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Fast kernel-based association testing of non-
linear genetic effects for biobank-scale data

Boyang Fu 1 , Ali Pazokitoroudi 1, Mukund Sudarshan2, Zhengtong Liu1,
Lakshminarayanan Subramanian2,3 & Sriram Sankararaman 1,4,5

Our knowledge of non-linear genetic effects on complex traits remains limited,
in part, due to the modest power to detect such effects. While kernel-based
tests offer a versatile approach to test for non-linear relationships between sets
of genetic variants and traits, current approaches cannot be applied to
Biobank-scale datasets containing hundreds of thousands of individuals. We
propose, FastKAST, a kernel-based approach that can test for non-linear
effects of a set of variants on a quantitative trait. FastKAST provides calibrated
hypothesis tests while enabling analysis of Biobank-scale datasets with hun-
dreds of thousands of unrelated individuals from a homogeneous population.
Weapply FastKAST to 53quantitative traitsmeasured across ≈ 300Kunrelated
white British individuals in the UK Biobank to detect sets of variants with non-
linear effects at genome-wide significance.

Understanding the contribution of nonlinear genetic effects on com-
plex traits is an important question in human genetics1–7. A powerful
approach to identify such effects relies on grouping genetic variants
into “sets” and testing their aggregated effect8–13. The mixed model
framework offers a versatile approach to test such effects: capable of
testing a wide range of linear and nonlinear relationships between
genotype and trait by employing a kernel function that measures
similarity betweenpairs of genotypes11–13. In practice, testingwithin the
mixed model framework is computationally impractical for large
datasets, so current approaches typically restrict their focus to linear
additivemodels11. While biobank-scale datasets containing genetic and
phenotypic data over hundreds of thousands of individuals provide
the large sample sizes needed to identify nonlinear effects14–16, com-
putational challenges have limited these efforts.

We propose Fast nonlinear Kernel-based ASsociation Test (Fas-
tKAST), a scalable approach to test for nonlinear effects of a set of
variants on a trait in a mixed model framework. Specifically, FastKAST
permits the fitting of a wide class of kernel functions that model
nonlinear effects of genetic variants on a trait (including the popular
radial basis function (RBF) kernel). FastKAST combines a low-
dimensional approximation to the kernel function17 within a score

test, obtaining calibrated p values by fitting a distribution to genome-
wide statistics obtained from a small number of permuted
phenotypes18. As a result, FastKAST can efficiently test nonlinear
associations in biobank-scale data.

Our theoretical and empirical analyses show that FastKAST pro-
vides calibrated hypothesis tests. Using extensive simulations across
genetic architectures in which the phenotypes have a linear depen-
dence on genotype (consistent with the known polygenic architecture
of most complex phenotypes19–21) but no nonlinear dependencies, we
find that FastKAST provides calibrated p values. On small-scale data-
sets that permit exact computation, FastKAST is highly concordant
with exact tests. To illustrate its utility, we applied FastKAST to 53
quantitative traits measured across N ≈ 300K unrelated white British
individuals in the UK Biobank (UKBB). Performing a genome-wide scan
of nonlinear effects of genotypes measured on common SNPs with
MAF ≥0.01 on the UKBB SNP array grouped into non-overlapping
100 kb windows, we found 75 windows with statistically significant
nonlinear effects across 25 traits (p < 3.27 × 10−8

�
0:05

28,818 × 53

�
accounting

for the number of sets and traits tested). To interrogate the nature of
these effects, we repeated our analyses after regressing out pairwise
interactions (in addition to linear effects) andon imputed genotypes in
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the UKBB to obtain eight significant associations across three quanti-
tative traits (Alkaline phosphatase, Lipoprotein-A, and Urate) To fur-
ther interpret the signals detected by FastKAST, we applied FastKAST
to test for nonlinear effects in protein-coding genes across 53 quanti-
tative traits. We detected 48 significant trait-gene pairs demonstrating
nonlinear effects of which 35 overlapped with regions in our genome-
wide scan. We observed 9/48 of the significant trait-gene pairs iden-
tified by FastKAST were not detected as significant using the linear
model underlying SKAT11. We further compared FastKAST with the
linear kernel in SKAT in the setting where we aim to identify either
linear or nonlinear effects and observed that FastKAST has increased
power in detecting significant trait-gene pairs compared to SKAT. Our
results highlight the potential of FastKAST to uncover nonlinear
genetic effects from Biobank-scale datasets.

Results
Methods overview
FastKAST tests for nonlinear effects between genotypesmeasuredona
set of M single nucleotide polymorphisms (SNPs) and a phenotype.
The vector of phenotypes y, measured onN individuals, is modeled as:

y∼N ðXβ, σ2
gK + σ2

ϵ INÞ

HereXdenotesfixed effects.K is aN ×N kernelmatrix obtainedby
applying a kernel function k to everypair of genotypes over theM SNPs
to be tested, i.e., entry (i, j) in the matrix K, Ki,j = k(zi, zj) where zi (zj)
denotes the genotype of individual i (j). σ2

g denotes the variance
component associated with genetic effects while σ2

ϵ denotes the var-
iance component associated with residual effects. The kernel function
can model different relationships between genotype and phenotype:
the inner-product kernel kðzi, zjÞ= zTi zj implies a linear additivemodel,
while the radial basis function (RBF) kernel kðzi, zjÞ= expð�γ

∣∣zi�zj ∣∣
2

2 Þ is
a common kernel to model nonlinear relationships.

Testing for a genetic contribution in this model involves testing
thenull hypothesis:σ2

g =0which is commonly achievedusing the score
test11. While p values for the score test can be computed efficiently
when testing linear effects (as implemented in the SKAT software11),
these approaches are computationally impractical for testing non-
linear effects in large samples.

FastKAST approximates the kernel function by transforming the
input genotypes to a randomized feature space17 where the number of
random featuresD (termed the approximation dimension) determines
the quality of the approximation. Combining the idea that an
approximation dimension D substantially smaller than the sample size
N is sufficient for approximating the kernel function with efficient
linear algebra implementations allows FastKAST to efficiently compute
p values. While these p value computations assume that the kernel
hyperparameters are known (e.g., the γ parameter for the RBF kernel),
the more common setting is one in which the hyperparameter is
unknown. In this more general setting (which is the setting that we
focus on in thiswork), FastKASTadaptively selects thehyperparameter
and obtains calibrated p values by fitting a distribution to genome-
wide statistics18 (see Methods for details).

Calibration of FastKAST
To assess the calibration of FastKAST, we performed simulations of
quantitative traits with linear additive effects but no nonlinear effects.
We simulated phenotypes based on whole-genome genotypes from
unrelated white British individuals in the UK Biobank (UKBB)
(N = 337,205 individuals and M = 593,300 SNPs on the UK Biobank
Axiom array; see Methods for details on the dataset). We performed
simulations under four genetic architectures: infinitesimal model
(causal variant ratio = 1), where causal variant ratio refers to the pro-
portion of variants that are causal to the outcome trait; non-
infinitesimal model (causal variant ratio = 0.001) with a different

range of minor allele frequencies (MAF) for the causal variants: [0.01,
0.05] (RARE), [0.05–0.5] (COMMON), [0.01, 0.5] (ALL). The trait her-
itability was set to h2 = 0.50 in all settings.

We applied FastKASTwith the radial basis function (RBF) kernel in
non-overlapping 100 kb windows to a sub-sample of N = 50,000 indi-
viduals with phenotypes simulated above. We approximated the RBF
kernel with approximation dimensionD = 50M, whereM is the number
of SNPs within each window. Since the goal of our work is to identify
sets of SNPs with nonlinear effects, we need to first completely regress
out the linear effect before testing for nonlinear effects. We observe
that simply regressing out the effects of SNPs in the set being tested
does not yield calibrated tests, likely due to correlation or linkage
disequilibrium (LD) across SNPs (Supplementary Fig. 1). On the other
hand, regressing out the linear effect within the target window as well
as the additional neighboring windows can solve this issue (which we
term a superwindow, the size of which is measured in multiples of the
target window size). We empirically show that a superwindow of size
five (e.g., target window plus two neighboring windows on each side)
leads to calibrated p values and appropriate control of the false posi-
tive rate (Supplementary Fig. 1). With this approach to control for
linear effects, FastKAST obtains calibrated p values across the archi-
tectures considered (Fig. 1 and Supplementary Table 1). While Fas-
tKAST adaptively chooses the kernel hyperparameter, our theory
(Supplementary Note 1) and empirical results show that FastKAST
remains calibrated even for a specific choice of hyperparameter
(Supplementary Figs. 2, 3 and Supplementary Table 1).

Power analysis of FastKAST
Our next experiment sought to compare the p values obtained by
FastKAST to an exact test. In the first set of experiments, we analyzed
the correlation in p values between an exact test using the RBF kernel
with hyperparameter γ =0.1 and the approximate kernel used by Fas-
tKAST in a simulationwith causal variant ratio = 0.001with h2 = 0.5.We
limited our sample size to 8000 individuals due to the limitations of
computing the exact kernel. Since the approximation accuracy
depends on the approximation dimension D, we explored the corre-
lation between exact test p values and FastKAST p values by varyingD.
We found that values ofD ≥ 50M, whereM is the number of SNPs in the
set, resulted in consistently high correlation (≥0.9) (Supplementary
Fig. 4). More importantly, there is high concordance (98.7% across the
settings tested) in the acceptance or rejectionof the null hypothesis (at
a significance level corresponding to what we employ in our real data
analysis for a single trait of p< 0:05

28,818) (Supplementary Fig. 5). To further
validate our choice of the approximation dimension, we compared p
values from a test employing the exact kernel (RBF kernel with
hyperparameter γ = 0.1) with FastKAST (D = 50M) on two real traits:
Body mass index (BMI) and blood Mean Platelet Volume (MPV).
Applying both tests to assess nonlinear effects within 100 kb windows
across 5000 unrelated white British individuals, p values obtained by
FastKAST are highly correlated with those obtained by the exact test
(Pearson correlation ρ of 0.94 for both traits; Fig. 1b). These results
remain consistent across values of the RBF kernel hyperparameter γ
and for different runs of FastKAST (Supplementary Figs. 6, 7).

We compared the statistical power of FastKAST relative to an
exact test using simulated phenotypes with true nonlinear effects.
We varied the RBF kernel hyperparameter γ (a measure of the scale
of nonlinearity), the kernel variance component σ2

g (a measure of
the strength of the nonlinear signal), and the approximation
dimension D (with default values of D = 50M, γ = 0.1, and σ2

g =0:05).
For each setting, we randomly selected 2000 windows of length
100 kb across 5000 individuals and simulated phenotypes
y∼N ð0,σ2

gK + σ2
ϵ IÞ, whereK is constructedusing theRBFkernelwith

hyperparameter γ. Across these simulations, the power of FastKAST
is indistinguishable from that of the exact test provided the
approximation dimension D ≥ 50M (Fig. 1c). Based on these results,
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we decided to use D = 50M as our approximation dimension across
the remaining experiments.

Computational efficiency of FastKAST
We compared the runtime of FastKAST to the exact test with
increasing sample size with the number of SNPs set to M = 30 (about
the average number of SNPS in a 100 kbwhen analyzing SNPs from the
UKBBgenotyping array) andD = 50M. For each setting (a given set ofN,
D), we randomly subsampled N individuals from UKBB and M con-
secutive SNPs and reported the average runtime across 100 runs (10
replicates for sample sizes larger than 30K).

The exact test has a runtime that increases rapidly with sample
size: requiring more than 5 h to analyze N = 50K (Fig. 1d) and extra-
polated to require over 100 days to analyze N = 500K samples. On the
other hand, even on the largest sample size of N = 500K (with M = 30,
D = 50M), FastKAST requires less than 5min to analyze a single set (this
includes the time to compute p values acrossmultiple hyperparameter

values and to analyze permuted phenotypes). We also found that the
runtime of FastKAST scales quadratically as a function of the number
of SNPs and approximation dimension, so that FastKAST is best suited
for analyzing relatively small sets of SNPs (Supplementary Fig. 8).

Application of FastKAST to identify nonlinear effects in the UK
Biobank
We applied FastKAST to about 300K unrelated white British indivi-
duals in the UKBB. We tested non-overlapping 100 kb windows (con-
sidering SNPs with MAF > 1% in the UKBB genotyping array) to test for
nonlinear effects using theRBF kernel and eachof 53quantitative traits
(see Methods for details on data processing). For each window tested,
we regressedout the linear effectof genotypes using a superwindowof
size five. We included sex, age, and the top 20 genetic principal com-
ponents (PCs) as covariates in all our analyses.We adopted a two-stage
testing strategy. In the first stage, we used a small approximation
dimension D = 10M to efficiently test all trait-set pairs. We then

Fig. 1 | Assessment of calibration, power, and scalability of FastKAST.
a Calibration of FastKAST under null simulations that include linear effects but no
nonlinear effects (N = 50K individuals). We fixed SNP heritability at 0.50 while
varying the ratio of causal variants (∈{0.001, 1}) and the range of minor allele
frequencies (MAF) of the causal variants (ALL, COMMON, RARE). We applied Fas-
tKAST to test for nonlinear effects within 100 kb windows (after regressing out the
linear effect in five windows centered around the tested window). The two-sided
95% confidence interval for the Q-Q plot was estimated using a beta distribution.
b Comparison of p values computed using FastKAST to an exact method. We
analyzed Bodymass index andMean platelet volume (MPV) across 5000 unrelated
white British individuals in the UK Biobank (UKBB). We tested each trait for non-
linear effects of SNPs in the UKBB genotyping array within non-overlapping 100kb

windows using the exact RBF kernel and FastKAST (with approximation dimension
D = 50M where M is the number of SNPs in a tested window and the kernel hyper-
parameter γ =0.1). p represents the p value computed using the exact kernel; ~p
represents the p value computedby FastKAST. c Power of FastKASTas a function of
the kernel variance component σ2

g , the kernel hyperparameter γ, and the approx-
imation dimension D. We calculate the average (represented as a dot) across 2000
repetitions for each parameter setting and the bootstrap standard error bar across
1000 bootstrap replicates (denoted as a bar). d The runtime of FastKAST and the
exact method as a function of sample size (N) for a fixed number of SNPs (M = 30)
and approximation dimension D = 50M (the default in this study). The exact
method requires hours to analyze sample sizes larger than 50K. FastKAST remains
efficient for sample sizes as large as 500K.
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selected all the candidate trait-set pairs forwhich the estimatedp value
passed a relaxed significance threshold (α = 1 × 10−5). In the second
stage, all the trait-set pairs were tested using a larger approximation
dimensionD = 50M, andonly the trait-set pairs that are significant after
Bonferroni correction for both the number of traits and sets tested
(p< 0:05

28,818 × 53

� �
) across five different seeds were declared as significant.

This two-stage approach drastically reduces the computational com-
plexity compared to directly applying stage two across all trait-
set pairs.

We detected 75 statistically significant associations
(p < 3.27 × 10−8) for 25 traits (Supplementary Table 3). We further
assessed the robustness of our results to population structure by
varying the number of PCs included (from five to forty) and found the
statistical significance to be numerically stable to the choice of the
number of PCs (Supplementary Table 2).

We performed additional analyses to investigate the nature of the
nonlinear effects at these loci. First, we repeated our analysis by
regressing out linear and quadratic effects and repeated the test using
FastKAST (“Nonlinear + non-quadratic” column in Supplementary
Table 3). Previous studies have shown that apparent nonlinear genetic
effects could potentially be explained by a model of linear effects
involving untyped causal variants and correlation between tested
genotypes with untyped causal variants22. We investigated this possi-
bility by testing the significant loci using imputed genotypes (column
“Nonlinear (imputed)” in Supplementary Table 3). We found that 24
out of the 75 trait-set pairs remained significant using imputed geno-
types of which eight remained significant after removing both linear
and quadratic effects.

Many of the regions with significant epistatic signals have been
detected in previous association studies that typically focus on linear
additive effects. The locus associated with MPV (12:122.3-122.4Mb)
overlaps the gene CFAP251 which contains multiple variants strongly
associated with platelet volume23–25 as well as multiple rare variants
associated with male fertility26. The region 6:160.9–161.0Mb asso-
ciated with Lipoprotein-A overlaps with the gene LPA, which has been
shown to harbor multiple variants with a strong association with
lipoprotein-related function27–29 The locus 4:9.9–10.1Mb associated
with serum urate levels overlaps the solute transporter gene SLC2A9
whichharborsmultiple variants associatedwith serumurate levels30–33.
Variants in this gene have also been found to have sex-specific effects
on urate levels34. To investigate potential sex-specific differences in
effects on serum urate levels, we separately analyzed this locus inmen
and women. We computed p values at the hyperparameter value that
attained the minimum p value (γ =0.1) in men and women using Fas-
tKAST.We obtain a p value of 6.8 × 10−4 inmen and 5.2 × 10−7 in women
even though the number of men and women is comparable in our
analyses (N = 132,020 for men and N = 150,496 for women). Overall,
these results suggest that many of the loci that we detect as showing
strong evidence of nonlinear effects harbor variants with significant
marginal additive effects.

Comparisonof FastKASTandSKAT todetect associationswithin
protein-coding genes
To increase the interpretability of our findings, we next applied Fas-
tKAST to windows consisting of protein-coding genes. Restricting our
analysis to protein-coding genes on autosomes and genes with at least
three SNPs leads us to test 10,078 genes. We then applied the two-
stage testing procedure as described in the previous section. We
analyzed 10,078 genes and therefore defined the significance level as
α = 0.05/(10,078 × 53), where 53 is the number of traits tested. In the
first experiment, we aimed to compare the tests for nonlinear effects
as realized in FastKAST to a test for linear effects implemented in
SKAT11. We applied FastKAST to windows defined by protein-coding
genes. We also tested the same regions using SKAT with its default
settings. FastKAST detected 48 trait-gene pairs as significant, with

35/48 regions overlapping with the windows detected using the
genome-wide scan. Among the 48 significant trait-gene pairs, nine
were not detected as statistically significantwhen analyzed using SKAT
(Supplementary Table 4).

To further understand the differences between FastKAST and
SKAT, we applied both methods to the setting of general set-based
association testing, i.e., to the setting in which we are interested in
detecting either a linear or a nonlinear effect at a given set of variants.
This setting contrasts with our previous analyses that focused on
detecting nonlinear effects while regressing out linear effects. We
applied bothmethods to the 53 quantitative traits with sets defined by
the genetic variants in protein-coding genes. FastKAST was applied
without removing linear effects as we wanted to understand the ver-
satility of the test underlying FastKAST. Across all the traits, SKAT
detected 3568 significant associations, of which 3147 were also
detected by FastKAST. Additionally, FastKAST exclusively detected
7522 new association signals (Fig. 2 and Supplementary Table 5). Due
to our application of FastKAST to test for either linear or nonlinear
effects, we caution that these additional association signalsmay not all
contain nonlinear effects but could instead represent regions harbor-
ing linear effects that were missed by SKAT.

Discussion
We have described FastKAST, a computationally efficient algorithm
that is capable of testing for nonlinear genetic effects in Biobank-
scale data. FastKAST yields well-calibrated tests with little loss in
power relative to an exact test. Applying FastKAST to common SNPs
(MAF ≥0.01) on the UKBB genotyping array grouped into non-
overlapping 100 kb windows and 53 quantitative traits measured
across ≈300K unrelated white British individuals in UKBB, we dis-
covered 75 nonlinear associations across 25 traits. We additionally
analyzed these associations after regressing out pairwise interactions
and on imputed genotypes in UKBB to find eight associations that

Fig. 2 | Comparison of the significant hits discovered by SKAT and FastKAST
when run on protein-coding genes. The significance threshold corrects for mul-
tiple testing on the number of sets and traits tested, α =0.05/(10,078 × 53), where
10,078 is the total number of valid gene annotations and 53 is the total number of
traits tested.
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remain significant for Alkaline phosphatase, Lipoprotein-A, and
Urate. We also applied FastKAST to the UKBB array SNPs grouped
into protein-coding genes to detect 48 significant trait-gene pairs of
which 35 associations overlapped with the associations detected in
our genome-wide scan. In this setting, we also compared the results
of FastKAST to those from the linear model underlying SKAT to find
that 9/48 significant trait-gene pairs were not detected by SKAT.
Finally, we compared FastKAST to SKAT in a general set-based
association test setting that aims to detect either a linear or a non-
linear association at a set of genetic variants and found 7522 trait
gene-pairs that were detected as significant by FastKAST but
not by SKAT while SKAT detected 421 trait-gene pairs that were
missed by FastKAST.

We end with a discussion of the limitations of our approach and
directions for future work. First, FastKAST is designed to analyze
quantitative traits. FastKAST could potentially be extended to binary
traits using a generalized linear mixed model with a logistic link
function11–13. We leave a systematic evaluation of this extension to
future work. Second, nonlinear interactions are represented in Fas-
tKAST using the class of shift-invariant kernels (which include the
widely-used RBF kernel). In this work, all the experiments utilized the
RBF kernel due to its popularity. FastKAST has the potential to be
extended for a wider class of kernels (including kernels that are not
shift-invariant) using other randomized approximations, e.g.,
Nyström kernel approximation35. For example, polynomial kernels
might provide more interpretable insights into the basis of epistasis.
In general, the optimal kernel remains unknown due to our limited
understanding of the nature of epistasis. Indeed, the type of kernel
that is appropriate is likely to depend on the trait and the set of
genetic variants analyzed. We leave a more detailed exploration of
alternative kernels and approximations for future work. Third, our
results are localized to fairly broad windows of size 100 kb. While the
application to disjoint windows of size 100 kb was motivated by
computational and statistical considerations, we can apply FastKAST
to other choices of windows. We have provided an alternative
approach to define windows based on protein-coding genes anno-
tation that can lead to more interpretable signals of epistasis. While
the choice of windows could affect power when the underlying
interaction effects are not confined to the window, we emphasize
that FastKAST is consistently calibrated across all the null settings
leading to high confidence in our signals. Fourth, we used only
unrelated white British individuals across all our analyses. Analysis of
related individuals or multiple ancestries will need to account for the
possibility of population stratification (as is the case for most other
analyses in the field). Further information from identity-by-descent
(IBD), in addition to genetic ancestry, may be needed in these set-
tings, which we leave for future work. Finally, we note that though we
have shown strong evidence for the potential existence of higher-
order feature interactions, our results must be interpreted with
caution. The interpretation of genetic interactions is conditioned on
the number and quality of SNPs analyzed. It has been shown that
apparent interactions in the data can be explained by linearity with
missing SNPs3,22,36. We have attempted to address this issue by
replicating the loci discovered on the imputed genotypes in UKBB.
While the imputed genotypes contain the vast majority of SNPs with
minor allele frequency >1%, it is likely to be missing low-frequency
SNPs. The availability of whole-exome and whole-genome sequen-
cing data in the UK Biobank (and other biobanks) will allow a more
thorough investigation of these effects.

Methods
Let y denote the vector of phenotypes measured on N individuals and
Z denote the design matrix of genotypes overM SNPs that are desired
to be tested. The goal is to test for association between the set of M
SNPs and the phenotype.

We model the distribution of phenotypes, y, as:

y=Xβ+Zα + ϵ, α ∼N ð0,σ2
g IM Þ, ϵ∼N ð0, σ2

ϵ INÞ ð1Þ

Here y 2 RN ,X 2 RN ×P denotes amatrix of covariates,Z 2 RN ×M

is the designmatrix of standardized genotypesmeasured overM SNPs,
and ϵ 2 RN is the random vector of residual effects. β 2 RP is the
vector offixed effect coefficientswhileα 2 RM is the vector of random
effect coefficients. σ2

g ,σ
2
ϵ are the variance components associated with

the genetic and residual effects. Integrating out the randomeffects, we
have y∼N ðXβ, σ2

gZZ
T + σ2

ϵ INÞ.
The above model assumes that the genotype has a linear and

additive effect on phenotype. To model nonlinear effects, we trans-
form the genotype using a nonlinear functionϕ : RM ! RQ leading to
the following model:

y =Xβ+Φα + ϵ, α ∼N ð0,σ2
g IQÞ, ϵ∼N ð0,σ2

ϵ INÞ ð2Þ

Here Φ is the design matrix obtained by applying ϕ(z) to each
individual genotype z. ϕ(z) is assumed to lie in a Hilbert space
endowed with a reproducing kernel function k( ⋅ , ⋅ )37. Equivalently, we
can write this model as:

y∼N ðXβ, σ2
gK + σ2

ϵ INÞ ð3Þ

HereK is theN ×N kernelmatrix where Ki,j = k(zi, zj), i, j∈ {1,…,N}.
For example, a common kernel is the radial basis function (RBF) ker-
nel: kðzi, zjÞ= expð�γ

∣∣zi�zj ∣∣
2

2 Þ.

Hypothesis testing
Testing for a genetic contribution to the phenotype in Equation (3)
involves testing the null hypothesis σ2

g =0. A commonly used approach
to test the null hypothesis is the score test11. Under the null hypothesis,
the score statistic Q= 1

σ2
ϵ
yTPKPy is asymptotically distributed as a

weighted sum of χ21 variables where the weights correspond to the
eigenvalues of the matrix PKP and P = ðI � XðXTXÞ�1

XT Þ is the pro-
jection matrix. To compute the score statistic, an estimate of σ2

ϵ ,
typically the restricted maximum likelihood (REML) estimate, is used.
More recent works38,39 have characterized the sampling distribution of
the score statistic infinite samples enabling the computation of exactp
values for the score test.

Computation of p values
A key challenge in computing p values for the score statistic is the
computation of all the eigenvalues of PKP. If wewant to compute the p
values for the exact score test, we need to construct the kernel (time
complexity depends on the type of kernel;OðN2MÞ complexity for the
RBF kernel) followed by eigen-decomposition on the constructed
matrix K (OðN3Þ time complexity). This approach is obviously infea-
sible for biobank-scale data.

Weighted linear kernels, i.e., kernels of the form K = ZWZT where
W is a diagonal matrix with non-negative entries (used in popular
software such as SKAT), permit efficient computation. However, these
approaches are not applicable to kernels that model general nonlinear
effects (like the RBF kernel), so that the computational complexity of
testing for such effects scales as OðN3Þ.

Random Fourier features
FastKAST relies on the observation that the kernel function can be
approximated by mapping the input features to a randomized low-
dimensional feature space17. For the class of shift-invariant kernel
functions kðz, z0Þ= f ðz � z0Þ (for some function f) that include the
popular RBF kernel, the kernel function can be approximated by pro-
jecting each input z onto a randomdirectionω drawn from the Fourier
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transform of k. Specifically, we approximate kðz, z0Þ≈ ~kðz, z0Þ �
~ϕðzÞT ~ϕðz0Þ= 1

D

PD
d = 1

~ϕðωd ,bd , zÞ~ϕðωd ,bd , z
0Þ, where D denotes the

number of random features (which we term the approximation

dimension), ωd 2 RM , bd 2 R, ~ϕðzÞ= 1ffiffiffi
D

p ϕðω1,b1, zÞ, . . . ,ϕðωD,bD, zÞ
� �

,

ωd ∼i:i:d pðωÞ where p(ω) denotes the Fourier transform of k,

bd ∼i:i:d Unif ð0,2πÞ, and ~ϕðω,b, zÞ=
ffiffiffi
2

p
cosðωTz + bÞ. For example, in the

RBF kernel with hyperparameter γ = 1: kðz, z0Þ= expð� ∣∣z�z0 ∣∣2
2 Þ,

pðωÞ= ð2πÞ�M
2 e�

∣∣ω∣∣2
2

2 , and in this case ωd ∼iid N ð0, IM Þ.
Given the N ×D approximate feature matrix ~Φ= ½~ϕðz1Þ, . . . ,~ϕðzNÞ�,

it follows that K ≈ ~Φ ~Φ
T
. Prior work has shown that ~k approximates k

for a sufficiently large number of features D17 (we empirically explore
the approximation dimension D needed in our application). A key
computational advantage of this approximation is that the approx-

imate design matrix ~Φ can be constructed in time linear in the

sample size (OðNMDÞ). We denote ~K = ~Φ ~Φ
T

as the approximate
kernel matrix.

Hypothesis testing with random Fourier features
We use a score statistic to test the null hypothesis that σ2

g =0 using the
randomFourier feature approximation to the kernel. Let ~Q= 1

σ2
ϵ
yTP ~KPy

denote the approximate score statistic where P is the projectionmatrix.
Weshow that, under thenull hypothesis, theapproximate score statistic
is distributed as

PN
n= 1 ρnχ

2
1 where ρn denotes the nth eigenvalue of the

matrix P ~KP (Supplementary Note 1). We compute ~K using random
Fourier features while we estimate the noise variance as σ̂2

ϵ =
yT Py
N�P.

Computing p values for the approximate score statistic ~Q requires
computing the eigenvalues of P ~KP which can be computed from the
SVD of P ~Φ with time complexity OðND2Þ. Thus, the total time com-
plexity of computing p values using FastKAST is OðNMD+ND2Þ.

Computing p values when hyperparameters are unknown
Applying FastKAST typically requires choosing a value for the kernel
hyperparameter γ. First, we note that the hypothesis test remains
calibrated for any choice of hyperparameter. However, the choice of
hyperparameter can influence power. A naive approach to perform
hypothesis tests while integrating over choices of the hyperpara-
meter would involve selecting a set of hyperparameter values
{γ1, . . . , γH} followed by computation of p values ph for each hyper-
parameter h (using the process described above). We then choose
the minimum p value: p* =min{p1, . . . , pH} as the statistic. If the null
hypotheses associated with the H tests are all true, each of the p
values is calibrated under the null, and the p values are independent,
then it is well-known that p* ~ Beta(α, β), where α = 1 and β =H, i.e., the
minimum of H independent uniform random variables is distributed
as a Beta random variable with density f ðxÞ= 1

H ð1� xÞH�1. More
generally, we can approximate the distribution of p* by a beta dis-
tribution whose parameters we estimate using one of two
approaches.
1. Learn the distribution fromobserved data. In this approach, wefit

a single beta distribution to the observed p-values to learn the
parameters α and β. This approach assumes that the null
hypothesis is true across most windows.

2. Learn the distribution from p-values computed from permuted
phenotypes. In this approach, we fit a single beta distribution to
the p-values computed on permuted phenotypes across all the
windows. This approach relaxes the assumption that the null
hypothesis is true across most windows.

We adopted the first approach for all the tests of epistasis on real
data as well as in simulations where the signals of epistasis were
assumed to be sparse. On the other hand, for the general association

test on real data, we adopted the second approach by permuting ten
times to generate the null distribution.

Datasets
Dataset used in simulations. We obtained a set of N = 337,205 unre-
lated white British individualsmeasured atM = 593,300 common SNPs
(MAF > 1%) genotyped on the UK Biobank Axiom array to use in
simulations by extracting individuals that are >3rd-degree relatives
and excluding individuals with putative sex chromosome aneuploidy.
This dataset was used for all simulations except for Supplementary
Table 1, which relied on the UKBB genotypes described below.

UKBB genotypes. For analysis of real traits, we restricted our analysis
to SNPs that were presented in the UK Biobank Axiom array used to
genotype the UK Biobank. SNPs with greater than 1% missingness and
minor allele frequency smaller than 1% were removed. Moreover, SNPs
that fail the Hardy–Weinberg test at significance threshold 10−7 were
removed. We restricted our study to self-reported British white
ancestry individuals, which are >3rd-degree relatives that is defined as
pairs of individuals with kinship coefficient <1/2(9/2)40. Furthermore, we
removed individuals who are outliers for genotype heterozygosity
and/or missingness. Finally, we obtained a set of N = 291,273 indivi-
duals andM = 459,792 SNPs to use in the real data analyses. We further
excluded the MHC region in all our analyses (chr6: 25–35Mb). For our
analysis of fixed 100 kb windows, the number of SNPs per window has
a mean of 17.5, a median of 16, and a range between 3 and 199. For our
analysis of protein-coding genes, the distribution of the number of
SNPs per gene has ameanof 15.6, amedian of 7, and a range between 3
and 916. For both analyses, windows with SNPs number smaller than 3
were excluded from our analyses.

We also analyzed imputed genotypes acrossN = 291,273 unrelated
white British individuals. We removed SNPs with greater than 1%
missingness, minor allele frequency smaller than 1%, SNPs that fail the
Hardy–Weinberg test at significance threshold 10−7, aswell as SNPs that
lie within the MHC region (Chr6: 25–35Mb) to obtain 4,824,392 SNPs.

Covariates and phenotypes. We selected 53 quantitative traits in the
UKBB, which we processed using inverse rank-normalization. We
included sex, age, and the top 20 genetic principal components (PCs)
as covariates inour analysis for all phenotypes.Weused PCs computed
in the UKBB from a superset of 488,295 individuals. Extra covariates
were added for diastolic/systolic blood pressure (adjusted for
cholesterol-lowering medication, blood pressure medication, insulin,
hormone replacement therapy, and oral contraceptives).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The UK Biobank dataset used in this study is not publicly available but
can be obtained by application (https://www.ukbiobank.ac.uk/).

Code availability
FastKAST can be found at https://github.com/sriramlab/FastKASTwith
the required package installation script, exemplar simulation files, a
script for running FastKAST, and results with tutorial analysis. The
simulator used in the experiments can be found at https://github.com/
alipazokit/simulator. SKAT (v.2.2.5) can be found at https://cran.r-
project.org/web/packages/SKAT/index.html.
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