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Delayed gut microbiota maturation in the
first year of life is a hallmark of pediatric
allergic disease

Courtney Hoskinson 1,2, Darlene L. Y. Dai 1, Kate L. Del Bel1, Allan B. Becker3,
Theo J. Moraes4, Piushkumar J. Mandhane5, B. Brett Finlay2,6,7, Elinor Simons3,
Anita L. Kozyrskyj5, Meghan B. Azad3,8,9, Padmaja Subbarao 4,10,11,
Charisse Petersen 1,12 & Stuart E. Turvey1,12

Allergic diseases affect millions of people worldwide. An increase in their
prevalence has been associatedwith alterations in the gutmicrobiome, i.e., the
microorganisms and their genes within the gastrointestinal tract. Maturation
of the infant immune system and gut microbiota occur in parallel; thus, the
conformation of the microbiome may determine if tolerant immune pro-
gramming arises within the infant. Here we show, using deeply phenotyped
participants in the CHILD birth cohort (n = 1115), that there are early-life
influences and microbiome features which are uniformly associated with four
distinct allergic diagnoses at 5 years: atopic dermatitis (AD, n = 367), asthma
(As, n = 165), food allergy (FA, n = 136), and allergic rhinitis (AR, n = 187). In a
subset with shotgun metagenomic and metabolomic profiling (n = 589), we
discover that impaired 1-year microbiota maturation may be universal to
pediatric allergies (AD p = 0.000014; As p =0.0073; FA p = 0.00083; and AR
p = 0.0021). Extending this, we find a core set of functional and metabolic
imbalances characterized by compromised mucous integrity, elevated oxida-
tive activity, decreased secondary fermentation, and elevated trace amines, to
be a significant mediator between microbiota maturation at age 1 year and
allergic diagnoses at age 5 years (βindirect = −2.28; p =0.0020). Microbiota
maturation thus provides a focal point to identify deviations from normative
development to predict and prevent allergic disease.

Allergic diseases affect hundreds of millions of children worldwide
and continue to increase in prevalence1–4. These rising rates have
coincided with social and environmental changes that have had an
intergenerational impact on the stably colonizingmicrobes and their

collective genes that make up our microbiota and microbiome,
respectively5,6.

Established during infancy, the nascent microbiota’s initial
expansion and fluctuation are particularly sensitive to external
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influences before reaching a more stable community. Indeed, many
risk factors for allergic diseases, including mode of delivery, diet,
urban living, and antibiotic exposure, also influence early microbiota
membership and structure7–10. While this maturation process usually
coincides with the development of healthy immune tolerance, allergic
sensitization can emerge in some children during the same period as
the microbiota is being established4,11. Considering the relationship
between external risk factors, infant microbiome maturation, and
pediatric immune development, interrogating the early-life micro-
biome has the potential to empower predictive and therapeutic stra-
tegies designed to prevent the development of allergic disease.

Although they are often studied in isolation as distinct, organ-
specific clinical diagnoses, asthma, allergic rhinitis (or hay fever), food
allergy, and atopic dermatitis (or eczema) can share many common
etiological mechanisms characterized by aberrant type-2 inflammatory
responses and elevated IgE11–15. Supporting their shared biological ori-
gins, a predictable series of onset for these disorders has beenobserved
in young children, described collectively as the AllergicMarch11,15. Given
this evidence, it is difficult to disentangle the environmental and bio-
logical underpinnings of individual allergic diseases, and a collective
approach that investigates all four of these common pediatric allergic
disorders in parallel is of increasing relevance. Previous studies looking
at multiple diseases have noted common microbiome associations in
individuals diagnosedwithdistinct individual allergic diseases16,17. These
studies have set a strong precedent for identifying shared significant
microbial features in individuals currently suffering from diseases. To
date, few studies have looked at infant microbial associations with
multiple distinct allergic disease outcomes, andmost lacked the power
of the prospective, longitudinal design of the CHILD cohort18.

In this study, we evaluated four clinically distinct allergic diseases
diagnosed at age 5 years in the large, deeply characterized CHILD
cohort study. We used a multi-omics approach to profile infant stool
collected at study visits scheduled for ages 3 months and 1 year. We
found that delayed infant microbiota maturation was shared across
each 5-year allergic diagnosis compared to those with no history of
allergic sensitization and that this delay in microbiota maturation
preceded the diagnosis of allergic disease. Functional implications of
this impairmentwere alsoobserved in eachof the diagnoses, including
compromised impact on mucous integrity, elevated oxidation poten-
tial, decreased secondary fermentation and butyrate production, and
increased biogenic amines within infant’s guts. Our findings identify
common, host-microbiome mechanisms associated with the devel-
opment of multiple clinically distinct allergic disorders. Prioritizing
preventive strategies and therapeutic intervention to modify these
host-microbe interactions during infancymay have lasting benefits for
preventing pediatric allergic diseases, which often last a lifetime.

Results
Defining the epidemiology of allergic diseases
The longitudinal and comprehensive nature of the CHILD study pro-
vided a powerful opportunity to clearly define any history of allergic
sensitization and current diagnosis of asthma, food allergy, atopic
dermatitis, and/or allergic rhinitis (Fig. 1a). To avoid spurious asso-
ciations stemming from co-occurring or transient allergic conditions,
we incorporated only clinical evaluations of participants who had
extensive and complete clinical assessments for every study visit from
birth to age 5 years (n = 1115) (Fig. 1a and Supplementary Table 1). The
rigorously defined “healthy” control group comprised 523 children
who had no evidence of allergic sensitization at any time in their life
(defined as repeatedly negative allergen skin prick tests (SPT), no
history of wheezing, and no diagnosis of any of the allergic disorders—
atopicdermatitis, asthma, allergic rhinitis, food allergy), as determined
by three separate clinical evaluations at 1, 3, and 5 years of age (Fig. 1b).
In comparison, 592 children had been diagnosed by an expert physi-
cian at the 5-year scheduled visit with one or more allergic disorders

(i.e., atopic dermatitis, asthma, allergic rhinitis, and food allergy), with
the majority of these diagnoses (59.4–91.2%) co-occurring with a
positive skin prick test (SPT) at one or more of the allergic evaluations
(Supplementary Fig. 1a, b).

When we evaluated the association of early-life factors with a
diagnosis of allergic disease at age 5 years using a multivariate condi-
tional logistic regressionwith the study site as strata, the following risk
factorsemerged:male sex (adjustedodds ratio (aOR): 1.84 [95%CI 1.36,
2.49]; p = 6.8e-05), history of paternal (aOR: 1.56 [95% CI 1.13, 2.15];
p =0.007) or maternal (aOR: 1.56 [95% CI 1.14, 2.12]; p =0.0054) atopy,
and antibiotic usage before age 1 year (aOR: 2.25 [95% CI 1.55, 3.27];
p = 2.0e-05) (Fig. 2a and Supplementary Table 2). In contrast, any
breastfeeding up to age 6 months (aOR: 0.66 [95% CI 0.45, 0.99];
p =0.043) and self-identifying as Caucasian (aOR: 0.44 [95% CI 0.32,
0.61]; p = 5.1e-07) were negatively associated with an allergy diagnosis
(Fig. 2a and Supplementary Table 2). Notably, the significant overlap
between these associated risk factors and the diagnosis of individual
allergic diseases supports our collective approach to identifying a
common etiology within the infant microbiome (Fig. 2b and Supple-
mentary Data 1).

Delayed infant gut microbiome age associated with allergic
diseases at school age
We next evaluated the participants’ infant stool microbiomes (n = 589
participants) collected at clinical assessments scheduled for 3-month
and 1-year visits and quantified via shotgunmetagenomic sequencing19

(Fig. 1b and Supplementary Table 1). Comparing the alpha diversity
within the infant microbiome at both timepoints across all the indivi-
dual allergy diagnoses at age 5 years, we identified a significant
decrease in Shannon diversity at age 1 year in infants who went on to
have any allergic diagnosis at age 5 years (Fig. 3a, b). Increased diver-
sification is a hallmark of infant gut microbiome dynamics across the
first year of life and is accompanied by substantial shifts in microbial
abundance7,20–22. This process is so linked to early-life development
that the composition of the infant microbiota alone can accurately
predict an infant’s chronological age23. To understand whether infant
microbiota maturation was ubiquitously associated with school-age
allergic diagnoses, we calculated a nested cross-validated, microbiota-
derivedpredicted age using species abundances across thefirst year of
life (Fig. 3c; Pearson R = 0.89, p < 2.2e-16). We then compared
microbiota-derived age across each of the four allergic diagnoses at
5 years (Fig. 3d). Infants with no allergic history detected at any time
between birth and 5 years had an average microbiota-predicted age of
11.53 (SD 1.32) months at their 1-year visit. In contrast, each of the four
allergic diagnoses at age 5 years had a statistically lower predicted
microbiota age, despite having the same chronological age (atopic
dermatitis p =0.000014; asthma p = 0.0073; food allergy p = 0.00083;
and allergic rhinitis p = 0.0021; Fig. 3d, e). Notably, this reduction in
microbiota-predicted age at 1 year was detected in children with a
5-year allergy diagnosis, regardless of SPT response history (Supple-
mentary Fig. 1c). Additionally, while a number of children hadmultiple
allergy diagnoses at 5 years, even children with a single allergy diag-
nosis also had significantly lower predicted age (Supplementary
Fig. 1d). Furthermore, microbiota-predicted age remained protective
when adjusting for confounding variables (aOR of one ormore allergic
diagnoses for an IQR increase in microbiota-predicted age: 0.75 [95%
CI 0.59, 0.94]; p =0.010) (Supplementary Fig. 2). In summary, reduced
microbiota maturation at 1 year of age is associated with an increased
risk of being diagnosed with an allergic disease at age 5 years,
regardless of the specific allergic condition.

Shared pathway dysfunction links impaired microbiota
maturation and allergic disease development
Given that microbiota maturation impairment at 1 year was present
across all individual allergic diagnoses at 5 years, we analyzed the
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underlying taxonomic and functional components associated with
microbiota-predicted age and its relationship with allergy develop-
ment. We first focused on the top 25 species with the highest average
importance ranking based on the nested cross-validated random for-
est model and compared their directional effect on predicted age
using a linear mixed-effect model with adjustment for age and a ran-
dom effect of the sample collection site (Fig. 4a). When we compared
species abundance within the 1-year microbiota between children who

did or did not receive an allergic diagnosis at 5 years, we identified 9
overlapping species that were related tomicrobiota-derived predicted
age and showed differential abundance (false-discovery rate (FDR)
<0.1) in infants later diagnosed with allergic diseases (Fig. 4b and
Supplementary Fig. 3). This included decreases in Anaerostipes hadrus,
Fusicatenibacter saccharivorans, Eubacterium hallii, and Blautia wex-
lerae and increases in Eggerthella lenta, Escherichia coli, Enterococcus
faecalis, Clostridium innocuum, and Tyzzerella nexilis in infants who
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developed allergic diagnoses by 5 years (Fig. 4c). This pattern,
emphasizing the importance of a core group of species, was generally
replicated in analyses of individual allergic disorders (Fig. 4c). Within
these samples, we further linked increased C. innocuum and T. nexilis
to antibiotic usage, altered C. innocuum, E. lenta, E. faecalis, and T.

nexilis to breastfeeding status at 6 months, and differential C. inno-
cuum and E. lenta to paternal atopy, identifying some of the environ-
mental and clinical influences that potentially shape the microbiome
(Supplementary Table 3). Thus, in addition to altered diversification,
changes in the abundance of a core group of species are indicative of
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      Fall 103 (19.7%) 156 (26.4%) 1.28 (0.83, 1.97) 0.27
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Fig. 2 | Individual allergic disease progression and influences. Multivariable
conditional logistic regression, using the data collection site as a stratum, evalu-
ating the odds ratio of developing a one or more atopic or allergic diagnoses
(n = 592) and b one or more atopic or allergic diagnoses (1+, n = 592), two or more
diagnoses of (2+, n = 107), and each of atopic dermatitis (AD, n = 282), food allergy

(FA, n = 100), asthma (As, n = 127), or allergic rhinitis (AR, n = 141) when accounting
for early-life and familial exposures. (*) p <0.05, (.) p <0.1. For forest plot, datawere
presented as adjusted odds ratios (95% confidence intervals) and exact p values:
male p = 6.8e-05, antibiotic usage p = 2.0e-05, and ethnicity p = 5.1e-07.
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both reduced infant gut microbiota maturation and the development
of multiple clinically distinct allergic disorders.

Defining the functional impacts of reduced infant gut microbiota
maturation could reveal key pathways that might be targeted to pre-
vent the development of persistent allergic disease. This prompted us
to perform two multivariable mixed-effect regressions, adjusting for
chronological age and using the collection site as a random effect, of
the 347 MetaCyc pathways with at least 10% prevalence using the
established 5-year allergic diagnoses groups and microbiota-derived
predicted age as the respective outcomes in each analysis (Fig. 5a).We
identified 193 pathways significantly associated with at least one of the
composite or individual 5-year allergic diagnoses and 281 pathways
associated with predicted age (FDR <0.1, Supplementary Data 2).
Moreover, when we compared MetaCyc pathway abundance between
healthy children and those with a 5-year allergic diagnosis, 171 of the
193 significantly altered pathways in allergic groups were also asso-
ciated with predicted age (Supplementary Data 2).

While we saw similar patterns across all four of the allergy
diagnoses, 11 pathways were significantly different in at least two of
the allergy diagnoses and one of the composite groups, all of which
were also significantly associated with predicted age (Fig. 5b
and Supplementary Data 3). Nine of these were negatively associated

with microbiota-predicted age and subsequently elevated in
infants who developed allergies. These include pathways corre-
sponding to mucous degradation via cysteine disulfide bond reduc-
tion (e.g., Sulfoquinovose degradation I, and molybdopterin
biosynthesis24–26), increased oxidative respiration (e.g., NAD(P)/
NADPH interconversion26), and oxidized monosaccharide utilization
(e.g., D-galactarate and D-glucarate degradation27). Conversely, two
pathways were positively associated with predicted age, as well as
protection from allergy development, including methanogenesis
from acetate and sulfur oxidation28,29. A Spearman correlation ana-
lysis revealed a significant connection between B. wexlerae, F. sac-
charivorans, A. hadrus, and E. hallii and pathways with protective
associations, while E. coliwas primarily correlatedwith pathways that
were elevated in infants with a 5-year allergy diagnosis (Fig. 5c). Thus,
reduced infant gut microbiota maturation is linked to broad func-
tional dysregulation overlapping with that of the development of
allergic disorders.

Stool metabolomic profile of the 1-year infant gut and its asso-
ciation with key microbiome features
Metabolites within the gut play an essential role in the microbiome’s
biological impact on the host30–33. We next sought to understand

1+ 2+ AD As FA AR

Allergy Allergy

1+ 2+ AD As FA AR

Allergy Allergy

1+ 2+ AD As FA AR

Allergy Allergy

HC HC

HC HC HC HC

Fig. 3 | Diversity and microbiome-derived age of the infant’s gut. Shannon
diversity index of a 3-month samples for one or more atopic or allergic diagnoses
(1+, n = 344), two or more allergic diagnoses (2+, n = 130), and individual clinical
diagnoses at 5 years, i.e., atopic dermatitis (AD, n = 211), food allergy (FA, n = 73),
asthma (As, n = 100), or allergic rhinitis (AR, n = 108), at 5 years, and healthy control
(HC, n = 244) participants, as well as b 1-year samples for 1+ (n = 353, p =0.039), 2+
(n = 82), and individual clinical diagnoses at 5 years, i.e., AD (n = 212, p =0.021), FA
(n = 75, p =0.043), As (An = 103, p =0.0097), or AR (n = 113), at 5 years, and HC
(n = 236) participants, c Scatterplot between chronological age and microbiome-
derived age with linear regression line of best fit (Pearson R =0.89, p < 2.2e-16).

d Predicted age and chronological age for aggregate and individual clinical diag-
noses as compared to no diagnoses at 5 years. e Predicted age of 1-year samples for
1+ (n = 353, p = 0.000036), 2+ (n = 82, p =0.0023), and individual clinical diagnoses
at 5 years, i.e., AD (n = 212, p =0.000014), FA (n = 75, p =0.00083), As (n = 103,
p =0.0073), or AR (n = 113, p =0.0021), at 5 years, and HC (n = 236) participants.
P values are from Wilcoxon tests between HC and each allergic diagnosis (b, c, e).
For box plots, data are presented as box plots (center line at the median, upper
bound at 75th percentile, lower bound at 25th percentile) with whiskers at mini-
mum and maximum values. (*) p <0.05.
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whether microbiota maturation is associated with the infant gut
metabolome and subsequent allergy development. We applied tar-
geted nuclear magnetic resonance (NMR; 31 metabolites) and liquid
chromatography with tandem mass spectrometry (LC-MS/MS; 214
metabolites) to a subset of CHILD participant stool samples (n = 509)
to address this important aspect of the contributions of the micro-
biome to the gut environment through the measurement of 245
relevant metabolites (Fig. 1). To initially understand the relationship
between microbiota maturation and metabolic profiles at 1 year, we
performed a PERMANOVA analysis to quantify the percent of var-
iance explained by microbiota-derived predicted age and adjusting
for a time between sample collection and storage and exact age of
sample collection, while using collection site as a stratum. We found
that microbiota-predicted age significantly explained the variance of
the 1-year metabolome (2.2% variance explained, p = 0.00090,
F = 15.35) (Fig. 6a). We next clustered related metabolites using
weighted correlation network analysis (WGCNA) into 14 different
modules (with 50 metabolites not conforming to any of the 14
modules), andwemapped their interaction to visualize themetabolic
landscape of the infant gut at 1 year (Fig. 6b and Supplementary
Fig. 5). We identified seven modules and 27 unclusteredmetabolites,
representing 120 of the total 245 metabolites, that were significantly
associated with predicted age (FDR <0.1, Supplementary Fig. 5,
revealing that, in addition to the functional potential of the

microbiome, microbiota maturation is also strongly related to the
infant gut metabolome.

We then assessed the relationship between these metabolite
concentrations with both the species and pathways of interest we had
identified through metagenomics (Fig. 6c). Amongst the correlations,
we identified ten individual metabolites and four metabolic clusters
that were significantly related to important pathways within the infant
gut microbiota (FDR <0.05). We furthermore identified 11 individual
metabolites and seven metabolic clusters that were significantly
associated with important species abundance. Of the important
functional pathways, sulfur oxidation correlated with the greatest
number of metabolic features (six individual metabolites and two
metabolic clusters), while of the important microbiota, E. coli corre-
lated with the greatest number of metabolic features (five individual
metabolites and two metabolic clusters). Of the metabolites, trace
amines (TAs) derived from aromatic amino acids, tryptamine, tyr-
amine, and phenylethylamine, significantly correlated with 85% (17 of
20) of the important features, andbutyrate, a key short-chain fatty acid
in immune tolerance, correlated with F. saccharivorans, A. hadrus, and
sulfur oxidation.

Delayed predicted age is significantly associated with each 5-year
allergy diagnosis as well as dysregulation within both microbiome
functional capacity (e.g., altered mucous degradation, increased oxi-
dative respiration, and oxidized monosaccharide utilization, as well as

Fig. 4 | Important underlyingmicrobiota of early-lifemicrobiome age. a Top 25
most important species in predicted age determination, shaded according to the
MaAsLin2 regression coefficient with predicted age, adjusting chronological age
and with a random effect of the sample collection site. The size of the points
represents logarithmic relative abundance.bVenn diagramof the top 25 important
species in predicted age and differential within atopic disease as compared to
healthy controls. cThe nine commonly identified specieswithin one ormore atopic

or allergic diagnoses (1+, n = 353), two or more allergic diagnoses (2+, n = 82), and
individual clinical diagnoses at 5 years, i.e., atopic dermatitis (AD, n = 212), food
allergy (FA, n = 75), asthma (As, n = 103), or allergic rhinitis (AR, n = 113), at 5 years,
as compared to healthy control (HC, n = 236) participants, adjusting for chron-
ological age at the time of collection and with a random effect of the sample
collection site. Data were presented as MaAslin2 coefficients ± standard error.
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diminished sulfur oxidation and secondary fermentation capacity)
(Fig. 5) and the metabolic landscape of the 1-year infant gut (e.g., ele-
vated TAs and decreased butyrate) (Fig. 6 and Supplementary Fig. 5).
We, therefore, developed a structural equationmodel (SEM) to test the
hypothesis that this dysregulation in both the genetic potential and
metabolic output at 1 year mediates the elevated risk of allergy in
children with delayed microbiota maturation (Fig. 7). Dysregulated
pathways and metabolites in the 1-year stool sample were combined
into one latent variable and an indirect effect was quantified between
the microbiota-predicted age and the diagnosis of allergies at 5 years.
Within this model, we identified a significant indirect effect
(p = 0.0020, β = −2.28) for the 1-year stool latent variable, with each
dysregulated feature contributing to this effect. Thus, the association
between impaired microbiota maturation and allergies at 5 years is
likely mediated by these multi-omic signals, placing them at the fore-
front of mechanistic targets with the potential to collectively predict
and/or prevent allergy development.

Discussion
Despite having unique organ-specific clinical manifestations, the
interrelationship between allergic diseases indicates that common
pathophysiological mechanisms contribute to their development11–15.
Indeed, while many studies focused on individual allergic disorders
have identified associated shifts within the microbiota, we found only
one other study that took an aggregated approach16, and no published
studies that also investigated microbiota signatures existing prior to
allergic sensitization. By combining extensive, longitudinal clinical
phenotyping with expert physician clinical assessments throughout
the first 5 years of life, we were able to identify the infant microbiome
shifts that existed before allergic diagnoses. Furthermore, this
approach provided us with a richly characterized “healthy control”
group that lacked any detectable signs of allergic sensitization

measured on three separate visits from ages 1 to 5 years. In doing so,
wewere able to demonstrate that, regardless of the diagnosis, reduced
microbiota-predicted age is a hallmark of future allergy development,
thus creating a focal point to combat pediatric allergic disease.

While previous studies have associated decreased microbiota
maturation with early atopic sensitization and asthma
development23,34,35, our study suggests that this impaired maturation
may be universal to the full spectrum of pediatric allergic diagnoses.
Our reported trend in maturation alteration is epitomized in deple-
tions in the bacterial species A. hadrus, F. saccharivorans, E. hallii, and
B. wexlerae in participants who later developed allergic diseases, as
well as enrichments in E. lenta, C. innocuum, E. faecalis, E. coli, and T.
nexilis in these participants. The depleted bacterial populations are
known short-chain fatty acid (SCFA) producers, notably the butyrate
producersA. hadrus, E. hallii, and F. saccharivorans36–38 and the acetate
producer B. wexlerae39; SCFAs are metabolites that mediate well-
defined host benefits within the gut40. Although not significantly
associated with allergic disease by itself, we report a depletion of
butyrate in allergy-prone participants and significant associations
betweenA. hadrus and F. saccharivorans respective relative abundance
and butyrate concentration. This strengthens the postulation that the
production of butyrate and its effect on immune cells is a mode by
which optimal immune modulation occurs during early life. In con-
trast, species enriched in allergy-prone participants have been linked
to pathogenic activity and poor health outcomes41–45, with many of
these microbiome features associating with metabolites enriched
within these same participants.

Furthermore, our mechanistic characterization extended pre-
vious knowledge to pinpoint maturation-dependent functional fea-
tures. We report broad alterations of functional potential for both
decreased microbiota-predicted age and the independent considera-
tions of allergic diagnoses. Within the microbiome, imbalances in
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functional pathways indicative of dysbiosis were associated with
reduced predicted age and elevated risk of allergy. These included a
breakdown of mucous integrity via elevated sulfur reduction and
diminished sulfur oxidation pathways46, elevated oxidation levels and
subsequent availability of oxidized monosaccharides27,47, as well as
reduced potential for secondary fermentation48. Our shotgun

metagenomic sequencing results were complemented by targeted
metabolic profilingwithin the same infant stool samples. In addition to
a high degree of connectivity between microbiota maturation and the
functionality of the microbiome, we discovered a strong association
between microbiota-derived age and the stool metabolic landscape.
Indeed, of the 245 metabolites studied, 27 of the 50 (54%) cluster-
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independent metabolites and 7 of the 14 (50%) metabolite clusters
were significantly associated with the microbiota-predicted age. Sev-
eral maturation-dependent metabolites were disturbed in children
who developed allergies with three biogenic amines, namely pheny-
lethylamine, tryptamine, and tyramine, also demonstrating high cor-
relations with disrupted microbial pathways. Typically found at low
levels, trace amines (TAs) phenylethylamine, tryptamine, and tyramine
have distinct biological impacts compared to other biogenic amines.
Indeed, TAs have a very high affinity for TA-associated receptors
(TAARs), a class of G-coupled protein receptors found on both
intestinal and immune cells, and TAAR ligation has been demonstrated
to increase intestinal cell oxidative stress and immune cell
activation49,50. Furthermore, their accumulation promotes bacterial
adherence to intestinal cells, likely perpetuating this inflammatory
response51,52. In this way, microbiota-dependent limiting of TA abun-
dance may be an underappreciated mechanism to promote tolero-
genic immune development in infancy.

Within this study, we explicitly acknowledge thatwe are reporting
epidemiological associations and that our stringently selected cohort
(n = 1115) does not completely represent the entire CHILD cohort (e.g.,
we report a slightly higher proportion of participants with familial
history of atopy and history of breastfeeding than the larger cohort)
(Supplementary Table 1). Moreover, CHILD is a prospective observa-
tional cohort, and additional studies from independent cohorts are
needed to strengthen our findings, as is the case formostmicrobiome-
based studies. This is primarily due to natural variance that exists
within and between samples. For example, biogeography within stool
samples can impact microbiota composition, and while stool aliquots
were homogenized prior to our metagenomic and metabolomic

analyses, variation may exist between individual aliquots collected
from the same stool. Variance is also reflected between samples (e.g.,
infant stool may differ in composition depending on the day, and
infants across different populations often demonstrate distinct
microbiota composition). Thus, while our findings are promising and
were observed in a large, cross-Canada cohort, replicationwithin other
well-powered cohorts will be important for validating these results.

Although we report a potential mechanism for microbiota-
dependent support of tolerogenic immune development via the
interaction of the elevated TAs tryptamine, tyramine, and pheny-
lethylamine, and depleted butyrate with intestinal and immune cell
receptors in infants later diagnosedwith allergic disease, future studies
are needed to perform mechanistic in vitro and in vivo studies in cell
andmurinemodels to provide insight into causation. This is especially
applicable to the presence of metabolites within participant stool
samples and their attribution to specific microbial species and/or
functional pathways, as we were only able to identify correlations
between metabolites and pathways. Mechanistic studies capable of
testing species-specific enzymatic relationshipswith thesemetabolites
would greatly improve our understanding of their relationship with
microbiota maturation and allergic disease.

Although we emphasized the similar clinical and microbiome
signals underlying allergic disease, identifying unique features asso-
ciated with individual diseases and atopic and non-atopic manifesta-
tions provides valuable insight into differentiating their biological
underpinnings, and further work in this area of study is needed. Stu-
dies looking more closely at clinical and environmental variables that
are associated with microbiota maturation and allergy development
would therefore be beneficial.
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Overall, using deep clinical phenotyping, including repeated
testing and standardized physician diagnoses, we compared 1115
childrenwith asthma, allergic rhinitis, food allergy, or atopic dermatitis
to a rigorously defined, non-allergic comparator group. We then har-
nessed a multi-omics approach in 589 of these children containing
shotgun metagenomic sequencing and their infant microbiome
metabolomic profiles and revealed that impaired infant microbiota
maturation may be universal to the development of all pediatric
allergies.We described detailed underpinnings driving this decrease in
gut microbiome maturation, encompassed within the alteration of a
core group of species, functional pathways (i.e., potential intestinal
mucous integrity breakdown, elevated oxidative stress levels, and
subsequently oxidized monosaccharides, and diminished secondary
fermentation), andmetabolic imbalance (i.e., elevated TAs) associated
with reduced microbiota-maturation age and elevated risk of allergy.
In conclusion, this study provides insight into underappreciated and
nuanced aspects of the infant microbiome that will enable improved
prevention and prediction of allergic disease.

Methods
Study cohort and defining clinical phenotypes
This research complies with all relevant ethical regulations and was
written and approved by the University of British Columbia, University
of Manitoba, University of Toronto, McMaster University, BC Chil-
dren’s Hospital, The Hospital for Sick Children, and Simon Fraser
University. The Research Ethics Board Number is H07-03120. The
Board of Record (as noted above) has reviewed and approved this
study in accordance with the requirements of the Tri-Council Policy
Statement: Ethical Conduct for Research Involving Humans (TCPS2,
2018). The “BoardofRecord” is theResearch EthicsBoarddelegatedby
the participating REBs involved in a harmonized study to facilitate the
ethics review and approval process.

The CHILD Study is a multi-center longitudinal, prospective,
general population birth cohort study following infants from preg-
nancy to age 5 years, and beyond. With enrollment beginning in 2008
and closing in 2012, a total of 3621 pregnant women from four cities
(Vancouver, Edmonton, Winnipeg, Toronto) across Canada enrolled
along with eligible infants (n = 3455) that had no congenital abnorm-
alities and were born at a minimum of 34 weeks of gestation53.
Informed consent was obtained from parents at the time of this study.
CHILD Study children were followed prospectively and detailed
information on environmental exposures and clinical measurements
and assessmentswere collected using a combination of questionnaires
and in-person clinical assessments. Briefly, questionnaires were
administered at recruitment, 36-week gestation, at 3, 6, 12, 18, 24,
30 months, and at 3, 4, and 5 years; data were obtained related to
environmental exposures and general health. In addition, at ages 1, 3,
and 5 years, questionnaires validated in the International Study of
Asthma and Allergies in Childhood (ISAAC)54 were completed by the
parent.

All infants enrolled in the CHILD protocol were administered an
SPT at their 1-, 3-, and 5-year scheduled visits. Children were then
diagnosed with IgE-mediated allergic sensitization (also referred to as
atopy) based on skin prick testing (SPT) to multiple common foods
andenvironmental inhalant allergens, using ≥ 2mmaveragewheal size
as indicating a positive test relative to the negative control. The aller-
gens tested at all 1-, 3-, and 5-year visits include cat hair, the German
cockroach, Alternaria tenuis, house dust mites (Dermatophagoides
psteronyssinus and Dermatophagoides farnae), dog epithelium, cow’s
milk, peanut, eggwhite, and soybean. In addition to these, participants
at 3- and 5-year visits were tested with Cladosporium, Penicillium,
Aspergillus fumigatus, trees, grass, weeds, and ragweed. Glycerin and
histamine served as the negative and positive controls, respectively.

The primary outcomes of our study were atopic dermatitis,
asthma, food allergy, and allergic rhinitis diagnosed (as Yes/Possible/

No), using history and physical examination in combination with skin
prick testing, by an expert study physician at the clinical assessment at
the age of 5 years based on our published approach55. For this study,
children were considered to have allergic diseases only if the response
was ‘Yes’ to a clinical inquiry of whether they had atopic dermatitis,
asthma, food allergy, and/or allergic rhinitis. Non-allergic controls
were limited to children with ‘No’ responses for 5-year diagnoses,
negative allergen SPTs at 1, 3, and 5 years, andnohistory ofwheezing at
1, 3, and 5 years. Within the current study, we analyzed the data in a
subset of CHILD that contained data for parent and child ques-
tionnaires, SPT results, andphysician diagnoses at 5 years for cases and
1, 3, and 5 years for controls (n = 1115, Fig. 1b and Supplementary
Table 1).

Stool sample collection
Sample collection and sequencing were performed as previously
described in refs. 19,53. Specifically, stool samples from diapers were
collected at a home visit at around 3 months [mean (SD), 3.8 (1.1)
months] and a clinic visit at around 1 year [mean (SD), 12.5 (1.6)
months]. Samples were briefly stored at 4 °C and then aliquoted into
four 2-mL cryovials using a stainless steel depyrogenated spatula and
were frozen at −80 °C. CHILD recorded the time between stool col-
lection and long-term storage, and this processing time was adjusted
for in our statistical analysis of metabolic profiles.

Shotgun metagenomic sequencing
Shotgunmetagenomic sequencing data were generated by Diversigen
(Minneapolis,MN, USA) from fecal samples (average depth of 5million
reads per sample). DNAwas extracted from samples using theMO BIO
PowerSoil Prowithbeadbeating in0.1mmglass beadplates, with high-
quality input DNA verified using Quant-iT PicoGreen. Libraries were
prepared and sequenced on an Illumina NextSeq using single-end
1 × 150 reads. Low-quality (Q-score <30) and length (<50) sequences
were removed, and adapter sequences were trimmed. Host and low-
quality reads were removed, and only samples with a minimum of 1
million remaining reads were retained for downstream analysis.

Sequencing preprocessing. The bioBakery 3 pipeline was used to
map sequences and classify sequences into taxonomic (species and
strain level) and functional features within each sample56. The bioBa-
kery 3 pipeline is open source and its functionality has been
published56. Specifically, MetaPhlAn 3 was used for taxonomic classi-
fication, and HUMAnN 3 for functional profiling.

NMR and LC-MS/MS metabolite quantification
Metabolic profiles were created from the same sequenced stool sam-
ples at The Metabolomics Innovation Center (TMIC) in Edmonton,
Alberta using two separate assays. Targeted nuclear magnetic reso-
nance (NMR) analysis of 31 metabolites was performed across 62
batches57,58. Targeted liquid chromatography with tandem mass spec-
trometry (LC-MS/MS) analysis of 590metaboliteswasperformedusing
TMIC’s Microbiome Metabolism (MEGA) assay across 27 batches59,60.
NMR and LC-MS/MS precision were confirmed to be <5 and <10%
coefficients of variability (CV), respectively. Additionally, overlapping
metabolites detected by bothmethods were cross-checked to confirm
the accuracies of the reported concentration values.

Detailed methods of both NMR and LC-MS/MS analyses can be
found in Supplemental Methods. Briefly, each analysis was performed
using approximately 100mg of stool. Samples with lowmass or diaper
fibers were excluded. Stool was weighed before and after lyophiliza-
tion to quantify total water content prior to analysis. Analyte con-
centrations were determined using a standard approach to absolute
quantification, using isotope-labeled internal standards to correct for
technical variation and then assessing the result against a calibration
curve of known concentrations of standard mixtures. Regarding the
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assignment of all visible peaks, this applies to when, within this tar-
geted assay, very low abundant peaks are not visible for manual
assignment and are therefore not reported Metabolite levels (μmol)
were normalized todry/lyophilized stoolweight (g) and analyzedusing
the ratio (μmol/g). Allmetabolite concentrations for both theNMRand
LC-MS/MS analysis were recorded by TMIC as well as their limit of
detection (LOD).

All 31 metabolites from the NMR analysis were kept for down-
stream analysis. Of the 590 metabolites targeted in the LC-MS/MS
analysis, we excluded metabolites that were detected below the limit
of detection inmore than 80% of samples (meaning they were present
in less than 20% of our samples). This resulted in the exclusion of 244
metabolites. Remaining metabolite concentrations below the limit of
detection (LOD) were imputed with a value of one-half the minimum
concentration for each metabolite and log-transformed. An additional
132 low-variancemetabolites basedon standarddeviation (log(SD) less
than −5)were then excluded. All excludedmetabolites were confirmed
to not be significantly associated with the presence of a 5-year allergy
diagnosis (Supplementary Data 4).

Technical sampleoutlierswere detected via PCA analysis followed
by the quantification of local outlier factor (lof), using the “stats” and
“dbscan”packages, respectively. Sampleswith a lof greater than 5were
excluded (three LC-MS samples and two NMR samples). The resulting
NMR and LC-MS/MS were individually batch corrected using the
“ComBat” package prior to any downstream analysis. This reduced the
effect of the batch from R2 = 0.11 to R2 = 0.017 in the LC-MS/MS dataset
and reduced the effect of the batch from R2 = 0.13 to R2 = 0.004) in the
NMR dataset. Batch-corrected datasets containing a total of 245
metabolites were merged for downstream analyses. These pre-
processing steps have been included in our supplementary code files
(R file and README) for clarity of data treatment and replication.

Statistics and reproducibility
Data analysis was conducted in R (version 4.1.1). No statistical method
was used to predetermine the sample size. The Investigators were not
blinded to allocation during experiments and outcome assessment.
Firstly, we derived variables indicating whether participants were
diagnosed with a condition of interest or had no conditions up and
through their 5-year evaluation and used multivariable conditional
logistic regression (stratified by study center) to evaluate the influence
of early-life and familial exposures, including biological sex, presence
of older siblings, mode of delivery at birth, birth weight, the season of
birth, breastfeeding status at the age of 6 months, maternal atopy,
paternal atopy, and exposure to environmental NO2, upon allergic
condition development by the age of 5 years. Missing data were con-
sidered missing completely at random, and individuals were removed
from the multivariable analysis if they had a missing value in any
covariates.

The microbiome estimated age was derived from species-level
microbiome relative abundance data using a nested fivefold cross-
validated random forest regressor. Eachmeasurement was taken from
a distinct sample for the calculation. By using the “randomForest”,
“mlbench”, and “caret” packages in R61–63, a fivefold random forest
model with an mtree value of 500 was used to predict the exact age
using the relative abundance of species with at least 10% prevalence
within all samples. Within each fold of the cross-validated analysis, the
hyper-parameters of the random forest model were tuned given a grid
search space using nested fivefold cross-validation. The predicted
microbiome age was the combination of the predicted value of each
holdout set from each cross-validated random forest regression. The
importance of features was the average of importance from all models
in the nested cross-validated regressor.

The “phyloseq” package was used to pre-process the metage-
nomic taxonomy table64. The “Maaslin2” package was used to perform

linear mixed-effects models (MaAsLin2 function)65 with study center
location as a randomeffect and adjusting for stool sample of collection
age to examine the association between microbial community struc-
ture at 3 months and 1 year of age within the six phenotypes as com-
pared to the control group of participants. These phenotypes included
having at least one of atopic dermatitis, asthma, food allergy, or
allergic rhinitis, having at least two of atopic dermatitis, asthma, food
allergy, or allergic rhinitis, and having atopic dermatitis, asthma, food
allergy, or allergic rhinitis individually. Specifically, comparisons of
each group to participants determined to have no allergic conditions
up and through their 5-year evaluation were performed independently
of one another.

Species diversity, measured as the Shannon index, was calculated
using the “vegan” package. To identify bacterial species and MetaCyc
pathways significantly associated with each phenotype, the same
model was applied to the log-transformed relative abundance of spe-
cies and MetaCyc pathways. Models were only applied to species and
MetaCyc pathways detected in at least 10% of used samples were tes-
ted (72 species and 347 pathways, respectively), the default setting in
the MaAsLin2 package. MaAsLin2 adds a pseudocount of half the
minimum species or MetaCyc pathway level detected before the log
transformation relative abundances. P values were corrected using the
Benjamini–Hochberg approach and results with FDR <0.1 were con-
sidered significant and presented as so.

For all metabolomic profile analyses, batch corrections were
performed prior to analyses. Permutational Multivariate Analysis of
Variance (PERMANOVA) analysis was applied to quantify the asso-
ciation between infant microbiota-derived predicted age and meta-
bolome using the R package “vegan”66. Euclidean distance was used
as the metric of comparison between the predicted age with
adjustment for the exact age of sample collection and processing
time between stool collection and long-term storage, and collection
site as a stratum. Spearman correlation analyses were performed
using the “RcmdrMisc” package and reported using r and
Benjamini–Hochberg-corrected p values67.

Meconium metabolite abundances were log-transformed and
then weighted gene coexpression network analysis (WGCNA) was
performed using the “WGCNA” package in R68. A soft-power threshold
of 4 was selected based on the scale-free topology fit index. Positively
correlated metabolites were clustered together using “signed hybrid”
networks and biweightmidcorrelation. Theminimummodule size was
set to fivemetabolites, andmodules that correlated with each other at
0.85 or greater were merged. This resulted in 14 modules. Scaled
average expression values from the WGCNA output were combined
with scaled abundances of the 50 unclustered metabolites.

To evaluate the mediation effect of dysregulated pathways and
metabolites for gutmaturity on allergic diseases, we applied structural
equation modeling (SEM) using the R package “lavaan”69. For model
specification, first, we conceptualized the 1-year gut microbiome
imbalanced pathways and metabolites (i.e., latent variable) using fac-
tor analysis. The latent variable was defined as a combination of
pathways significantly associated with at least two of the allergy
diagnoses and one of the composite groups and metabolites asso-
ciated with a high proportion of those same pathways. Then, we
simultaneously estimated the mediation effect (indirect effect) of
dysregulated pathways and metabolites by fitting two multiple
regressions on latent and outcome variables, assuming that both
regressions’ error terms are uncorrelated. All the models were adjus-
ted for the study center, stool sample collection age, and processing
time between stool collection and long-term storage.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The participant data were available under restricted access for the
protection of CHILD participants, access can be obtained by contact-
ing Stuart E. Turvey (sturvey@bcchr.ca). The shotgun metagenomic
data used in this study are available in the NCBI database under Bio-
Project accession code PRJNA838575. The metabolic profile data used
in this study are available in the MetaboLights database under acces-
sion code MTBLS7919. For additional participant clinical and stool
data, further requests for resources and reagents shouldbe directed to
and will be fulfilled by Stuart E. Turvey (sturvey@bcchr.ca).

Code availability
The code for the study is provided in the Supplementary Files.
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