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Discovering conservation laws using optimal
transport and manifold learning

Peter Y. Lu 1,2 , Rumen Dangovski 3 & Marin Soljačić 2

Conservation laws are key theoretical and practical tools for understanding,
characterizing, and modeling nonlinear dynamical systems. However, for
many complex systems, the corresponding conserved quantities are difficult
to identify, making it hard to analyze their dynamics and build stable pre-
dictive models. Current approaches for discovering conservation laws often
depend on detailed dynamical information or rely on black box parametric
deep learning methods. We instead reformulate this task as a manifold
learning problem and propose a non-parametric approach for discovering
conserved quantities. We test this new approach on a variety of physical sys-
tems and demonstrate that our method is able to both identify the number of
conserved quantities and extract their values. Using tools from optimal
transport theory and manifold learning, our proposed method provides a
direct geometric approach to identifying conservation laws that is both robust
and interpretable without requiring an explicit model of the system nor
accurate time information.

Conservation laws are powerful constraints on the dynamics of many
physical systems in nature, and the corresponding conserved quan-
tities are essential features for characterizing the behavior of these
systems. Through Noether’s theorem, conservation laws are closely
tiedwith the symmetries of a physical system and play a key role in our
understanding of physics. Conservation laws also help stabilize and
enhance the performance of predictive models for complex nonlinear
dynamics, e.g. symplectic integrators for Hamiltonian systems1 and
pressure projection for incompressible fluid flow2. In fact, for chaotic
dynamical systems, conserved quantities are often the only features of
the system state that can be reliably known far into the future. Dis-
covering conservation laws helps us characterize the long-term beha-
vior of complex dynamical systems and understand the underlying
physics.

While the conservation laws of many physical systems are well-
known and often derived from known symmetries, there are still many
instances where it is difficult to even determine the number of con-
servation laws, let alone explicitly extract the conserved quantities. As
a historical example, consider the Korteweg–De Vries (KdV) equation
modeling shallowwater waves. The KdV equation, despite its apparent

complexity, has infinitely many conserved quantities3 and is, in fact,
fully solvable via an inverse scattering transform4—a discovery made
after significant theoretical and computational effort. Developing
better general methods for identifying conserved quantities will allow
us to improve our understanding of new or understudied physical
systems and build more efficient and stable predictive models.

In real-world applications, an accurate model for the underlying
physical system is often unavailable, forcing us to identify conserva-
tion laws using only sample trajectories of the system dynamics. One
broad approach is to use modern data-driven methods based on the
Koopman operator formulation of dynamical systems, which lifts the
dynamics into an infinite dimensional operator space5. In theKoopman
formalism, conserved quantities are just one type of Koopman
eigenfunction with eigenvalue zero. Thus, one approach is to first
apply a system identification method, such as dynamic mode
decomposition6,7, sparse identification with a library of basis
functions8, or even deep learning-based approaches9–11, to model the
system dynamics and then set up and solve the Koopman eigenvalue
problem. Alternatively, previous work has also proposed directly set-
ting up the eigenvalue problem by estimating time derivatives from
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data and then fitting the conserved quantities using a library of pos-
sible terms12 or a neural network13. These methods can work quite well
but require that the measured trajectories have sufficiently low noise
and high time resolution in order to accurately estimate time
derivatives.

Constructing a model for a dynamical system provides much
more information than just the conservation laws. In fact, even
estimating time derivatives is usually not necessary if we are only
interested in identifying conserved quantities. In this work, we will
instead focus on an alternative approach that does not require an
explicit model or detailed time information but rather takes
advantage of the geometric constraints imposed by conservation
laws. Specifically, the presence of conservation laws restricts each
trajectory in phase space to lie solely on a lower dimensional iso-
surface of the conserved quantities. The dimensionality of these
isosurfaces can provide information about the number of con-
served quantities or constraints14. Furthermore, since each isosur-
face corresponds to a particular set of conserved quantities, the
variations in shape of the isosurfaces directly correspond to varia-
tions in the conserved quantities. In other words, we can identify
and extract conserved quantities by examining the varying shapes
of the isosurfaces sampled by the trajectories.

In contrast with recent work using black box deep learning
methods to fit conserved quantities that are consistent with the sam-
pled isosurfaces15,16, we propose and demonstrate a non-parametric
manifold learning approach (Fig. 1) that directly characterizes the
variations in the sampled isosurfaces, producing an embedding of the
space of conserved quantities. Our method first uses the Wasserstein
metric from optimal transport17 to compute distances in shape space
between pairs of sampled isosurfaces and then extracts a low dimen-
sional embedding for the manifold of isosurfaces using diffusion
maps18,19. Each point in this embedding corresponds to a distinct iso-
surface and therefore to a distinct set of conserved quantities, i.e. the
embedding explicitly parameterizes the space of varying conserved
quantities. Related methods have been recently suggested for char-
acterizing molecular conformations using the 1-Wasserstein distance
together with diffusion maps20, performing system identification by
comparing invariant measures using the 2-Wasserstein distance21, and
reconstructing normal forms using diffusion maps22. Recent theore-
tical work has also formalized the idea of using alternative non-
Euclidean norms, like theWasserstein distance, in spectral embedding
methods such as diffusion maps23.

We provide an analytic analysis of our approach for a simple
harmonic oscillator system and numerically test our method on
several physical systems: the single and double pendulum, planar
gravitational dynamics, the KdV equation for shallow water waves,
and a nonlinear reaction–diffusion equation that generates an
oscillating Turing pattern. We also demonstrate the robustness of
our approach to noise in the measured trajectories, missing infor-
mation in the form of a partially observed phase space, as well as
approximate conservation laws (additional experiments in Supple-
mentary Notes 3 and 5). In our comparison tests (Supplementary
Note 6), our approach outperforms prior deep learning-based direct
fittingmethods, all while being an order ofmagnitude faster. We also
provide an easy-to-use codebase (https://github.com/peterparity/
conservation-laws-manifold-learning), which parallelizes across
multiple GPUs, tomake an efficient implementation of ourmethod as
accessible as possible.

Results
Analytic result for the simple harmonic oscillator
In the case of a simple harmonic oscillator (SHO) without measure-
ment noise and in the infinite sample limit, we are able to explicitly
derive an analytic result for our proposed procedure.We first compute
the pairwise distances provided by the Wasserstein metric and then

derive the embedding produced by a diffusion map, which corre-
sponds to the conserved energy of the SHO.

Wasserstein metric: constructing the isosurface shape space.
Consider a SHO with Hamiltonian

Hðq,pÞ= 1
2m

p2 +
1
2
mω2q2 ð1Þ

given in terms of position q and momentum p. The SHO energy iso-
surfaces E =H(q, p) form concentric ellipses in a 2D phase space.
Choosing units such that m = 1 and ω = 1, we obtain concentric circles
with uniformly distributed samples (assuming a uniform sampling in
time). The 2-Wasserstein distance between a pair of uniformly
distributed circular isosurfaces is simply given by the difference in
radii ∣r1 � r2∣. This is because, due to the rotational symmetry of the
two distributions, the optimal transport plan for an isotropic cost
function is to simply move each point on isosurface 1 radially outward
(or inward) to the point on isosurface 2 with the same angle θ.

This result does notmeaningfully changewith a different choice of
units, which is equivalent to rescaling the phase space coordinates q, p.
If we rescale q, p by factors kq, kp, our cost function simply becomes

cðθi, θjÞ= k2
qðr1 cosθi � r2 cosθjÞ2 + k2

pðr1 sin θi � r2 sin θjÞ2, ð2Þ

wherewe label points on the isosurfaces by their angleθon theoriginal
circular isosurfaces. The SHO optimal transport plan Π takes θ on
isosurface 1 to the point with the same angle θ on isosurface 2, and Π
for the SHO is invariant to coordinate rescaling (Supplementary
Note 9). Therefore, the total transport cost is

C =
1
2π

Z 2π

0
cðθ, θÞdθ= k2

q + k
2
p

2
ðr1 � r2Þ2, ð3Þ

so the 2-Wasserstein distance is

ffiffiffiffi
C

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

q + k
2
pÞ=2

q
∣r1 � r2∣ / ∣r1 � r2∣, ð4Þ

i.e. the same resultmodulo a constant factor.While this is not a general
result, we find that our approach is often fairly robust to such changes,
including the extremecaseof scaling somephase space coordinates all
the way down to zero resulting in a partially observed phase space
(Supplementary Note 5).

Diffusion maps: extracting the conserved energy. Once we have
pairwise distances in the isosurface shape space, we can use diffusion
maps to study the resulting manifold of isosurface shapes. With suffi-
cient samples, the operator constructed by the diffusion map should
converge to the Laplace–Beltrami operator on the manifold. For the
SHO, the isosurface shape space is isomorphic to R+ with each cir-
cular isosurface mapped to its radius. If we sample trajectories with
radii r 2 ð0,

ffiffiffiffiffiffiffiffi
2E0

p
Þ for some maximum energy E0, then the manifold is

a real line segment, and the resulting Laplacian operator (with open
boundary conditions) has eigenvalues λn =π2n2/2E0 and corresponding
eigenvectors vnðrÞ= cosð

ffiffiffiffiffi
λn

p
rÞ. Therefore, the first eigenvector or

embedding component

v1ðEÞ= cosðπ
ffiffiffiffiffiffiffiffiffiffiffi
E=E0

p
Þ ð5Þ

successfully encodes the conserved energy and is, in fact, amonotonic
function of the energy.

Numerical experiments
To demonstrate and empirically test our method for discovering
conservation laws, we generate datasets from a wide range of
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Fig. 1 | Proposed non-parametric method for discovering conservation laws
illustrated using a simple pendulum example. a First, we collect and normalize
the trajectory data from the dynamical system. Two example trajectories are
highlighted in red and blue. b Then, we use the Wasserstein metric from optimal
transport to compute thedistancebetween eachpairof trajectories andconstruct a
distance matrix. For the two example trajectories, the optimal transport plan is
shown as lines connecting pairs of points. The constructed distance matrix is
plotted with color representing the computed Wasserstein distance between each
pair of trajectories. The computeddistancebetween the twoexample trajectories is

marked (black dots) on the distance matrix plot. c An embedding of the shape
space manifold C is extracted from the distance matrix using diffusion maps. The
embedding plot is colored by the conserved energy of the pendulum E. The points
corresponding to the two example trajectories are marked in red and blue.
d Finally, a heuristic score (Supplementary Note 1) is used to select relevant com-
ponents. In this case, only component 1 is relevant, corresponding to a single
conserved quantity—the energy E. Again, the embedding plot is colored by E, and
the two example trajectories are marked in red and blue.
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dynamical systems, each consisting of randomly sampled trajectories
with different initial conditions and the corresponding conserved
quantities. Note thatwe use the dimensionless formof each dynamical
system. All of the code necessary for reproducing our results is avail-
able at https://github.com/peterparity/conservation-laws-manifold-
learning.

Simple Harmonic Oscillator. We first numerically test our analytic
result for the SHO and obtain good agreement (Fig. 2) using both
the default scaling kq = kp = 1 (Fig. 2a–d) as well as the position
only scaling kq = 1, kp = 0 (Fig. 2e–h), which effectively reduces the

dimension of the phase space. A linear fit of the first embedding
component from the diffusion map with the analytically pre-
dicted component (Eq. (5)) achieves a correlation coefficient of
R2 = 0.9995 for the default scaling and R2 = 0.9961 for the position
only scaling. We also verify that the heuristic score (Supplemen-
tary Note 1) accurately determines that there is only one relevant
embedding component (Fig. 2c, g), which corresponds to the
conserved energy.

Simple pendulum. To demonstrate ourmethod on a simple nonlinear
dynamical system, we analyze a simple pendulum that has a 2D phase
space consisting of the angle θ and angularmomentumω (Fig. 3a). The

q

p

q

Fig. 2 | Identifying the conserved energy for the simple harmonic oscillator
(SHO). a The SHO has two degrees of freedom: position q and momentum p.
b Sample trajectories from the SHO dataset show sample points plotted in the 2D
phase space (q, p). c The heuristic score (with cutoff 0.6) correctly identifies that
the first embedding component extracted by the diffusionmap is the only relevant
component. d The extracted first component closely matches the analytically
predicted first component (Eq. (5)) for the SHO (R2 = 0.9995). e Next, consider the
SHO dataset with a partially observed phase space containing position only. f For
each sample trajectory, the sample points are shown as a histogram.gThe heuristic
score is still able to identify the first component as relevant, and h this first com-
ponent matches the analytic prediction (R2 = 0.9961).

Fig. 3 | Identifying the conserved energy for the simple pendulum. a The simple
pendulum has two degrees of freedom: angular position θ and angular velocity ω.
b Sample trajectories show sample points plotted in the 2D phase space (θ,ω).
c The heuristic score (with cutoff 0.6) correctly identifies that the first embedding
component extracted by the diffusion map is the only relevant component, and
d the extracted first component is monotonically related to the energy (rank cor-
relation ρ =0.9997). e, f With the addition of σ =0.5 Gaussian noise to simulate
measurement noise, g the heuristic score is still able to identify the first component
as relevant, and (h) this first component corresponds well to the energy
(ρ =0.9978).
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equations of motion are

dω
dt

= � sinθ

dθ
dt

=ω:
ð6Þ

This system has a single scalar conserved quantity

E =
1
2
ω2 + ð1� cosθÞ ð7Þ

corresponding to the total energy of the pendulum, so the trajectories
form 1D orbits in phase space (Fig. 3b).

Our method is able to correctly determine that there is only a
single conserved quantity (Fig. 3c) corresponding to the energy of the
pendulum (Fig. 3d). The single extracted embedding component is
monotonically related to the energy with Spearman’s rank correlation
coefficient ρ =0.9997. We are also able to achieve similar results
(ρ =0.9978) with a high level of Gaussian noise (standard deviation
σ = 0.5) added to the raw trajectory data (Fig. 3e–h), showing that our
approach is quite robust to measurement noise.

Planar gravitational dynamics. To test our method on a system with
multiple conserved quantities, we simulate the gravitational system of
a planet orbiting a star with much greater mass (Fig. 4a). We fix the
orbits to all lie in a 2D plane, giving us an effectively 4D phase space.
The resulting equations of motion are

dr
dt

=p

dp
dt

= � r̂

∣r∣2
:

ð8Þ

This system has one scalar and two vector-conserved quantities

E =
p2

2
� 1

∣r∣
L= r×p

A=p×L� r̂,

ð9Þ

which, in our 4D phase space, reduces to three scalar conserved
quantities: the total energy E (or equivalently, the semi-major axis
a = − 1/2E), the angular momentum L= ∣L∣, and the orbital orienta-
tion angle ϕ, which is the angle of the LRL vector A relative to the
x-axis. As a result, the trajectories also form 1D orbits in the phase
space (Fig. 4b).

Our approach accurately identifies the three conserved quantities
(Fig. 4c), and theextractedembedding correspondsmostdirectly to the
geometric features of the orbits (Fig. 4d–f). The first two components
embed the semi-major axis vector a = ða cosϕ,a sinϕÞ with magnitude
given by the semi-major axis a = − 1/2E, which is related to the energy E,
and orientation given by the orientation angle ϕ of the elliptical orbit
(Fig. 4d, e). The third relevant component (component 6) embeds the
angularmomentumL (Fig. 4f). SeeSupplementaryNote 1.1 fordetails on
choosing a cutoff to identify the relevant components. A linear fit of the
identified relevant embedding components with a cosϕ (a sinϕ) has
R2 = 0.987 (R2 = 0.986) and rank correlation ρ =0.994 (ρ =0.992). A
similar linear fit with L has R2 = 0.927 and ρ =0.970.

This example demonstrates that, for a system with multiple con-
servedquantities, the groundmetric for optimal transport controls the
relative scale of each conserved quantity in the extracted embedding.
In this case, the geometry of the shape space C is dominated by
changes in the semi-major axis a and orientation angle ϕ, whereas
changes in the angular momentum L, which controls the eccentricity

of the orbit, play a more minor role and thus appear in a later
embedding component with a lower score (Fig. 4c).

Double pendulum. To test our approach on a non-integrable system
with higher dimensional isosurfaces, we study the classic double
pendulum system (Fig. 5a) with unitmasses and unit-length pendulum
arms. This system has a 4D phase space, consisting of the angles θ1, θ2
and the angular velocities ω1,ω2 of the two pendulums (Fig. 5b), and
only has a single scalar conserved quantity

E =ω2
1 +

1
2
ω2

2 +ω1ω2 cosðθ1 � θ2Þ � 2 cosθ1 � cosθ2 ð10Þ

corresponding to the total energy. However, the double pendulum
system has both chaotic and non-chaotic phases. In particular, at high
energies, the system is chaotic and only conserves the total energy,
while at low energies, the system behaves more like two coupled

r

p

Fig. 4 | Identifying conserved quantities for planar gravitational dynamics.
a Planar gravitational dynamics has four degrees of freedom: position vector r and
momentum vector p. b Sample trajectories show sample points plotted in 2D slices
of the 4D phase space consisting of position r and momentum p. c The heuristic
score (with cutoff 0.6) identifies three relevant embedding components corre-
sponding to the three independent conserved quantities. d, e Components 1 and 2
embed the semi-major axis vector awithmagnitude a = − 1/2E related to the energy
and orientation given by the angle ϕ. f Component 6 corresponds to the angular
momentum L.
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harmonic oscillatorswith two independent (approximately) conserved
energies

E ± =
1
8

4θ21 + 2θ
2
2 ±

ffiffiffi
2

p
θ1θ2 + 2 ±

ffiffiffi
2

p� �
2ω2

1 +ω
2
2

� �
+4 1 ±

ffiffiffi
2

p� �
ω1ω2

h i
ð11Þ

corresponding to the two modes of the coupled oscillator system.
Therefore, we expect to see two distinct phases in our extracted
embedding: one with a single conserved quantity E at high energy and

anotherwith two approximately conserved quantities E± at low energy,
which approximately sum to E ≈ E+ + E−.

Atfirst glance, it appears as thoughourmethodhas only identified
a single relevant component corresponding to the conserved total
energy E (Fig. 5c, e) with rank correlation ρ = 0.996. However, if we
restrict ourselves to low-energy trajectories with first embedding
component v1 < − 1, we find that there is a region of the shape space
that is two-dimensional, corresponding to the two independently
conserved energies E± of the low-energy non-chaotic phase where the
double pendulum behaves like a coupled oscillator system with two
distinct modes. For the low energy trajectories, a linear fit of the now
two relevant components with E+ (E−) has rank correlation ρ =0.919
(ρ =0.937). If we restrict ourselves to even lower energy trajectories
with v1 < − 2, a similar linear fit for E+ (E−) has rank correlation
ρ = 0.990 (ρ =0.989).

This analysis of the double pendulum shows that our method can
still provide significant insight into complex dynamical systems with
multiple phases involving varying numbers of conserved quantities.
This manifests itself as manifolds of different dimensions in shape
space that are stitched together at phase transitions, presenting a
significant challenge for most manifold learning methods. In this
example, this difficulty is reflected in the performance of the heuristic
score (Fig. 5c,d), which has trouble telling whether the embedding is
one or two-dimensional precisely because it is a combination of both a
one and two-dimensional manifold. The embedding, on the other
hand, remains very informative despite the sudden change in dimen-
sionality and allows us to identify interesting features of the system,
such as nonlinear periodic orbits (see Supplementary Note 4). The
effectiveness of diffusion maps when handling these
complex situations has been previously observed in parameter
reduction applications24 and is worth studying in more detail in the
future.

Oscillating turing patterns. Next, we consider an oscillating Turing
pattern system that is both dissipative and has a much higher dimen-
sional phase space than our previous examples. In particular, we study
the Barrio–Varea–Aragón–Maini (BVAM) model25,26

∂u
∂t

=D
∂2u
∂x2

+ u� v� Cuv� uv2

∂v
∂t

=
∂2v
∂x2 �

3
2
v+Hu+Cuv+uv2

ð12Þ

with D = 0.08, C = − 1.5, and H = 3, following Aragón et al.26 who
showed that this set of parameters results in a spatial Turing pattern
that also exhibits chaotic oscillating temporal dynamics, on a
periodic domain with size 8. In our method, each trajectory
[u(x, ti), v(x, ti)], i∈ {1, 2,…,N} is treated as an unordered set of
sample points in phase space, so we refer to the phase space as
[u(x), v(x)] in a slight abuse of notation. The phase space of the
BVAM system consists of two functions u(x) and v(x) which we
discretize on a mesh of size 50, giving us an effective phase space
dimension of 100. Because this system is dissipative, we will focus
on characterizing the long-term behavior of the dynamics, i.e. the
oscillating Turing pattern, which appears to have a conserved
spatial phase η for our chosen set of parameters corresponding to
the spatial position of the Turing pattern. In the language of
dynamical systems, η parameterizes a continuous set of attractors
for this dissipative system.

Our method successfully identifies the spatial phase η but
embeds the angle as a circle in a 2Dembedding space (Fig. 6)—a result
of the periodic topology of η. While this shows that the number of
relevant components determined by our heuristic score may not

Fig. 5 | Identifying conservedquantities for the double pendulum. a The double
pendulum has four degrees of freedom: angular positions θ1, θ2 and angular velo-
citiesω1,ω2.b Sample trajectories show sample points plotted in 2D slices of the 4D
phase space. c The heuristic score (with cutoff 0.6) identifies one relevant
embedding component corresponding to (e) the total energy E. d However, if we
restrict the embedding to trajectories with first component v1 < − 1 (i.e. low energy
trajectories) and renormalize the embedding, f–hwe find two conservedquantities
corresponding to the energies E± of the twodecoupled lowenergymodes. The gray
points in (f–h) correspond to the high energy trajectories (first component v1 > − 1)
which are not relevant when considering the low-energy non-chaotic phase of the
double pendulum.
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always match the true manifold dimensionality, such cases are often
easily identified by examining the components directly (Fig. 6c) or by
cross checking with an intrinsic dimensionality estimator27. A linear
fit of the two relevant components with cosη (sin η) has R2 = 0.9991
(R2 = 0.9997) and ρ = 0.9993 (ρ = 0.9992). This example both tests
our method on a high dimensional phase space and demonstrates
howour approach canbe applied to dissipative systems to study long
term behavior.

Korteweg–De Vries equation. For many spatiotemporal dynamical
systems, the conservation laws are local in nature. Locality can
significantly simplify the analysis of the conserved quantities and
suggests a way to restrict the type of conserved quantities iden-
tified by our method. Specifically, we can adapt our approach to
focus on local conserved quantities by replacing the raw states
(Fig. 7a) by a distribution of local features (Fig. 7b), removing the
explicit spatial label and providing a fully translation invariant
representation of the state. Then, instead of using the Euclidean
metric in the original phase space, we use the energy distance28,29

between the distributions of local features as the ground metric
for optimal transport.

To demonstrate this method for identifying local conserved
quantities, we consider the Korteweg–De Vries (KdV) equation

∂u
∂t

= � ∂3u
∂x3 � 6u

∂u
∂x

: ð13Þ

TheKdV equation is fully integrable4 and has infinitelymany conserved
quantities3, the most robust of which are the most local conserved
quantities expressible in terms of low order spatial derivatives. To
focus on these robust local conserved quantities, we use finite differ-
ences (i.e. u(x),Δu(x) = u(x +Δx) − u(x),Δ2u(x),…) as our local features,
allowing us to restrict the spatial derivative order of the identified
conserved quantities. In this experiment, we only take u(x) and Δu(x),
meaning that the identified local conservedquantitieswill only contain
up to first order spatial derivatives. For the KdV equation, there are

three such local conserved quantities:

c1 =
Z l

0
udx

c2 =
Z l

0
u2 dx

c3 =
Z l

0
u3 � 1

2
∂u
∂x

� �2
" #

dx,

ð14Þ

where c1 and c2 are often identified as “momentum” and “energy”,
respectively3. These local conserved quantities also have direct ana-
logues in generalized KdV-type equations, hinting at their
robustness30.

Our method successfully identifies three relevant components
(Fig. 7c) corresponding to (d–f) the three local conserved quantities
(Eq. (14)). Linear fits of these components to c1, c2, and c3 have rank
correlations ρ = 0.995, 0.994, and 0.985, respectively. This result
shows how our approach can be adapted to incorporate known
structure, such as locality and translation symmetry, in applications to
complex high dimensional dynamical systems.

Discussion
We have proposed a non-parametric manifold learning method for
discovering conservation laws, tested our method on a wide variety of
dynamical systems—including complex chaotic systems with multiple
phases and high dimensional spatiotemporal dynamics—and also
shown how to adapt our approach to incorporate additional structure
such as locality and translation symmetry. While our experiments use
dynamical systems with known conserved quantities in order to vali-
date our approach, our method does not require any a priori infor-
mation about the conserved quantities. Our method also does not
assume or construct an explicit model for the system nor require
accurate time information like previous approaches12,13, only relying on
the ergodicity of the dynamics modulo the conservation laws (Section
“Ergodicity and physical measures”). As a result, our approach is also
quite robust to measurement noise and can often deal with missing
information such as a partially observed phase space (Fig. 2e–h,
Fig. 3e–h, Supplementary Note 5).

Compared with recently proposed deep learning-based
methods15,16, our approach is substantially more interpretable since it
relies on explicit geometric constructions and well-studied manifold
learning methods that directly determine the geometry of the shape
space C and, therefore, the identified conserved quantities. This is
reflected in our ability to explicitly derive the expected result for the
simple harmonic oscillator (Section “Analytic result for the simple
harmonic oscillator”), as well as in the identified conserved quantities in
many of our experiments. For example, the embedding of the semi-
major axis vector in the planar gravitational dynamics experiment
(Section “Planar gravitational dynamics”) stems directly from the
elliptical geometry of the orbits and their orientation in phase space,
which is captured by the Euclidean groundmetric and lifted into shape
space by optimal transport. Our method also correctly captures the
subtleties of the double pendulum system (Section “Double pendu-
lum”) byproviding an embedding that showsboth a 1Dmanifold at high
energies and a 2D manifold at low energies—a difficult prospect for
deep learning approaches that try to explicitly fit conserved quantities.
In addition, we empirically find that our method outperforms existing
direct fitting approaches15,16. See Supplementary Note 6 for a compar-
ison benchmark using our planar gravitational dynamics dataset.

Our manifold learning approach to identifying conserved quan-
tities provides a new way to analyze data from complex dynamical
systems and uncover useful conservation laws that will ultimately
improve our understanding of these systems as well as aid in devel-
oping predictive models that accurately capture long term behavior.

Fig. 6 | Identifying the conserved spatial phase for the oscillating Turing pat-
tern system. a An example trajectory, with randomly sampled states u(x) and v(x)
plotted, illustrates the high dimensional nature of the problem. b The heuristic
score (with cutoff 0.6) identifies two relevant components, but on further exam-
ination, c we see that there is just a single conserved angle, corresponding to the
spatial phase ηof the Turing pattern, that needs tobeembedded in twodimensions
due to its topology.
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While our method does not provide explicit symbolic expressions for
the conserved quantities (which may not exist in many cases), we do
obtain a full set of independent conserved quantities, meaning that
any other conserved quantitywill be a function of the discovered ones.
Our method also serves as a strong non-parametric baseline for future
methods that aim to discover conservation laws from data. Finally, we
believe that similar combinations of optimal transport and manifold
learning have the potential to be applied to a wide variety of other
problems that also rely on geometrically characterizing families of
distributions, and we hope to investigate such applications in the near
future.

Methods
Our proposed approach uses manifold learning to identify and embed
themanifold of phase space isosurfaces sampled by the trajectories of
a dynamical system. In particular, we compute a diffusion map over a
set of trajectories, each of which samples a particular phase space
isosurface (Fig. 1a). The pairwise distances between these trajectories
are given by the 2-Wasserstein distance (Fig. 1b), providing the metric
structure necessary for applying diffusionmaps (Fig. 1c). Themanifold
embedding extracted by the diffusionmap corresponds directly to the
space of conserved quantities (Fig. 1d). Note that this type of analysis
does not require knowledge of the equations of motion (Eq. (15)) and
makes no direct reference to time.

Dynamical systems
Consider a dynamical system with states x 2 M that live in a d-
dimensional phase spaceM and evolve in time according to a system
of first order ODEs

dx
dt

=FðxÞ ð15Þ

with n conserved quantities G1(x),…,Gn(x).

Conserved quantities and phase space isosurfaces. A conserved
quantity Gi(x) is a function of the system state x that does not change
over time, i.e.

dGiðxðtÞÞ
dt

=0, ð16Þ

but may vary across different initial conditions. As a result, along a
particular trajectory x(t), the n conserved quantities form a set of
constraints

GiðxÞ= ci, i 2 f1,2, . . . ,ng ð17Þ

which depend on the values of the conserved quantities
c = {c1, c2,…, cn}. This set of constraint equations restricts the trajectory
to lie in a phase space isosurfaceXc � Mwith dimension d − n. In fact,
if any point of a trajectory lies on the isosurface Xc, then all other
points from the trajectory will lie on the same isosurface.

By studying the variations in shape of these isosurfaces, we are
able to directly characterize the space of conserved quantities. In
particular, consider the manifold C formed by the isosurfaces Xc in
shape space. This manifold C is parameterized by the conserved
quantities c. Therefore, by analyzing C usingmanifold learning, we can
extract the conservation laws of the underlying dynamical system.

Note that we are using the term “manifold” here rather loosely.
While Cmay be a truemanifold inmany cases, it is also possible for C to
have non-manifold structure (e.g. see our double pendulum experi-
ment in the section “Double pendulum”).

Ergodicity and physical measures. To uniquely identify the isosur-
face associated with each trajectory, we must make several additional
assumptions that will allowus to treat the set of pointsmaking up each
trajectory as samples from an ergodic invariant measure on the cor-
responding isosurface. Specifically, we assume that, for each trajectory
x(t) with conservedquantities c, the dynamical system (Eq. (15)) admits
a physicalmeasure31 that is ergodic on the isosurfaceXc and is defined
by

μc = lim
T!1

1
T

Z T

0
δxðtÞ dt, ð18Þ

where δx(t) is the Dirac measure centered on x(t). This ensures that
trajectories with the same conserved quantities will sample the same
distribution on the same isosurface, allowing us to use the distribution
sampled by each trajectory as a proxy for the corresponding isosur-
face. For more details about this assumption, see Supplementary
Note 7.4.

In practice, the sampled distribution may be lower dimen-
sional than the corresponding isosurface if some of the conserved
quantities do not vary in the dataset and instead correspond to
fixed constraints, or if the dynamical system is dissipative. In the
former case, this does not affect our ability to uniquely identify a
distribution with an isosurface and its corresponding set of con-
served quantities, meaning that we are able to apply this approach
even if the provided phase space is much larger than the intrinsic
phase space of the dynamical system. In the latter case, the dis-
sipative nature of the system may cause information about con-
servation laws relevant during the transient portion of the
dynamics to be lost, but we are still able to use our approach to
identify conserved quantities relevant for the long term behavior
of the system.

Wasserstein metric
To analyze the isosurface shape space manifold C—i.e. the manifold of
conserved quantities—using manifold learning methods, we need to
place some structure on the points Xc 2 C. Having associated each
isosurface Xc with a corresponding distribution defined by an ergodic
physical measure μc, we choose to lift the Euclidean metric on the
phase space into the space of distributions using the 2-Wasserstein
metric from optimal transport

W 2ðμc,μc0 Þ= inf
π2Πðμc ,μc0 Þ

Z
cðx,yÞdπðx,yÞ

� �1=2

, ð19Þ

where the cost function c(x, y) = ∥x − y∥2 is the squared Euclidean dis-
tance, and π 2 Πðμc,μc0 Þ is a valid transport map between μc and μc0

17.
For discrete samples, the 2-Wasserstein distance between twosets

of sample points {x1, x2,…, xS} and {y1, y2,…, yS} is defined as

W 2 = min
T

X
i,j

T ijCij

 !1=2

, ð20Þ

where the cost matrix Cij = ∥xi − yj∥2, and the transport matrix T is
subject to the constraints

Tij ≥0, 8i,jP
j
T ij = 1P

i
Tij = 1:

ð21Þ

To efficiently compute an entropy regularized form of this optimiza-
tion problem, we use the Sinkhorn algorithm32 and estimate the Was-
serstein distance as a debiased Sinkhorn divergence33.
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One important subtlety in this construction is the choice of the
groundmetric for optimal transport. We use a Euclideanmetric on the
phase space, which implicitly imposes a choice of units to make the
phase space dimensionless. In fact, there is no canonical choice for the
ground metric, and different choices result in different Wasserstein
metrics on the shape space. While, in theory, information about all
conservedquantitieswill be embedded in the resulting distancematrix
regardless of the choice of metric, the metric ultimately determines
how easy it is to access this information. For example, when multiple
conserved quantities are present, the relative effect of each conserved
quantity on the computed Wasserstein distances will determine how
prominent each conserved quantity is and how easily it is identified
using manifold learning. To partially mitigate this issue and improve
consistency, we normalize each component of our data to have a
maximum absolute value of 1 before computing the pairwise Wasser-
stein distances.

Finally, using theWasserstein distanceprovidesour approachwith
a tremendous amount of robustness (Supplementary Note 5), but also
makes it susceptible to certain kinds of sampling inhomogeneity. See
SupplementaryNote 7.3 for amoredetailed discussion of this trade off.

Diffusion maps
Using the structure provided by the Wasserstein metric, we then use
diffusion maps to generate an embedding for C. The diffusion map

manifold learning method uses a spectral embedding algorithm
applied to anaffinitymatrix to construct a lowdimensional embedding
of the data manifold18,19. Using the pairwise Wasserstein distances
W2(μi, μj) computed from discrete samples provided by the trajectory
data (Eq. (20)), we first construct a kernel matrix using a Gaussian
kernel

Kij = expð�W 2ðμi,μjÞ2=ϵÞ ð22Þ

and then scale it to form an affinity matrix for our spectral embedding

Mij =Kij=ðDiDjÞα , ð23Þ

where Di =∑kKik, and α is a hyperparameter. The spectral embedding
algorithm then takes this affinity matrix and constructs a normalized
graph Laplacian

Lij = Iij �Mij=
X
k

Mik , ð24Þ

where I is the identitymatrix. The eigenvectorsvi corresponding to the
smallest eigenvalues λi ≥0 (excluding λ0 = 0) of the Laplacian then
provide an approximate low dimensional embedding of the manifold
of conserved quantities C. In our experiments, we set α = 1 so that the
Laplacian computed by the spectral embedding algorithm approx-
imates the Laplace–Beltrami operator18.

To estimate the dimensionality of C and to choose which eigen-
vectors vi to include in our embedding, we use a heuristic score that
combines a measure of relevance, given by a length scale computed
from the Laplacian eigenvalues,with apreviously suggestedmeasureof
“unpredictability” forminimizing redundancy34 (alternative approaches
also exist35,36). To construct our embedding, we only include the
Laplacian eigenvectors with score above a chosen cutoff value and
discard the rest as either noise or redundant embedding components.
To determine the cutoff, we perform a sweep of the cutoff value
looking for robust ranges and find that a cutoff of 0.6works well across
all of our experiments, which consist of a wide variety of datasets and
dynamical systems. See Supplementary Note 1 for more details.

Data availability
The data in this study can be generated using the publicly available
data generation scripts provided at https://github.com/peterparity/
conservation-laws-manifold-learning. An archived version has also
been deposited in the Zenodo database https://doi.org/10.5281/
zenodo.814448137.

Code availability
All the code necessary for reproducing our results is publicly avail-
able at https://github.com/peterparity/conservation-laws-manifold-
learning. An archived version has also been deposited in the Zenodo
database https://doi.org/10.5281/zenodo.814448137.
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