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Functional annotation of proteins for
signaling network inference in non-model
species

Lisa Van den Broeck 1 , Dinesh Kiran Bhosale2, Kuncheng Song3,
Cássio Flavio Fonseca de Lima 4,5, Michael Ashley2, Tingting Zhu 4,5,
Shanshuo Zhu4,5, Brigitte Van De Cotte4,5, Pia Neyt4,5, Anna C. Ortiz6,
Tiffany R. Sikes6, Jonas Aper7, Peter Lootens 8, Anna M. Locke6,9,
Ive De Smet 4,5 & Rosangela Sozzani 1

Molecular biology aims to understand cellular responses and regulatory
dynamics in complex biological systems. However, these studies remain
challenging in non-model species due to poor functional annotation of reg-
ulatory proteins. To overcome this limitation, we develop a multi-layer neural
network that determines protein functionality directly from the protein
sequence. We annotate kinases and phosphatases in Glycine max. We use the
functional annotations from our neural network, Bayesian inference princi-
ples, and high resolution phosphoproteomics to infer phosphorylation sig-
naling cascades in soybean exposed to cold, and identify Glyma.10G173000
(TOI5) and Glyma.19G007300 (TOT3) as key temperature regulators. Impor-
tantly, the signaling cascade inference does not rely upon known kinasemotifs
or interaction data, enabling de novo identification of kinase-substrate inter-
actions. Conclusively, our neural network shows generalization and scalability,
as such we extend our predictions toOryza sativa, Zea mays, Sorghum bicolor,
and Triticum aestivum. Taken together, we develop a signaling inference
approach for non-model species leveraging our predicted kinases and
phosphatases.

Molecular biology aims to understand the molecular base of cellular
behavior, and growth and development of organisms as a result of
interconnectedbiochemicalpathways, gene regulation, and cell-to-cell
interactions. Studying these interconnected networks and pathways in
non-model organisms is critical, as model systems are not repre-
sentative of their entire class1. Moreover, the inadequate functional

annotation of regulatory proteins, including kinases or phosphatases
that form the basis of signaling networks, hinders omics research in
non-model species. Even within the model species Arabidopsis thali-
ana, 1229 (~4.5%) protein-coding loci remain unannotated. Function-
ally annotating proteins by classifying them into families provides
clues to their structure, localization, and activity. Currently, the
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dominant approach for functional prediction of protein families relies
on hidden Markov models (HMMs) that identify significant protein
sequence similarities or on alignments across a large database of
annotated sequences2,3. These approaches have been successful but
rely on conserved domains deduced from sequence alignments and
are unable to identify higher-order correlations or structurally and
evolutionarily diverse groups, such as phosphatases4. In the last dec-
ade, deep learning, a subdivision of machine-learning methods, has
been deployed in biological sciences for various applications, ranging
from classification questions to identifying hidden features in omics-
datasets5–7. Thus, deep-learning methods provide an opportunity to
circumvent sequence alignments and directly predict protein function
froma sequence database. Several deep-learning algorithmshave been
developed to predict the function of DNA sequences. For example,
DeepBind, DeepSea, DanQ, and TBiNet, each learning from past
models, predict DNA sequence functions and TF-DNA binding sites8–11.
Generally, within such neural networks, convolutional neural networks
(CNNs) are deployed to scan for small stretches of conserved
nucleotides to reflect spatial information of an input sequence.
Although many studies have investigated the functionality of DNA
sequences, relatively few studies attempt to predict the functionality
of protein sequences. Protein sequences are inherently more complex
as they consist of 20 possible notations compared to only four for
DNA. Existing machine-learning approaches that predict protein
function do so by predicting gene ontology or protein structure
associated with the amino acid sequence12–14. For example, Pro-
teinBERT is a deep-learning language model that inputs GO annota-
tions and protein sequences and shows state-of-the-art performance
on predicting protein structure, post-translational modifications, and
biophysical properties15. A recent study showed the potential of
machine-learning models to complement existing approaches for
protein function prediction tools16. Specifically, ProtCNN, a neural
network trained on protein domain sequences, accurately annotated
protein domains and improved and expanded on current proteins
annotations16.

Combined, the functional annotation of kinase and phosphatase
regulatory proteins and high-throughput-omics, like phosphopro-
teomics, allow for the inference of signaling networks. Specifically, the
prior knowledge of regulatory proteins significantly improves network
inference accuracy. Without prior knowledge of the upstream reg-
ulators, well-established network inference methods yield predictions
that were not better than random guessing17. Network inference
enables the prediction of undescribed signaling pathways forming
hypotheses and guiding experiments18. Several analytical tools, such as
GENIE317 and ARACNE19, infer causal regulations among differentially
expressed genes to, for example, identify key transcriptional
regulators20. GENIST, a dynamic Bayesiannetwork approach, leverages
time series data to identify dependencies among the modeled
genes20–23. However, such network inference approaches to identify
dependencies among phosphorylated proteins is still a bottleneck.
Current approaches generally create phosphorylation signaling
networks using predicted protein substrates of kinases based on
experimentally identified consensus sequence motifs or known
protein-protein interactions supplemented with contextual informa-
tion, such as subcellular compartmentalization, colocalization, and
coexpression24–26. However, these approaches have limitations as for
many kinases and phosphatases consensus motif sequences have not
yet been comprehensively determined resulting in incomplete net-
works and contextual informationmight bemissing. It isproposed that
“data-driven” approaches that utilize phosphorylation intensities to
directly infer relationships by identifying dependencies among phos-
phorylated peptides can aid in a network-level understanding of kinase
activity. Moreover, to computationally construct accurate signaling
networks, a priori knowledge on protein functions, such as kinase or
phosphatase activity, is needed.

In this study, to generate a priori knowledge on regulatory pro-
teins, including kinase and phosphatase activity, we developed a
scalable approach that determines sequence functionality using deep
learning. Specifically, we designed a multi-layer neural network to
directly extract hidden features from any protein sequence and clas-
sify them into protein families. To show the generalization and scal-
ability of our neural network, we annotated the proteome of six
species, including Arabidopsis thaliana, soybean, wheat, maize, rice,
and sorghum and focused on the kinase and phosphatase predictions.
Lastly, we used our compiled kinase/phosphatase list to infer phos-
phorylation cascades in soybean, demonstrating that inference of
signaling networks in non-model species can be facilitated through
functional annotation. This approach allowed us to identify two key
temperature response regulators in soybean, Glyma.10G173000
(TOI5) and Glyma.19G007300 (TOT3), and their 116 and 60 putative
substrates, respectively. Overall, our results show that deep-learning
models in combinationwith existingmethods, such asHMMs, strongly
improve protein function annotation, which can then significantly
advance systems biology studies.

Results
Designing a neural network for functional annotation of
non-model species
To understand cellular behavior and organismal growth and devel-
opment as a result of interconnected pathways, we aim to unravel the
interactions between genes, proteins, etc., within those systems. To
computationally model interactions, a priori knowledge on protein
functions, such as kinase or phosphatase activity, is needed. The
conventional method to annotate protein function relies on hidden
Markovmodels (HMMs), which classifies proteins into their respective
family. Thus, to identify the undescribed phosphatases in soybean, we
performed a HMMER search3 with HMMs for Ser/Thr phosphatases
(STs), dual-specificity phosphatases (DSPs), protein phosphatases 2C
(PP2Cs), and protein tyrosine phosphatases (PTPs). We identified a
total of 306 phosphatases, of which 109 (36%), 34 (11%), 160 (52%), and
3 (1%) belong to STs, DSPs, PP2Cs, and PTPs, respectively (Supple-
mentary Data 1). To support the identification of the putative soybean
phosphatases, we identified soybean orthologs from the previously
described phosphatases of the model species Arabidopsis thaliana27.
We identified 282 soybean orthologs, of which 224 (79.4%) were in
common with the HMM-identified phosphatases. As such, 58 (20.6%)
of the orthologs weremissed. Because HMMs assume that each amino
acid at a particular position is independent of the amino acids at all
other positions, we reasoned that HMMER might miss some phos-
phatases since they represent a structurally and evolutionarily diverse
protein family. In addition, HMMsmight not detect all phosphatases as
they cannot capture any higher-order (i.e., nonlinear) correlations. To
overcome these limitations, we designed a neural network and inclu-
ded a recurrent layer that identifies dependencies between the amino
acids at all positions, and activation functions that capture higher-
order correlations.Our neural network, hereafter referred to asPF-NET
(Protein Family classification NETwork), takes into account the entire
sequence context to classify protein sequences into oneof 996protein
families. The neural network architecture consists of four different
layers: (1) a convolutional neural network layer (CNN) that extracts
putative protein domains, i.e., the functional units of a protein, by
performing a convolution across the sequences with a kernel size of 7
(Fig. 1a, see “Methods”), (2) an attention layer that emphasizes the
learned patterns from the CNN layer by assigning increased impor-
tance to key domains, (3) a bidirectional long short-term memory
(biLSTM) layer that captures long-distance dependencies within
the sequences and between detected domains, and (4) two dense
layers connected to the output vector (Fig. 1a). Therefore, this neural
network is uniquely designed to address the current classifica-
tion gaps.
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We then used this architecture to functionally annotate kinases
and phosphatases. To this end, we trained and optimized PF-NET’s
hyperparameters, such as learning rate, number of filters, and activa-
tion function, to give the best performance (see “Methods”). To learn
sequence features, such as structural disorder and transmembrane
helices, PF-NET achieves a high overall accuracy of 91.9% and a
weighted precision, recall, and f1 score of 91.7%, 91.9%, and 91.7%,
respectively (Fig. 1b and Supplementary Fig. 1). To gain a better
understandingof the contributionof the individual layers,we removed
each layer and evaluated the performance of these models. This
ablation study showed that especially the CNN and biLSTM are crucial
for PF-NET’s performance (Supplementary Fig. 2). We examined the
performance of PF-NET in more detail for each of the 996 protein
families (see “Methods”) by evaluating these scoring metrics for the
test dataset. In total, 50.9% of the protein families were classified as

high performers and had an f1 score above 85.0% (Fig. 1c, d and Sup-
plementary Data 2). Generally, the high performers were represented
by more sequences within the training dataset contributing to their
high prediction scoring metrics (Fig. 1d). Among those were kinases
and phosphatases (e.g., STs, DSPs, PP2C, and PTPs), suggesting that
our neural network could outperformHMMs in identifying kinases and
phosphatases (Fig. 1e). Overall, our regulatory proteins of interest
showed a high f1 score between 87.7% and 99.3%, suggesting that our
approach can advance the predictions of regulatory proteins.

To enable comprehensive studies of signaling networks, we aim to
use PF-NET to predict the needed a priori knowledge on the regulatory
proteins in soybean. However, the limited experimental validation of
these regulatory proteins (kinases and phosphatases) in plants is a
bottleneck to assess PF-NET’s performance. Thus, to assess the per-
formance of our neural network in functionally predicting kinases and
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Fig. 1 | Classification performance of PF-NET (Protein Family classification
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amino acid. The 1D convolutional neural network (CNN) performs a convolution
across the encoded sequences with a kernel size of 7, detecting any motifs.
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pooling and an attention vector. The output matrix is passed through a bidirec-
tional long short-termmemory (biLSTM) layer to identify any distant dependencies
within the entire sequence. Two dense layers fully connect to the final 996-
dimensional output vector. b The overall performance of PF-NET in terms of pre-
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phosphatases, we used Saccharomyces cerevisiae (yeast) as a bench-
mark species. Specifically, we used the complete yeast proteome as an
independent benchmark dataset, made functional predictions for all
proteins, and focused on the phosphatases and kinases. To evaluate
the predictions, we compared our neural network with the ground
truth, here represented by a manually curated list of 115 and 38 bio-
chemical experimentally validated kinases and phosphatases, respec-
tively (SupplementaryData 3). Predictions in commonwith the ground
truth were considered true positives. Predictions for which no
experimental data were available were considered to be unconfirmed.
Overall, we observed a high number of identified proteins. Notably, 34
of the 137 predicted kinases were classified as unconfirmed when
compared to the ground truth. Because PF-NET outputs a probability
distribution, where the probability for all 996 classes sums up to one
for each input sequence, every sequence is categorized even if it does
not belong to one of the 996 classes. We leveraged this output to
assess the probability and prediction reliability associated with each
prediction. For each sequence, we extracted the highest probable
predictions (Fig. 2a, b). Almost all true positive predictions showed a
probability of more than 95%, while the majority of unconfirmed pre-
dictions had a probability below 60% (Fig. 2a, b). To exclude low
probable predictions in an unbiased fashion, we calculated the cost
with each threshold using the true positive rate and the false discovery
rate and selected the threshold with the lowest cost (Supplementary
Fig. 3). After applying the selected threshold, we achieved a sensitivity
of 89% and 66% for kinases and phosphatases, respectively (Fig. 2c–e).
Using this approach, we unaccounted for only two proteins, the kinase
RIO1 and the phosphatase DET1, that were experimentally validated,
but hadaprediction probability below the set threshold (Fig. 2a, b).We
found similar performance metrics with HMMER, but some identified
proteins were predicted to be kinases/phosphatases by PF-NET and
not by HMMER (Fig. 2c, d). For example, the predicted kinase by PF-
NET, CEX1, which was missed with HMMER, was shown to contain a
kinase-like domain based on the crystal structure28. We also compared
PF-NET’s performance to ProtCNN, a protein classification neural
network. However, as ProtCNN is trained on protein domain

sequences rather than the full protein sequence, a poor performance
was retrieved (Supplementary Fig. 4). Overall, these results indicate
that, with the high predictive power of our neural network, we can
augment protein families.

Identifying functional kinases and phosphatases in plants
Provided that our neural network generalizedwell (i.e., the ability of the
neural network to digest independent data) for yeast proteins, we rea-
soned that our neural network would also generalize well toward plant
proteins. To test this, we compared PF-NET’s results to published
computational protein classification studies and HMMER. Specifically,
we functionally annotated the A. thaliana and soybean proteome, and
selected kinases and phosphatases in A. thaliana and kinases in
soybean27,29,30 (Supplementary Data 4 and 5). Leveraging our advance
from yeast, we applied a threshold for each protein family and com-
pared our predictions with the published annotation studies to com-
pute classification metrics (Supplementary Fig. 3). The neural network
showed a recall of 97% and 95% for the A. thaliana kinases and phos-
phatases, respectively (Fig. 3a). Comparable metric performances were
found with HMMER searches; however, a different set of classified
proteins were identified with these two methods. Specifically, six
annotated phosphatases, including the biochemically validated pro-
teins AT1G0500031 and PEN2 (AT3G19420)32, were predicted by PF-NET,
butmissedwithHMMER. Similarly, threepredictedkinases (AT5G11360,
AT4G29654, and AT1G61475) were undetected by HMMER, but showed
apredicted INTERPROkinase or kinase-like domain, suggesting a kinase
role. We also observed a similar performance for the soybean kinases
with a recall of 98% and a false discovery rate of 1% (Fig. 3b). Within the
pool of newly predicted soybean kinases by PF-NET (20 proteins), we
looked at their GO associations and found that 13 proteins have a
molecular function or Panther description related to protein phos-
phorylation (Supplementary Data 6)33–35. These 20 proteins are poten-
tially undescribed kinases, which weremissed by HMMER, emphasizing
the need for machine-learning annotation models. Overall, we demon-
strated that PF-NET generalizes well toward truly independent plant
datasets and can predict the functionality of proteins across species.
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Given the high generalization and prediction confidence of PF-
NET, we explored the unpredicted soybean phosphatases. A well-
annotated and comprehensive list of regulatory proteins in soybean
would ensure the next steps, i.e., the inference of signaling networks.
To this end, we used PF-NET and identified 320 soybean phosphatases

as compared to 306 and 282 identified with HMMER and A. thaliana
orthologs, respectively (Fig. 3c and Supplementary Data 1). Of these,
214 were in common between all the annotationmethods and showed
high prediction probabilities from PF-NET. Importantly, an additional
13 A. thaliana orthologs were classified as phosphatases by PF-NET
with variable prediction probabilities (Fig. 3c). Nineteen proteins were
functionally annotated to phosphatases solely by PF-NET, of which
three proteins had a probability above 95% (Fig. 3c). Notably, we found
that two have a molecular function GO annotation of “protein serine/
threonine phosphatase activity”. Of the 311 phosphatases identified by
at least two of the three methods (colored light green in Fig. 3c), 108
(35%), 41 (13%), 146 (47%), and 6 (2%) belong to STs, DSPs, PP2Cs, and
PTPs, respectively. With this in mind, we combined the extended
kinase list and the annotated phosphatases (see “Methods”) to use as
prior knowledge for the inference of phosphorylation cascades in
soybean.

Phosphorylation signaling network inference in soybean
Phosphorylation cascades are among the first steps in signal percep-
tion and are responsible for transducing environmental and cellular
signals. To assess how signaling pathways dynamically rewire upon
environmental cues, we focused on cold, which is an important stress
factor during early soybean growth36–39. We exposed soybean seed-
lings to control (20 °C) and cold (12 °C/5 °C day/night) conditions and
harvested leaves of five-day-old seedlings every 6min for an hour. We
identified a total of 8081 phosphosites with the peptide search in
MaxQuant40, which were mapped to 3466 soybean proteins.

To identify differentially phosphorylated sites across the time
course, we developed an analytical pipeline, NetPhorce, that analyzes
label-free phosphoproteomics data (see “Methods”), and wrapped it
into an R package (https://ksong4.github.io/NetPhorce/). The 8081
detected phosphosites were used as input for our pipeline, which first
performs several quality control steps, including the removal of
phosphosites with insufficient datapoints (see “Methods”). To account
for technical biases and to make samples more comparable, the
phosphosite intensities were normalized using variance stabilizing
normalization (vsn), reducing variation between technical replicates41.
After the quality control steps, we identified 372 high-confidence and
reproducibly quantified phosphosites (localization probability ≥0.75)
mapped to 320 soybean proteins. However, the phosphorylation
intensities of these high-confidence phosphosites were not always
detected across the entire timecourse. To include very lowly abundant
or absent phosphosites that fall below the detection limit and thus to
overcome the intrinsic detection limitation of phosphoproteomics, we
included thosephosphosites thatwereundetected in themajority or in
all replicates of a sample and considered their phosphorylation absent.
With this in mind, NetPhorce was set to split the collection of high-
confidence phosphosites into two subsets. As a result, the first subset
contained phosphosites whose intensity values were successfully
quantified across the time course and were subjected to statistical
analysis (see “Methods”). On the other hand, the second subset, which
were here defined as absence/presence phosphosites, contained
phosphosites whose intensity value was not detected at one or more
time points and were not subjected to statistical analysis. Of the 372
high-confidence phosphosites, 11 were identified as absence/presence
phosphosites (at least 3 out of 4 valid values in one group and absent in
the other) and 310 were significantly differentially phosphorylated
upon cold (at least 3 out of 4 valid values in both groups to allow
statistical comparison) (Supplementary Data 7 and Supplementary
Fig. 5). This prompted us to extend NetPhorce with an unbiased
approach to identify from those 321 phosphosites the key regulators
important for a proper cold response.

To model the regulatory interactions between kinases/phospha-
tases and their substrates, wedeveloped anetwork inferenceapproach
that uses the predictions of PF-NET as prior knowledge. Importantly,
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because this approachdoes not rely on known kinasemotifs or protein
interaction data, we could apply it to species for which such data is
largely unavailable, including soybean. To detect key regulators upon
cold, wemapped the causal regulatory interactions between our list of
soybean kinases and phosphatases and downstream substrates. Spe-
cifically, we inferred two networks for each condition with a dynamic
Bayesian network approach, available in NetPhorce. We then com-
bined the predicted signaling pathways, visualizing condition-specific
and common regulations in Cytoscape (Fig. 4 and Supplementary
Data 8). Three kinases were in common between cold and controlled
conditions, Glyma.19G007300 S335 (ortholog of AtTOT3, TARGET OF
TEMPERATURE3), Glyma.08G037300 T220 (ortholog of AtCDKF;1),
and Glyma.10G173000 S334 (ortholog of AtTOI5, TOT3-INTERACT-
ING5). The membrane-associated TOT3 and TOI5 are two known reg-
ulators of moderate heat stress in A. thaliana and wheat, indicating

common regulatory mechanisms between cold and heat stress42.
Interestingly, under heat stress, TOT3 was shown to play a dominant
role, while our network inference predicts that upon cold stress, TOI5
is more central (Fig. 4). In addition to the highest centrality, TOI5 also
showed the highest degree of rewiring upon cold stress (Fig. 4). Last,
we found two regulators, Glyma.06G161200 S496 (ortholog of
AtCPK4) and Glyma.07G046800 S364 (ortholog of AtSRF6) that were
specific to the cold conditions. Overall, we were able to use the
information extracted from PF-NET to build an analytic pipeline that
allows for the annotation and exploration of signaling pathways.

Comprehensive predictions in crops for network inference
To enable signaling network inference in additional model and non-
model species and to compare our annotations to other plant species,
we used PF-NET to predict the phosphatases in four additional crops:
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Fig. 4 | Signaling pathways upon cold stress in soybean Altona. a Causal rela-
tions for cold and controlled conditions were predicted with a dynamic Bayesian
network approach between differentially phosphorylated kinases/phosphatases
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Triticum aestivum (wheat), Zea mays (maize), Sorghum bicolor (sor-
ghum), andOryza sativa (rice). In total, we identified 545, 230, 170, and
180 phosphatases in wheat, maize, sorghum, and rice, respectively
(Supplementary Fig. 6 and Supplementary Data 9). As for soybean, we
compared our predictions with HMMER search results and the ortho-
logs of Arabidopsis phosphatases. Generally, the predictions that were
in commonwith one or two othermethods had a high probability with
an average of 96% (Supplementary Fig. 6). Species for which PF-NET/
HMMER would identify an increasing number of phosphatases,
showed a lower/higher sequence similarity, respectively (Supplemen-
tary Fig. 7). Several proteins were functionally annotated with high
probability as phosphatases solely by PF-NET, indicating that HMMER
or ortholog searches by themselves are not sufficient to map an entire
protein family, as we showed for the soybean kinases.

To gain insights into phosphatase functions and evolution, we
combinedourpredictions for each species intoone comprehensive list
and performed a proteome-wide phylogenetic analysis (see “Meth-
ods”). The phylogenetic analysis of all six species, including A. thaliana
and soybean, assigned our phosphatases to 229 orthogroups, i.e., the

generalization of orthology to multiple species (Fig. 5a, b and Sup-
plementary Data 10). In total, 61 of those orthogroups contained 10 or
more phosphatases, in total accounting for ~60% of the predicted
phosphatases (Fig. 5a and Supplementary Data 10). 73 orthogroups
containing 1011 (63.5%) phosphatases were shared among all six spe-
cies, which suggests these phosphatases might play roles essential to
the plant’s fitness (Fig. 5b). As expected, the first bipartition in the
phylogenetic species tree separates dicots and monocots (Fig. 5c).
Another 30 and 8 orthogroups are shared only among the monocots
and dicots, respectively, suggesting that phosphatases in these groups
have functions specific to this evolutionary divergence (Fig. 5b)43. Only
80 phosphatases were not assigned to an orthogroup, indicating high
representation of orthology relationships within the entire proteomes.
Another 55 phosphatases did not have orthology relationships with
other predicted phosphatases, which suggest these could be false
positives44. Overall, this phylogenetic analysis showed that most
phosphatases are shared among our six species and confirmed the
functional annotation of 91.5% of the phosphatases. Similar as for
soybean, a comprehensive list of regulatory proteins in wheat, rice,
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Fig. 5 | Evolutionary conservedness of predicted phosphatases in A. thaliana,
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sorghum, and maize, would ensure the possibility for signaling net-
works inference. To this end, we also predicted the kinases in those
species using PF-NET and HMMs. We included our phosphatase and
kinase predictions, as well as published predictions45 of another 20
species as a default table in the NetPhorce R package, enabling sig-
naling network inference in non-model species. Overall, the combined
use of computational tools leads to highly confident predictions, and
PF-NET can identify functional proteins that are otherwise missed by
existing methods.

Discussion
Applying neural networks to classification problems is highly promis-
ing in molecular biology5, 7,18,46. Here, we applied a neural network to
classify proteins into one of almost 1000 protein families based on
their amino acid sequence and predicted the kinases and phospha-
tases for six species, including soybean, wheat, rice, sorghum, maize,
and A. thaliana. By identifying these regulatory proteins, we were able
to perform a network biology study in soybean and shed light on the
signaling cascades underlying cold stress. Using our approach, we
identified a potential common regulatory mechanism between cold
and heat stress, in which TOT3 and TOI5 are the key nodes. These
results suggest that TOT3 and TOI5 could function as thermostats,
phosphorylating a different set of substrates depending on the tem-
perature. Thus, next studies will focus on validating predicted targets
under temperature gradients to elucidate the precise molecular
mechanisms of TOT3 and TOI5 in regulating temperature responses.
Additionally, we identified two cold-specific regulators, Gly-
ma.06G161200 and Glyma.07G046800. In A. thaliana, the ortholog of
Glyma.06G161200, AtCPK4, is a positive regulator of ABA signaling, a
key hormone mediating plant responses to various abiotic stresses,
including cold47. Moreover, the rice ortholog of Glyma.06G161200,
OsCPK24 (Os11g0171500), was shown to play a role in cold stress
responses48. Thus, our approach offers the possibility to discover
central kinases that could be candidates for genome editing strategies.

Mapping the function of proteins by classifying them into their
respective family provides clues to their structure, localization, and
activity, and is thus essential to understand molecular responses and
phenotypes. Deep learning provides a framework to achieve this task
and classify proteins into their families without prior knowledge of
sequence features. Our neural network approach can identify distant
dependencies and higher-order correlations within the full sequence.
PF-NET was able to classify unknown and uncharacterized proteins to
the kinase and phosphatase families. For example, CEX1 was predicted
to function as a kinase solely by PF-NET. Identifying kinases/phos-
phatases impacts downstream analysis as the inclusivity of regulators
reduces uncertainties and increases overall accuracy for network
inference. Omitting or not considering predicted regulators would
lead to incomplete predictions and systemic errors. In addition, many
target proteins can be (de)phosphorylated by multiple upstream
kinases/phosphatases, resulting in a complex regulatory module for
every target protein. Identifying the full extent of this plethora of
upstream regulators is thus critical to fully map the regulatory mod-
ules of a protein’s phosphorylation events and, concordantly, the
complexity of signaling cascades.

The newly annotated proteins were missed by previous computa-
tional methods, potentially because PF-NET is capable of identifying
nonlinearity and amino acid dependencies across the full sequence.
Thus, a combination of annotation approaches greatly increases cov-
erage and reduces errors. Recently, deep learning has been imple-
mented to expand the coverage of the Pfam database and further
annotate unknown proteins16. In addition, intuitive and conditional
thresholding can be applied depending on the desired stringency.
Thresholding is necessary because PF-NET is configured to have 996
output classes and categorizes every sequence even if the sequence
does not belong tooneof these 996 classes. Adding a threshold ensures

highly accurate predictions. To enable easy thresholding and fast in
bulk predictions of a collected set of sequences or a reference pro-
teome of interest, we made our neural network available through our
easy-to-use webtool (https://sozzanilab.shinyapps.io/PF-NET_Shiny/).
This webtool greatly promotes accessibility and interpretability. Last,
with some bioinformatics knowledge, PF-NET is retrainable to add
protein families or update current families, which greatly contributes to
its applicability beyond the identification of kinases and phosphatase.
For example, PF-NET has a high predictive power (f1 score >90%) for
several transcription factor families, including bHLH, MYB, and zinc-
finger transcription factors.

To explore signaling cascades, we developed a data-driven net-
work inference approach. To this end, our approach does not rely on
known substrates of kinases, protein-protein interaction data, or
consensus sequence motifs, which leads to unbiased identification of
phosphorylation dynamics. This approach uses dynamic Bayesian
principles21 and requires only two sources of information: (i) a time-
course phosphoproteomics dataset, and (ii) a list of kinase/phospha-
tase proteins for that species. Combined with PF-NET, our approach
can be used to study signalingmechanisms in any species. To facilitate
the dissemination within the scientific community, we wrapped our
phosphoproteome analysis and network inference pipeline in an R
package, which can be used by biologists with minimal programming
and bioinformatics knowledge.

Methods
Training dataset and encoding
The Pfam database contains >19,000 protein families. To obtain a
number of protein families adequate to handle and train the neural
network, we selected a total of 996 protein families (Supplementary
Data 2) by excluding protein families with fewer than 100 annotated
sequences within Pfam’s underlying sequence database and focusing
on protein families within the plant and animal kingdoms. All
sequences found in Pfam’s underlying sequencedatabaseof each Pfam
family were extracted using MySQL workbench. The script used is
available at https://github.com/LisaVdB/PF-NET. We then excluded
long sequences at a cutoff of 1234 amino acids based on the sequence
length distribution. As such, the total training dataset consisted of
7,385,028 sequences, covering the entire tree of life. This large data-
base of sequences was used as input for the neural network without
any feature extraction.

Protein sequences are composed from 20 amino acids, each
represented by a letter, according to the IUPAC guidelines. An addi-
tional four letters are used to represent a group of amino acids: Z
represents a glutamic acid or glutamine; letters O and U represent
pyrrolysine and selenocysteine, respectively; and letter X represents
any amino acid. Protein sequences were encoded using a binary
encoding scheme, in which each amino acid is represented as a string
of zeros and ones with length 5 (Fig. 1). Binary encoding has the
advantage that the number of input columns (5 columns for binary
encoding versus 21 columns for one-hot encoding) and thus dimen-
sionality of the dataset requires less memory. The binary encoding
scheme requires 128GBRAM to load. The sequenceswere zero-padded
until length 1234 to preserve the original input size.

After binary encoding of the sequences and to facilitate
training, the dataset was split into 6 batches of around 1.2 million
sequences in a stratified manner, i.e., each batch contained a
similar number of sequences for each of the 996 families. Three bat-
ches were combined to make 5 different batch combinations, each of
around 3.6 million sequences. Subsequently, each batch was split in a
stratified manner into three proportions: 60% of sequences are used
for training, 20% for model validation, and 20% are held out as
test sequences. Stratified train-test-split is performed to ensure all
classes are divided proportionally into the training, validation, and
testing sets49.
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Neural network architecture
The neural network architecture consists of four different layers: (1) a
convolutional neural network layer (CNN), (2) an attention layer, (3) a
biLSTM layer, and (4) twodense layers connected to the output vector.
To extract putative protein domains within the sequence, we added a
1D CNN that performs a convolution across the encoded sequences
with a kernel size of 7 (Fig. 1a). Smaller sequence domains conserved
within a protein family can thus be identified with the CNN. The kernel
moves along the sequence with a stride of 1 to compute features. A
total of 320 filters are applied, leading to the computation of 320
different features (Fig. 1a). To emphasize the learned patterns from the
CNN layer, we included an attention layer that integrates the entire
sequence generated from the CNN layer, and generates an output
sequence that is a function of the entire input sequence and all its
hidden states. The function is an “attention”operation, giving different
weights to each hidden state (Fig. 1a). As such, the attention layer will
assign increased importance to key domains within the sequence. To
capture long-distance dependencies within the sequences and
between detected domains, we added a biLSTM layer. The biLSTM
layer processes the output of the attention layer to identify any distant
dependencieswithin the entire sequence (Fig. 1a). As such, the order of
distant conserved sequence domains is taken into account. Lastly, two
dense layers are connected to the output vector (Fig. 1a).

Experimental settings and evaluation
The hyperparameters in Supplementary Table 1 were found to give the
best performance. Several learning rates for the Nadam (Nesterov-
accelerated Adaptive Moment Estimation) were tested (1E−3, 1E−5,
1E−7)50. A learning rate of 1E−7 in combination with a learning rate decay
with every epoch gave the best performance with respect to the loss.
Additionally, three different values of the number of filters (128, 320,
and 480) for the CNN were tested, of which 320 filters gave the best
performance with respect to the loss. Two activation functions (soft-
max, sigmoid) at the final layer were tested of which softmax led to the
best performance with respect to the loss51,52.

The input dataset from the Pfamdatabase is unbalanced,meaning
that the number of sequences for each protein family (i.e., the
class size) is unequal. Thus, class sizes are skewed: 21.5% protein
families are represented by <1000 sequences, 61.8% have >1000 and
<10,000 sequences, and 16.7% have >10,000 sequences. To accurately
predict such an unbalanced dataset and correct for skewed class sizes,
we applied a focal loss function to evaluate the prediction error of PF-
NET53. Lastly, to take into account the skewed distribution of the
classes, different class weights were assigned to the classes when fit-
ting the model that assign different costs to misclassification accord-
ing to their sample distribution (i.e., misclassification of minority
classes with lesser samples are penalized higher thanmajority classes).

To evaluate the performance of the neural network, the precision,
recall, and f1 score of each class individually was calculated as follows:

Precision=
True positives

True positives + False positives
ð1Þ

Recall =
True positives

True positives + FalseNegatives
ð2Þ

f 1 score=
2× Precision ×Recall
Precision+Recall

ð3Þ

To evaluate the overall performance of the neural network, the
accuracy as well as the macro average and weighted average of pre-
cision, recall, and f1 score were calculated. For the macro average, the
scoring metrics of each class were calculated and averaged. For the
weighted average, the scoring metrics for each class were calculated,

weighted by the number of true instances for each label, and averaged
to account for class imbalance.

All scripts for the neural network training, validation, and for
making predictions are available on GitHub (https://github.com/
LisaVdB/PF-NET). A webtool was also built to easily make predictions
with PF-NET (https://sozzanilab.shinyapps.io/PF-NET_Shiny/).

Neural network evaluation
To set up and benchmark our interpretable and robust pipeline, we
used the yeast proteome as a benchmark independent dataset. The
yeast proteome was downloaded from the yeast genome database
(Saccharomyces cerevisiae reference strain S288C release R64-3-1 2021-
04-21, Taxon identifier 559292). Sequences larger than 1234 amino acids
were split into sequences of 1234 amino acids or smaller. Sequences
were encoded and predictions weremadewith PF-NET. The predictions
were compared against a carefully curated list of experimentally vali-
dated kinases and phosphatases from published literature, which we
refer to as the ground truth (Supplementary Data 3). For comparison
with PF-NET, hidden Markov models of the Pfam families Metallophos
(PF00149), DSP (PF00782), PP2C (PF00481), Phosphatase_Tyr
(PF00102), and Pkinase (PF00069) were used to perform a HMMER
search (https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch). We
used thedefault values (0.01 and0.03E value cutoffs) and restricted the
HMMER search by taxonomy (organism: S. cerevisiae).

To identify a threshold that minimizes false positives and false
negatives, 100 thresholds between 0 and 1 were tested. The cost
associated with each threshold was calculated as follows.

Cost = FDR� ð3 � TPRÞ ð4Þ

FDR = False positives=ðFalse positives +True positivesÞ ð5Þ

TPR=Truepositives=ðTrue positives + FalseNegativesÞ ð6Þ

The threshold with the lowest cost was selected. The R script for
threshold identification is available at GitHub (https://github.com/
LisaVdB/PF-NET). All plots are generated in Microsoft Excel or R (ver-
sion 4.2.2)54 using ggplot2 (version 3.4.1)55, or networkD3 (version 0.4)
and htmlwidgets (version 1.6.1) for the Sankey diagram.

Neural network predictions in plants
To test whether our neural network will generalize well toward plant
proteins, we made functional predictions in several model and non-
model plant species: A. thaliana, soybean, wheat, maize, sorghum,
and rice. After downloading the proteomes of these species in their
respective databases, sequences larger than 1234 amino acids were
split into sequences of 1234 amino acids or smaller. Then, PF-NETwas
used to make functional predictions. The A. thaliana proteome was
downloaded from TAIR (Arabidopsis thaliana Genome Annotation
Official Release version Araport11, release date June 2016). The soy-
bean proteome was retrieved from Soybase (Williams 82 Genome
Sequencing Project, Assembly 2 Annotation 1). The entire proteome
of Zea mays (maize) (B73 reference NAM v5.0), Sorghum bicolor
(sorghum) (Sbi1.4/SbGDB181), Triticum aestivum (wheat) (IWGSC
RefSeq v2.1 High Confidence peptides), and Oryza sativa (rice) (v7.0)
were downloaded and tested.

We selected the kinases from A. thaliana and soybean by identi-
fying all protein sequences that were predicted to be part of the Pfam
families Pkinase (PF00069) and Pkinase_Tyr (PF07714). To identify the
phosphatase of A. thaliana, soybean, rice, wheat, maize, and sorghum
at a proteome level, the following four Pfam families were selected:
Metallophos (PF00149), DSP (PF00782), PP2C (PF00481), and Phos-
phatase_Tyr (PF00102).
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To test the generalizationof our neural network,we compared PF-
NET’s results to published computational protein classifications stu-
dies and HMMER runs. We did this specifically for the Arabidopsis
thaliana kinases and phosphatases, and the Glycine max kinases.
Similarly, as for Saccharomyces cerevisiae, the cost was calculated for
100 probability thresholds for the predicted Arabidopsis thaliana
kinases and phosphatases, and the Glycine max kinases, using the
literature-obtained kinases and phosphatases as ground truth. This led
to the identification of an optimal threshold of 0.616 for A. thaliana
kinases, 0.565 for the A. thaliana phosphatases, and 0.646 for the
soybean kinases. A. thaliana and soybean kinases and A. thaliana
phosphatases were retrieved from literature studies29,30,56. Hidden
Markov models of the Pfam families Pkinase (PF00069) and Pkina-
se_Tyr (PF07714) were used to search for kinaseswithHMMER (https://
www.ebi.ac.uk/Tools/hmmer/search/hmmsearch) (HmmerWeb ver-
sion 2.41.2). We used the default values (0.01 and 0.03 E value cutoffs)
and restricted the HMMER search by taxonomy (species-level). Gene
descriptions for A. thaliana were downloaded from TAIR. Gene
descriptions, GO-terms, and Panther descriptions for soybean were
downloaded from SoyBase57.

To annotate the undescribed phosphatases in other non-model
species, we made predictions as described above. To identify the
phosphatases of the other crops, we used a mild threshold of 0.5.
Neural network predictions were compared with a HMMER search and
soybean, maize, sorghum, wheat, and rice orthologs of known A.
thaliana phosphatases. Hidden Markov models of the Pfam families
Metallophos (PF00149), DSP (PF00782), PP2C (PF00481), and Phos-
phatase_Tyr (PF00102) were used to search for phosphatases with
HMMER (https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch).
Orthologswere identifiedwith PLAZA4.5 through the Plaza Integrative
Method (https://bioinformatics.psb.ugent.be/plaza/)58. To infer the
orthogroups for our six species and a rooted species tree, we per-
formed a comprehensive phylogenetic analysis with the six species
using Orthofinder (2.5.4), a software program for phylogenetic
orthology inference59,60. To quantify the sequence percent identity
among thephosphatases of eachplant species,weextracted the amino
acid sequences and used those as input for Clustal Omega, a multiple
sequence alignment program61. Clustal Omega results provide the
sequence percent identity matrix.

Label-free phosphoproteomics
Four Altona62 soybean seeds (USDA-ARS Germplasm Resource Infor-
mation Network nr: PI 548504) were sown at 2 cmdepth in one square
plastic pot (7 × 7 × 8 cm) filled with regular potting soil (Beroepspot-
grond, Saniflor). After 10 days, seedlings were thinned to two per pot.
The pots were placed in a controlled growth room with
400 µmolm−2 s−1 light intensity, continuous 20 °C, and 15 h/9h dark
day/night rhythm. Regular watering was performed to keep the plants
under optimal growing conditions, no extra fertilizerwasprovided as a
base fertilizer (NPK 12-14-24 with micronutrients at 1.2 kgm−3) was
present in the potting soil. A total of 60 pots per treatment were sown.
For the cold treatment, the seedlings were transferred five days after
germination to 12 °C/5 °C. The plants were kept in another growth
chamber at 20 °C during the night before the start of the cold treat-
ment. The original growth chamber was set at 12 °C/5 °C during that
night. The cold treatment started by transferring the plants into the
original growth chamber at the moment that the lights were switched
on in the morning time (at a temperature of 10 °C). Every 6min up to
one hour after treatment, the tip half of unifoliate leaves from three
distinct plants were pooled for phosphoproteomics in 5-mL tubes
containing 4× metal beads of 4mm, followed by snap-freeze in liquid
nitrogen. The process was repeated four times for four biological
replicates.

To extract proteins, the frozen material of each pool was groun-
ded to fine powder. After, the material was resuspended in

homogenization buffer containing 30% sucrose, 50mM Tris-HCl buf-
fer (pH 8), 0.1M KCl, 5mM EDTA, and 1mM DTT in Milli-Q water, to
which one tablet of both cOmpleteTM Ultra protease inhibitor mixture
(Roche) and PhosSTOP phosphatase inhibitor mixture (Roche) were
added. The samples were sonicated on ice to further break cells and
subcellular organelles and centrifuged at 4 °C for 15min at 3200 g to
remove debris. Supernatants were collected and a methanol/chloro-
form precipitation was carried out by adding 3, 1, and 4 volumes of
methanol, chloroform, and water, respectively. Samples were cen-
trifuged for 10min at 3200 × g and the aqueous phase was removed.
After the addition of four volumes of methanol, the proteins were
pelleted by centrifugation for 10min at 3200× g. Pellets were washed
with 80% acetone, and centrifuged for 10min at room temperature at
3200× g. The supernatants were discarded, and the pellets were left to
dry on air. Protein pellets were then resuspended in 8M ureum in
50mM triethylammonium bicarbonate (TEAB, Sigma-Aldrich) buffer
(pH 8). Alkylation of cysteines was carried out by adding tris(carbox-
yethyl)phosphine (TCEP, Pierce) and iodoacetamide (Sigma-Aldrich)
to final concentrations of 15mM and 30mM, respectively, and the
samples were incubated for 15min at 30 °C in the dark. Three mg of
protein material was pre-digested with 10 µg of MS-grade lysyl endo-
peptidase (Wako Chemicals) for 2:30min at 37 °C. The mixtures were
diluted eightfold with 50mM TEAB, followed by an overnight diges-
tionwith trypsin (Promega) with an enzyme-to-substrate ratio of 1:100.
The digest was acidified to pH 3 with trifluoroacetic acid (TFA, Bio-
solve) and desalted using SampliQ C18 SPE cartridges (Agilent)
according to the manufacturer’s guidelines. For phosphopeptide
enrichment, the desalted peptides were fully dried in a vacuum cen-
trifuge and then washed in 500μl of loading buffer [80% (v/v) acet-
onitrile (BioSolve), 6% (v/v) TFA] with gentle agitation (800 rpm).
Briefly, the resuspended peptides were incubated with 1mg MagRe-
Syn® Ti-IMAC (ReSyn Biosciences) microspheres for 20min at room
temperature with continuousmixing. After, the tubes were placed to a
magnetic separator for 10 s having their supernatant removed and
discarded after. Following, the microspheres were washed once more
with loading buffer, followed by wash solvent 1 (60% acetonitrile, 1%
TFA, 200mMNaCl (Sigma-Aldrich)) and twicewith wash buffer 2 (60%
acetonitrile, 1% TFA). The bound phosphopeptides were eluted with
three volumes (80μl) of elution buffer (40% acetonitrile, 1% NH4OH
(S)), immediately followed by acidification to pH 3 using 6μl 100%
formic acid (Roche). Prior to MS analysis, the samples were vacuum
dried and re-dissolved in 50 μl of 2% (v/v) acetonitrile and 0.1%
(v/v) TFA.

Peptides were re-dissolved in 50 µl loading solvent A (0.1% TFA in
water/ACN (98:2, v/v)) ofwhich 3 µl was injected for LC-MS/MSanalysis
on an an Ultimate 3000 RSLC nano LC (Thermo Fisher Scientific) in-
line connected to a Q Exactive mass spectrometer (Thermo Fisher
Scientific). The peptides were first loaded on a µPAC™ Trapping col-
umn with C18-endcapped functionality (Pharmafluidics) and after
flushing from the trapping column the peptides were separated on a
50 cm µPAC™ column with C18-endcapped functionality (Pharma-
fluidics) kept at a constant temperature of 35 °C. Peptides were eluted
by a linear gradient from 98% solvent A’ (0.1% formic acid in water) to
55% solvent B′ (0.1% formic acid in water/acetonitrile, 20/80 (v/v)) in
120min at aflowrate of 300nL/min, followedbya 5minwash reaching
99% solvent B’.

Themass spectrometer was operated in data-dependent, positive
ionization mode, automatically switching between MS and MS/MS
acquisition for the 5most abundant peaks in a givenMS spectrum. The
source voltage was set at 3 kV and the capillary temperature at 275 °C.
One MS1 scan (m/z 400–2000, AGC target 3 × 106 ions, maximum ion
injection time 80ms), acquired at a resolution of 70,000 (at 200m/z),
was followed by up to 5 tandem MS scans (resolution 17,500 at
200m/z) of the most intense ions fulfilling predefined selection cri-
teria (AGC target 5 × 104 ions, maximum ion injection time 80ms,
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isolation window 2Da, fixed first mass 140m/z, spectrum data type:
centroid, under-fill ratio 2%, intensity threshold 1.3xE4, exclusion of
unassigned, 1, 5–8, >8 positively charged precursors, peptide match
preferred, exclude isotopes on, dynamic exclusion time 12 s). TheHCD
collision energy was set to 25% Normalized Collision Energy, and the
polydimethylcyclosiloxane background ion at 445.120025Dawas used
for internal calibration (lock mass).

MS/MS spectra files were searched against the Soybean
database (Williams 82 Genome Sequencing Project, Assembly 4
Annotation 1) with Maxquant software version 1.6.10.43, a pro-
gram package that allows MS1-based label-free quantification40,63.
Searches were performed within replicates (0, 6, 12, 16, 24, 30, 36,
42, 48, 54, and 60min samples) with both control and cold
treatment groups, with “match between runs” feature enabled in
order to maximize peptide identification. Next, the four “Phos-
pho(STY).txt” output files from the four replicates were merged
into a single file. For that, if two or more replicates shared same
values for all columns: “protein id”, “position”, “aminoacid” and
“multiplicity”, the quantification values were merged to a pre-
existing row; if not, it was appended to the dataframe as a new
row. For downstream analysis only the merged file was used. The
mass spectrometry proteomics data, the MaxQuant settings,
MaxQuant outputs and resulting merged file have been deposited
to the ProteomeXchange Consortium via the PRIDE64 partner
repository with the dataset identifier PXD037601.

Analysis and network inference with NetPhorce
Prior to statistical analysis, data cleaning and quality controls
were performed, which includes several filtering steps, missing
value handling, and normalization. Specifically, contaminates and
reverse peptides identified by MaxQuant were removed, and
phosphosites with a localization probability below 0.75 were
removed. Generally, two types of missingness can be found within
(phospho)proteomics: (1) missingness completely at random
(MCAR), and (2) missingness not at random (MNAR)65. MCAR
occurs due to technical or instrumentation defects, such as poor
ionization, other peptides competing for charge, and enzymatic
modifications, and is unrelated to its abundance. On the other
hand, MNAR is related to the peptide’s abundance and occurs
when a peptide abundance falls below the instrument detection
limit or a peptide is simply not present. Phosphopeptides that are
very lowly abundant or not present in one condition versus
abundant in another condition (e.g., cold versus control condi-
tions) are biologically relevant as they can, for example, be part
of a pathway that is only activated upon cold. In our approach, we
included MNAR and discarded MCAR, hence including the biolo-
gically relevant peptides but excluding the peptides with too few
datapoints. To ensure a balanced dataset for statistical analysis, a
threshold of 3 or more valid values or missing values (zeros) per
replicate for each phosphosite across the time course and
experiment was chosen. Phosphosites that do not meet these
criteria were filtered out. For example, a phosphosite with 2 valid
values and 2 zeros at one of the time points was removed. A
phosphosite with 1 valid value and 3 zeros or with 4 zeros at one
or more time points and 3 or more valid values for the other time
points was retained and classified as an absent/present phos-
phosites, which was not subjected to statistical analysis. A phos-
phosite with 3 or more valid values at all time points was retained
and subjected to statistical analysis.

Next, to normally distribute the intensity values, they were log2
transformed. Variance stabilizing normalization (vsn) was performed
to reduce the variation between replicates41,66. To identify phospho-
sites that were differentially phosphorylated between conditions or
timepoints, a linearmixedmodelwasfitted to thephosphoproteomics

data depending on the experimental design as follows:

Y =

μ+ αi + γk + ε

μ+ βj + γk + ε

μ+ αi + βj + αβij + γk + ε

8><
>:

if n= 1 & t > 1

if n> 1 & t = 1

if n> 1 & t > 1

ð7Þ

Where Y is the phosphorylation intensity, αi is a fixed effect for the
condition variable, βj is a fixed effect for the time variable, γk is a
random effect for the replicate variable, and ε is the within-replicate
error. A random effect for replicate was included in the model to
account for correlation between plants grown at the same time. As our
objective was to identify factors key for the cold response in soybean
seedlings, we selected the significantly differentially phosphorylated
peptides upon cold (i.e., a P value of the condition variable <0.05).
Generally, NetPhorce will select the p value of the condition variable
unless the input data does not contain a condition variable, in that
case, NetPhorce will consider the P value of the time variable. To
handle the multiple hypothesis-testing problem, which leads to an
increased probability of identifying significant hits, the q-values were
estimated from the calculated P values67. A q-value cutoff of 0.05 was
chosen. All intermediate steps of our pipeline were benchmarked
against the Perseus software platform68 and showed the same results
(Supplementary Table 2). Phosphosites that were significantly differ-
entially phosphorylated between the control and cold conditions, as
well as the absent/present phosphosites were selected for further
network inference.

The network inference was based on dynamic Bayesian network
principles and consisted of three major steps: (1) identifying potential
regulator-target combinations, (2) scoring these regulations according
to Bayesian principles, (3) selecting high-scoring regulations and
determining their sign. To infer the regulatory interactions, we lever-
aged the changes over time for each treatment, allowing us to prob-
abilistically calculate the Bayesian score, as follows.

The median was calculated for each condition and subtracted
from intensity values to retrieve median-centered log2 transformed
data. Based on the time series phosphoproteome data, changes in
phosphorylation intensitieswere identified. Thedelta phosphorylation
events of a protein (p) are calculated as follows:

pΔðtÞ=
0,

1,

�1,

8><
>:

jp tð Þ � p t � 1ð Þj<quantileð8 p tð Þ � p t � 1ð Þ
�� ��, cÞ

p tð Þ � p t � 1ð Þ>a � pðt � 1Þ
p tð Þ � p t � 1ð Þ<�b � pðt � 1Þ

ð8Þ

Specifically, an increase or decrease in phosphorylation intensity
between two consecutive timepoints was identifiedwhen the intensity
increased or decreased with at least 25%, respectively. A bottom per-
centage of all fold changes equal to 10%was considered as unchanged.
Absent phosphorylation intensities are set to 0. Next, potential reg-
ulator (r) – target (p) combinations were identified as follows:

Pn
t = 1rΔ tð Þ=pΔ tð Þ

n

� �����
Pn

t = 1rΔ t � 1ð Þ= pΔ tð Þ
n� 1

� �
>0:5 ð9Þ

rΔðtÞ= r tð Þ � rðt � 1Þ ð10Þ

pΔðtÞ=p tð Þ � pðt � 1Þ ð11Þ

Where n is the number of time points. Only identified kinases and
phosphatases from HMMER and PF-NET predictions (analyses were
redone using the latest soybean genome annotation Williams 82
Genome Sequencing Project, Assembly 4 Annotation 1) were con-
sidered as potential regulators. A protein is a potential regulator of a
target protein if and only if it exhibits a change in phosphorylation
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intensity at the same time (time-lapse 0) or immediately prior (time-
lapse 1) to a change in phosphorylation intensity of the target for at
least 50% of the time points21. Given our time course (every 6min for
one hour) and the fast nature of phosphorylation cascades, we
selected time-lapse 0 and 1 as we assumed that the regulation may
happen within and between time points. To substantiate the choice of
including both time-lapse 0 and 1, we also proceeded with only time-
lapse 1, compared network topology, and were able to draw the same
conclusions (Supplemental Fig. S8). For time-course datasets with
smaller time steps, only the inclusion of time-lapse 1 is advised22,23.
NetPhorce R package contains a default list of kinases and phospha-
tases for 26 species. For rice, soybean, wheat, sorghum, arabidopsis,
and maize the kinases and phosphatases from the union of PF-NET’s,
HMMERs, and/or orthologs results were included.

Next, the data were discretized into three levels: (1) a discretiza-
tion level below the experiment-determined median, (2) a discretiza-
tion level above the experiment-determined median, and (3) a
discretization level for absent phosphorylation intensities. Inferring a
DBN consists of finding the network topology that maximizes a score,
i.e., finding the most likely parents of each node. Each potential
regulator-target or regulator 1 & 2-target combination were scored
with the Bayesian Dirichlet equivalent uniform (BDeu)21. The BDeu
score of a DBN can be decomposed as the sum of the scores of the log
conditional probabilities of each node21:

BDeu D,Gð Þ=
Xn
i = 1

Xqi
j = 1

log
ΓðαqiÞ

ΓðPri
k = 1Nijk +

α
qi
Þ

 !
+
Xri
k = 1

log
ΓðNijk +

α
qi
Þ

Γð α
riqi

Þ

 ! !

ð12Þ

Where G refers to the Bayesian graph, D refers to the dataset con-
taining the time point observations, Nijk indicates the number of data
vectors in which target i, has the value k while its parents are in con-
figuration j. α equals 1E−15, a hyperparameter of the Dirichlet distribu-
tion. The regulators of target i are the ones that led to the highest value
of the BDeu.

For each inferred edge, a score is calculated to determinewhether
the inferred interaction is a phosphorylation or dephosphorylation.
For time-lapse 0, the change over time of the target and regulator was
compared at the same time points, while for time-lapse 1, the change
over time of the target was compared with that of the regulator at the
immediate prior time point. If the change over time is in the same
direction (for example, an increase in phosphorylation) formost of the
time points, the direction is considered phosphorylation. While if
intensities of the regulator and target are changing in opposite direc-
tions (for example, one increases in phosphorylation while the other
decreases in phosphorylation), the direction is considered depho-
sphorylation. If the change over time is equal, then the sign of the
interaction is denoted as undetermined.

All networks were visualized in Cytoscape® 3.8.069. To evaluate
how the control and cold signaling networks were rewired, we used
DyNet, a Cytoscape application that, among others, allows for the
analysis of the most “rewired” nodes across networks with the node
attribute “DyNet REWIRING”70.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data, the MaxQuant settings,
MaxQuant outputs, and the resulting merged file generated in this
study have been deposited in the ProteomeXchange Consortium via
the PRIDE64 database under accession code PXD037601. The predic-
tion data, PF-NET’s performance, network inference output, and

orthogroup data generated in this study are provided in the Supple-
mentary Information. Sequences from Pfam’s underlying sequence
database of each Pfam family used in this study were extracted from
http://ftp.ebi.ac.uk/pub/databases/Pfam/. The yeast, A. thaliana, soy-
bean, wheat, sorghum, rice, and maize proteome used in this study
were downloaded at the Saccharomyces Genome Database (https://
www.yeastgenome.org/), TAIR (https://arabidopsis.org/), Soybase
(https://www.soybase.org/), EnsemblPlants (https://plants.ensembl.
org/Triticum_aestivum/Info/Index), EnsemblPlants (https://plants.
ensembl.org/Sorghum_bicolor/Info/Index), rice genome annotation
project (http://rice.uga.edu/), and Maize Genome Database (https://
www.maizegdb.org/).

Code availability
All scripts for the neural network training, validation, and for making
predictions are available on GitHub (https://github.com/LisaVdB/PF-
NET, https://doi.org/10.5281/zenodo.8047493). A webtool was also
built to easily make predictions with PF-NET (https://sozzanilab.
shinyapps.io/PF-NET_Shiny/). All scripts to analyze label-free phos-
phoproteomics data with NetPhorce were wrapped into an R package
(https://ksong4.github.io/NetPhorce/).
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