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Spatial transcriptomics reveals distinct and
conserved tumor core and edge
architectures that predict survival and
targeted therapy response

Rohit Arora1,16, Christian Cao1,2,16, Mehul Kumar1,3, Sarthak Sinha 4,
Ayan Chanda 1,3, Reid McNeil1,3, Divya Samuel1,3, Rahul K. Arora 5,6,
T.WayneMatthews7,8, Shamir Chandarana7,8, Robert Hart7,8, JosephC. Dort3,7,8,9,
Jeff Biernaskie4,10,11,12, Paola Neri3,13, Martin D. Hyrcza3,14 & Pinaki Bose 1,3,6,15

The spatial organization of the tumor microenvironment has a profound
impact on biology and therapy response. Here, we perform an integrative
single-cell and spatial transcriptomic analysis on HPV-negative oral squamous
cell carcinoma (OSCC) to comprehensively characterize malignant cells in
tumor core (TC) and leading edge (LE) transcriptional architectures. We show
that the TC and LE are characterized by unique transcriptional profiles,
neighboring cellular compositions, and ligand-receptor interactions. We
demonstrate that the gene expression profile associated with the LE is con-
served across different cancers while the TC is tissue specific, highlighting
common mechanisms underlying tumor progression and invasion. Addition-
ally, we find our LE gene signature is associated with worse clinical outcomes
while TCgene signature is associatedwith improvedprognosis acrossmultiple
cancer types. Finally, using an in silico modeling approach, we describe
spatially-regulated patterns of cell development in OSCC that are predictably
associated with drug response. Our work provides pan-cancer insights into TC
and LE biology and interactive spatial atlases (http://www.pboselab.ca/spatial_
OSCC/; http://www.pboselab.ca/dynamo_OSCC/) that can be foundational for
developing novel targeted therapies.
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Oral squamous cell carcinoma (OSCC) is the most common head and
neck cancer and accounts for over 90% of cancers that develop in the
mucosal epithelium of the oral cavity1–3. In countries such as India,
OSCC is the most commonly diagnosed cancer4. Several carcinogenic
risk factors, including tobacco and alcohol use, and HPV infection are
associated with oral carcinogenesis5. Unlike other head and neck
cancer subsites such as the oropharynx, HPV accounts for only 2–5%of
OSCC and the significance of HPV infection in OSCC is currently
unknown6. HPV-negative disease, mostly driven by tobacco and alco-
hol use, accounts for a majority of OSCC cases and improving the
prognosis of this subset is an area of unmet need5. Despite advances in
the understanding of OSCC biology over the past few decades, patient
outcomes have remained largely static; less than 50% of HPV-negative
OSCC patients survive more than 5 years2. Conventional treatment
modalities such as surgery and cytotoxic chemotherapy have also
yielded limited success and can result in severe morbidity7,8, high-
lighting the need for alternative treatment strategies that are based on
biologic insights.

OSCC invasion and metastasis is poorly understood and
accounts for amajority of cancer-associated deaths9. More than 50%
of patients experience locoregional recurrence or develop metas-
tases within 3 years of treatment9. The OSCC leading edge (LE),
comprised of tumor cell layers at the border of the OSCC tumor, has
been previously identified to have prognostic value in clinical
grading and may mediate tumor invasion and metastasis10. How-
ever, the active mechanisms at the invasive edge, and other
important spatially-defined regions of carcinomas, are not fully
understood11. Previous immunohistochemistry and in-situ hybridi-
zation efforts to study the LE have been limited to low-throughput
analysis and have struggled to comprehensively characterize the
OSCC tumor microenvironment10,12.

Recent advances in single-cell RNA sequencing (scRNA-seq) have
enabled the exploration of intratumoral heterogeneity in head and
neck squamous cell carcinoma (HNSCC). For instance, tumor cells
expressing a partial epithelial mesenchymal transition (p-EMT) pro-
gram were localized at the LE and demonstrated enhanced invasive
potential13. Conversely, tumor cells lacking p-EMT expression but
expressing epithelial differentiation programmarkers were localized
to the tumor core (TC)13. However, scRNA-seq studies ultimately lack
the spatial information required to correlate transcriptional state
dynamics with tumor topography14. Spatial transcriptomics (ST)
builds upon scRNA-seq by providing expression data while simulta-
neously preserving the 2Dpositional information of cells, providing a
holistic account of transcriptional heterogeneity in the tumor
microenvironment15.

Here, we leverage ST and single-cell RNAseq to unravel intratu-
moral transcriptional heterogeneity in OSCC by determining and
characterizing the unique geographical regions of the OSCC tumor
architecture.We find thatmalignant cells residingwithin the TCand LE
possess unique transcriptomic profiles and ligand receptor interac-
tions, which may be explained by the presence of spatially unique
cancer cell states. We also discover that the conserved transcriptional
programs in the TCand LE have prognostic value not only inOSCC, but
across multiple cancer types. Using predictive machine learning
models, we observe that the LE regions acquire conserved features
shared across cancer types, while the TC is more cancer-type specific.
Furthermore, our work leverages RNA velocity inference to identify
patterns of tumordifferentiationwithin theTCandLE. Finally, using in-
silicomodeling, we identify potentially effective drugs that disrupt the
information flow from the TC to LE in OSCC patients. Together, our
results provide insights into the complexOSCC landscape and indicate
that solid tumors may employ a conserved and common set of
mechanisms to progress and invade that may be targeted for ther-
apeutic benefit.

Results
ST profiling and cellular deconvolution of OSCC samples
Weperformed ST on 12 fresh-frozen surgically resectedOSCC samples
from 10 unique patients using the 10x Genomics Visium platform
(Fig. 1a and SupplementaryTable 1). Transcriptomes from24,876 spots
were sequenced to 43,648 post-normalization mean reads per spot.
Data was normalized, corrected for batch effects across samples and
dimensionality reduced for subsequent analysis. Hematoxylin and
Eosin (H&E)-stained images from each tumor sample were examined
and morphological regions were annotated by the study pathologist
(M.H.) (Fig. 1b and Supplementary Fig. 1a–m).

We next determined the composition of malignant tumor cells
and other cellular subpopulations present in the pathologist-
annotated squamous cell carcinoma regions by performing inte-
grative analysis of our ST data with a separate, publicly-available
HNSCC scRNA-seq dataset13. To identify malignant tumor spots, we
stringently characterized malignant cells as having a deconvolution
score >0.99 (Fig. 1c), or CNV probability score >0.99 (Fig. 1d). CNV
analysis revealed recurrent deletions in chromosome 3, and amplifi-
cations in chromosome 9 (Supplementary Fig. 1n). All 12 samples were
identified to have both spatially deconvolved or CNV-inferred cancer
cells based on the applied cutoff with high confidence, resulting in
13950 malignant and 10852 nonmalignant spots (Fig. 1e and Supple-
mentary Fig. 1o). Following batch effect correction and dimensionality
reduction of our classified cells, uniformmanifold approximation and
projections (UMAP) of ST spots showed a scattered distribution of
malignant spots, reflecting a continuum of transcriptional profiles
(Fig. 1e). CAF subtypes conserved in HNSCC were annotated using the
marker genes LRRC15 andGBJ2 for ecm-MYCAFs, and ADH1B and GPX3
for detox-iCAFs (Fig. 1f)16,17. Spatial deconvolution analysis revealed
that cancer, ecm-myCAF, intermediate fibroblasts, detox-iCAF, den-
dritic, mast, macrophage, and cytotoxic CD8+ T cell types were pre-
sent in nearly all samples (Fig. 1f and Supplementary Fig. 1p).

Unsupervised clustering reveals that the TC and LE are func-
tionally heterogeneous components of the tumor
microenvironment
After identifying and annotating malignant tumor spots that were
primarily composed of cancer cells, we performed unsupervised
louvain-clustering to unravel the spatial heterogeneity in cancer cell
expression profiles. We generated 14 louvain clusters among aggre-
gated malignant spots that could be partitioned into 3 major clusters
(Fig. 2a). We then characterized themajor clusters through differential
gene expression analysis (DGEA) (Fig. 2b). Top DEGs enriched in
cluster 1 included genes involved in keratinization SPRR2D, SPRR2E,
SPRR2A, and inhibition of EMT DEFB4A and LCN2 (ref. 18,19), while
DEGs in cluster 3 included genes involved in the ECM matrix COL1A1,
FN1, COL1A2, TIMP1, COL6A2 (Fig. 2b and Supplementary Data 1). DEGs
enriched in cluster 2 shared attributes of both cluster 1 and 3, with
genes involved in keratinization KRT6C, KRTDAP, KRT6B (ref. 20), and
ECM remodeling LYPD3, SLPI (refs. 21,22) (Fig. 2b and Supplementary
Data 1). Interestingly, the expression of CLDN4 and SPRR1B HNSCC TC
markers13, and LAMC2 and ITGA5HNSCC LEmarkers13 corresponded to
clusters 1 and 3, respectively (Fig. 2b, c and Supplementary Data 1).
These findings prompted us to annotate cluster 1 as “tumor core” (TC)
and cluster 3 as “leading edge” (LE). Cluster 2 was annotated as
“transitory” due its composition of TC and LE DEG programs (Fig. 2d
and Supplementary Fig. 2a–m).

We then sought to determine whether the patterns of gene
expression in the LE and TC were conserved across different patients.
To do this, a correlation matrix was generated from the whole tran-
scriptome gene expression profiles within the two spatial regions
(Fig. 2e). A high degree of correlation was generally observed within
the TC, and within the LE, across different patients. Interestingly, the
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correlation between the TC and LE expression programs within each
patient was relatively low, highlighting the distinct nature of these
compartments in the tumormicroenvironment. Therefore, our TC and
LE annotations represent regions with unique transcriptomic profiles
that are conserved across patients.

To explore the functional differences between TC and LE spots,
we queried cancer hallmark and key oncogenic pathway-associated
gene-sets for their expression within these compartments. We
found that LE spots displayed higher expression of genes associated
with cell cycle (p-adj < 0.001), epithelial-mesenchymal transition
(EMT) (p-adj < 0.05), and angiogenesis (p-adj < 0.001) (Supplemen-
tary Fig. 2n). EMT scores in the LE were also expressed over a broad
range (Supplementary Fig. 2n), in agreement with the EMT con-
tinuum model11. We additionally queried a published epithelial dif-
ferentiation and p-EMT gene-set and observed localization of these
programs to TC and LE spots, respectively (p-adj < 0.0001, p-adj <
0.001) (Supplementary Fig. 2n)13. Cellular function hallmarks that
were upregulated in the TC included keratinization, cell differ-
entiation, as well as antimicrobial and immune-related pathways,
while protein translation and ribosome-related pathways were
upregulated in the LE (Supplementary Fig. 2o and Supplementary
Data 2). Ingenuity Pathway Analysis (IPA) predicted the activation of
GP6, EIF2, and HOTAIR regulatory canonical signaling pathways

exclusively in the LE across patients (Fig. 2f)23–25. These character-
isticsmight reflect the role of the OSCC LE in governing invasive and
metastatic behavior. In the TC, we observed the activation of MSP-
RON signaling in macrophages, IL-33, and p38 MAPK canonical
signaling pathways, as well as downregulation of LXR/RXR and
SPINK1 canonical signaling pathways across most patients (Fig. 2f).
These findings suggest that the OSCC TCmaymodulate the immune
response within the tumor microenvironment, and has a role in
promoting or inhibiting tumor progression26–30.

We next explored regulatory differences between the TC and LE
using single-cell regulatory network inference and clustering (SCENIC)
to infer transcription factor (TF) activity. SCENICanalysis identified the
upregulation of several proto-oncogenic TFs EGR3 and DLX5 (refs.
31,32), and tumor suppressor TFsMXI1, GRHL3, and PITX1 (refs. 33–35)
in the TC (Supplementary Fig. 2p and Supplementary Data 3). Con-
versely, the upregulation of several TFs including cellular development
and differentiation-regulatory genes TP63 andHOXB2 (refs. 36,37), and
EMT regulatory genes CREB3L1, TCF4, and NFATC4 (refs. 38–40) were
observed in the LE (Supplementary Fig. 2p and Supplementary Data 2).
IPA upstream regulatory analysis corroborated the activation of sev-
eral proto-oncogenic TFs EHF andBCL3 in the TC (refs. 41,42), and EMT
regulatory genes SORL1 and EGFR in the LE (Supplementary Fig. 2q)
(refs. 43,44).

Fig. 1 | Overview of experimental design for ST analysis and cellular deconvo-
lution of OSCC patient samples. a Schematic representing patient clinical data
and sample acquisition and processing strategy. UMAP projection of 24,876 spots
aggregated from all 12 spatially-profiled samples colored based-on. Created with
BioRender.b Pathologist annotations, c single-cell HNSCC deconvolution based on

scRNA-seq data from Puram et al., d CNV probability per spot, e malignant spot
status, and f. spot annotations based on deconvolution and CNV probabilities. HPV
human papillomavirus, OSCC oral squamous cell carcinoma, SCC squamous cell
carcinoma, Tregs T-regulatory cell.
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Differential expression (DE) analysis between the TC and LE
revealed 117 genes upregulated in the TC and 91 in the LE, across
10 or more samples (Fig. 2g and Supplementary Data 3). Upon
comparison to a previous HNSCC scRNA-seq study13, only 40
epithelial differentiation and 7 p-EMT DEGs overlapped with our
TC and LE DEGs, respectively. Top differentially expressed genes

in the TC included genes involved in keratinization SPRR2E,
CRCT1, SPRR2D, CNFN, and SPRR1A, while top genes in the LE
included collagens (COL1A1, COL1A2), and genes involved in
EMT initiation and regulation MT2A, NME2, IFITM3 (refs. 45–48),
highlighting the presence of a fibrovascular niche (Fig. 2g and
Supplementary Data 4).
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Distinct cancer cell states inhabit the TC and LE
Four HNSCC molecular subtypes classified by patterns of gene
expression and clinical outcomes have been previously identified and
validated by the The Cancer GenomeAtlas (TCGA)49,50. To determine if
the unique expression profiles observed in the OSCC TC and LE could
be attributed to the composition of HNSCC molecular subtypes, we
integrated TCGA subtype expression signatures with our ST dataset.
Spots within the TC and LE were scored for their correspondence to
subtype expression signatures. We found that multiple molecular
subtypes may be present within the same tumor microenvironment
across several patients, with no consistent pattern of subtype com-
position (Supplementary Fig. 3a). Overall, the TC state was most
enriched for the Basal subtype (p <0.0001) (Supplementary Fig. 3b),
while the LE was most depleted for the atypical subtype (p <0.01)
(Supplementary Fig. 3c). Therefore, strictly classifying patients into
gene expression-based subtypes in HNSCC may result in over-
simplification of the complex biology of these cancers. Next, we con-
sidered the associationbetween tumor subclonal architectures and the
OSCC TC and LE by inferring clonal lineages and evolutionary history
throughCNV events with the Numbat package.We found thatmultiple
subclonal lineages were present throughout the OSCC tumor, with
similar proportions of subclonal populations across TC and LE regions
(Supplementary Fig. 3d). These findings imply that the transcriptomic
differences between the TC and LE cannot be entirely explained by
intratumoral genetic diversity.

We then asked if the contribution of cancer stem cells (CSCs)
could help explain the differences in TC and LE expression profiles.
CSCs are cancer cell populations that possess stem-cell like progenitor
and malignant properties51. Given the abundance of EMT-related,
metastatic, and invasive expression programs at the LE, we hypothe-
sized that CSCs may be preferentially localized in the LE. However, we
found no significant differences in the expression of canonical OSCC
CSCmarkers52 between the LE andTC (p >0.05) (Fig. 3a). Furthermore,
expression of CSC markers were seen evenly throughout UMAP pro-
jections, indicating that CSC populations are found throughout the
OSCC tumor (Fig. 3a; density plot) along with non-stem-like malig-
nant cells.

Therefore, we believe that the distinct biological profiles of the TC
and LE are explained by the presence of unique cancer cell
states–conserved gene expression programs that dynamically man-
ifest from specific tumor microenvironment interactions–comprising
both CSC and non-stem-like malignant cells53,54. Previous literature
exploring dynamic CSC states has proposed the existence of
mesenchymal-like CSCs that inhabit the LE and epithelial-like CSCs
inhabit the TC (Fig. 3b)55. When we scored gene-sets associated with
these distinct CSC states to our ST dataset, our results corroborated
the existence of higher expression of the mesenchymal-like CSC state
in the LE (p <0.001) and epithelial-like CSC state in the TC (p < 0.001)
(Fig. 3c, d). The localization of these CSC states was further validated
through immunofluorescence staining of serial tissue sections, which
revealed localization of the CD24 marker at the TC, and the CD44
marker at the LE (Supplementary Fig. 3e). These findings reinforce the
plasticity within the TC and LE niches that promote the propagation of
transcriptionally unique cancer cell states.

The TC and LE architectures display distinct ligand-receptor
interactions
Given the considerably diverse spatial architecture of the OSCC TC
and LE, we sought to elucidate the nature and role of intracellular
and extracellular signaling interactions in the TC and LE. We per-
formed cell-cell communication analysis with the CellChat package
to derive quantitative inferences of intercellular communication
networks (Supplementary Data 5). ANGPTL, GRN, NECTIN, and
EPHB signaling pathways were exclusively seen in the TC, and
CSPG4 in the LE (Fig. 3e and Supplementary Fig. 3f). Several ECM
remodeling pathways including Collagen, Tenascin, and Laminin
were also expressed in both the TC and LE (Fig. 3e and Supple-
mentary Fig. 3f). Outgoing signaling patterns upregulated in LE-LE
signaling, relative to TC-TC signaling, included Collagen, Laminin,
Tenascin, FN1, MIF, APP, CD99, Notch, and CSPG4 pathways (Sup-
plementary Fig. 3f), reinforcing the role of these pathways in facil-
itating cancer invasion and metastasis.

We next examined cell-cell communication mechanisms
among malignant cells. We included ecm-myCAFs in this analysis
because of their high cellular contribution across all tumor samples
(Supplementary Fig. 3g). We found ecm-myCAFs exhibited promi-
nent cellular signaling, with many more interactions to neighboring
LE cancer cells compared to TC-TC and LE-LE signaling (Supple-
mentary Fig. 3g). Moreover, ecm-myCAF-LE interaction strength
greatly exceeded the interaction strength of LE-LE and TC-TC can-
cer cell signaling (Supplementary Fig. 3g). The greater number of
ecm-myCAF-LE interactions and strength relative to LE-LE signaling
highlights a critical role for ecm-myCAFs in modulating cancer cell
behavior at the LE.

We then explored specific ligand-receptor pairs representative of
TC-TC cancer cell, LE-LE cancer cell, and ecm-myCAFs-LE cancer cell
signaling. We found that TC-TC cancer cell signaling could occur
through adhesive ligand-receptor pairs DSC2-DSG1 and ANGPTL4-
SDC1, among others (Fig. 3f and Supplementary Data 5). Interestingly
the ANGPTL4-SDC1 pair may inhibit Wnt signaling56, which is a major
pathway implicated in cancer metastasis57. Similarly, LE-LE cancer cells
could signal through adhesive ligand-receptor pairs LAMB3-
ITGA6_ITGB4 and LAMB3-ITGA6_ITGB1, and inflammatory ligand-
receptor pairs MIF-CD74_CD44 (Fig. 3g and Supplementary Data 5).
The MIF-CD74 ligand-receptor pair has been previously identified to
initiate oncogenic signaling pathways58. Due to the high number of
ecm-myCAF-LE cancer cell interactions, we also analyzed these sig-
naling pathways. Our analysis strongly predicted adhesive COL1A1-
SDC1 and FN1-SDC1 ligand-receptor interactions, among others (Fig. 3h
and Supplementary Data 5).

To further characterize the tumor microenvironment, we
identified and quantified the number of adjacent nonmalignant
spots neighboring our malignant TC and LE spots. Nonmalignant
neighboring spots were approximated as a specific cell type based
on the most enriched non-cancer cell after deconvolution. Our
analysis found significantly higher numbers of neighboring spots
enriched for cytotoxic CD8(+) T cell (p-adj < 0.01), ecm.myCAF
(p-adj < 0.001), intermediate fibroblast (p-adj < 0.01), and macro-
phage cells (p-adj < 0.01), neighboring LE spots, relative to TC spots

Fig. 2 | TC and LE are spatially unique regions in the OSCCmicroenvironment.
a UMAP projection of 13950 malignant spots aggregated from all 12 spatially-
profiled samples, partitioned by Louvain clusters with an accompanying phyloge-
netic tree demonstrating cluster transcriptomic similarity. b UMAP projection of
13950malignant spots aggregated fromall 12 spatially-profiled samples partitioned
by three major nodal clusters, with an accompanying heatmap visualizing the
log2(FC) of the top 5 DEGs for each cluster. c Nebulosa kernel density plot visua-
lizing gene expression of literature-validated OSCC tumor core and leading edge
markers. d TC transitory, and LE annotations for samples 1, 2, and 9. e Whole
transcriptome Pearson correlation heatmap of TC and LE annotations across all

spatially-profiled samples. Samples are ordered based on transcriptomic similarity.
f Ingenuity Pathway Analysis heatmap visualizing predicted activation and deacti-
vation of TC and LE pathways. Pathways are displayed if they are activated or
deactivated across 10 or more samples and ordered based on similarity of z-score
for each pathway across samples. g Consensus plot displaying the cumulative
average logFC for the top 25 genes significantly differentially expressed between
the TC and LE across more than 9 samples (adj. p <0.001, two-sided Wilcox rank
sum test, Bonferroni correction). Source data are provided as a Source Data file
where relevant. UMAP uniform manifold approximation projection, OSCC oral
squamous cell carcinoma.
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(Fig. 3i). Macrophages were themost abundant TC neighboring cells
(Fig. 3i), and were found to contribute to adhesive desmosome and
cadherin (CDH) signaling pathways with the TC (Supplementary
Fig. 3h). Macrophage and cytotoxic CD8(+) T cells also participated
in intercellular signaling with LE and ecm.myCAF cell types via

laminin and collagen signaling pathways (Supplementary Fig. 3i),
highlighting their prominent role in cancer signaling. Taken toge-
ther, our findings suggest that malignant cells in the TC and LE
engage in distinct patterns of cell-cell communication, further
shaping their unique biologies.
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TC and LE gene signatures are conserved pan-cancer and are
distinct in their prognostic impact
Since our annotated TC and LE regions were highly conserved across
each of our OSCC samples, we wondered if the distinct molecular
programs associated with these spatial regions were also present
across other cancer types. We trained three machine-learning (ML)
probability based prediction models on TC spots, LE spots, and all
other remaining spots to generate a spatio-regional predictive model
(Fig. 4a). We then applied our predictive ML model to 30 publicly
available ST samples across 17 different cancer types to characterize
each spot as “TC”, “LE”, “transitory”, or “other remaining spots” in each
sample (Fig. 4b). Model 10-fold cross validation revealed robust per-
formance in all models (ROC: “TC” =0.991, “LE” = 0.922, “transi-
tory” = 0.943, “other remaining spots” =0.958) with the LE region
having the lowest ROC attributed to its relatively lower sensitivity of
0.694. (Fig. 4c and Supplementary Table 2). Our classifier performed
well in spatially segregating cancer cell states in melanoma (SKCM),
colorectal adenocarcinoma (COAD), cutaneous Squamous Cell Carci-
noma (cSCC) samples, and cervical squamous cell carcinoma (CESC)
samples (Fig. 4d–h). Furthermore, our classifier produced relatively
consistent annotations across four serial cSCC tissue sections col-
lectedbyAbalo et al.59. (Fig. 4d and Supplementary Fig. 4a), reinforcing
the reproducibility and confidence in our classifier results. We identi-
fied highly spatially segregated LE spots in all 30 samples (Fig. 4d–h
and Supplementary Fig. 4a). Pediatric medulloblastoma and hepato-
cellular carcinoma sections displayed the lowest proportion (1%) of
inferred leading edge spots, which may indicate that these cancer
types are considerably distinct from OSCC (Fig. 4d). Meanwhile, our
ML algorithm trained onOSCC samples, identified spatially segregated
TC spots in 15/30 publicly-available ST-profiled sections (Fig, 4d and
Supplementary Fig. 4a). Our model performed particularly well in
identifying TC spots in cSCC, melanoma, CESC, and COAD tissue sec-
tions, which may be attributed to the presence of keratinizing pro-
grams within these cancers (Fig. 4d, g and Supplementary Fig. 4a).
These seminal results suggest that LE-associated expression states are
conserved across multiple cancer contexts, while expression profiles
associated with the TC are more tissue-specific.

To examine the prognostic significance of our LE and TC sig-
natures, we incorporated samples from a bulk transcriptomic dataset
(TCGA) containing matched survival data. A total of 275 HPV-negative
OSCC patients were selected for survival analysis and each sample was
assigned an enrichment score based on the expression of genes dif-
ferentially expressed in the TC and LE (seemethods; Fig. 5a). Higher TC
single-sample gene-set scores were significantly associated with lower
pathological stage (p < 0.05) (Supplementary Fig. 5a), while LE scores
did not significantly vary with pathological stage (p > 0.05) (Supple-
mentary Fig. 5b). Kaplan–Meier curves were generated to visualize the
overall survival (OS), disease specific survival (DSS), and progression
free interval (PFI) differences in relation to high or low expression of

our TC and LE signatures (Fig. 5b). High expression of the LE signature
was associated with worse DSS (HR 0.60 [0.38–0.96 95% CI]; p < 0.05)
and PFI (HR 0.67 [0.45–0.98 95% CI]; p <0.05) in OSCC patients, but
not OS (HR 0.81 [0.56–1.16 95% CI] p > 0.05) (Fig. 5b). Conversely, high
expression of the TC signature was associated with improved OS (HR
1.51 [1.01–2.25 95% CI]; p <0.05), DSS (HR 1.93 [1.09–3.41 95% CI];
p <0.05), and PFI (HR 1.82 [1.17–2.86 95% CI]; p <0.05) (Fig. 5b). To
validate our results, we performed the same comparison of high and
low expression of TC and LE signatures in an independent cohort of 93
HPV-negative OSCC patients (GSE41613). We found the similar trends
across OS and DSS with our TC signature, but found that high
expression of the LE signature was associated with both worsened OS
and DSS (p <0.05) (Supplementary Fig. 5c). TC and LE signatures were
also very weakly negatively correlated to one another (r = −0.17,
p <0.05) (Supplementary Fig. 5d). Therefore, our TC and LE signatures
displayed starkly opposed survival outcomes likely due to distinct
mechanisms present in each respective niche.

As LE states appeared to be generalizable across different cancer
types (Fig. 4d), we further determined the prognostic impact of our LE
signature and extended our analysis to 20 common solid tumors in
TCGA. We found that a high LE score was consistently associated with
worse OS and DSS across multiple cancers, with the exception of
breast cancer (BRCA) in OS and lung squamous cell carcinoma (LUSC)
in DSS (Fig. 5c, d). Similar patterns of association between LE and PFI
were seen, with the exception of melanoma (SKCM) and LUSC (Sup-
plementary Fig. 5e).

We next explored associations between our LE and TC signatures
with relevant clinical covariates to identify possible contributing fac-
tors to OSCC prognostic differences. Lower TC signature scores were
associated with higher nodal stage (p-adj < 0.05), presence of lym-
phovascular invasion (p-adj < 0.01), higher tumor grade (p-adj <
0.001), positive margins (p-adj < 0.05), and presence of extracapsular
spread (p-adj < 0.01); while higher LE signature scores were not asso-
ciated with any clinical characteristics (p-adj > 0.05) (Fig. 5e, f). A weak
negative correlation was also observed between EPIC CAF and our LE
signature enrichment scores (r = −0.23, p <0.05) (Supplementary
Fig. 5f), which suggests that there are other unexplored mechanisms
beyond CAF activity driving survival outcomes associated with the LE.

Differentiation trajectories revealed by analyzing RNA splicing
dynamics between the TC and LE
RNA velocity can be used to predict the short-term future state of
individual cells using the ratio of spliced and unspliced mRNA
counts60. Aggregating results together helps reveal the developmental
trajectories of cancer cells, and similarly identify putative driver genes
responsible for the transition61. We utilized scVelo, which builds upon
RNAvelocity by accounting for gene-specific transcriptional dynamics,
to characterize the developmental trajectories of cancer cells present
in the TC and LE.Among spatially deconvolved cancer cells aggregated

Fig. 3 | TC and LE cancer cell states are distinct entities with unique ligand-
receptor interactions. a Comparative expression of a CSC gene signature across
TC, LE, and other squamous cell carcinoma (SCC) spots, visualized with nebulosa
kernel density plot. UMAP of TC, LE, and transitory cancer spot annotations are
provided for spatial reference. Circles are representative of mean and lines repre-
sent standard deviation (n = 12 samples across 10 independent patients).
b Schematic representation of epithelial (eCSC) andmesenchymal cancer stem cell
(mCSC) markers characterized by Liu et al. 55. c, d Comparative expression of
mCSCs (p-value = 2e−04) and eCSC (p-value = 1.5e−06) gene sets across the TC, LE,
and other SCC spots with nebulosa kernel density plot visualizingmCSCs and eCSC
markers. Circles are representative of mean and lines represent standard deviation
(n = 12 biologically independent samples). e Stacked bar plot visualizing enriched
signaling pathways by overall information flow across TC and LE spots. Pathways
are colored by their dominance within the TC or LE. Circos plots describing spa-
tially deconvolved ligand-receptor pairs involved in cell-cell interactions between

f cancer cells in the TC, g cancer cells in the LE, and h ecm-myCAF and cancer cells
in the LE. Thewidth of connecting bands represents the strength of ligand-receptor
interaction. i Comparative boxplot representing the number of noncancer spots
directly adjacent to TC and LE spots. Non-cancer spot identity was determined
based on the most enriched non-cancer cell type deconvolution. Groups were
compared using a two sided Wilcoxon rank sum test with a Benjamini–Hochberg
FDR correction *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. P-values for Cyto-
toxic CD8 T cells = 0.003, ecm.myCAF = 2.2e−04, intermediate fibroblast = 0.002,
macrophage = 0.008 (n = 12 samples across 10 independent patients). Box spans
25th–75th percentiles, center line indicatesmedian, whiskers extend tominima and
maxima within 1.5*IQR. Source data are provided as a Source Data file where rele-
vant. Abbreviations: CSC cancer stem cell, TC tumor core, LE leading edge, MET
mesenchymal-epithelial transition, EMT epithelial-mesenchymal transition, CD24
(−) inverse CD24 gene expression (1/CD24), Tregs T regulatory cells.
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Fig. 4 | A Machine Learning model identifies conserved TC and LE signatures
across multiple cancer types. a Infographic describing the ML strategy used for
the identification of TC and LE gene signatures in publicly-available spatially-pro-
filed samples. b Infographic describing publicly-available spatially-profiled
samples59,101–104,110 included in subsequent ML-training dataset. Created with BioR-
ender. c Probability distribution plotted across TC, LE, transitory, and other
regions. d Bar plot displaying the scPred classification score of each spatially dis-
tinct region across 30 different spatially profiled samples. The plot is clustered
based on the similarity in predicted proportion of TC, LE, transitory, and other
regions. e–h H&E-stained tissue section (left), scPred projections on stained tissue

(middle), and a UMAP colored by scPred classification (right) for cSCC, COAD, and
CESC representative spatial transcriptomics testing datasets. UMAP uniform
manifold approximation projection, cSCC cutaneous squamous cell carcinoma,
SCC squamous cell carcinoma, ICC intrahepatic cholangiocarcinoma, PRAD pros-
tate adenocarcinoma, PDAC pancreatic ductal carcinoma, CESC cervical squamous
cell carcinoma, COAD colon adenocarcinoma, IDC invasive ductal carcinoma, HCC
hepatocellular carcinoma, SKCM skin cutaneous melanoma, ILC invasive lobular
carcinoma, EC endometrial adenocarcinoma, CHC combined hepatocellular and
cholangiocarcinoma, GBM glioblastoma multiforme, CNS embryonal central ner-
vous system embryonal tumor, MB medulloblastoma.
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across all samples, we observed a differentiation hierarchy originating
from TC extending towards LE (Fig. 6a). This hierarchy was highly
reproducible and displayed high levels of agreement across spots,
reflected by high spot velocity vector field confidence of greater than
0.85 in all spots (Fig. 6a). Similar patterns of directional flow were also
observed at the individual patient level (Fig. 6b). Several genes

displayeddynamic splicingbehavior thatdrove theTC to LE cancer cell
state differentiation (Fig. 6c). Top putative TC and LE state driver
genes included CSTA and IGHG3 genes, respectively (Fig. 6c, d, Sup-
plementary Fig. 6a, and Supplementary Data 6). CSTA has previously
been identified as a tumor suppressor gene involved in regulating
mesenchymal-epithelial-transition (MET)62. IGHG3 is an
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immunoglobulin (Ig) gene that has been detected in several epithelial
cancers63,64. While the exact mechanisms remain unclear, tumor-
derived Igs have been implicated in tumor proliferation, invasion and
metastasis, immune escape, and mediation of EMT-like phenotypes.
These findings predict that the TC undergoes increased differentiation
retaining an epithelial-like phenotype, while the LE becomes increas-
ingly mesenchymal, and corroborates our earlier identification of CSC
states. Other differentially spliced driver genes in the TC and LE
included proto-oncogenes and tumor suppressor genes (Fig. 6c, and
Supplementary Fig. 6a and Supplementary Data 6).

Deriving therapeutic targets for OSCC
OSCC is characterized by its high disease burden, mortality, and
treatment-associated morbidity despite improvements in diagnosis
and therapeutic modalities65. Existing treatments such as surgery,
chemotherapy and radiotherapy are effective only in a minority of
patients and OSCC recurrence remains a leading cause of death65.
Furthermore, current treatmentsmay induce significantmorbidity and
reduction in the quality-of-life (QoL) related to non-specific cell death,
including local defects, speech and swallowing dysfunction, and other
toxic side-effects65,66. Although targeted therapies have been able to
mitigate toxicity in other cancers, few have been employed in
OSCC65,67. To address the dearth of effective targeted therapies in
OSCC, we applied an in-silico perturbation approach to identify con-
served patterns of RNA velocity that may predict therapeutic success
in OSCC (Fig. 6e, f). Dynamo is an in-silico technique that is capable of
accurately predicting cell-fate transition following genetic perturba-
tion based on learned splicing vector fields68.

We analyzed PharmacoDB drug-response data69 for 417 drugs
across at least 25 HPV negative HNSCC cell lines and found 140 drugs
with drug-gene interactions identified as being upregulated or down-
regulated from the DGIdb70 (Fig. 6f and Supplementary Data 7). We
then restricted our analysis to 70 drugs that demonstrated significant
perturbations, and stratified drugs as “high AAC” and “low AAC” by the
median (0.164; 0.026–0.560 [total range]) (SupplementaryData 7).We
derived quantitative inferences for net measures of “incoming” and
“outgoing” transition probabilities among tumor core and leading
edge cells (Fig. 6e). Among effective drugs (high AAC), dynamo based
in-silico perturbations generally displayed transition hierarchies with a
reversal of the baseline state, represented by an increase in outgoing
transition probabilities from the LE (Fig. 6g). This was also reflected
through a significant increase in the quantitative measure of net out-
going LE transition probabilities in high AAC drugs relative to low AAC
drugs (p <0.05) (Fig. 6h). These findings were also replicated on an
individual drug level (Fig. 6i, j). An inverse phenotype was seen among
several ineffective drugs (low AAC), which displayed similar transition
hierarchies to the baseline state (Fig. 6k, l). Interestingly, dynamo
based in-silico perturbations of common immunotherapy targets (anti-
PD-1, anti-CTLA-4) displayed similar results to effective drugs (high
AAC), with a predominance in outgoing LE transition signaling

(Supplementary Fig. 6b, c). Although trending, no statistically sig-
nificant difference was observed across incoming transition signals at
the TC (p > 0.05) (Supplementary Fig. 6d); several outliers were pre-
sent among effective drugs which drive a lack of significance. There-
fore, effective drugs may generally manifest their efficacy by inducing
reversal from the LE state, with some drugs specifically advancing the
transformation into the TC state. These findings were further con-
firmed following drug class stratification, which found significant dif-
ferences in LE outgoing and TC incoming transition probabilities
(Supplementary Fig. 6e, f). However, several drug classes were
underpowered to derive conclusive biological inferences (Supple-
mentary Fig. 6e, f and Supplementary Data 7).

Discussion
Intratumoral heterogeneity is a leading determinant for treatment
failure and poor survival outcomes in cancer patients71,72. However the
spatial underpinnings of heterogeneity in the tumormicroenvironment
are poorly understood. Although it is appreciated that the TC and LE
profoundly affect tumor biology, the gene expression profiles of these
compartments and their effects on creating a heterogeneous tumor
microenvironment have not been systematically explored. Here, we
leverage spatial transcriptomics profiling of 12 OSCC tissue samples to
extensively characterize the TCand LE transcriptomes tobetter unravel
their contribution to OSCC development, progression and invasion.

Firstly, we find that malignant OSCC TC and LE spots represent
distinct spatial architectures with unique functional characteristics
that are conserved across patients. The TC is characterized by a ker-
atinized and differentiated state, while the LE confers several invasive
andmetastatic properties. These spatial architectures are also valuable
for prognostication–high LE signature scores and low TC scores were
associated with worse patient outcomes, while high TC scores exert a
protective effect that may be partially attributed to increased tumor
differentiation. Interestingly, these spatial architectures are general-
izable across cancer types. Through our MLmodel, we find that the LE
is conserved in multiple different cancers and can be annotated with
considerable accuracy, while the programs present in the TC may be
restricted to tissueswith similarorigins. Furthermore, a similar trend in
the prognostic association of our LE signature and TC signature was
observed: the LE signature is prognostic across many cancers, while
the TC signature is less specific and prognostic across fewer cancer
types. Overall, we have identified a pan-cancer conserved LE-
associated transcriptional program that is associated with worse
patient outcomes.

We also report that the differences in gene expression between
the TC and LE are not governed by HNSCC molecular subtype com-
positions, or genetic differences from different tumor evolutionary
clonal lineages; our results suggest thatmultipleHNSCC subtypesmay
be represented within a single tumor sample. We propose that the
transcriptomic differences in the TC and LE are driven by the existence
of spatially unique cancer cell states. Through RNA velocity analysis,

Fig. 5 | Survival associations and prognostic characteristics of the TC and LE
signature. a Infographic describing TC and LE single-sample gene-set scoring
strategy for TCGA transcriptomic data. b Kaplan–Meier visualizations of OS, DSS,
and PFI end-points stratified by TC (upper panels) and LE (lower panels) gene set
enrichment scores among 275 OSCC samples. P-values displayed were calculated
using a cox proportional hazards regression. c, d OS and i DSS pan-cancer out-
comes for TC and LE gene-set enrichment scores derived from 20 common cancer
types from TCGA. P-values and hazard ratios displayed were calculated using a cox
proportional-hazard regression. e, f Bar plots showing the relative TC and LE
enrichment score in relation to relevant clinico-pathological covariates. Sig-
nificance was determined using a two-sided Wilcoxon rank sum test with a
Benjamini–Hochberg FDR correction applied. Error bars represent standard error
of mean (SEM). *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. P-values for
advanced N stage = 0.018, LVI = 0.002, grade III = 1.8e−06, positive margin = 0.02,

ECS = 0.002 (n = 275 biologically independent HPV negative OSCC samples). Box
spans 25th–75th percentiles, center line indicates median, whiskers extend to
minima and maxima within 1.5*IQR. Source data are provided as a Source Data file
where relevant. Abbreviations: TC tumor core, LE leading edge, THCA thyroid
carcinoma, STAD stomach adenocarcinoma, SKCM skin cutaneous melanoma,
SARC sarcoma, PRAD prostate adenocarcinoma, PAAD pancreatic adenocarci-
noma, OV ovarian serous cystadenocarcinoma, OSCC oral squamous cell carci-
noma, MESO mesothelioma, LUSC lung squamous cell carcinoma, LUAD lung
adenocarcinoma, LIHC liver hepatocellular carcinoma, KIRP kidney renal papillary
cell carcinoma, KIRC kidney renal clear cell carcinoma, GBMLGG brain lower grade
glioma and glioblastoma multiforme, COADREAD colon adenocarcinoma/rectal
adenocarcinoma, CESC cervical squamous cell carcinoma, BRCA breast invasive
carcinoma, BLCAbladder urothelial carcinoma, ACC adrenocortical carcinoma, LVI
lymphovascular invasion, ECS extracapsular spread.
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we find that these spatially unique cancer states are governed by a
differentiation hierarchy composed of progenitor-like cancer cell
states from the TC developing into more specialized cancer cell states
of the LE. Interestingly, we also observed similar trends analyzing the
cellular states of the CSC contexture in the TC and LE: mesenchymal-
like CSCs populate the LE, while epithelial-like CSCs reside in the TC.

Taken together, we believe that cancer cells from the TC state can
transition into LE state by gradually acquiring a more aggressive EMT-
like phenotype that promotes cancer invasion and dissemination.
Although multiple previous studies have described the presence of
transcriptionally unique cancer cell states13,53,73,74, our research shows
that these states are also spatially regulated.
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Finally, we illustrate an application of RNA velocity to ST data to
predict drug response. We find that effective drugs (high AAC values)
were generally enriched for outgoing transition probabilities respon-
sible for inducing a reversal in the LE state, highlighting the promi-
nence of the LE as a global therapeutic target. Several drugs may
further confer their efficacy by inducing cancer cell transformation
into theTCstate.Wehypothesize that effective anticancer drugsdirect
the transition from a LE-like cancer cell state to a TC-like cancer cell
state, therefore making these cells less phenotypically less aggressive
by suppressing invasive/metastatic signaling. Alvocidib is a CDK inhi-
bitor currently under investigation for its use in acute myeloid lym-
phoma (AML)75, which demonstrated above average outgoing LE and
incoming TC transitory signals in our analysis. As CDK inhibitors have
been previously associated with promising results in OSCC cell
lines76,77, Alvocidib may be a promising candidate for further
research78,79. Importantly, the results of our perturbation analysis
illustrate how spatial transcriptional profiles may be leveraged to
assess drug efficacy in-silico and demonstrate that the tumor LE is a
credible drug target.

Our work seeks to characterize and uncover unique spatial pat-
terns of gene expression between the TC and LE, and represents an
application of ST to OSCC. Several exciting avenues of study remain,
includingopportunities to better understand the conserved features in
cancer invasion and metastasis, and guide subsequent treatment
efforts targeted at the LE with a pan-cancer scope. We believe that the
spatiotemporal mechanistic insights gained from our study will help
direct the development of improved targeted therapies for OSCC and
beyond.

Methods
Sample collection and annotation
Fresh-frozen OSCC tissue was obtained from the Alberta Cancer
Research Biobank under the approval of the Health Research Ethics
Board of Alberta –Cancer Committee (Study ID: HREBA.CC-16-0644).
Informed consent for tissue collection and research was obtained
from each patient. No participant compensation was provided.
Tumor samples were collected at the time of the surgery, embedded
in optimal cutting temperature (OCT) compound, and stored frozen
at −80 °C until retrieval for the study. The study samples were sec-
tioned on a cryostat into 10 µm sections, stained with hematoxylin
and eosin (H&E) and used for ST. The H&E sections were used to
annotate the tissues by the study pathologist (M.H.). Regions were
labeled as: squamous cell carcinoma (SCC), lymphocyte-positive
stroma, lymphocyte-negative stroma, normal mucosa, glandular
stroma, muscle, keratin, artery/vein, and artifact. Pathologist anno-
tations were exported from the Loupe bBrowser (Version 6) and
imported into Seurat for further analysis.

Spatial transcriptomic profiling
Tissue optimization was performed to determine the optimal per-
meabilization time for OSCC tissue for the downstream gene expres-
sion protocol. Spatial transcriptomics was performed on OSCC

cryosections using the Visium Spatial Gene Expression Slide &Reagent
Kit, 16 reactions (Catalog # PN-1000184), according to the manu-
facturer’s protocol (10x Genomics, Pleasanton, CA, USA). Briefly, OCT-
embedded 10 micrometer-thick cryosections of OSCC samples were
placed on the Visium spatial slide. Sections were enzymatically per-
meabilized for 24min. cDNA was obtained from mRNA bound to
capture oligos printed on the slide. cDNA quantification was per-
formed using Agilent Bioanalyzer High Sensitivity Kit (Catalog # 5067-
4626) on an Agilent Bioanalyzer 2100 (Agilent Technologies, CA, USA).
cDNA libraries were sequenced on an Illumina NovaSeq
6000 sequencer using the SP flowcell (200 cycles) at the Centre for
Health Genomics and Informatics (CHGI, University of Calgary,
Alberta, Canada). Sequencing reads were aligned using the 10x
Genomics Space Ranger 1.3.1 pipeline to the standard GRCh38 refer-
ence genome. 12 samples passing alignment QC were aggregated
together using the 10x Genomics Space Ranger aggr function to nor-
malize for read depth between samples. Aggregated samples (n = 12)
recovered a total number of 24,876 spots containing tissue sequenced
to 43,648 post-normalization mean reads per spot.

Spatial transcriptomic data pre-processing
The aggregated HDF5 matrix was imported into R and split by sample.
Feature-barcode matrices for each sample were imported into the R
package ‘Seurat’ (Version 4.2.0) for normalization, quality control,
batch effect correction, dimensionality reduction, and Louvain
clustering80. Spots expressing less than 200 features were excluded
from downstream analysis. Sample level normalization was performed
using the SCTransform function in ‘Seurat’ (Version 4.3.0). Batch
effect correction, integration, and dimensionality reduction was per-
formed using the introduction to scRNA-seq integration Seurat vign-
ette (Version 4.3.0) (https://satijalab.org/seurat/articles/integration_
introduction.html) with no deviations.

Celltype deconvolution and malignancy annotation
Single-cell HNSCC data was downloaded from GSE103322 and impor-
ted into R using the ‘CreateSeuratObject’ function in ‘Seurat’ (Version
4.3.0). In brief, the single-cell data was normalized using ‘SCTrans-
form’, dimensionality reduced, and Louvain clustered. Fibroblast
subtypes were assigned to Louvain clusters;ACTA2+TAGLN+ cells were
annotated as Myofibroblasts and CXCL1+PDPN1+ACTA2- MMP1- cells
were annotated as Intermediate Fibroblasts based on marker genes
described in the datasets original paper13. CAF subtypes conserved in
HNSCC were annotated using the marker genes LRRC15 and GJB2 for
ecm-MYCAFs and ADH1B and GPX3 for detox-iCAFs16. The ‘CARD’ R
package (Version 1.0)81 was used to perform deconvolution of spatial
transcriptomic spots into cell types with the ‘CARD_deconvolution’
function. The GSE103322 single cell dataset was used as reference
while the spatial transcriptomics data was submitted as a query data-
set. Celltype deconvolution data was added to Seurat objectmetadata
for downstream analysis.

The ‘numbat’ R package (Version 1.1.0)82 was used to conduct
haplotype-aware CNV inference on all 12 spatial transcriptomics

Fig. 6 | Analysis of RNA splicing dynamics reveals differential developmental
trajectories andtherapeutic vulnerabilities in theTCandLE. aUMAPof spatially
deconvolved cancer cell spots, with overlaid RNA velocity streams, colored based
on TC, transitory, and LE annotations, and UMAP plot with overlaidRNA velocity
confidence.bRepresentative spatially profiled samples (samples 2 and 5) overlayed
with RNA velocity streams and colored by TC and LE cancer cell annotations. c Bar
plot visualizing top differentially spliced genes (genes with dynamic splicing
behavior) within TC and LE regions. Bars are colored by whether a higher pro-
portion of the gene exists in its spliced form in the TC or LE. d Phase portraits
showing the ratio of spliced and unspliced RNA for top differentially spliced genes,
purple lines depict predicted splicing steady state. e Cell fate transition probability
state graph for TC, transitory, and LE annotations as inferred by vector field

integration. f Infographic describing strategy used to systematically collect drug
response data and test in silico drug perturbations. Created with BioRender.
g Infographic state graph plot highlighting cell fate transitions enriched in high
AAC drugs. h Boxplot comparing edge outgoing vector field strengths between
high AAC and low AAC drugs stratified based on median. AAC groupings are
compared using a two-sided Wilcoxon rank sum test (n = 70 independent drugs).
Box spans 25th–75th percentiles, center line indicates median, whiskers extend to
minima and maxima within 1.5*IQR. UMAPs showing the resultant vector field and
state graphs following in silico perturbations of two targets of (i, j) high (effective)
AAC anticancer drugs, and (k, l) low AAC anticancer drugs. Source data are pro-
vided as a Source Data file where relevant. Abbreviations: AAC area above curve.
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objects from raw ST BAM files. CNV inference was conducted in
accordance with the numbat vignette for spatial transcriptomics data
with no deviations (https://kharchenkolab.github.io/numbat). Mutant
versus normal probability (p_cnv) was exported from numbat and
added to ‘Seurat’ metadata for downstream analysis.

Spots were annotated as “cancer cells” if they had a ‘CARD’
deconvolution proportion of greater than 0.99, or a numbat CNV
based mutant versus normal probability (p_cnv) of greater than
0.99. Spots annotated as ‘cancer cells’ also must have been anno-
tated as containing squamous cell carcinoma by the study pathol-
ogist. Spots not annotated as ‘cancer cells’ were annotated for cell
type based on the largest non-cancer deconvolution proportion as
inferred by CARD.

TC, transitory, and LE annotation
To investigate cancer cell heterogeneity, we reanalyzed only cancer
cells from all ST slides, using ‘Seurat’ (Version 4.3.0) for normalization,
batch effect correction, dimensionality reduction, and Louvain clus-
tering with a resolution of 1.0. To identify hierarchical states of cancer
cell identity, a phylogenetic tree was constructed in ‘Seurat’ (Version
4.3.0) using the ‘BuildClusterTree’ function. This tree was visualized
using ‘plot.phylo’ function within the ape R package (Version 5.6-2)83,
revealing three hierarchical divisions of ST cancer cells, which were
subsequently annotated and visualized within ‘Seurat’ (Version 4.3.0).
Broad differential gene expression analysis between the three nodal
clusters was conducted using the ‘FindAllMarkers’ Seurat (Version
4.3.0) function which implements a two-sided Wilcoxon Rank Sum test
with a Bonferroni correction. Visualization of differentially expressed
genes was performed using the ‘SCpubr’ R package (Version
1.1.2.9000)84. Nodal clusters were annotated as ‘edge’, ‘core’ and ‘tran-
sitory’ based on differentially expressed genes and the localized
expression of the leading edge markers LAMC2 and ITGA5 and tumor
core markers CLDN4 and SPRR1B as previously validated in head and
neck cancer13. Kernel density diagrams for marker genes were con-
structed using the ‘do_NebulosaPlot’ in the ‘SCpubr’ R package (Version
1.1.2.9000)84, employing the R package ‘Nebulosa’ (Version 1.8.0)85.

Differential expression analysis, consensus plotting, and corre-
lation heatmaps
Differentially expressed genes were identified using a two-sided Wil-
coxon rank-sum test with a Bonferroni correction in Seurat (Version
4.3.0) with a logFC >0.25 and adjusted P value < 0.001. Stacked bar
plots showing cumulative expression log2FC for each gene across all
samples were generated using an adaptation of the con-
structConsensus function86. Consensus plots were created to display
the top 25 genes differentially expressed in more than 9 samples (>9/
12 samples). Differentially expressed genes for each sample
were imported into Ingenuity Pathway Analysis (IPA) for pathway
enrichment analysis. IPA exports were imported into the multi-
enrichjam R package (Version 0.0.57.9) (https://github.com/
jmw86069/multienrichjam). The multienrichjam mem_enrich-
ment_heatmap function was modified to create pathway enrichment
plots across samples if pathways were activated or deactivated across
10 or more samples. Whole transcriptome average expression was
Pearson correlated using the ‘cor’ function in the R ‘stats’ package
(version 4.2.2). Correlation values were plotted using the Heatmap
function in the ‘ComplexHeatmap’ R package (Version 2.14.0)87.

Statistical approach for comparing scores across sample groups
Differentially regulated hallmark pathways between TC and LE cancer
cell states were identified by modifying code from the ‘SCPA’ R pack-
age (Version 1.2.0)88. The ‘compare_seurat’ function queried hallmark
genesets in ‘Seurat’ (Version 4.3) R objects housing integrateddata and
tested for differential pathway activity using multivariate distribution
testingwith a Bonferroni correction applied. Plots comparing hallmark

genesets were created using the ‘ggplot2’ (Version 3.4.0) and ‘ggrepl’R
packages (Version 0.9.2).

Select hallmark cancer gene signatures were scored in each spot
using the Seurat (Version 4.3.0) function ‘addmodulescore’. To test for
differences in the module scores calculated between the TC and LE, a
two-sided paired Wilcoxon rank sum test was conducted using the
‘ggpubr’ (Version 0.5.0) function ‘stat_compare_means’ and corrected
using a Bonferroni correction. To perform the scoring of broad CSC,
epithelial CSC and mesenchymal CSC state signatures, an expression
module was programmed using the Seurat (Version 4.3.0) function
‘addmodulescore’. CSC gene characteristics were identified from lit-
erature according to their predicted upregulationor downregulation55.
The scoring contribution of genes predicted to be upregulated and
downregulated were then cumulatively added to derive module
scores. Kernel density diagrams for module scores were constructed
using the ‘do_NebulosaPlot’ in the ‘SCpubr’ R package (Version
1.1.2.9000), employing the R package ‘Nebulosa’ (Version 1.8.0).

Gene regulatory network inference
The Python implementation of the SCENIC89 pipeline (pySCENIC ver-
sion 0.12.1)90 was used to infer regulatory interactions between tran-
scription factors and their targetomes. Core and edge cancer cell data
was processed using default and recommended parameters specified
in pySCENIC’s tutorial (https://pyscenic.readthedocs.io/en/latest/
index.html) and regulons were pruned using the hg19 RcisTarget
database. pySCENIC outputted regulon activity scores were added to a
‘Seurat’ (version 4.3) object using the ‘CreateAssayObject’ function.A
stacked bar plot showing the cumulative logFC of AUCell scores for
each TF across all samples was generated using an adaptation of the
constructConsensus function with an adjusted p value < 0.05.

Immunofluorescence and fluorescence cell-based analyses
TheOCT-frozen tissuewas sectioned at 6μmthickness and placed on a
glass slide. The sectionswere air-dried at room temperature for 30min
followed by fixation using 4% paraformaldehyde for 15minutes. After a
brief wash with 1X PBS, the sections were blocked using 10% Horse
serum for 1 h. An antibody dilution buffer composed of PBS, 1% BSA,
0.1% cold fish skin gelatin, and 0.1% Triton X-100was prepared and the
sections were subjected to indirect immunofluorescence staining
using a rabbit polyclonal anti-CD24 antibody (Abcam: 1:250 dilution;
Catalog # ab244478) andmousemonoclonal anti-CD44 antibody (IM7,
Invitrogen: 1:250 dilution; Catalog # 14-0441-82) as the primary anti-
bodies. Knockout validation was provided by the manufacturer91,92,
and dilution specifications were chosen according to manufacturer
protocols. Afterwards, we included corresponding fluorophore-
conjugated secondary antibodies goat anti-rabbit antibody con-
jugated to Alexa 546 and donkey anti-rat antibody conjugated to Alexa
488 (1:500; Jackson ImmunoResearchLaboratories) alongsideHoechst
33342 (1:1000).The sections were also incubated with the DNA fluor-
escent dye Hoechst 33342 (Invitrogen; Catalog # H3570) to visualize
cell nuclei. To attach coverslips to the slides, we used Fluoromount-G
(SouthernBiotech; Catalog #0100–01), andfluorescence images of the
tissue sections were captured using a fluorescence microscope at 10X
magnification (Zeiss AxioObserver Z1). Exposure times for CD24 (2 s),
CD44 (200ms), andHoechst-specific (6ms) signalswere kept constant
across samples. A serial section for each sample was stained with
hematoxylin and eosin (H&E) stains and examined by the study
pathologist (M.H.) with a brightfield microscope at 10X magnification
(Olympus IX70) to locate the TC and LE/stroma.

TCGA analysis and gene-set scoring
Patient metadata, survival data, and bulk RNA sequencing data was
downloaded for all samples in The National Cancer Institute’s Cancer
GenomeAtlas using the ‘UCSCXenaTools’Rpackage (version 1.4.8)93,94.
HPV negative OSCC samples from 275 patients were identified based
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on patient metadata. Gene set enrichment analysis was performed on
genes differentially expressed in the TC and LE in at least 9/12 patients
having an adjusted p value < 0.05 using the singscore R package with
default parameters95. The optimal quantile cut point for core and edge
geneset scores was determined using the ‘surv_cutpoint’ function in
the ‘survminer’ R package (Version 0.4.9) with a minimum proportion
of 0.2. Kaplan–meier survival plots were generated using the ‘survfit’
function in the ‘survival’ R package (Version 3.4-0) and plotted using
the ‘ggsurvplot’ function in the ‘survminer’ R package (Version 0.4.9)
(https://github.com/kassambara/survminer). Hazard ratios and p-
values were obtained from cox proportional hazard testing using the
‘coxph’ function in the ‘survival’ R package (Version 3.4-0).

When comparing survival across multiple cancer types, the opti-
mal quantile cut point for the LE gene set score in each cancer was
determined using the ‘surv_cutpoint’ function in the ‘survminer’ R
package (Version 0.4.9) with a minimum proportion of 0.1. Optimized
hazard ratios and p-values were subsequently calculated using the
‘coxph’ function in the survival (Version 3.4-0) R package with default
parameters.

To further evaluate our TC and LE gene-sets across multiple
relevant clinical features, we compared TC and LE enrichment scores
across the presence/absence of multiple clinical features, testing for
significance using two-sided Wilcoxon Rank sum test with a
Benjamini–Hochberg correction applied with the ‘stats’ R package
(Version 4.2.2).

To test for relationships betweenour TC and LE scores, and our LE
score and a CAF score, we implemented a Pearson correlation test in
our dataset using the ‘ggpubr’ (Version 0.5.0) ‘stat_cor’ function and
plotted using the ‘ggscatter’ function. A CAF score was identified by
using ‘EPIC’ based deconvolution in the ‘immunedeconv’ R package
(Version 1.1.5) with default settings96.

TCGA validation
To validate our findings in an external database, data from GSE41613
containing 93 HPV negative OSCC patients was downloaded and
imported into R97. Intensity data was preprocessed and background
corrected using the ‘limma’ R package (Version 3.54.1)98; gene-sets
were scored with ‘singscore’ (Version 1.18.0), stratified into high and
low TC and LE scores using an optimized cutpoint, and had their
optimized hazard ratios and p-values calculated.

TCGA subtyping
TCGA subtype data for 275 OSCC samples was downloaded using the
‘PanCancerAtlas_subtypes’ function from the ‘TCGAbiolinks’Rpackage
(Version 2.25.3)99. Bulk RNA sequencing data and subtype data from
the ‘TCGAbiolinks’ package (Version 2.25.3) was added to a Seurat
(Version 4.3.0) object using the ‘CreateSeuratObject’ function99.
Deconvolution of spatial transcriptomic spots intoHNSC subtypeswas
performed using the Seurat vignette for mapping and annotating
query datasets with no modification (https://satijalab.org/seurat/
articles/integration_mapping.html). The subtyped data was held as a
reference dataset and the spatial transcriptomics data submitted as a
query dataset.

TCGA subtype data was scored using the ‘singscore’ R package
(Version 1.18.0) for TC and LE gene-sets. Scores across HNSC subtypes
were compared using a Kruskal–Wallis one way analysis of variance
test implemented through the ‘ggpubr’ (Version 0.5.0) function
‘stat_compare_means’95.

Machine learning model for cancer cell states
To assess whether the core, transitory, and edge states we identified
in OSCC were conserved in other solid tumors, we trained three
machine-learning probability-based prediction models (Support
VectorMachines with Radial Basis Function Kernel, Model Averaged
Neural Network, and Naive Bayes) using ‘scPred’ (Version 1.9.2)100.

Briefly, feature selection was performed by shortlisting top 50 class-
informative PCs distinguishing spot-level variance between ‘core’,
‘transitory’, ‘edge’, and ‘noncancer’. Prediction models were trained
using the ‘caret’ R package (Version 6.0-93). Training probabilities
for spatial tumor states in the OSCC dataset were evaluated using
‘get_scpred’ and visualized using ‘plot_probabilities’. Support Vec-
tor Machines with Radial Basis Function Kernel was used to predict
core, edge, and noncancer spots, while Naive Bayes was used to
predict the transitory cell state. 2 combined hepatocellular cho-
langiocarcinoma (CHC) (Wu et al.101), 3 hepatocellular carcinoma
(HCC) (Wu et al.101), 1 intrahepatic cholangiocarcinoma (ICC) (Wu
et al.101), 2 cutaneous squamous cell carcinoma (cSCC) (Ji et al.102), 1
glioblastoma (GBM) (10X Genomics), 1 human breast cancer Inva-
sive ductal carcinoma (HBC-IDC) (10X Genomics), 1 human breast
cancer Invasive lobular carcinoma (HBC-ILC) (10X Genomics), 1
colorectal cancer (CRC) (10x genomics), and 1 ovarian cancer (OV)
(10x Genomics), 1 lung squamous cell carcinoma (10X Genomics), 4
cutaneous squamous cell carcinoma (Abalo et al.59) 1 prostate ade-
nocarcinoma, invasive ductal carcinoma (10x Genomics), 3 pan-
creatic ductal adenocarcinoma (Lyubetskaya et al.103) 1 cervical
squamous cell carcinoma (10X Genomics), 1 prostate acinar cell
carcinoma (10x Genomics), 1 intestinal colorectal cancer (10X
Genomics), 1 melanoma (10X genomics), 1 pediatric CNS embryonal
tumor (Erickson et al.104), and 2 pediatric medulloblastoma samples
(Erickson et al.104) were classified and Harmony-integrated using
‘scPredict’ with default probability threshold101,102,105. scPred-
generated annotations were imported into ‘Seurat’ (Version 4.3.0)
and overlaid on top of histologic image using the ‘SpatialDim-
Plot’function. The trained model used for classification is publicly
available via our Figshare portal (https://doi.org/10.6084/m9.
figshare.20304456.v1).

Inferring cell communication networks and analyzing cell
neighbors
The ‘CellChat’ R package (Version 1.6.1) was used to infer cell-cell
interaction networks from a Seurat object containing deconvoluted
spots using the ‘createCellChat’ function106. Filtered Circos plots were
generated using the ‘netVisual_chord_gene’ function in ‘CellChat’ to
visualize ligand-receptor pairs, circos plots were modified for clearer
visualization by thresholding based on communication probability
(core to core: 0.001, edge to edge: 0.005, CAF and edge: 0.05). Circos
plots visualizing specific pathways were generated using the ‘netVi-
sual_aggregate’ function. Cellchatwas also used to compare the overall
information flow of the core and edge in different signaling families
using the ‘rankNet’ function in comparison mode106.

Differences in the absolute count of non-cancer spots neighbor-
ing our annotated tumor core and leading edge cancer cells were
determined by classifying neighboring spots according to the greatest
non-cancerous cell type deconvolution proportion, followed by
counting of the annotated spots neighboring the TC and LE. Neigh-
boring spots were defined as spots directly in contact with our pre-
viously annotated malignant TC and LE spots. These counts were then
compared in number using a two-sidedWilcoxon Rank sum test with a
Benjamini–Hochberg applied using the ‘rstatix’ R package (Version
0.7.1) and the ‘stats’ R package (Version 4.2.2).

Constructing cellular trajectories using RNA velocity
To generate spliced and unspliced assays used to infer RNA velocity,
the command line interface tool in ‘velocyto’ (Version 0.17.16) was
employed (https://velocyto.org)107. For each sample, barcodes and
BAM files corresponding to pathologist annotated cancerous regions
were supplied to the velocyto ‘run’ command. The velocyto ‘run’
command was provided with a.gtf gene annotation file that was cre-
ated using the cellranger ‘mkref’ function applied to the standard
GRCh38 reference genome. Output loom files were combined and
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imported into the ‘scVelo’ python package (Version 0.2.5) for further
analysis, dimensionality reduction coordinates and sample metadata
for scvelo analyses were imported from Seurat (Version 4.3.0)61. Mul-
tiple scVelo objects were processed identically in parallel. Spot-level
velocity was derived from the scVelo dynamicalmodel which identifies
spot-level trajectories basedon the ratioof splicedmRNA toun-spliced
pre-mRNAs. First and second order velocity vector moments were
calculated using ‘scv.pp.moments (data,n_pcs=10, n_neighbors=30)’.
Dynamical velocity was calculated using the ‘scv.tl.recover_dynamics’
function and the ‘scv.t.velocity’ functions. The velocity confidence,
based on velocity vectors, was computed using the ‘scv.tl.velocity_-
confidence’ function. The ‘scv.tl.velocity_confidence’ function deter-
mines the level of agreement between spot-level velocity vectors and
their neighboring spots using a correlation-based approach. Velocity
confidence results were visualized with the ‘scv.pl.scatter’ function.
Differential splicing for each gene was calculated using ‘scv.tl.rank_-
velocity_genes’ function which utilizes a two-sided Welch t-test with
overestimated variance to compare multiple grouping variables and
identify group-specific rank ordered gene lists. Data from ‘scVelo’ was
subsequently imported into the ‘Dynamo’ python package (Version
1.2.0)68 for vector field learning and spot fate trajectory inference with
no deviation from their standard vignette.

Drug response and in-silico perturbation of RNA velocity
trajectories
Cell line drug response data was downloaded from the CTRPv2,
GDSC2, PRISM, CCLE, and gCSI databases using the R package ‘Phar-
macoGx’ (Version 3.2.0)108. Fifty HPV negative HNSCC cell lines were
identified across all five drug datasets. 417 drugs were identified to
have AAC values available in at least 25 HPV negative HNSCC cell lines.
AACvalues for each cell linewereaveraged across datasets for datasets
with overlapping cell lines. The ACC value for each drugwas calculated
by taking the 10% trimmedmean of the ACC values observed across all
cell lines to control for drug response outliers. Drug names were
subsequently passed to the drug gene interaction database API (Ver-
sion 2) to identify their downstream targets. Therapeutics that did not
include informationonupregulation or downregulationwere removed
from subsequent analysis. Upregulation was determined based on the
DGIdb keywords: “activator”, “agonist”, “inducer”, “partial agonist”,
“positive modulator”, “potentiator”, and “stimulator”. Downregulation
was determined based on the DGIdb keywords: “inhibitor”, “antago-
nist”, “partial antagonist”, “blocker”, “inverse agonist”, “negative
modulator”, and “suppressor”. 143 drugs with downstream targets
were identified. Drugs were included in further analyses if their
downstream targets had non-zero expression in our spatial tran-
scriptomics dataset. Drug targets were passed to the python package
‘Dynamo’ (Version 1.2.0) for in silico perturbation analysis. Drug gene
targets were perturbed in silico using the ‘dyn.pd.pertrubation’ with a
Jv scaling factor of −200 for downregulated genes and 200 for upre-
gulated genes. Velocity vector fields resulting from perturbation were
integrated to estimate a quantitative spot fate transition probability
between core, transitory, and edge states using the ‘dyn.pd.state_-
graph’ function in ‘vf’mode, and plotted using the ‘dyn.pl.state_graph
function. The ‘edge outgoing’ signature was generated by adding the
spot fate transition probability of ‘edge’ to ‘transitory’ and ‘edge’ to
‘core’. The ‘core incoming’ signaturewas generated by adding the spot
fate transition probability of ‘edge’ to ‘core’ and’ transitory’ to ‘core’.
Drugs were classified as having a ‘high’ AAC values if they had an AAC
greater than the median, or a ‘low’ AAC values if they had an AAC less
than the median. Spot fate transition probability scores were com-
pared across ‘high’ and ‘low’ AAC groups using a two-sided paired
Wilcoxon rank sum test with the ‘ggpubr’ (Version 0.5.0) function
‘stat_compare_means’. Immune check-point genes CTLA4 and CD274
were separately perturbed in silico using ‘dyn.pd.pertrubation’ with a
Jv scaling factor of −1000.

Drug mechanism of action was identified using the PRISM data-
base in the R package ‘PharmacoGx’ (Version 3.2.0). Drug names were
aligned with the PRISIM dataset through the Levenshtein distance
algorithm, executed via the ‘adist’ function from the ‘Utils’ package
(Version 4.2.2) in R. This approach facilitated the identification of drug
names with high similarity, permitting a maximum character-level
discrepancy of three, encompassing substitutions, insertions, dele-
tions, or capitalization changes. Drugs with identified classes were
defined by groups of drugs (n > 1) sharing a common mechanism of
action. Spot fate transition probabilities were compared across drug
classes using a Kruskal–Wallis one way analysis of variance test
implemented through the ‘ggpubr’ (Version 0.5.0) function
‘stat_compare_means’.

Spatial transcriptomics atlases
A web portal was created to enable exploration of all 12 spatial sam-
ples. This portal was built using ‘shiny’ (Version 1.7.4), ‘shinyLP’ (Ver-
sion 1.1.2), and ‘shinythemes’ (Version 1.2.0) R packages. The portal is
available for public access at http://www.pboselab.ca/spatial_OSCC/. A
portal for exploring in-silico perturbation approaches is available for
public access at www.pboselab.ca/dynamo_OSCC. Our in-silico portal
additionally used the R package ‘reticulate’ (version 1.2.6), and the
python package ‘Dynamo’ (Version 1.2.0).

Statistics & reproducibility
No statistical method was used to predetermine sample size. Two
collected samples were excluded from analysis due to poor sequen-
cing quality. The experiments were not randomized. The Investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Raw and SpaceRanger processed spatial transcriptomics data
generated in this study have been deposited in the National Center of
Biotechnology Information’s Gene Expression Omnibus (GEO) data-
base under accession code GSE208253. The processed Seurat objects,
loom files generated by velocyto, and the scPred prediction model
data are available athttps://doi.org/10.6084/m9.figshare.20304456.v1.
Spatial datasets are also available for public access at our companion
portal http://www.pboselab.ca/spatial_OSCC/. In silico perturbation
results are available for public access at www.pboselab.ca/dynamo_
OSCC. The analyzed spatial transcriptomics differential expression,
transcription factor, hallmark pathway, cellChat, differential splicing,
and drug perturbation data generated in this study are provided in the
Supplementary Information/Source Data file. The Hallmark gene-sets
for core-edge testing data used in this study are available in the
Molecular Signatures Database v7.5.1109. The P-EMT gene-set and
single-cell HNSCC data used for deconvolution data used in this study
are available in the GEO database under accession code GSE10333213.
Cancer stem cell gene-set data used in this study were extracted from
literature52,55. GEO: bulk RNA-sequencing data and associated clinical
data used in this study are available in the National Cancer Institute’s
The Cancer Genome Atlas database through UCSC Xena [https://xena.
ucsc.edu]93. The validation genomic survival dataset data used in this
study are available in the GEO database under accession code
GSE4161397. The scpred analysis data used in this study are available in
the TheLifeome, GEO, Mendeley, and 10X Genomics databases under
accession codes Lifeome: 7:eabg3750, GSE144240, Mendeley https://
doi.org/10.17632/2bh5fchcv6.1, Mendeley https://doi.org/10.17632/
svw96g68dv.1, GEO: GSE211895 [http://lifeome.net/supp/livercancer-
st/data.htm, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
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GSE144240, https://data.mendeley.com/datasets/2bh5fchcv6/1, https:
//data.mendeley.com/datasets/svw96g68dv/1, https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE211895, https://www.10xgeno-
mics.com/resources/datasets]59,101–104,110. The drug response data used
in this study are available in the PharmacoDB database [https://
pharmacodb.ca/]111. Source data are provided with this paper.

Code availability
Software used for analysis is public and described in detail in the
Methods section. Raw scripts and code are available at https://github.
com/rohitarorayyc/SpatialTranscriptomics/. Citable code for this
study is available at the Zenodo https://doi.org/10.5281/zenodo.
8079095 (https://zenodo.org/record/8079095)112.
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