, Lanlan Zhang 1 , Liang Yi2, Fuchang Zhong1, Zhengyao Lu 3,
Sui Wan1, Yan Du 4,5 & Rong Xiang 1

Despite the fact that the response of tropical hydroclimate to North Atlantic
cooling events during the Heinrich Stadial 1 (HS1) has been extensively studied
inAfrican, SouthAmerican and Indonesia, thenatureof such responses remains
debated. Here we investigate the tropical hydroclimate pattern over the Indo-
Asian-Australian monsoon region during the HS1 by integrating hydroclimatic
records, and examining a δ18Oseawater record from Globigerinoides ruber (white)
in the tropical Indian Ocean. Our findings indicate that tropical hydrological
conditions were synchronously arid in both hemispheres during the early HS1
(~18.3-16.3 ka) in the Indo-Asian-Australian monsoon region, except for a nar-
row,wet hydrological belt in northern low latitudes, suggesting the existenceof
a contracted tropical precipitation belt at that time. This study reveals that the
meltwater discharge and resulting changes in global temperatures and El Niño
exerted a profound influence on the tropical hydroclimate in the Indo-Asian-
Australian monsoon region during the early HS1.

During the HS1 (~19–15 ka)1, the North Atlantic region experienced a
significant discharge of icebergs and a drastic reduction in the Atlantic
meridional overturning circulation (AMOC). The impact of this abrupt
cooling in the North Atlantic on the tropical rainfall system has been
studied through the analyses of paleoclimatic records and model
simulations2,3. Previous research has suggested that themean position
of the Intertropical Convergence Zone (ITCZ) rain-belt shifted south-
ward in response to the cooling in theNorthernHemisphereduring the
HS14,5. However, evidence from paleoclimatic records in southern
Africa6, the southern Indian Ocean7–9 and the southern tropical West
Pacific10–12 has shown that severe drought conditions also existed in the
southern hemisphere during the HS1 (Fig. 1). McGee et al.13 also argued
that themean ITCZ shifts were less than 1 degree of latitude during the
HS1 based on the model results. Furthermore, studies in the southern
South China Sea (SCS)14, Flores Sea15 and Northeast Brazil16 have
revealed a two-phase structure of hydroclimatic change in the tropics
during the HS1, with ITCZ rainfall strengthening (weakening) in the
Early HS1 (~19.0–16.1 ka) and becoming weak (strong) during the Late
HS1(~16.1–14.7 ka) in the tropical northern (southern) hemisphere.

Consequently, the direction and magnitude of the shift of the ITCZ in
response to North Atlantic cooling events during the HS1 remain
controversial5. It is increasingly challenging to explain changes in tro-
pical hydrological climate during the HS1 solely through the mechan-
isms of ITCZ southward migration. Additionally, the lack of
paleoclimatic records from the tropical Indian Ocean, which was
influenced by ITCZ precipitation, has severely limited our under-
standing of the responses of tropical hydroclimate to North Atlantic
cooling during the HS1.

Our reconstruction of sea surface temperature (SST) and
δ18Oseawater (δ

18Osw) changes relies on the Mg/Ca and δ18O records of
planktonic foraminifera Globigerinoides ruber sensu stricto (s.s.)
obtained from a deep-sea core located in the southern Bay of the
Bengal (BoB). Modern moisture flux observations show that pre-
cipitation arrives year-round at this site, with themajority occurring in
the latter half of the year (May–December) (Supplementary Fig. 1),
correlating with the movements of the ITCZ17. Hence, the location of
the study site (Fig. 1, Core I106; 6°14′49.76″N, 90°00′1.04″E; 2,910m
water depth)makes it an ideal location tomonitor shifts in the tropical

Received: 4 May 2022

Accepted: 14 July 2023

Check for updates

1Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
2State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China. 3Department of Physical Geography and Ecosystem Science, Lund
University, 22362 Lund, Sweden. 4State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences,
Guangzhou 510301, China. 5University of Chinese Academy of Sciences, 100049 Beijing, China. e-mail: llzhang@scsio.ac.cn; rxiang@scsio.ac.cn

Nature Communications |         (2023) 14:4695 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6612-639X
http://orcid.org/0000-0002-6612-639X
http://orcid.org/0000-0002-6612-639X
http://orcid.org/0000-0002-6612-639X
http://orcid.org/0000-0002-6612-639X
http://orcid.org/0009-0003-6426-2122
http://orcid.org/0009-0003-6426-2122
http://orcid.org/0009-0003-6426-2122
http://orcid.org/0009-0003-6426-2122
http://orcid.org/0009-0003-6426-2122
http://orcid.org/0000-0002-5911-7110
http://orcid.org/0000-0002-5911-7110
http://orcid.org/0000-0002-5911-7110
http://orcid.org/0000-0002-5911-7110
http://orcid.org/0000-0002-5911-7110
http://orcid.org/0000-0002-7842-0801
http://orcid.org/0000-0002-7842-0801
http://orcid.org/0000-0002-7842-0801
http://orcid.org/0000-0002-7842-0801
http://orcid.org/0000-0002-7842-0801
http://orcid.org/0000-0002-6293-1404
http://orcid.org/0000-0002-6293-1404
http://orcid.org/0000-0002-6293-1404
http://orcid.org/0000-0002-6293-1404
http://orcid.org/0000-0002-6293-1404
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40377-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40377-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40377-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40377-9&domain=pdf
mailto:llzhang@scsio.ac.cn
mailto:rxiang@scsio.ac.cn


rainfall belt. We assume that precipitation in our study area wasmainly
controlled by the Indian Ocean Summer Monsoon (IOM) and the ITCZ
rain belt systemduringHS13.We integrated the available hydroclimatic
records from a latitudinal transect across the Indo-Asian-Australian
(IAA) monsoon region with our results in order to evaluate the
responses of the tropical hydrological cycle to the abrupt-onset HS1
cold event that occurred in the high latitudes of the Northern
Hemisphere.

Results and discussion
δ18Osw reconstruction as a salinity proxy
The plankton tow samples from the study area indicate that G. ruber is
mainly distributed in water depths of 0–50m, and that it can therefore
be classed as a mixed-layer species18. G. ruber δ18O values in Core I106
becomegradually negative from −1.09‰ at ~24.0 ka to −2.80‰ at ~1.84
ka, but exhibit an abrupt decline at 18.3–16.3 ka, with a mean value of
−1.67‰ (Fig. 2). The Mg/Ca-SSTs from Core I106 show a rapid and
steep increase around 19.5 ka, consistent with previous records con-
ducted from the tropical Eastern Indian Ocean3,19 (Fig. 2). The Mg/Ca-
SST in Core I106 indicates an increase of about 0.5 °C at 16.3–18.3 ka,
which corresponds to a decrease of ~0.12‰ in δ18Oruber (assuming a
change of ~0.23‰ in δ18O per 1 °C). Hence, the decrease in δ18Oruber

value is primarily attributed to changes in seawater salinity in Core
I106.We calculated the δ18Osw values of Core I106 fromMg/Ca-SST and
δ18Oruber using the equation of Bemis et al.20 (see “Methods”), which
reflects the sea surface salinity (SSS) associated with regional hydro-
logical changes. Similarly, the most striking characteristic of the
calculated δ18Osw values in Core I106 is an exceptionally abrupt decline
at 18.3–16.3 ka (Fig. 2).

The observed SSS and δ18Osw values in the southern BOB21–23,
equatorial East Indian Ocean22, and Andaman Sea24 demonstrate that
δ18Osw values have a linear correlation with salinity in our study
area (Supplementary Fig. 2 and Supplementary Dataset 1). Our esti-
mates of δ18Osw values during the Late Holocene (2–0 ka) fall well
within this linear δ18Osw-salinity correlation (Supplementary Fig. 2).

The reconstructed δ18Osw values for Core I106 are therefore also likely
to indicate a regional SSS signal, which is related to varying quantities
of fresh surface water.

Wet hydrological conditions in the northern low latitudes dur-
ing the Early HS1
Multiple δ18Osw records from the northern BOB25–27 and the northern
Arabian Sea28,29, speleothem30 and lake sediment31,32 records from
SouthernChina, and paleoclimatic records from the northern SCS33, all
consistently suggest that the hydrological conditions were extremely
dry and long-lasting throughout the HS1 in the IAA monsoon region
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Fig. 1 | Site map of records showing hydrological conditions during the Early
Heinrich Stadial (HS1).White dots indicate dry conditions during the Early HS1.
Greendots showwet conditions during the EarlyHS1. Red arrows show the Summer
Monsoon Current (SMC); blue arrows indicate the Winter Monsoon Current
(WMC); white dashed line show the sea surface salinity (SSS). WICC West India

Coastal Current, EICC East India Coastal Current, JC Java Current, ITF Indonesian
Throughflow, SEC South Equatorial Current. The modern annual mean sea surface
temperature (SST) and SSS distribution drawnwithMATLAB software based on the
World Ocean Atlas 2018 dataset72.
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standard deviation error.
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(Figs. 1 and 3 and please see Supplementary Table 1). Many studies
have attributed the drought conditions during the HS1 to the retrac-
tion of the Asian Summer Monsoon and the southward drift of the
ITCZ, which were responses to the cooling in the North Atlantic Ocean
during the HS134. However, multiple paleoclimatic records from the
equatorial and southern Indian Ocean3,9,35,36 and southern
Indonesia11,12,37 also showed that dry conditions were prevalent
throughout the entire HS1 period (Figs. 1 and 3). Furthermore, paleo-
climatic records from Africa documented a catastrophic drought in
Equatorial and Southern Africa at ~17–16 ka6. Therefore, the latitudinal
movement of the tropical rain-belt cannot fully explain the hydrocli-
matic changes observed in the IAA monsoon region during the HS1.

Interestingly, our δ18Osw record from the tropical BoB exhibited a
significant negative shift in the Early HS1 (18.3–16.3 ka), indicating a
sudden decrease in SSS and an increase in fresh surface water input
(Fig. 3c). The SSS in the BoB is primarily influenced by freshwater
discharge and direct precipitation over the ocean24. However, δ18Osw

records from the northern BOB25–27 and lake-sediment records from
southwestern China31 revealed that there was weak monsoonal pre-
cipitation and thus reduced river runoff inflow into the BOB
throughout the HS1 period, (Figs. 1 and 3b). Similarly, δ18Osw records
from offshore Sumatra also indicated a drought during the HS1
period3. Therefore, the increased fresh seawater at Core I106 at about
18.3–16.3 ka was unlikely to have originated from the northern BoB or
the south of Sumatra via currents. Additionally, modern hydrological
data in the study area suggest that SSS is closely related to precipita-
tion (Supplementary Fig. 1). Furthermore, theΔδ18Oruber-dutertrei archive
from Core 758 (5°23.5’N,90°21.67’E), adjoining Core I106, indicated a
general weakening of IOM intensity during the entire HS138. This sug-
gests that there were no significant changes in water stratification at
18.3–16.3 ka. Therefore, the changes in δ18Osw and SSS at Core I106
during the EarlyHS1 period aremost likely associatedwith variations in
tropical precipitation.

Likewise, the δ18Osw record from Core ADM-159 (9.27°N, 95.61°E)
in the southern Andaman Sea exhibited a significant negative anomaly
at about 17.0–18.7 ka39 (Supplementary Fig. 4). The reconstructed SSS
values fromCore SK129/CR04 (6°29.65’N, 75°58.68’E) in the Equatorial
ArabianSea also indicated a lowsalinity event at 19.5–16.5 ka40 (Fig. 3e).
The δ18O records ofmultiple planktonic foraminiferal species from the
Equatorial Arabian Sea also revealed a negative peak at around
19.0–17.0 ka, which has been attributed to a stronger winter monsoon
current41,42. However, the δ18Osw values in Core SK218/1 from the wes-
tern BOB, which was influenced by EICC, increased significantly
throughout the entireHS1, indicating aweakwintermonsoon current25

(Fig. 1). Moreover, if the winter monsoon current had strengthened,
more saltwater would have been transported from the south along
Sumatra into our study area; on the contrary, the δ18Osw values at Core
I106 declined a lot during the Early HS1. We therefore suggest that the
negative δ18O records of planktonic foraminiferal in the Equatorial
Arabian Sea during the EarlyHS1may also be associatedwith increased
tropical precipitation. Additionally, evidence provided by grain-size
populations, dry bulk density, mass accumulation rates, and Si/Al
ratios from Core CG2 (6.3928°N, 110.1542°E)14 in the southern SCS
suggested strong precipitation during 19.0–18.0 ka and 17.5–16.1 ka
(Fig. 3d). In the Sulu Sea, the δ18Osw records from Core MD97-2141
(8.8°N, 121.3°E)43 indicate that surface water in the Early HS1 was
fresher than that during the Late HS1 (Fig. 3f). The X-ray fluorescence-
derived log (Fe/Ca) records from MD06-3075 (6°29’N, 125°50’E) at
Mindanao, which is a reliable proxy for freshwater runoff, also indi-
cated increased precipitation atMindanao at 15.7–17.8 ka, but with dry
conditions in Borneo and China during this interval44 (Supplementary
Fig. 4). The aforementioned records from the northern low latitudes
support the notion that tropical precipitation intensified significantly
during the Early HS1.

Fig. 3 | Records showing hydrological conditions during the Early Heinrich
Stadial (HS1) in the Indo-Asian-Australian (IAA) monsoon region. a The com-
posite Asian Monsoon δ18O record30. b The Indian Ocean Summer Monsoon (IOM)
proxy record from Mawmluh Cave, Meghalaya, India27. c δ18Oseawater (δ

18Osw)
records fromCore I106 from the southernBay of the Bengal (BoB) (this study).d Si/
Al ratios from Core CG2 from the southern South China Sea (SCS)14. e Sea surface
salinity (SSS) records from Core SK129-CR04 from the tropical Indian Ocean40.
f δ18Osw records from Core MD97-2141 from the Sulu Sea43. g δ18Osw records from
Core 189-39KL from the tropical East Indian Ocean3. h δ18Osw records from Core
GeoB10069-3 from the Savu Sea37. Shade shows one standard deviation error.
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Our newly-integrated paleoclimatic records from the IAA mon-
soon region therefore reveal that there were mostly drought hydro-
logical conditions in both the northern and southern hemispheres in
the Early HS1. However, a wet hydrological condition was identified at
~3–9°N. This evidence suggests a possible contraction of the tropical
convection precipitation region during this period.

Possible mechanisms controlling tropical hydroclimatic chan-
ges in the Early HS1
Previous studies have reported that the collapsed AMOC and cooling
in the Northern Hemisphere during the HS1 resulted in an increase in
interhemispheric temperature gradient, leading to a southward shift
of the ITCZ4. Model results from the tropical East Indian Ocean
suggested that there were drier conditions over the equatorial and
north Indian Ocean, and more humid conditions in southern Indo-
nesia, due to the southward displacement of the ITCZ during the
HS13. However, our new paleoclimatic records from the northern low
latitudes support the existence of a two-phase structure of tropical
hydroclimate during the HS1, with remarkable humid conditions
occurring in the Early HS1. Paleoclimatic records in Core VM33-80 in
south Indonesia show an arid hydrological condition in the early
phase of the HS1, and a humid hydrological condition at 16–14.5 ka15.
δ18Osw records in cores MD98-216535, MD01-237810,11, GeoB10069-337

from southern Indonesia, and stalagmite δ18O record from Ball
Gown45 all indicate dry hydrological conditions in the early phase of
the HS1, which is also supported by paleo-records from the south-
west Indian Ocean7,9,36 (Fig. 1). Therefore, variations in tropical pre-
cipitation patterns are not only affected by the interhemispheric
temperature difference in the IAA monsoon realm, but also asso-
ciated with other driving factors. In recent years, increasing evidence
suggests a hemi-spherically symmetric contraction of tropical pre-
cipitation in response to glacial cycle drivers46. Model simulations
from Africa have shown that precipitation coherency decreased in
both southeastern Equatorial and Northern Africa in response to
meltwater-induced reductions in the AMOC during the early phases
of the last deglaciation47. Yan et al.48 also pointed out that the lati-
tudinal range of ITCZ rainfall in the Western Pacific contracted over
decadal to centennial timescales in response to a cold climate during
the Little Ice Age (LIA). Stalagmite record from southwest Mada-
gascar have also shown that the tropical rain-belt simultaneously
expands or contracts in both hemispheres in the past49.

Numerous studies have reported an abrupt and early ice reces-
sion in the European Ice Sheet during the first part of HS1, leading to
meltwater discharge into the Eastern North Atlantic Ocean50,51

(Fig. 4a). This event had a significant impact on the climate both on
land and in the ocean52. Evidence from the North Atlantic suggests
that the early reduction in AMOC at ~19–16.5 ka was initiated and
sustained by the enhanced melting water from Eurasian ice sheets1.
Additionally, themelting water from the Laurentide Ice Sheet caused
a further reduction in AMOC at ~16.5–15 ka1,53,54 (Fig. 4b, c). The tro-
pical hydroclimate within HS1, located in the northern low latitudes
of the IAA monsoon region, also exhibited two distinct phases. Wet
hydrological conditions were observed at about 18.3–16.3 ka, fol-
lowed by dry conditions at ~16.3–14.7 ka, which was consistent with
the two-stepAMOC slowdown related tomeltwater fromdifferent ice
sheets (Fig. 4e).

During the Early HS1, the cooling of the North Hemisphere,
resulting from the meltwater discharge from Eurasian ice sheets and
slowdown AMOC, led to the southward migration of the westerlies55

and restricted the northward migration of the tropical rain-belt56. The
global surface temperature remained relatively low during this
period57,58 (Fig. 4d). At the same time, there was a sudden increase in
the advection of heat toward the low latitudes of the Indian Ocean due
to the anomalous transportation of heat northward into the northern
high latitudes and amore vigorous ITF linkedwith the expansion of the

Indo-Pacific Warm Pool (IPWP)59. This is supported by SST records in
cores I106, SO189-39KL3, SK157-460, GeoB1002919 from the low lati-
tudes of the IndianOcean, which suggest a steep and abrupt risewith a
magnitude of >1.0 °C at about 19.5–18.0 ka, and warmer SST events
around 20 ka and 17 ka from the northern Arabian Sea61. With
enhanced tropical SST warming, the latitudinal migration of the ITCZ
in the IAA monsoon region potentially reduced, especially as the
seasonally-affected ITCZ generally locates over the warm ocean62.
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and global surface temperature from Osman et al.58. e δ18Oseawater (δ
18Osw) records

from Core I106 from the southern Bay of the Bengal (BoB) (this study). f ENSO
variability modeled by the baseline transient simulation (TRACE)67.
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Collins et al.63 have proposed that the tropical rain-belt in Africa con-
tracted relative to the Late Holocene during the HS1, owing to a lati-
tudinal compression of atmospheric circulation related to a lower
meanglobal temperature. Besides, the tropical precipitation pattern in
the IAA monsoon region also has a strong correlation with El Niño-
Southern Oscillation (ENSO) activities64. Model studies indicate that
there is an anticorrelation between ENSO and the Hadley circulation,
whichmeans that narrow and weak Hadley circulation occurs under El
Niño condition65. The zonal SST difference between the West Pacific
and East Pacific66 and a transient model simulation67 suggest a more El
Niño-like state in the Early HS1 (Fig. 4f). Due to anomalous warming
generated by El Niño under this state, the tropical troposphere
becomes warmer, and the subtropical troposphere is cooler, which
enhances the meridional temperature gradient, and then results in
shrinking of the Hadley circulation in both hemispheres68. It was
reported that ENSO variability is strongly enhanced in response to
meltwater discharges and the resulting substantial slowdown of the
AMOC during the Early deglaciation67.

In summary, our research findings indicate the presence of humid
conditions in the northern low latitudes, and dry hydrological condi-
tions in both the northern and southern parts of the IAA monsoon
region during the Early HS1. The synchronous occurrence of drought
in both hemispheres suggests that tropical precipitation in the IAA
monsoon region likely contracted latitudinally during the Early HS1.
Our study demonstrates that the variability in the tropical hydro-
climate pattern during the Early HS1 in the IAA monsoon region was a
response to the meltwater discharge from the Eurasian ice sheet and
the resulting changes in AMOC, global temperatures and El Niño. The
cooling in the northern high latitudes hindered the northward
expanding of the Hadley circulation, as evidenced by dry condition
records in northern hemisphere during the Early HS1. Additionally,
strong El Niño also led to a reduction in the extent of the Hadley
circulation in the southern hemisphere68.

Methods
Mg/Ca and isotope analyses
Approximately 80 Globigerinoides ruber sensu stricto (s.s.) individuals
were selected from 250–350μmsize fractions; they were then crushed
before being split into samples ready for stable isotope and Mg/Ca
analysis. ForMg/Ca analysis, the pretreatment and analysis procedures
followed the standard cleaning protocol developed by Barker et al.69,
including ultrasonic cleaning in alternation with washes in Milli-Q
water and methanol, removal of organic matter by 2% H2O2 solution,
and weak acid leaching with 0.001M HNO3. The clean samples were
then dissolved in 0.075M HNO3. Samples were centrifuged to remove
any remaining insoluble particles and then diluted with Milli-Q water
and measured on an ICP-AES at the Key Laboratory of Ocean and
Marginal Sea Geology, South China Sea Institute of Oceanology, Chi-
nese Academy of Sciences. The instrumental precision of the ICP-AES
was monitored using analysis of an external, in-house standard solu-
tion with a Mg/Ca ratio of 4.44mmol/mol, after every three samples.
The relative standard deviation of the external standard was ±0.55%.
Analytical reproducibility was estimated by replicate measurements
that revealed a reproducibility of Mg/Ca ±1.48% (1σ). The Mn/Ca ratio
was ~0.16mmol/mol, indicating no significant contribution ofMg from
Mn-Fe-oxide coating.

For stable isotopic analysis, the shell fragments were cleaned by
ultrasonication in 2%H2O2 and acetone. Stable isotopicmeasurements
were performed on a Thermo Finnigan MAT 253 mass spectrometer
with a Kiel III automatic carbonate preparation device at the Key
Laboratory of Ocean and Marginal Sea Geology, South China Sea
Institute of Oceanology, Chinese Academy of Sciences. The standard
error of the δ18O analyses was <0.05‰. Isotopic values were reported
as ‰Vienna Pee Belemnite (VPDB) and calibrated with the National
Bureau of Standards (NBS) 19 standards.

Mg/Ca-SST and δ18Osw reconstruction
Mg/Ca values were converted to temperature using the equations
developed by Anand et al.70: Mg/Ca [mmolmol−1] = 0.38e0.09T[°C]. δ18Osw

values were calculated using the equation proposed by Bemis et al.20: T
[°C] = 14.9–4.8 (δ18Oc–δ

18Osw). An additional 0.27‰was added to them
to convert the Vienna Pee Belemnite (VPDB) values to Vienna Standard
Mean Ocean Water (VSMOW) values. δ18Osw values were corrected for
sea-level changes using the reconstruction protocol developed by
Lambeck et al.71.

Error analysis for SST and δ18Osw

The errors in SST and δ18Osw in this study was estimated using equa-
tions proposed by Mohtadi et al.3. The errors in SST and δ18Osw are
about ±1.03 °C and ±0.23‰, respectively. The error estimation for SST
is carried out by propagating the errors introduced by the equation
proposed by Anand et al.70 and Mg/Ca measurement. The SST error
estimation is given as3:

σ2
T =

∂T
∂a

σa

� �2

+
∂T
∂b

σb

� �2

+
∂T

∂Mg=Ca
σMg=Ca

� �2

ð1Þ

where a = 0.090 ± 0.003 °C−1, b = 0.38 ± 0.02 mmol/mol−1, ∂T
∂a =

� 1
α2 lnðMg=Ca

b Þ, ∂T
∂b = � 1

ab and ∂T
∂Mg=Ca = � 1

α
1

Mg=Ca.

And the uncertainties in δ18Osw is estimated by propagating errors
from the δ18O-temperature equation of Bemis et al.20 and δ18Oc mea-
surements and SST, which is given following3:

σ2
δ18Osw

=
∂δ18Osw

∂T
σT

 !2

+
∂δ18Osw

∂a
σa

 !2

+
∂δ18Osw

∂b
σb

 !2

+
∂δ18Osw

∂δ18Oc

σδ18Oc

 !2

ð2Þ

where a = 14.9 ± 0.1 °C, b = −4.8 ± 0.08 °C, ∂δ18Osw
∂T = � 1

b ,
∂δ18Osw

∂a = 1
b ,

∂δ18Osw
∂b = T

b2 � a
b2 and

∂δ18Osw

∂δ18Oc
= 1.

Chronological framework
The agemodel for Core I106wasdetermined through the utilization of
mixed planktonic foraminiferal AcceleratedMass Spectrometry (AMS)
radiocarbon data from 17 layers (Supplementary Table 2).
Conventional 14C ages were adjusted for isotopic fraction utilizing δ13C
values. These ages were further calibrated into calendar ages using
CALIB 8.10 software and a MARINE 20 dataset, without adjusting for a
regional 14C reservoir age. Linear interpolation was then employed to
establish chronological continuity between calendar ages. The average
sedimentation rate was ~6.25 cm/ka.

Dating uncertainties
The age models utilized in this study for marine sediment records were
established through the use of AMS radiocarbon dating on planktonic
foraminifera. The AMS 14C dates from marine sediment records were
then converted to calendar ages using the CALIB 8.10 program and the
MARINE 20 curve (please see SupplementaryDataset 2). The agemodels
for terrestrial records referenced in this study were revised using
the IntCal 20 curve instead of the Marine 20 curve. These age models
were created through linear interpolating between derived intermediate
calendar ages. It is important to note that a regional 14C reservoir age
was not applied to all cores in this study. The revised dates are listed in
the Supplementary Material. The stalagmite δ18O records were dated
using 234U/230Th measurements, as described in the original paper.

Collection of existing paleoclimatic records
Numerous paleoclimate records of the HS1 have been documented in
the IAA monsoon regions. In this study, we gathered 43 records that
possess four AMS14C age control points ranging from 12 to 24 ka
(Supplementary Table 1). The temporal resolution of each sample is
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generally superior to 500 years, except SK129/CR04, which has three
AMS 14C with 700 years per sample. Additionally, we collected seven
δ18Osw records from the northeast Indian Ocean, seven paleoclimatic
records from the northernArabian Sea, twopaleoclimate records from
the northern SCS, six paleoclimate records from the southern part of
China and the Indian subcontinent, one paleoclimate record from
Taiwan, one record from the southern SCS, one record from the Sulu
Sea, one record from Mindanao, four records from the southern Ara-
bian Sea and Southern Africa, eleven paleoclimate records and two
stalagmite δ18O records from the south tropical Indian Ocean and
tropical West Pacific. These records were collected to represent the
overall spatial distribution pattern of hydrological conditions during
the HS1 ranging from 30° north to 20° south in the IAA Monsoon
region.

Data availability
Data generated in this study are available in Pangaea repository https://
doi.org/10.1594/PANGAEA.956013. Source data are provided with
this paper.
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