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Demonstration of an AI-driven workflow for
autonomous high-resolution scanning
microscopy

Saugat Kandel 1 , Tao Zhou2, Anakha V. Babu3, Zichao Di4, Xinxin Li 2,5,
Xuedan Ma 2,5, Martin Holt 2, Antonino Miceli 1, Charudatta Phatak 6 &
Mathew J. Cherukara 1

Modern scanning microscopes can image materials with up to sub-atomic
spatial and sub-picosecond time resolutions, but these capabilities come with
large volumes of data, which can be difficult to store and analyze. We report
the Fast Autonomous Scanning Toolkit (FAST) that addresses this challenge by
combining a neural network, route optimization, and efficient hardware con-
trols to enable a self-driving experiment that actively identifies andmeasures a
sparse but representative data subset in lieu of the full dataset. FAST requires
no prior information about the sample, is computationally efficient, and uses
generic hardware controls with minimal experiment-specific wrapping. We
test FAST in simulations and a dark-field X-ray microscopy experiment of a
WSe2 film. Our studies show that a FAST scan of <25% is sufficient to accurately
image and analyze the sample. FAST is easy to adapt for any scanning micro-
scope; its broad adoptionwill empower generalmulti-level studies ofmaterials
evolution with respect to time, temperature, or other parameters.

Scanning microscopes are versatile instruments that use photons,
electrons, ions, neutrons, or mechanical probes to interrogate atomic-
scale composition, topography, and functionality ofmaterials, with up
to sub-atomic spatial resolutionand sub-picosecond time resolution1–3.
Notwithstanding the variation in the probe modalities, these instru-
ments all rely on a scan of the sample to generate spatially resolved
signals that are then collected to form an image of the sample.
Ongoing advances in instrumentation, such as the development of
next-generation X-ray and electron detectors4,5, have meant that
scanning microscopes can now image faster and at higher resolutions
than ever before. We can now envision a broad use of these instru-
ments to study not only static systems but also multi-level studies of
the dynamic evolution of materials with time, temperature, or other
parameters, even in situ or operando6. Fine-resolution large-field-of-
view scanning experiments, however, come with some significant
drawbacks: the volume of data generated and the probe-induced

damage to the sample can be prohibitively large. For example, it is now
routinely possible to perform X-ray imaging of 1 mm3 volumes at
≈10 nm resolution, but this generates ≈1015 voxels of data7,8 and
requires a commensurately high probe dose9. Meanwhile, the infor-
mation of interest in these experiments is often concentrated in sparse
regions that contain interfaces, defects, or other specific structural
elements. Directing the scan to only these locations could greatly
reduce the scan time and data volume, but it is difficult to obtain this
information a priori. Addressing this challenge with a human-in-the-
loop protocol, where an experienced user examines the data acquired
to identify trends and guide the scan, can be tedious and prohibitively
time-consuming (in comparison to the experimental acquisition time).
Given these factors, the development of autonomous acquisition
techniques that can continuously analyze acquired data and drive the
sampling specifically toward regions of interest is imperative so as to
make full use of the potential of these scientific instruments.
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In parallel to the advances in scientific instrumentation, the last
decade has also seen the rapid development of deep learning (DL)
techniques and their applications in all domains of science and tech-
nology, including for the acceleration and enhancement of advanced
microscopy methods10–13. These DL-based inversion methods are
enabling real-time data analysis, which is, in turn, opening the door to
self-driving techniques thatmake real-time acquisition decisions based
on real-time data streams. Such self-driving or autonomous experi-
mentation methods14 are methods that combine automated experi-
mental control with on-the-fly data-driven decision-making so that an
algorithm adaptively explores parameter spaces of interest and con-
ducts new experiments until it achieves a pre-defined completion
criterion15. These methods therefore have the potential to not only
remove the need for constant human supervision and intervention in
experiments but also make optimal choices in parameter spaces that
are too large for humans to easily contextualize. As such, they have the
potential to revolutionize experimentaldesign inmany scientificfields,
including the field of imaging and materials characterization.

In general, the use of data-driven priors to direct future experi-
ments is a Bayesian search problem, for which the use of off-the-shelf
deep learningmethods usually do not suffice16. Specific tomicroscopy,
a popular Bayesian search approach is to use unsupervised (without
pre-training) Gaussian Processes (GPs) that could continuously deter-
mine the spatial locations that we are most uncertain about, then
direct the scanning to these locations17–22. While GPs are powerful
techniques, their computational cost tends to scale cubically with the
number of points acquired. Thedecision-making time increases during
the experiment and quickly exceeds the acquisition time for the
measurement itself. The development of scalable GPs is a significant
area of research, but thesemethods are not yet ready for application in
large-scale imaging problems23. General supervised alternatives such
as reinforcement learning can be powerful and fast, but they often
require costly pre-training and tend to ignore the global state of the

parameter space in exchange for a local search; as such, they have only
found limited traction for scanning imaging modalities24.

Specifically for scanning microscopy applications, Godaliyadda
et al.25 have proposed to achieve computationally efficient autono-
mous sampling with the Supervised Learning Approach for Dynamic
Sampling (SLADS) technique. The SLADS technique uses curated fea-
ture maps to quantify the current measurement state and predict the
total image quality improvement obtained bymeasuring a given point,
thereby informing the choice of which point to measure next. Varia-
tions of this technique have found applications in live steering for
dose-efficient crystal positioning for crystallography26 and for imaging
with transmission electron microscopy27 and mass spectrometry28

methods. These works, however, either involve training with and
reconstruction of binary images only26,27 or require extensive training
with images closely related to the sample under study28. As such, they
are difficult to translate to imaging settings with more complex ima-
ges, particularly for imaging without any prior assumptions about the
sample. Meanwhile, Zhang et al.29 have incorporated a neural network
(NN)within the SLADSmethod (for the SLADS-Netmethod) and shown
in numerical experiments that it is sufficient to train the method on
only a generic image, eschewing any prior knowledge about the sam-
ple, to produce a high-fidelity image with sparse sampling. However,
this has not yet been demonstrated in experiment.

In this work, we report the Fast Autonomous Scanning Toolkit
(FAST) that combines the SLADS-Net method, a route optimization
technique, and efficient and modular hardware controls to make on-
the-fly sampling and scan path choices for synchrotron-based scan-
ning microscopy. This method relies on sample-agnostic training to
dynamically measure and reconstruct a complicated (non-binary)
sample, distinguishing this toolkit from existing SLADS-based work-
flows. Moreover, its computational cost is negligible compared to the
acquisition time, even when run on a low-power edge computing
device placed at a synchrotron beamline, which presents a significant
advantage over more generic autonomous experimentation techni-
ques. These characteristics enable the application of our workflow in
the high-precision nanoscale scanning X-ray microscopy instrument
present at the hard X-ray nanoprobe beamline at the Advanced Photon
Source.

We validate the FAST scheme through real-time demonstration at
the hardX-ray nanoprobe beamline at the APS30. A few-layer exfoliated
two-dimensional WSe2 thin film was chosen as a representative
example; the preparation process for the thin film often leaves
microscopic air bubbles trapped underneath the thin film, deforming
the 2Dmaterial.We show that anadaptive scanof<25%of the sample is
sufficient to produce a high-fidelity reconstruction that identifies all
the bubbles within the field of view and even to acquire quantitative
information about the film curvature induced by these bubbles. The
scheme quickly identifies the deformed part of the 2D material and
focuses its attention there while ignoring regions of the film that are
flat and homogeneous. Film curvature reconstructed from the adap-
tive scan (<25% coverage) is consistent with that reconstructed from
the full-grid scan (100% coverage). Given these characteristics, the
FAST scheme can be directly applied in other scanning techniques and
instruments at the APS and elsewhere and may underpin the devel-
opment of many multi-level experimental studies.

Results
Figure 1 shows the experimental setup that scans a focusedX-ray beam
on a sample while acquiring a two-dimensional diffraction image at
eachpoint. The live demonstrationwasperformedon a few-layerWSe2
sample with the detector placed along the 008 Bragg peak, with
2θ = 43. 1° at 10.4 keV. The diffraction patterns were processed on the
detector computer (see “Methods”) to generate the integrated inten-
sities for use in the FASTworkflow. Thefinal output of theworkflow is a
dark-field image of the WSe2 sample.

Fig. 1 | Artist’s representation of the autonomous dark-field scanning micro-
scopy experiment at the Advanced Photon Source (APS). The APS synchrotron
produces a coherent X-ray beam that is focusedusing a zone plate setup. It strikes a
WSe2 film (green) exfoliated onto a Si substrate (blue), which generates diffraction
patterns that are collected by a two-dimensional detector. Above the bubbles, the
lattice of the film rotates, shifting the diffracted intensities away from its nominal
positions. The beamposition, aswell as the detector acquisition, are autonomously
controlled by the FAST AI-based workflow. Image by Argonne National Laboratory.
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Self-driving scanning microscopy workflow
Figure 2A broadly illustrates the FAST workflow for the experiments
reported here. To initiate the workflow, a low-discrepancy quasi-ran-
dom selection (generated using the Hammersely sequence31) of sam-
ple position is measured corresponding to 1% of the total area of
interest. The integrated intensities of the measurements are trans-
ferred to the edge device, an NVIDIA Jetson Xavier AGX located adja-
cent to the detector, which uses Inverse Distance Weighted (IDW)
interpolation to estimate the dark-field image. The estimated image
serves as input for the decision-making step whereby the prospective
measurement points are identified.

This self-driving workflow adopts the Supervised Learning
Approach for Dynamic Sampling using Deep Neural Networks (SLADS-
Net) algorithm29 to find the prospectivemeasurement points. In effect,
the SLADS-Net algorithm uses the current measurements to identify
the best unmeasured points that, when added to the existing dataset,
would have the greatest effect on the quality of the reconstructed
image. As illustrated in Fig. 2B, this is accomplished by, first, repre-
senting each unmeasured point as a feature vector with elements that
depend on the measurement state in the neighborhood of the point.
These feature vectors are used as input for a pre-trained neural net-
work with 5 hidden layers, with 50 nodes per layer, and with the ReLU
activation function. The neural network then predicts the expected
reduction in distortion (ERD), a metric (loosely speaking) for the

expected improvement in the reconstruction quality obtained from
measuring this unmeasured point, individually for each unmeasured
point. The original SLADS-Net algorithm simply uses the unmeasured
point with the highest ERD for the next measurement and repeats this
procedure pointwise. In practice, if the measurement procedure and
themotor movements are fast, then the ERD calculation also has to be
commensurately fast to reduce the dead-time in the experiment. In
this work, we mitigate this requirement by instead selecting a batch of
points that have the highest ERD, sorted in descending order—we
found that a batch of 50 points adequately minimized the experi-
mental dead-time while still ensuring that the overall measurement
was adequately sparse.

The coordinates of these 50 points are passed on to a route
optimization algorithmbased onGoogle’s OR-Tools32 to generate the
shortest path for the motors to visit all of them. This path is appen-
ded to the look-up table in the EPICS33 scan record, which then kicks
off the data acquisition. Henceforth, the scan is automatically paused
after every 50points, raising a flag that triggers a callback function on
the edge device. There, a new estimated dark field image of the
sample is generated, and the coordinates for the next 50 prospective
points are computed. The scan is resumed after the EPICS scan
record receives the new coordinates for the optimized scanning
path. The actual scanning of the focused X-ray beam is achieved by
moving two piezoelectric linear translation motors in step mode.

Fig. 2 | The FAST workflow. A A set of quasi-random initial measurements are
transferred to the edge device, which sequentially generates an initial sample
estimate, computes the candidate points to be measured next, and calculates the
travel path for the measurement. The new measurements are combined with the
existing measurements and used to calculate a new estimate, and the process is
repeated until it achieves a completion criterion. B The candidate computation
starts by examining the local neighborhood (with radius r) of each unmeasured

pointP, with the highlightedpoints indicatingpoints alreadymeasured, togenerate
a 6-dimensional feature vector. The feature vector is transformed to a 50-
dimensional vector using the Radial Basis Function (RBF) kernel and used as input
to a multi-layer NN. The NN then predicts the expected improvement in the image
(ERD) frommeasuring the point P. A set of unmeasured pixels with the highest ERD
are selected as candidates for the next measurement.
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The detector exposure time is set to 0.5 s and comes with an over-
head of 0.2 s.

For the 200× 40 pixels object described in “Results: Experimental
demonstration”, the workflow required ≈0.15 s to compute the new
positions, ≈42 s to scan the set of 50 positions, and a total of ≈0.37 s to
process the diffraction patterns and communicate the measurements.
This represents an overhead of ⪅2%. The workflow is currently entirely
CPU-bound, relying on the on-board 8-core ARM CPUs, and does not
take advantage of the GPU bundled into the NVIDIAAGX device. These
timing results showcase the rapid data-driven decision-making ability
that is characteristic of the FAST workflow. In the future, we expect to
perform the computation in a parallelized and asynchronous fashion,
which would further reduce this overhead.

We also note that, for all the results reported in this work, the
underlying NN was trained on the standard “cameraman”34 image that
has no relation to microscopy, and we discuss the choice of a training
image in Supplementary Information S.2. For details about the SLADS-
Net algorithm and the sample-agnostic training procedure, the reader
is referred to the “Methods” section.

Numerical demonstration for scanning dark-field microscopy
We first validated the performance of the proposed workflow through
a numerical experiment on a set of pre-acquired dark-fieldmicroscopy
data. Here, we compared the FAST samplingwith three static sampling
techniques:
1. Raster grid (RG): For a test sampling percentage, we generated

an equally spaced raster grid that provides a uniform coverage of
the sample.

2. Uniform random (UR) sampling: The measurement pixels were
drawn from a uniform random distribution.

3. Low-discrepancy (LDR) quasi-random sampling: For each
measurement percentage, we generated a low-discrepancy
sampling grid using the quasi-random Hammersly sequence.

The test dataset is a dark field image of size 600× 400 pixels
which represents 240,000 possible measurement positions. This
covers a physical area of 900× 600μmand enclosesmultiple flakes of
WSe2with various thicknesses,with the thicker regions associatedwith
regions of higher brightness in the image (Fig. 3). At this spatial reso-
lution, only medium and large-sized bubbles (with diameter >2μm)
can be observed. As explained previously, the bubbles deform the
surface and shift the Bragg peak of the 2D materials away from their
theoretical (flat region) positions, resulting in regions of darker con-
trast. Finally, the image also contains flake-free regions that have zero
integrated intensities.

For this comparison, we first initialized the FAST sampling with a
1% measurement coverage (as described above), then successively
measured 50 additional points at every iteration. For each FAST mea-
surement, we also generate RG, UR, and LDRmeasurementmaskswith
the same number of scan points. In this fashion, we generate a
sequence of sampling masks and the associated reconstructions until
we achieve 100% sampling.

We present the numerical results in Fig. 3, where we show a
comparison of the various methods at 10% sampling. Note that while
the proposed method internally uses the fast IDW algorithm for
the inpainting, the final images presented here are calculated using the

Fig. 3 | Numerical comparison of sampling methods. A shows the ground truth
with the color scale representing the normalized intensity, B–D show respectively
the raster grid (RG), low-discrepancy random (LDR), and FAST reconstructions at
10% scan coverage, and G–I show the actual scan points that produce these
reconstructions. E, F show the evolution of the normalized root mean square error

(NRMSE), for which lower is better, and the Structural Similarity metric (SSIM), for
which higher is better, as a function of the scan coverage. The FAST reconstruction
stabilizes at 27% coverage, while the other techniques take significantly longer to
reach the same quality. Source data are provided as a Source Data file.
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higher-quality biharmonic inpainting technique35. The uniform ran-
dom scheme performs worse than the LDR and raster grid schemes
and is not shown in the figure. In Fig. 3A–D, we can see that the FAST
sampling is able to reproduce with high fidelity the flake boundaries,
the bubbles, and the regions of transition between the varying levels of
thicknesses. In contrast, the LDR and raster schemes produce much
lower-quality reconstructions of these features. Figure 3E shows an
evolution of the normalized root mean squared error (NRMSE), and
Fig. 3F the structural similarity metric (SSIM) (which measures multi-
scale perceptual similarity) for the different sampling techniques. It is
evident that FAST produces high-quality reconstructions at much
lower measurement percentages than the examined static sampling
techniques. We note that the result could be further improved in the
future by using a more sophisticated inpainting technique within the
FAST method. To understand how FAST outperforms the other
methods under the same sampling condition, we show the actual
measuredpositions of the various schemes at 10%coverage (Fig. 3G–I).
FAST preferentially samples the regions with significant heterogeneity
over the homogeneous regions. This is particularly useful for sparse
samples,where the time spent sampling fromempty regions adds little
additional information.

Experimental demonstration
We next demonstrate the application of the FAST workflow in a live
experiment at a synchrotron beamline. A video showing the sampling,
recorded live during the actual experiment, is available here36. Other
than starting the workflow scripts at the beginning, the entire experi-
ment was unmanned and fully automated. In order to measure the
deformed WSe2 flakes in detail, a higher spatial resolution of 100nm
was chosen. This limits the field of view to 20 × 4μm for a scan point
density of 200 × 40 points.

In Fig. 4, we show the reconstructed dark field image (subplots A,
C, E) and the measurement points (subplots B, D, F) from 5 to 20%
coverage and compare them to that obtained from raster scanning the
sample with 100% coverage (subplot G). We see that the FASTmethod
identifies some of the regions of heterogeneity—the edges of the
bubbles—and starts to preferentially sample these regions within 5%
coverage of the sample. At 15% coverage, these regions are extensively
sampled. The reconstruction does not change significantly between

15 and 20%, indicating that the reconstruction has stabilized. More-
over, the 20% reconstruction also contains sharp and accurate repro-
ductions of all the major features present in the full scan image.

A point of interest is that the partially scanned bubble at the
bottom right corners of Fig. 4E–G shows up only in the 20% scan and
not in the 15% scan. To explain this, we note that the 5% scan, and
therefore the initial 1% quasi-random sampling, does not contain any
measurements in the neighborhood of this bubble. The FAST scheme
favors the exploitation of regions it knows to be heterogeneous over
the exploration of this fully unknown region and therefore only
explores this region much later in the measurement process (Fig. 4H).
This is, in fact, an instance of the general exploration-exploitation
tradeoff that exists in all Bayesian search procedures37. Potential
mitigation steps could be to samplemore initially (say 5% points) or to
deliberately introduce diversity into each batch of measurement
points.

So far, we have reduced the diffraction image measured at each
point to one single quantity (integrated intensity) in order to guide the
automated experiment. These images often need to be reprocessed
after the experiment to extract additional physically relevant results.
Notably, the intensity distribution in the diffraction patterns contains
information about the strain aswell as the rotation of the crystal lattice
and, in this case, the curvature of the 2D materials due to the bubbles
underneath. A simple center of mass calculation in the X direction
(CoMx) would yield the magnitude of the film curved in the XZ plane.
The curvature (deviation of the CoMx from its nominal value) is the
smallest around the center of the bubble and the largest at the edge. It
also changes sign going from the left side to the right side. Center of
mass calculation in the Y direction yields the magnitude of the film
curved in the YZ plane. The results look slightly different from the
CoMx calculations due to the way the shifted Bragg peak intersects
with the Ewald’s sphere. Figure 5A and B show, respectively, the CoMx
andCoMyobtained from raster scanwith 100%coverageon the areaof
interest. The unit is the number of pixel shift, relative to the center of
thenominal diffractionpattern. Figure5CandB show, respectively, the
CoMx andCoMyobtainedwith FAST. The curvature information of the
film was faithfully reproduced despite scanning just 20% of the entire
area. For more information on the reconstruction of the CoM maps,
the reader is referred to the “Methods” section.

Fig. 4 | Evolutionof the FAST scan. A,C, E show the reconstruction at 5%, 15%, and
20% reconstructions, respectively, B, D, F show the corresponding actual mea-
surement points. G shows the image obtained through a full-grid pointwise scan.

The color scale in (A–G) shows the normalized intensities.H shows only the points
sampled between 15 and 20% coverage.
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Discussion
In this work, we have showcased the FAST workflow that combines a
sparse sampling algorithm with route planning to drive a scanning
diffraction microscopy experiment at a synchrotron beamline. In
addition to being an effective alternative to a full pointwise scan to
acquire a dark-field image of the sample, FAST also produces accurate
quantitative measurements of its physical properties. For our live
demonstration of 200 × 40 points with a measurement time of 0.5 s/
point, the FAST decision-making time was negligible, leading to
an overall saving of ≈80 min (≈65%) of the experiment time. This
saving was facilitated by our choice to acquire a batch of 50 mea-
surements between the selection of the prospective measurement
points. This ensured that the communication time stayed negligible,
with no noticeable loss in the quality of points acquired when com-
pared to a pointwise candidate selection scheme (see Supplemen-
tary Fig. S.1).

The generalizability of the FAST method comes from the fact that
the key NN-based component of this workflow is trained on just the
standard cameraman image34, not on close analogs of a sample of
interest. While this generalizability results in a slight loss of perfor-
mance of the technique, it still shows excellent sparsity performance
for cases tested in previous research29,38 and in the current work. This
has thebenefit thatwedonot need apriori knowledgeof the sample. As
such, while general pre-trainingwould be difficult to satisfy for new and
expensive experiments, the FAST approach can be used directly. Fur-
thermore, the batch prediction and route optimization approach we
implement can also be directly applied in any application of choice.
Moreover, the experimental application of our work uses an extensible
edge device and the widely used EPICS platform for hardware control,
both of which can be incorporated into any instrument even with the
SLADS-Net replaced by any other sampling strategies. For example, we
could just replace the dark-field detection procedure described here
with a fluorescence counting setup and use exactly the FAST scheme
for fluorescence-based imaging of the sample. Alternatively, since all
the instruments at the APS rely on EPICS controls, one can perform
transmission, surface scattering, or any other 2D scanning experiment
in any applicable beamline with only minor changes to the FAST
routine.

The computations in the currentworkflowhave a timecomplexity
of O 2N logN + kM logNð Þ, where N is the number of measured points,
M the number of unmeasured points, and k the number of nearest
neighboring measurements (k = 10 in our case) that we use for the
feature vector calculations. Here, the first term accounts for the
creation of the nearest neighbor K-d tree and the second term for the
nearest neighbor calculation. The remainder of the algorithm has a
linear time complexity and could be performed in parallel for the
unmeasured points. We expect that it is possible to reduce this com-
plexity using an approximate nearest neighbor searchmethod instead
of the K-d tree approach. As such, a GPU-based implementation that
takes advantage of the parallelization and the approximation would
likely significantly reduce the computation time. This stands in stark

contrast with the time complexity of O N3
� �

(for N measured points)
for Gaussian Processes, a similarly training-free method that is widely
used for autonomous experimentation. For an illustrative example,
Vasudevan et al.20 report a GP-based scanningmicroscopy experiment
where the calculation of each set of measurement candidates takes
≈6 s on an NVIDIA DGX-2 GPU for a 50× 50 image; our workflow per-
forms an equivalent calculation for a larger 200 × 40 image within
≈1.5 s in a low-power CPU. We note, however, that GPs remain a very
powerful and generalizable approach with a bevy of applications
beyond only scanning microscopy. We also note that even the current
FAST decision-making time of ≈0.15 s is still much larger than the
typical dwell timesof tens ofmicroseconds in several popular scanning
microscopy techniques (like scanning fluorescence microscopy39). As
such, the FAST code needs to be significantly accelerated via GPU-
based parallelization, approximate nearest-neighbor search methods,
or other techniques, to enable its application in high-speed micro-
scopy settings—we are looking to implement these changes in the
future.

Practical applications of the FAST workflow require considera-
tions about the spatial extent, number density, and heterogeneity of
the features in the sample under investigation. Our numerical experi-
ments for these (see Supplementary Information S.3) show that the
FAST workflow is most efficient for the study of isolated sparse fea-
tures as long as the features are partially sampled during the initial
quasi-random scan step. Isolated features that are smaller in size than
the average spacing between the initial scan points are especially likely
to be missed during the initial sampling and therefore not sampled
until much later in the experiment. Oneway to resolve this challenge is
to use prior knowledge (or an informed guess) about the expected
dimensions of the smallest features to tailor the density of the initial
scan so that it samples almost every image patch of these dimensions.
We also note that the FAST scan time increases with the increase in the
overall contour (or perimeter) of the features, even if the features are
at the same intensity levels and occupy the same area overall (see
Supplementary Information S.3.2). Additionally, while the FAST scan is
not affected adversely by heterogeneity in the feature sizes, it is less
effective at resolving low-contrast features in settings with contrast
heterogeneity, and addressing this can require significant prior infor-
mation about the experiment (see Supplementary Information S.3.3).
Moreover, we observe that FAST is less effective in experiments with a
highly noisy intensity data (with signal-to-noise ratio of <0.5), but
shows consistent performance in all regimes with higher signal levels
(see Supplementary Information S.6). A final consideration, more
practical in nature, is that the scan paths require significant motor
movement, often including a retracing over points already measured.
As such, there could exist scenarios in which the time required for the
motormovement eclipses the time required for a singlemeasurement.
We expect to address the latter challenge by explicitly including a
measurement-density-based term38 or amovement-time-based term in
the candidate selection procedure40 or by using a line-based sampling
technique41.

Fig. 5 | Comparisonof the permeasuredpoint center ofmass (COM) of thediffractionpatterns between the FAST scanat20% coverage and full-grid scan. Subplots
A and B show the inpainted COMx and COMy, respectively, for the full-grid raster scan, and subplots C and D for the FAST scan.
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Despite these considerations and challenges, we believe that the
proposed FAST technique has great potential. It is an ideal tool for use
caseswith limited samplingor dosagebudgets. It canbeused to isolate
regions of interest in sparse settings to prepare for pointwise scanning
in these regions. More generally, it can be used to guide any scanning
microscopy experiment where we do not need full pointwise infor-
mation. In the future, we expect to extend thismethod for 3D imaging,
fly scans, ptychography, and other imaging applications. We expect
that these developments will significantly enhance the efficacy of
scanningmicroscopy experiments, bolstering their use for the studyof
dynamic physical phenomena.

Methods
The SLADS-Net algorithm
The SLADS-Net algorithm29 used within the FAST workflow is an
adaptation of the Supervised Learning Approach for Dynamic Sam-
pling (SLADS) algorithm originally developed by Godaliyadda et al.25,
and the algorithms differ only in their training approaches (“Methods:
Training”). To explain the SLADS algorithm, we first denote the object
wewant tomeasure asA 2 RN , whereN is the total number of pixels in
the image. Further, we can denote the pixel at location 1 ≤ s ≤N as as so
that a measurement at the location s extracts the value as; each mea-
surement is thus characterized by the pair s,as

� �
. After k measure-

ments, then, we get the k × 2 measurement vector

Yk =

s1 as1

s2 as2

..

.

sk ask

2
66664

3
77775

ð1Þ

Using these k measurements, then, we can reconstruct (e.g., via
interpolation) an estimate Â

k
of the true object A. The difference

between A and Â
k
is denoted as the distortion DðA, ÂkÞ and can be

calculated using any chosen metric. In the current work, we define
DðA, ÂkÞ to be the L2 norm:

DðA, ÂkÞ= ∣∣A� Â
k
∣∣2:

Given the measurement Yk and the reconstruction Â
k
, a new mea-

surement at any location swill presumably reduce the distortion in the
reconstruction. We can denote this reduction in distortion (RD) as

Rk,s =DðA, ÂkÞ � DðA, Âk,sÞ ð2Þ

where Â
k,s

is the reconstruction that includes the newly added mea-
surement at s. The goal of the SLADS algorithm is then to identify the
pixel location that would maximize this reduction in distortion:

sk + 1 = argmaxs R
k,s ð3Þ

Of course, since we cannot know the value of the measurement as or
the ground truth A, SLADS bases its selection on the conditional
expectation of reduction in distortion (ERD), which is defined as:

R
k,s

=E Rk,s∣Yk
h i

so that sk + 1 = argmaxs R
k,s
: ð4Þ

The algorithm assumes that we can compute the ERD at s based on just
the measurement state Yk as

R
k,s

= gðvk,sÞ ð5Þ

where vk,s is a location-dependent feature vector calculated using the
measurement state Yk. The goal of the SLADS training procedure is to
estimate the function g.

Training
The training procedure for the SLADS/SLADS-Net algorithm is a
supervised procedure inwhichwe generate a large number of ðvk,s,R

k,sÞ
pairs and use these to estimate g. Note that this is a pixelwise compu-
tation that is performed independently for each measurement location
s; for each measurement s we have to calculate a reconstruction Â

k,s

before we can calculate the RD Rk,s. To make this computationally
tractable, Godaliyadda et al.25 use approximations that ensure that the
RD of each pixel only depends on its local neighborhood. Corre-
spondingly, instead of working with the full measurement state Yk, the
training procedure uses carefully designed feature vectors that capture
the local neighborhood of the pixel at location s. As shown in Fig. 2B,
the feature vector for thepixelP consists of six features: (1)∇x and∇y are
the spatial gradients at P, (2) σ1,r and σ2,r measure the deviation of the
estimated value for P from the nearby measured values (highlighted in
red), and (3) L (which is the distance of P from the closest measured
point) and ρr measure the density of measurements around P.

The original SLADS algorithm assumes that this feature vector is
linearly related to the RD, and the training therefore is a linear
regression procedure. The SLADS-Net adaptation first uses a radial
basis function (RBF) kernelization to transform the 6-dimensional
feature vector to a 50-dimensional vector, then replaces the linear
predictor with a nonlinear fully connected neural network that con-
tains 5 hidden layers with 50 nodes each. We follow the procedure
from the original SLADS-Net adaptation and use the default para-
meters in the Scikit-learn Python library42 for the RBF kernelization.

In this work, we train the SLADS-Net neural network on only the
standard cameraman image without using any a priori information
about the sample. For the training, we generate a measurement state
Yk by randomly choosing a fixed number of measurement locations,
then calculate the feature vector vk,s and the RD R

k,s
for each unmea-

sured pixel. We generate such sets of training pairs for 10 different
sample coverage percentages between 1% and 80%. This overall com-
prises our training dataset.We use this data to train the neural network
for 100 epochs using the Adamoptimizer with a learning rate of 0.001.
We use this trained model for all the simulated and experimental
measurements.

Experimental measurements
At each point of the measurement, a tight region of interest (RoI)
around the expectedposition of the thin filmBraggpeakwas extracted
from the corresponding diffraction image. Integrated intensities of the
RoI were used to guide the NN prediction. For the flat region, the
integrated intensity is high, showing up as brighter contrast on the
dark field image. For the deformed region, the integrated intensity is
low (darker contrast on the dark field image) as the illuminated film
diffraction partially exits the selected RoI (see Supplementary Fig. S.8).

For the FAST experiment, the predicted ERD and the dark-field
reconstruction served as visual guides to inform when to stop the
experiment. During the experiment, we noted that the ERD and the
reconstruction had stabilized by ≈20% scan coverage, but we let the
experiment run to≈35% coverage to ensure that this behavior persisted
(see Supplementary Fig. S.9).While we used this visual criterion for our
exploratory experiment, it is straightforward to design a numerical
stopping criterion basedon the absolute or relative convergence of the
ERD, or on the per-iteration change in the reconstructed image.

Statistics and reproducibility
The imaged region of the sample was selected through a visual
inspection of a large-field-of-view low-resolution scan of the sample.
This ensured that the high-resolution scan was directed at a region
with WSe2 deposition. No other statistical method was used to pre-
determine the sample size.

Intensity data from hot pixels were excluded during the data
analysis process. No other data were excluded from the analysis.
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The experiments were not randomized. The investigators were
not blinded to allocation during the experiment and the outcome
assessment since the described workflow provided a real-time recon-
struction of the sample.

Data availability
The numerical data used for this work are publicly available at https://
github.com/saugatkandel/fast_smart_scanning43. The raw experi-
mental data is publicly available at https://doi.org/10.5281/zenodo.
793973044. The numerical simulation data used in this work were
generated using images publicly available from the MIT Libraries34,
USC-SIPI Image Database45, and the Scikit-image software package46.
Source data are provided with this paper.

Code availability
The FAST software and the code for the numerical simulations are
publicly available at https://github.com/saugatkandel/fast_smart_
scanning43. The code used to analyze the experimental data is avail-
able at https://doi.org/10.5281/zenodo.794277444.

References
1. Goldstein, J. I. et al. Scanning Electron Microscopy and X-Ray

Microanalysis (Springer, 2018).
2. Zuo, J. M. & Spence, J. C. Advanced Transmission Electron Micro-

scopy (Springer, 2017).
3. Voigtländer, B. Scanning Probe Microscopy: Atomic Force Micro-

scopy and Scanning Tunneling Microscopy. NanoScience and
Technology (Springer, 2015).

4. Hiraki, T. N. et al. Development of an on-the-fly data processingwith
information lossless compression for CITIUS detectors at SPring-8.
Acta Crystallogr. A 77, C531 (2021).

5. Tate, M. W. et al. High dynamic range pixel array detector for
scanning transmission electron microscopy. Microsc. Microanal.
22, 237–249 (2016).

6. Kalinin, S. V. et al. Probe microscopy is all you need*. Mach. Learn.
Sci. Technol. 4, 023001 (2023).

7. Holler, M. et al. High-resolution non-destructive three-dimensional
imaging of integrated circuits. Nature 543, 402–406 (2017).

8. Jiang, Y. et al. Achieving high spatial resolution in a large field-of-
view using lensless X-ray imaging. Appl. Phys. Lett. 119,
124101 (2021).

9. Du, M. et al. Upscaling X-ray nanoimaging to macroscopic speci-
mens. J. Appl. Crystallogr. 54, 386–401 (2021).

10. Cherukara,M. J. et al. AI-enabledhigh-resolution scanningcoherent
diffraction imaging. Appl. Phys. Lett. 117, 044103 (2020).

11. Chan, H. et al. Rapid 3D nanoscale coherent imaging via physics-
aware deep learning. Appl. Phys. Rev. 8, 021407 (2021).

12. Yao, Y. et al. AutoPhaseNN: unsupervised physics-aware deep
learning of 3D nanoscale Bragg coherent diffraction imaging. NPJ
Comput. Mater. 8, 1–8 (2022).

13. Babu, A. V. et al. Deep learning at the edge enables real-time
streaming ptychographic imaging. Preprint at https://doi.org/10.
48550/arXiv.2209.09408 (2022).

14. Häse, F., Roch, L. M. & Aspuru-Guzik, A. Next-generation experi-
mentation with self-driving laboratories. Trends Chem. 1,
282–291 (2019).

15. Burger, B. et al. A mobile robotic chemist. Nature 583,
237–241 (2020).

16. Vasudevan, R. K., Ziatdinov,M., Vlcek, L. &Kalinin, S. V.Off-the-shelf
deep learning is not enough, and requires parsimony, Bayesianity,
and causality. NPJ Comput. Mater. 7, 1–6 (2021).

17. Noack, M. M. et al. A Kriging-based approach to autonomous
experimentation with applications to X-ray scattering. Sci. Rep. 9,
11809 (2019).

18. Noack,M.M., Doerk, G. S., Li, R., Fukuto, M. & Yager, K. G. Advances
in Kriging-based autonomous X-ray scattering experiments. Sci.
Rep. 10, 1325 (2020).

19. Noack, M. M. et al. Gaussian processes for autonomous data
acquisition at large-scale synchrotron and neutron facilities. Nat.
Rev. Phys. 3, 685–697 (2021).

20. Vasudevan, R. K. et al. Autonomous experiments in scanning probe
microscopy and spectroscopy: choosing where to explore polar-
ization dynamics in ferroelectrics. ACSNano 15, 11253–11262 (2021).

21. Kalinin, S. V. et al. Automated and autonomous experiments in
electron and scanning probe microscopy. ACS Nano 15,
12604–12627 (2021).

22. Garnett, R. Bayesian Optimization (Cambridge University
Press, 2023).

23. Liu, H., Ong, Y.-S., Shen, X. & Cai, J. When Gaussian process meets
big data: a review of scalable GPs. IEEE Trans. Neural Netw. Learn.
Syst. 31, 4405–4423 (2020).

24. Schloz, M. et al. Deep reinforcement learning for data-driven
adaptive scanning in ptychography. Sci Rep 13, 8732 (2023).

25. Godaliyadda, G. D. et al. A supervised learning approach for
dynamic sampling. IS&T Int. Symp. Electron. Imaging 28, 1–8 (2016).

26. Scarborough, N. M. et al. Dynamic X-ray diffraction sampling for
protein crystal positioning. J. SynchrotronRadiat.24, 188–195 (2017).

27. Hujsak, K. A., Roth, E. W., Kellogg, W., Li, Y. & Dravid, V. P. High
speed/low dose analytical electron microscopy with dynamic
sampling.Micron 108, 31–40 (2018).

28. Hu, H. et al. High-throughput mass spectrometry imaging with
dynamic sparse sampling. ACS Meas. Sci. Au 2, 466–474 (2022).

29. Zhang, Y. et al. SLADS-Net: supervised learning approach for
dynamic sampling using deep neural networks. IS&T Int. Symp.
Electron. Imaging 30, 131–1–1316 (2018).

30. Winarski, R. P. et al. A hard X-ray nanoprobe beamline for nanoscale
microscopy. J. Synchrotron Radiat. 19, 1056–1060 (2012).

31. Wong, T.-T., Luk, W.-S. & Heng, P.-A. Sampling with Hammersley
and Halton points. J. Graph. Tools 2, 9–24 (1997).

32. Perron, L. & Furnon, V. OR-Tools (version 9.3). https://developers.
google.com/optimization (2022).

33. Experimental Physics and Industrial Control System (EPICS) version
7.0. https://epics-controls.org (2021).

34. Cameraman. https://dome.mit.edu/handle/1721.3/195767 (1978).
35. Damelin, S. B. & Hoang, N. S. On surface completion and image

inpainting by biharmonic functions: numerical aspects. Int. J. Math.
Math. Sci. 2018, 3950312 (2018).

36. Fast scan video. https://danielzt12.github.io/latest_news/2022/10/
05/AI-enabled-smart-scanning.html (2022).

37. Brochu, E., Cora, V. M. & de Freitas, N. A. Tutorial on Bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning. Preprint at
https://arxiv.org/abs/1012.2599 (2010).

38. Grosche, S., Koller, M., Seiler, J. & Kaup, A. Dynamic image sam-
pling using a novel variance based probability mass function. IEEE
Trans. Comput. Imaging 6, 1440–1450 (2020).

39. Ryan, C. G. et al. Maia X-ray fluorescence imaging: capturing detail
in complex natural samples. J. Phys. Conf. Ser. 499, 012002 (2014).

40. Betterton, J.-R., Ratner, D., Webb, S. & Kochenderfer, M. Reinfor-
cement learning for adaptive illuminationwith X-rays. In Proc. 2020
IEEE International Conference on Robotics and Automation (ICRA),
328–334 (2020).

41. Helminiak, D., Hu, H., Laskin, J. &Hye Ye, D. Deep learning approach
for dynamic sparse sampling for high-throughput mass spectro-
metry imaging. IS&T Int. Symp. Electron. Imaging 2021,
2901–2907 (2021).

42. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

Article https://doi.org/10.1038/s41467-023-40339-1

Nature Communications |         (2023) 14:5501 8

https://github.com/saugatkandel/fast_smart_scanning
https://github.com/saugatkandel/fast_smart_scanning
https://doi.org/10.5281/zenodo.7939730
https://doi.org/10.5281/zenodo.7939730
https://github.com/saugatkandel/fast_smart_scanning
https://github.com/saugatkandel/fast_smart_scanning
https://doi.org/10.5281/zenodo.7942774
https://doi.org/10.48550/arXiv.2209.09408
https://doi.org/10.48550/arXiv.2209.09408
https://developers.google.com/optimization
https://developers.google.com/optimization
https://epics-controls.org
https://dome.mit.edu/handle/1721.3/195767
https://danielzt12.github.io/latest_news/2022/10/05/AI-enabled-smart-scanning.html
https://danielzt12.github.io/latest_news/2022/10/05/AI-enabled-smart-scanning.html
https://arxiv.org/abs/1012.2599


43. Kandel, S., Zhou, T. &Cherukara,M. J. Demonstration of anAI-driven
workflow for autonomous high-resolution scanning microscopy.
fast_smart_scanning: fast autonomous scanning toolkit. Zenodo
https://doi.org/10.5281/zenodo.7942774 (2023).

44. Kandel, S. et al. Demonstration of an AI-driven workflow for
autonomous high-resolution scanningmicroscopy. Zenodohttps://
doi.org/10.5281/zenodo.7939730 (2023).

45. USC-SIPI image database (version 6). https://sipi.usc.edu/
database/ (2018).

46. Data files used by the scikit-image project (version 0.19.3). https://
scikit-image.org/docs/stable/api/skimage.data.html (2023).

Acknowledgements
Work performed at the Center for Nanoscale Materials and Advanced
Photon Source, both U.S. Department of Energy Office of Science User
Facilities, was supported by the U.S. DOE, Office of Basic Energy Sci-
ences, under Contract No. DE-AC02-06CH11357. We also acknowledge
support from Argonne LDRD 2021-0090—AutoPtycho: Autonomous,
Sparse-sampled Ptychographic Imaging (awarded to M.C.). We grate-
fully acknowledge the computing resources provided on Bebop, a high-
performance computing cluster operated by the Laboratory Computing
Resource Center at Argonne National Laboratory. X.L. acknowledges
support from the National Science Foundation CBET Program under
award no. 2025214. A.V.B. acknowledges support from the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sci-
ences Data, Artificial Intelligence and Machine Learning at DOE Scien-
tific User Facilities program under Award Number 34532.

Author contributions
S.K., T.Z., C.P., and M.J.C. conceived and designed the study. S.K. and
T.Z. developed the workflow software. T.Z., M.H. and M.J.C. designed
the synchrotron experiment. S.K., assisted by T.Z., Z.D., C.P., and M.J.C.,
performed thenumerical simulations and thedata analysis. T.Z., assisted
by S.K., A.V.B., M.H., A.M., and M.J.C., performed the synchrotron
experiment. X.L. and X.M. prepared the WSe2 sample. A.V.B. and A.M.
set up the edge computing platform. All the authors discussed the
results and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-40339-1.

Correspondence and requests for materials should be addressed to
Saugat Kandel or Mathew J. Cherukara.

Peer review information Nature Communications thanks Aaron Kerlin,
Christian Liebscher and the other anonymous reviewer(s) for their con-
tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© UChicago Argonne, LLC, Operator of Argonne National Labora-
tory 2023

Article https://doi.org/10.1038/s41467-023-40339-1

Nature Communications |         (2023) 14:5501 9

https://doi.org/10.5281/zenodo.7942774
https://doi.org/10.5281/zenodo.7939730
https://doi.org/10.5281/zenodo.7939730
https://sipi.usc.edu/database/
https://sipi.usc.edu/database/
https://scikit-image.org/docs/stable/api/skimage.data.html
https://scikit-image.org/docs/stable/api/skimage.data.html
https://doi.org/10.1038/s41467-023-40339-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Demonstration of an AI-driven workflow for autonomous high-resolution scanning microscopy
	Results
	Self-driving scanning microscopy workflow
	Numerical demonstration for scanning dark-field microscopy
	Experimental demonstration

	Discussion
	Methods
	The SLADS-Net algorithm
	Training
	Experimental measurements
	Statistics and reproducibility

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




