
Article https://doi.org/10.1038/s41467-023-40260-7

Knowledge-enhanced visual-language pre-
training on chest radiology images

Xiaoman Zhang 1,2, Chaoyi Wu1,2, Ya Zhang1,2, Weidi Xie 1,2 &
Yanfeng Wang 1,2

While multi-modal foundation models pre-trained on large-scale data have
been successful in natural language understanding and vision recognition,
their use in medical domains is still limited due to the fine-grained nature of
medical tasks and the high demand for domain knowledge. To address this
challenge, we propose an approach called Knowledge-enhanced Auto Diag-
nosis (KAD) which leverages existing medical domain knowledge to guide
vision-language pre-training using paired chest X-rays and radiology reports.
We evaluate KADon four external X-ray datasets anddemonstrate that its zero-
shot performance is not only comparable to that of fully supervisedmodels but
also superior to the average of three expert radiologists for three (out of five)
pathologies with statistical significance. Moreover, when few-shot annotation
is available, KAD outperforms all existing approaches in fine-tuning settings,
demonstrating its potential for application in different clinical scenarios.

Foundation models1, such as BERT2, GPT3 and CLIP4, have shown great
promise in feature transfer and generalization to a wide spectrum of
downstream tasks5–8, for example, in natural language processing or
computer vision. However, the development of foundation models in
medical domains has largely lagged behind4,9–11. A direct extension of
existing approaches12,13 that align visual and text modalities in the
medical domain hardly generalizes toward diseases or radiology
findings beyond those seen at training. This is largely due to the
requirement for fine-grained recognition in medical tasks (i.e., the
clues for medical diagnosis often lie in subtle and regional signals), as
well as the abstractness of many complex and professional medical
terminologies (e.g., infiltrates refers to the white spots in the lungs).
Therefore, to effectively model the intricate and specialized concepts
of medical applications, domain knowledge is indispensable.

In this paper, we aim to build a foundationmodel for chest X-rays
by training on paired images and reports14, termed Knowledge-
enhanced Auto Diagnosis (KAD). As illustrated in Fig. 1, unlike exist-
ing approaches that simply align the image to raw textual reports, we
investigate various ways to extract information from the given reports
and explicitly leverage a well-established medical knowledge graph to
train the knowledge encoder. In specific, the proposed KAD follows a
two-stage framework; first, we learn a neural representation of

knowledge graph, with the entities represented as nodes, and relations
between them as edges, that offers scaffolds for structured, multi-step
reasoning about entities; second, we extract the clinical entities and
relations from radiology reports in three different ways, for example,
by heuristically defined rules, by usingRadGraph, or by usingChatGPT,
then, we exploit the pre-trained knowledge encoder to guide the visual
representation learning using image and radiology reports, effectively
injecting the domain knowledge into the visual encoder. Architectu-
rally, to enable flexible zero-shot evaluation on arbitrary diseases or
radiology findings, we utilize a query-based transformer architecture,
termed as Disease Query Network (DQN), that can take the disease
name as ‘query’, iteratively attending the visual feature to get the
model prediction, and the attention map provides reliable visual evi-
dence for clinical decision.

Here, to demonstrate the effectiveness of the proposed KAD, we
experiment on four external X-ray datasets, i.e., PadChest15,
ChestXray1416, CheXpert17 and ChestX-Det1018. KAD is shown to be
superior in auto-diagnosis for pathologies that are unseen in the
training procedure, with zero-shot performance significantly higher
than existing state-of-the-art medical visual-language models for 193
pathologies on PadChest, and even comparable to the fully supervised
approaches. To the best of our knowledge, this is the first model pre-
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trained with an X-ray image and report and demonstrates comparable
or superior performance to the average for expert radiologists on
CheXpert. In addition, when additional manual annotations are avail-
able, ourmodel can also be fine-tuned in the same protocol as existing
self-supervised learning methods, with further boosted performance,
demonstrating its superior transferability. We believe that this work
presents a promising idea for domain knowledge injection in devel-
oping foundation models for AI-assisted diagnosis in radiography.

Results
Overview
The goal of our proposed Knowledge-enhanced Auto Diagnosis (KAD)
is to improve vision-language pre-training and facilitate the auto-
diagnosis for chest X-ray images by leveraging domain knowledge, for
example, in existing knowledge graph (Unified Medical Language
System, UMLS)19, pre-defined heuristic rules, or off-the-shelf reports
information extraction toolbox (RadGraph)20. In this section, all base-
lines are pre-trained on the MIMIC-CXR14 dataset and directly eval-
uated on four well-established multi-center datasets, i.e., zero-shot

inference, including PadChest15, NIH ChestX-ray16, CheXpert17, and
ChestX-Det1018. In all cases, the model makes inferences by predicting
whether the queried disease exists in the input image.

Note that at the core of our study is to develop a pre-training
procedure for incorporatingmedical domain knowledge, for example,
UMLS, RadGraph, etc.; such design naturally equips KAD with addi-
tional information than existing self-supervised approaches. However,
from a practical perspective, KAD training only exploits off-the-shelf
tools and thus is equally scalable to large datasets as self-supervised
learning approaches do, while demonstrating significantly superior
performance on identifying diseases not encountered at training time
and handling long-tail recognition problems. We conduct extensive
ablation studies to analyze the contribution of certain model compo-
nents and the impact of image resolution and visual backbone.

PadChest
We evaluate KAD on the diagnosis task in the PadChest dataset, where
the images are labeled with 174 different radiographic findings and 19
differential diagnoses. The fundamental challenge of the PadChest

Fig. 1 | Overview of the KAD workflow. a Knowledge base used for training the
knowledge encoder. It contains two parts, a knowledge graph consisting of
concept-relation-concept triplets and a concept info list consisting of concept-
definition pairs. b The knowledge encoder is trained to learn textual representa-
tions by maximizing similarities between positive pairs. c We first extract the
clinical entities and relations from the radiology reports; this can be achieved by

heuristic rules, using anoff-the-shelf reports information extraction toolbox (Entity
Extraction), or ChatGPT, then we employ the pre-trained knowledge encoder to
perform image-text contrastive learning with paired chest X-rays and extracted
entities and optimize a Disease Query Network (DQN) for classification. d During
the inference stage, we simply encode the disease name as a query input, and DQN
will output the probability that the pathology is present in the input image.
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dataset lies in the long-tailed class distribution, as illustrated in Sup-
plementary Fig. 1, where only 21 classes havemore than 1000 samples,
and only 16 classes are seen during pre-training. Here, we denote the
diseases that are seen by Disease Query Network (DQN) at the model
training stage as seen diseases and the others as unseen diseases. As
shown in Fig. 2b, KAD outperforms existing SOTA models on most
unseen radiographic findings, and the model achieves an AUC of at
least 0.900 on 31 classes and at least 0.700 on 111 classes out of 177
unseen classes in the PadChest test dataset (n = 39,053) Supplemen-
tary Figs. 2–5 include results on all 193 radiographic findings and
diagnoses. As shown in Fig. 2a, while comparing the performance with
fully supervisedmodel, we observe that KAD significantly outperforms
CheXNet21 on five out of the seven pathologies diagnosis, with AUC of
0.809 (95% confidence interval (CI) 0.796, 0.822) for atelectasis, 0.916
(95%CI 0.913, 0.919) for cardiomegaly, 0.910 (95%CI 0.896, 0.924) for
consolidation, 0.966 (95% CI 0.958, 0.974) for edema and 0.835 (95%
CI 0.829, 0.842) for pneumonia; additionally, KAD demonstrates
superior performance than other existing self-supervised visual-lan-
guage models using image-text pairs, for example, AUC 11% higher on
pneumothorax than CheXzero22.

ChestXray14
Figure 3 and Supplementary Tables 1 and 2 present results of KAD and
other approaches on the NIH ChestXray14 dataset, where the images
are labeled with 14 different diseases, including only one unseen class
“fibrosis”, not appearing in any of the reports used for training. We
conduct extensive experiments on both zero-shot and fine-tuning
settings; in the latter case, we verify the model’s performance by
varying the percentage of images for fine-tuning. As shown in Sup-
plementary Table 1, KAD achieves the highest performance over all
existing self-supervised visual-language models trained with image-
text pairs; for instance, it gives an average AUC of 0.786 (95%CI 0.770,
0.808). For 13 of the 14 pathologies, KAD gets significantly higher AUC
than the best-performing baseline. Additionally, in the fine-tuning
scenario shown in Supplementary Table 2, KAD also demonstrates
substantial improvements in all evaluation metrics over the existing
approaches. As we can see, KAD consistently maintains large advan-
tages over other methods under different labeled conditions and
exhibits the largest performance improvements with respect to these
baselines when only 1% data is used for training; for example, KAD
surpasses ConVIRT by about 13.8%, and the widely adopted ImageNet-

Fig. 2 | Comparison of KADwith SOTAmedical image-text pre-trainingmodels
under zero-shot setting on radiographic findings or diagnoses in the PadChest
dataset. We evaluate model on the human-annotated subset of the PadChest
dataset (n = 39,053 chest X-rays), and mean AUC and 95% CI of KAD are shown for
each radiographic finding or diagnosis (n > 50). a Results of seen classes. Note that

CheXNet is a supervised model trained on the PadChest dataset. b Results of
unseen classes. KAD achieves an AUC of at least 0.900 on 31 classes and at least
0.700 on 111 classes out of 177 unseen classes in the PadChest test dataset. Top 50
classes where (n > 50) in the test dataset (n = 39,053) are shown in the figure.
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based pre-training by about 15.2% on average, with largest improve-
ments on hernia (>29%) and edema (>10%), especially under limited
supervision.

CheXpert
Figure 4 and SupplementaryTable 3 present experimental results from
KAD and other image-text pre-training models; the performance is
compared to three human radiologists on the CheXpert test set. The
results show that KAD consistently outperforms existing approaches
on the average evaluation scores, demonstrating strong generalization
ability. When compared with the mean performance of three radi-
ologists, it is notable that KAD achieves statistically higher mean
Matthews Correlation Coefficient (MCC) metric on the majority of the
competition pathologies. In particular, on atelectasis (KAD 0.613 (95%
CI 0.567, 0.659) vs. Radiologists 0.548), edema (KAD 0.666 (95% CI
0.608, 0.724) vs. Radiologists 0.507) and pleural effusion (KAD 0.702
(95% CI 0.653, 0.751) vs. Radiologists 0.548). On consolidation (Radi-
ologists 0.359 (95% CI 0.262, 0.444) vs. KAD 0.357), our model is
slightlyworse, but not statistically significantly. On the F1metric, there
is no statistically significant difference between themean performance
fromKAD0.647 (95%CI0.591, 0.702) and that of the radiologists 0.619
(95% CI 0.585, 0.642), with only the exception of edema, where KAD
performs significantly better (KAD 0.701 (95% CI 0.647, 0.754) vs.
Radiologists 0.583).

ChestX-Det10
Figure 5 shows the results for zero-shot diagnosis and grounding on
the ChestX-Det10 test set. Our proposed model outperforms existing
methods on majority and mean values. Specifically, KAD obtains sig-
nificant improvements over GLoRIA9 in the difficult categories, i.e.,
calcification (>7%) and fracture (>18%). Additionally, it is worth noting
that the ability to localize disease is significantly improved with the
image resolution increasing, especially for some diseases with small
bounding boxes; KAD-1024 shows not only higher accuracy but also
better precision. Last but not least, we provide a thorough ablation
study of KAD in Tables 1 and 2. More details can be found in the
“Methods”.

Discussion
The purpose of this work was to develop a foundationmodel for chest
X-rays by exploiting the existing knowledge prior in the medical
domain. Here, we provide a discussion to analyze the performance of
KAD from different perspectives.

KAD achieves comparable results with expert radiologists. While
comparing KAD to human expert radiologists onCheXpert, the results
in Fig. 4 indicate that the model can keep up or even surpass the
performance of experienced clinicians in some diagnostic tasks, i.e.,
KAD achieves statistically higher MCC on the average of five patholo-
gies, over the mean performance of three radiologists, demonstrating
the effectiveness of knowledge-enhanced pre-training. As a result, the

proposed KAD model can serve as a reference when disagreement
occurs among physicians.

KAD achieves comparable results to supervisedmodels. As shown
in Fig. 2a, the performance of KAD is comparable to, and sometimes
exceeds, fully supervised methods on PadChest; for example, KAD
brings a 6.8% performance gain on “consolidation”. Note that KAD
achieves such results without seeing any training images from
PadChest, which is collected in a different country from the training
dataset MIMIC-CXR. Additionally, as shown in Fig. 2b, the application
of a fully supervisedmodel is limited to a closed set of categories,while
KAD allows the query input to be arbitrary pathologies, identifying
radiological findings with high accuracy on PadChest, demonstrating
strong generalization ability and robustness to various clinical diag-
nosis categories.

KAD enables superior results on zero-shot diagnosis. By estab-
lishing connections between images and texts, vision-languagemodels
are able to turn visual classification into zero-shot inference beyond
the limited set of pathologies. In contrast to existing approaches that
directly match raw reports with image scans, we leverage domain
knowledge from a well-structured knowledge graph (UMLS) and pre-
process the reports by extractingmedical entities. As in the report, the
same medical concept can appear in various forms, for example,
nonstandard names, abbreviations, and misspellings in the reports,
which may lead to noisy supervision. While our proposed knowledge-
enhanced mechanism enables the establishment of relations between
different radiological concepts, thus enabling generalization to unseen
classes, as suggested by the results on PadChest (Fig. 2), KAD enables
the identification and diagnosis of 177 unseen classes of radiological
findings with high accuracy.

KAD enables data-efficient transfer across various tasks. When
manual annotations for target downstreamdatasets are available, KAD
consistently outperforms the existing visual-language models under
different fine-tuning settings, i.e., using a variable number of data for
fine-tuning, as shown in Fig. 3. Note that, in the following classes,
including cardiomegaly, effusion, pneumonia, pneumothorax, and
hernia, KAD required only 1% labeled data to achieve better results
than others under 100% label ratio, showing the potential of KAD in
data-efficient transfer learning. Such a phenomenon indicates that
KAD can fully inherit the benefits from pre-training, i.e., leveraging
both the DQN module and the pre-trained text encoder.

KAD provides a grounded heatmap for making clinical decisions.
In addition to auto-diagnosis, explainability is equally critical in AI-
assisted applications, as it may help clinicians to discover and under-
stand the evidence that the AI algorithm bases its predictions on,
potentially presenting transparency and enabling better collaboration
in the clinical setting. Here, we qualitatively analyze KAD by averaging
the cross-attention map in each transformer layer in DQN and visua-
lizing the results of KAD with different resolutions in Fig. 6. It can be
observed that the model is indeed pooling information from regions
that well match radiologists’ diagnoses on different pathologies, i.e.,

Fig. 3 | Comparison of proposed KAD with SOTA self-supervised baseline
models and medical image-text pre-training models on ChestXray14 with dif-
ferent ratio of labeled data used for fine-tuning. AUC, F1 score are reported, and

themetrics refer to themacro average on all the diseases. Note that for fairness, all
baselines use the same backbone as the basic image encoder (that is, ResNet50).
The percentages refer to the percentage of labels used in the training data.
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red boxes labeled by board-certified radiologists. Quantitatively, we
evaluate KAD on ChestX-Det10 and present the pointing game results
in Fig. 5, which further confirms the provided explanations.

Despite the ability of KADon zero-shot and data-efficient transfer,
there remain a few limitations: First, the pre-trained model still
requires a small validation set for hyper-parameter tuning, e.g., to
determine the probability threshold of a specific disease. Second,
some pathologies may not have any relation with other diseases in the
knowledge base and never be mentioned in the reports, for example,
pectum carinatum, our method is not expected to predict that
pathologywith high accuracyduring zero-shot evaluation for this case.
Third, the diagnosis of KAD is limited to classification and coarse
grounding and is not able to provide accurate segmentation. In future
work, we would extend the knowledge-enhanced training to more
diverse medical tasks, where structured or unstructured can be
acquired with negligible cost.

In summary, our proposedKAD leverages pairedX-ray images and
clinical reports for vision-language pre-training, incorporatingmedical
knowledge from a well-established knowledge graph. As a result, the
model has demonstrated significant performance improvement and
robustness over existing approaches in auto-diagnosis for chest X-ray
images. Our findings in this paper provide inspiration for resolving a
few concerns that potentially hinder the feasibility of developing
foundation models for more general medical diagnosis applications.
First, laborious data curation. Large-scale data collection incurs time-
consuming procedures, especially in unifying the data format and
terminology in clinical reports. We investigate various approaches to
simplify the raw reports into a set of meaningful medical terminolo-
gies, for example, using heuristic rules, RadGraph, or ChatGPT. Sec-
ond, with limited and exorbitant expert knowledge, the analysis of
medical image data heavily relies on domain-specific expert knowl-
edge; KAD first learns a neural representation of the knowledge graph

Fig. 4 | Comparisons of proposed KAD with SOTA medical image-text pre-
training models and three board-certified radiologists on five competition
pathologies in the CheXpert test dataset (n = 500). Note that all models are

directly evaluated on the CheXpert dataset under zero-shot setting. The AUC, F1
scores and MCC of five pathologies are shown in the plots, where the average and
95% CI are shown. Details in Supplementary Table 3.
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that captures the implicit relation between medical entities in the
textual embedding space, benefits themodel’s generalization on long-
tailed target tasks. Lastly,model interpretation, KADdiagnoseswith an
attentionmap output enables the clinicians to understand themodel’s
decision-making procedure and thus encourage trustiness.

Methods
Domain-specific knowledge
To incorporate the medical domain knowledge into the training pro-
cedure of our proposed Knowledge-enhanced Auto Diagnosis system,
we leverage a well-established medical knowledge graph (UMLS) for

pre-training and investigate various ways for medical entities extrac-
tion from reports.

UMLS knowledge graph. We leverage the Unified Medical Language
System (UMLS)19,23 to serve as the knowledge base for training our
proposed architecture. In detail, UMLS contains medical concepts
(entities) that are integrated from different lexicon resources; each
entity has a Concept Unique Identifier (CUI) with corresponding defi-
nitions andmultiple synonymous names and has been assigned one or
occasionallymultiple semantic types. The UMLS also provides relation
information between medical entities in the form of triplets, normally

Fig. 5 | Comparisons of proposed KAD with SOTA medical image-text pre-
training models on ChestX-Det10 dataset. AUC scores are shown for the zero-
shot classification task in (a), and Pointing game scores are shown for the zero-shot

grounding task in (b). We use the best results as the maximum value for each
category in the radar chart, and 0.5 as the minimal value for (a), and 0 as the
minimal value for (b). Details in Supplementary Table 4.

Table 1 | Ablation study of KAD under zero-shot setting by removing or replacing individual modules

ChestXray14 CheXpert

Methods AUC MCC F1 ACC AUC MCC F1 ACC

Ablation on proposed modules

KAD w/o Stage1 0.752 0.228 0.274 0.748 0.894 0.546 0.620 0.858

KAD w/o random select 0.751 0.242 0.290 0.780 0.878 0.571 0.671 0.812

KAD w/o DQN 0.672 0.144 0.109 0.747 0.822 0.419 0.508 0.806

Ablation on entity extraction module

w/ UMLS 0.773 0.268 0.308 0.833 0.904 0.562 0.635 0.867

w/ ChatGPT 0.784 0.284 0.336 0.845 0.887 0.573 0.622 0.888

w/ RadGraph (KAD) 0.789 0.280 0.323 0.816 0.905 0.589 0.647 0.875

AUC, MCC, F1 and ACC scores are reported, and themetrics all refer to themacro average on all the diseases. KAD w/o Stage1 uses PubMedBERT as the text encoder. KAD w/o random select uses
only image features as key or value when training DQN. KAD w/o DQN only trains the cross-modal contrastive learning part and test like previous image-text pre-training models. We also perform
ablationon theentity extraction tool. w/ heuristic rule usesUMLSbasedonheuristic rule for entity extraction insteadof RadGraph.w/ChatGPTuses the large languagemodel for entity extraction.w/
RadGraph utilizes the reports information extraction toolbox, RadGraph for entity extraction. Note that for fairness, all baselines use the same backbone as the basic image encoder (that is,
ResNet50). Numbers within parentheses indicate 95% CI. The best results are bold.

Table 2 | Ablation study of KAD with different image encoders and different image resolutions

ChestXray14 CheXpert

Image Encoder Size AUC MCC F1 ACC AUC MCC F1 ACC

ResNet-5025 224 0.789 0.280 0.323 0.816 0.905 0.589 0.647 0.875

ViT-1637 224 0.785 0.276 0.321 0.807 0.907 0.575 0.647 0.884

ResNet-5025 512 0.788 0.278 0.321 0.817 0.908 0.595 0.656 0.874

ResNet-5025 1024 0.802 0.306 0.347 0.828 0.902 0.556 0.607 0.836

AUC, MCC, F1 and ACC scores are reported, and the metrics all refer to the macro average on all the diseases. Numbers within parentheses indicate 95% CI. The best results are bold.
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represented as (head entity, relation, tail entity); for example, adeno-
viral pneumonia, has finding site, lungs pair, as shown in Fig. 1a.

Entity extraction. We explore three different ways, namely, heuristic
rules, RadGraph, or ChatGPT, to preprocess the given X-ray reports,
converting them from raw texts into medical entities and their pre-
sence, for example, the sentence “There is no consolidation, effusion,
or pneumothorax.” will be converted into {consolidation, absent,
[SEP], effusion, absent, [SEP], pneumothorax, absent}. the extraction
procedure will be detailed in the following sections.

Datasets
Dataset for pre-training. In our experiments, we conduct model pre-
training on MIMIC-CXR14, it is a publicly available dataset of chest
radiographs with radiology text reports. The MIMIC-CXR dataset
contains 377,110 images corresponding to 227,835 radiographic stu-
dies for 65,379 patients. Each radiographic study comes with a free-
text radiology report and corresponding chest X-ray images (in frontal
or lateral views). The radiology report is a summary written by radi-
ologists regarding their findings that consists of multiple sections:
examination, indication, impression, findings, technique, and com-
parison. In practice, we only keep the findings and impressions sec-
tions in the reports.

Datasets for downstream evaluation. To evaluate the model, we
conduct experiments on both zero-shot transfer and model fine-
tuning. The details of the datasets and implementation are
described below.

PadChest15. PadChest has 160,868 chest X-ray images labeledwith
174 different radiographic findings, 19 differential diagnoses; only 27%

of the labels (totaling 39,053 examples) come from board-certified
radiologists, and the rest are obtained by using a recurrent neural
network with attention trained on the radiology reports. For evalua-
tion purposes, we only test on samples annotated by board-certified
radiologists and report the zeros-shot transfer results.

ChestXray1416. NIH ChestXray14 has 112,120 chest X-ray images
with disease labels from 30,805 unique patients. The disease labels are
acquired by mining the associated radiological reports with natural
language processing tools. In total, there are 14 disease labels:
Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneu-
monia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis,
Pleural Thickening and Hernia. In this paper, all models are tasked to
predict a binary label for each of these 14 disease labels for each X-ray
image from the dataset, resembling a multi-label classification pro-
blem. We strictly follow the official patient-wise data split from the
original ChestXray14 release and use the images from 10% of subjects
in the training set to form a validation set.

CheXpert17. CheXpert has 224,316 chest X-ray images collected
from 65,240 patients. The official validation set contains 200 chest
radiographic studies that are manually annotated by three board-
certified radiologists, and the official test set contains 500 chest
radiographic studies annotated by a consensus of five board-certified
radiologists24. We use the validation dataset for picking the thresholds
of predictions. We follow the original paper and focus on the evalua-
tion of five observations on the official test set (the competition tasks):
Atelectasis, Cardiomegaly, Consolidation, Edema, and Pleural Effusion.

ChestX-Det1018. ChestX-Det10 is a subset of NIH ChestXray14,
which consists of 3543 chest X-ray images with box-level annotations
provided by three board-certified radiologists of 10 diseases/
abnormalities, including Atelectasis, Calcification, Consolidation,

Fig. 6 | Zero-shot visualization of randomly chosen samples from ChestX-
Det10, we present both the original image (left) and attentionmaps generated
from KAD, KAD-512, and KAD-1024. In the original images, red boxes denote

lesion areas annotated by radiologists. In the attention maps, the red to blue
spectrum is plotted on the original image, with red representing high-attention
regions and blue representing low attention.
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Effusion, Emphysema, Fibrosis, Fracture, Mass, Nodule and Pneu-
mothorax. In this paper, we follow the official data split and report the
zero-shot grounding results on the test set.

Baselines
In general, existing state-of-the-art models can be cast into two cate-
gories based on the modalities involved at the pre-training stage:
medical image-text pre-training approaches, which enable both zero-
shot transfer and fine-tuning, medical image pre-training approaches,
which only support fine-tuning evaluation. Note that all the above
baselines are implemented using the same backbone architecture as
our KAD, i.e., a ResNet-5025 architecture as the basic image encoder
module. Such an implementation decision rules out the effect of net-
work architectures on final performance and advocates fairness in
experimental comparisons.

Medical image-text pre-training methods.
• ConVIRT10 jointly trains the vision and text encoders with the

paired medical images and reports via bidirectional contrastive
learning.

• GLoRIA9 models the interactions between medical images and
reports via both global and regional contrastive learning.

• BioVIL26 leverages a pre-trained radiology-specific text encoder
for contrastive learning using paired image-text radiology data.

• CheXzero22
fine-tunes the pre-trained CLIP model4 on the X-ray

and reports with contrastive learning using image-text pairs.
• MedKLIP27 leverages medical-specific knowledge descriptions

to enhance visual-language pre-training using paired image-
text data.

Medical image pre-training methods.
• Model Genesis28 refers to the self-supervised visual representa-

tion learning approach that considers restoring the original
image from artificial distortion, including local shuffling, non-
linear transformation, in- and out-painting.

• Comparing to Learn (C2L)29 refers to the self-supervised visual
representation learning approach that generates positive and
negative pairs through both image and feature-level mix-up for
contrastive learning.

• ImageNet Pre-training30 refers to a representativemethod that is
pre-trained on a large-scale dataset of natural images with
supervised learning.

Data preprocessing
At the visual-language pre-training stage, we resize each chest X-ray
image to 224 × 224 by default, then normalize withmean and standard
deviation computed from the whole training dataset. Random resize
crop, randomhorizontalflip, random rotation (−10 to 10 degrees), and
random grayscale (brightness, sharpness, and contrast) are also
applied for augmentation. For the text from radiology reports, we first
apply the named entity recognition and linking tool, ScispaCy31, to
preprocess the texts, i.e., extract the entities from reports and ground
them in theUMLS knowledgebase for entity disambiguation. Then,we
use RadGraph20 to obtain the corresponding semantic types for each
entity with uncertainty levels. The entities with corresponding
semantic types and uncertainty levels are concatenated as input, e.g.,
{pleural effusion, observation definitely present, [SEP], lung, anatomy,
[SEP],...}, and the maximal sequence length is 256. At the fine-tuning
stage, we apply the same set of strategies for preprocessing as in pre-
training for all four target domain datasets.

Algorithm overview
At the core of our proposed idea is to train foundation models by
leveraging the medical prior knowledge; in this paper, we explicitly
leverage a well-established medical knowledge graph, i.e., Unified
Medical Language System (UMLS), and various information extraction

methods based on heuristic rules, RadGraph, or ChatGPT. Generally
speaking, we train the model in two stages; first, we train a knowledge
encoder to learn a neural representation of the medical knowledge
base; second, we extract the clinical entities and relations from the
radiology reports and employ the pre-trained knowledge encoder to
guide visual representation learning on image and text pairs of chest
X-rays. In the following sections, we start by describing our considered
problem scenario and then present the detail of these two stages
sequentially.

Problem scenario. Assuming a training set with N samples, i.e.,
Dtrain = fðx1, t1Þ, . . . ,ðxN , tNÞg, where xi, ti refer to the X-ray image and its
corresponding medical report, respectively, our goal is to train a
visual-language model that enables the diagnosis of the existence of
any pathologies. Specifically, at inference time, we can freely ask the
system to identify the likelihood of the patient getting a certain dis-
ease:

ŝi =ΦDQNðΦimageðxiÞ,Φknowledgeð½disease�ÞÞ, ð1Þ

where xi 2 RH ×W × 3 refers to an image sample from the test set, with
H,W denoting height and width, respectively, ŝi 2 ½0,1� refers to the
inferred likelihood of the patient having a certain disease.

Knowledge encoder. In this section, we provide details for training
the knowledge encoder (Φknowledge), with experts’ knowledge, to
implicitly model the relations between medical entities in textural
embedding space. Specifically, we employ contrastive learning to fine-
tune a pre-trained BERT by sampling positives and negatives from
Unified Medical Language System (UMLS)19.

Let DUMLS = fðn, c,dÞig∣∣D∣∣i = 1 denote a concept dictionary for UMLS;
each concept (ni) has a Concept Unique Identifier (CUI, ci) with
corresponding definition (di) and Type Unique Identifier (TUI), as
shown in Fig. 1. The concept “pulmonary infiltrate” is defined as “A
finding indicating the presence of an inflammatory or neoplastic
cellular infiltrate in the lung parenchyma”, and the corresponding
CUI is C0235896. For the UMLS knowledge graph, the vertices are
concepts (DUMLS), and each edge can be represented as a triplet, i.e.,
(ni, r, nj), where ni refers to the head concept, nj refers to the tail
concept, and r refers to the relation from the head concept to the
tail concept.

Here, we train the knowledge encoder by maximizing the simila-
rities between positive concept-definition pairs and concept-relation-
concept triplets generated from the knowledge graph, such that the
language description pointed to the same CUI has similar
representations.

For a specific CUI ci, the corresponding language descriptions
may be expressed in three formats: the concept ni, the definition di,
and other concepts with the correct relationship {nj + r}, r is the rela-
tionship between the head concept nj pointing to tail concept ni. Note
that theremay exist more than one head concept pointing to the same
tail concept, and we randomly select one of them for training. Given
randomly N sampled CUIs, we can compute the textual embedding of
corresponding language descriptions, i.e., the concept ni 2 RN ×d ,
definition d i 2 RN ×d , and concepts with the relationship
fnj + rg 2 RN ×d . Each pair of textual embeddings with the same CUI
can be treated as positive, and the ones with different CUIs as
negative pair.

At training time, for each CUI, we randomly sample two textual
embeddings accordingly, and each mini-batch can be expressed as
fðzi,ciÞg2Ni = 1, where ci denotes the CUI pointed by zi. Here, we unify the
textual embedding after knowledge encoderΦknowledge as z. Therefore,
the model can be trained via contrastive learning by minimizing the
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distances between the zi that points to the same CUI:

Lknowledge =
X2N

i= 1

�1
2Nci

� 1

X2N

j = 1

1i≠j � 1ci = cj
� log

exp zi � zj=τ
� �

P2N
k = 1 1i≠k � exp zi � zk=τ

� � ,

ð2Þ

where Nci
denotes the number of zi with label ci in this minibatch,

τ 2 R+ is a scalar temperature parameter, and 1 is the indicator
function.

Entity extraction. In this section, we introduce the entity extraction
module for processing text reports, intomedical entities, for example,
anatomy or observation, with their presence information. Anatomy
refers to an anatomical body part that occurs in a radiology report,
such as a “lung”. Observation refers to the word associated with visual
features, physiological processes or diagnostic disease classifications,
such as “effusion” for each observation, the uncertainty level of its
existencewill be specified as present or absent. For each radiology text
withmore thanone sentence, theywill be converted into a sequence of
entities and categories, i.e., t = fe11, s11, ½SEP�,:::eki , ski , ½SEP�:::g, where eki is
the k-th extracted entity for i-th sentence, ski is the category of eki . The
[SEP] token separates the entities. After extracting all entities from the
reports, we select the top Q most commonly appearing observation
entities from the entire reports corpus, denoted as an entity set
Q= fq1, q2,:::,qQg, and get a label indicating the existence of the entity
from the uncertainty level. For entities that are not mentioned in the
report, we set their label as “absent” by default. We make three
attempts at this goal.

First, we employed heuristic rules using the Unified Medical Lan-
guage System (UMLS). Specifically, for each sentence in the radiology
report, we were able to extract a sequence of entities (entity,
concept, CUI, TUI) with the Python spacy package. The pseudo-code
is provided in Supplementary Fig. 6. To determine the presence of an
entity, we first filter the entity list for each sentence based on TUI,
retaining only the entities with TUI in (T033: Finding, and T047: Dis-
ease or Syndrome). Next, we match these entities with our entity set,
except for ‘normal’. Furthermore, we adopted a straightforward
heuristic rule: if the sentence contains the words ‘no’, ‘none’, or ‘nor-
mal’, the label is set to absent; otherwise, the label is set to 1 present.
For entities that are notmentioned in the report, we assigned a label of
absent. If all entities are absent, we set the label of ‘normal’ to present.

Second, we utilized the off-the-shelf RadGraph, for identifying
radiology-specific entities and asserting their presence and anatomical
relations from clinical text. RadGraph was trained on 500 radiology
reports from the MIMIC-CXR dataset annotated by board-certified
radiologists. With RadGraph, each radiology text was directly con-
verted into a sequence of entities and categories. Each entity eki will be
classified into one of the following categories, defined as ski : Anatomy
(ANAT), Observation: Definitely Present (OBS-DP), Observation:
Uncertain (OBS-U), and Observation: Definitely Absent (OBS-DA). For
entities that are not mentioned in the report, we set their label as
“definitely absent” by default.

Third, we experimentwith ChatGPT32, a large languagemodel that
has demonstrated remarkable results in natural language processing.
We input the radiology report as the content to ChatGPT and use the
following prompt:

For the given report of a chest x-ray, determine if the patient has any of
the following findings: finding_list = [pleural effusion, opacity, pneu-
mothorax, edema, atelectasis, tube, consolidation, enlarged cardio-
mediastinum, tip, pneumonia, line, cardiomegaly, fracture,
calcification, medical device, engorgement, nodule, wire, pacemaker,
pleural thicken, marking, scar, hyperinflate, blunt, collapse, emphy-
sema, aerate, mass, infiltration, obscure, deformity, hernia, drainage,
distention, shift, lesion, hardware, dilation, aspiration]. The output

should use the following template: label_list = [i if finding exists for
finding in finding_list]. If no finding exists, output label_list = []

We then processed the output label_list to obtain the presence of
an entity.

Knowledge-guided visual representation learning. This section
describes the detail of knowledge-guided visual representation learn-
ing. In particular, we introduce individual components of our archi-
tecture, including image encoder (Φimage), knowledge encoder
(Φknowledge), disease query network (Φdqn). Lastly, we will describe the
training procedure.

Image encoder. Given an X-ray image scan xi 2 RH ×W × 3, we
compute the features with a visual backbone:

xi =ΦimageðxiÞ 2 Rmx ×d , ð3Þ

where d refers to the feature dimension, and mx = h ×w with h,w
denoting the size of the output featuremap. In our case, if the standard
ResNet-5025 is adopted as the visual backbone,we take the output from
the fourth residual block. And if the standard ViT-16 is used, we simply
use the features from the transform encoder output.

Knowledge encoder. Given a preprocessed text report ti, we
compute the features with the pre-trained knowledge encoder:

t i =ΦknowledgeðtiÞ 2 Rmt ×d , ð4Þ

where d refers to the feature dimension, and mt refers to the token
number.

Disease query network. Given the pre-defined entity set Q, we
compute a set of query vectors with the pre-trained knowledge
encoder, Q= fq1,q2,:::,qQg, where qi =Φknowledge(qi). At training time,
we randomly pick the encoded visual features xi or text features ti to
act as the key and value of the disease query network (Φdqn), corre-
sponding to the “Random Select” module in Fig. 1c. As ideally, we
would like the visual and textual embedding space to be used inter-
changeably.

ŝi =Φdqnðxi, t i,QÞ 2 RQ×d : ð5Þ

Note that during inference, we only use the visual features as the input
of DQN. The outputs from the DQN are further fed into an MLP for
inferring the existence of the query entity.

Training. We randomly sample a minibatch of N input pairs from
the training data and optimize the contrastive loss:

Lcontrast = � log
eðhx̂i , t̂ii=τÞ

PN
k = 1 eðhx̂i , t̂k i=τÞ

+ log
eðht̂i , x̂ii=τÞ

PN
k = 1 eðht̂ i , x̂k i=τÞ

 !
: ð6Þ

Lcontrast denotes an image-to-text and text-to-image contrastive loss
for the i-th pair, respectively, where x̂i denotes the mean pooling over
visual feature xi, t̂i denotes the mean pooling over text feature ti, 〈⋅ , ⋅〉
represents the cosine similarity, τ represents a temperatureparameter.

As aforementioned, for each sample, we can obtain the existence
label of the entity set Q with the entity extraction module. Then for
existence prediction, we use binary cross-entropy with the existence
label, denoted as Ldqn. Finally, for each mini-batch, we simply sum up
Lcontrast and Ldqn as the overall loss.

LKAD =Lcontrast +Ldqn ð7Þ

Implementation details
Model pre-training. The overall framework generally follows a two-
stage training pipeline. For Stage1, we initialize the text encoder
from the English version PubMedBERT33 and fine-tune it for 100K
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training steps. In each mini-batch, 64 concept-definition pairs and
64 concept-relation-concept triplets are used for training. The
maximal sequence length is 256 since the definition could be long.
We use AdamW34 as the optimizer with lr = 1 × 10−4 and
lrwarmup = 1 × 10−5. For Stage2, the image encoder is the first four
layers of ResNet50, the DQN is composed of a series of standard
Transformer decoders35. We use AdamW optimizer with lr = 1 × 10−4

and lrwarmup = 1 × 10−5. We train on an A100 with batch size 64 for 50
epochs. The first five epochs are set for warming up.

Zero-shot transfer. To evaluate the zero-shot performance of
the model on the multi-label classification task, DQN takes the dis-
ease name list as query input and image features as key and value
and output the likelihood of the disease being present in the con-
sidered chest X-ray image. The average cross-attention between the
disease and the visual features is used for grounding. For other
medical image-text pre-training baselines, we use the prompt
defined in BioVIL26, for example, representing the presence/absence
of pneumonia: “Findings suggesting pneumonia” and “No evidence
of pneumonia”.

Model fine-tuning. At this stage, we fine-tune all models using
AdamWoptimizerwith lr = 1 × 10−4 for all datasets. Themodel is trained
with the same learning rate and decay strategy as that used in the pre-
training stage and is trained with a batch size of 64. All experiments
were run in Python 3.9.12 and torch ‘1.9.1+cu111’.

Ablation study
We conduct a thorough ablation study of KAD, systematically varying
one variable at a time. By default, our model comprises the image
encoder, knowledge encoder, random select module, and disease
query network and incorporates RadGraph for entity extraction.
Table 1 shows the quantitative results, indicating that the proposed
modules are effective in addressing the limitations of the previous
approach: knowledge deficit, report complexity, and limited transfer-
ability. We also perform experiments to analyze the impact of image
resolution and visual backbone (Table 2).

Knowledge encoder. “KAD w/o Stage1” refers to using
PubMedBERT33 as text encoder without fine-tuning on medical
knowledge graph. We show the similarity map between features of
different disease names encoded by PubMedBERT and the pre-trained
text encoder in Supplementary Fig. 7; our knowledge-enhanced text
encoder clearly distinguishes the features of different diseases, while
PubMedBERT encodes them almost identically.

Cross-modal contrastive learning without entity extraction. “KAD
w/o entity extraction” refers to not using entity extraction module in
cross-modal contrastive loss (Eq. (6)), i.e., simply aligning the raw
reports and images. As shown in the table, with the entity extraction
module, the classification results can be improved from0.772 to 0.786
on AUC in ChestX-ray14 dataset and 0.897 to 0.906 on AUC in CheX-
pert dataset. These results demonstrate the benefits of standardized
reports for training.

Methods for entity extraction. “w/UMLS” refers to employingonly
heuristic rules for entity extraction. “w/ RadGraph”, “w/ ChatGPT”
refers to utilizing RadGraph and or ChatGPT, respectively. Based on
the results, it can be observed that although heuristic rules slightly
underperform in comparison, it is already very competitive, and Rad-
Graph and ChatGPT perform equally well. It should be noted that
different approaches for extracting entities yielded similar results,
indicating that the specific method used for entity extraction was not
the primary factor affecting performance in KAD. The critical com-
ponent is our proposed DQN architecture.

Random select module. “KAD w/o random select” refers to
removing the randomselectmodule, i.e., only using the image features
as the key and valueof the diseasequery network. The results in Table 1
verify that the random select module help to align image features and

text features in the textual embedding space, thus improving the zero-
shot performance.

Disease query network. “KAD w/o DQN” refers to only training
with contrastive learning in Stage2, i.e., similar design as the existing
image-text pre-training models, which incurs the most significant
performance degradation, showing the necessity of DQN for better
generalization on disease diagnosis or radiology findings.

Image encoders and image resolutions. As shown, performance
with ResNet and ViT are comparable, demonstrating that the pro-
posed knowledge-enhanced representation learning is robust to the
selection of image encoder. And the results of KAD-512 and KAD-
1024 show that the ability to diagnose is not noticeably improved
with the image resolution increasing, compared to image localiza-
tion (Fig. 5).

Statistical analysis
In our evaluation, AUC stands for “Area under the ROC Curve”,
MCC stands for “Matthews Correlation Coefficient”, F1 stands for
“F1 score” and ACC stands for “Accuracy”. We collect AUC results
directly using the model’s prediction, while to obtain the MCC, we
first run inference on the test set to get the probability values for
the different classes on each chest X-ray image. The probabilities
are then transformed into positive/negative predictions with
thresholds found by optimizing MCC over the validation dataset.
Then, the condition-based MCC scores are calculated using these
predictions. We similarly compute the F1 score and ACC but use
the same thresholds as used for computing the MCC. For zero-shot
grounding, we use Pointing Game36 for evaluation purposes. In
specific, we extract the region with maximum response in the
output heatmap, and if the region hits the ground-truth mask, it is
considered a positive prediction, otherwise negative. Finally,
accuracy can be calculated as the pointing game score.

Confidence intervals
Weuse thenon-parametric bootstrap to generate confidence intervals:
random samples of size n (equal to the size of the original dataset) are
repeatedly sampled 1000 times from the original dataset with repla-
cement. We then estimate the AUC, MCC, F1 and ACC metrics using
each bootstrap sample. The predicted probabilities are then trans-
formed into positive/negative predictions using the thresholds found
by optimizing MCC over the validation dataset. We derive confidence
intervals from the relative frequency distribution of the estimates over
the re-samples, using the interval between the 100 × (α/2) and
100 × (1− α/2) percentiles; we pick α = 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
MIMIC-CXR data is available at https://physionet.org/content/mimic-
cxr/2.0.0 for users with credentialed access. PadChest data is available
at https://bimcv.cipf.es/bimcv-projects/padchest. NIH ChestXray14
data is available at https://nihcc.app.box.com/v/ChestXray-NIHCC/
folder/36938765345. CheXpert data is available at https://aimi.
stanford.edu/chexpert-chest-x-rays, and the official test data with
labels are available at https://github.com/rajpurkarlab/cheXpert-test-
set-labels. ChestX-Det10 data are available at https://github.com/
Deepwise-AILab/ChestX-Det10-Dataset. Source data for figures are
provided with this paper. Source data are provided with this paper.

Code availability
The code is available on GitHub at https://github.com/xiaoman-
zhang/KAD.
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