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Stiefel-Whitney topological charges in a
three-dimensional acoustic nodal-line crystal

Haoran Xue 1, Z. Y. Chen2, Zheyu Cheng 1, J. X. Dai2, Yang Long1,
Y. X. Zhao 3,4 & Baile Zhang 1,5

Band topology of materials describes the extent Bloch wavefunctions are
twisted in momentum space. Such descriptions rely on a set of topological
invariants, generally referred to as topological charges, which form a char-
acteristic class in the mathematical structure of fiber bundles associated with
the Bloch wavefunctions. For example, the celebrated Chern number and its
variants belong to the Chern class, characterizing topological charges for
complex Bloch wavefunctions. Nevertheless, under the space-time inversion
symmetry, Bloch wavefunctions can be purely real in the entire momentum
space; consequently, their topological classification does not fall into the
Chern class, but requires another characteristic class known as the Stiefel-
Whitney class. Here, in a three-dimensional acoustic crystal, we demonstrate a
topological nodal-line semimetal that is characterized by a doublet of topo-
logical charges, the first and second Stiefel-Whitney numbers, simultaneously.
Such a doubly charged nodal line gives rise to a doubled bulk-boundary cor-
respondence—while the first Stiefel-Whitney number induces ordinary drum-
head states of the nodal line, the second Stiefel-Whitney number supports
hinge Fermi arc states at odd inversion-related pairs of hinges. These results
experimentally validate the two Stiefel-Whitney topological charges and
demonstrate their unique bulk-boundary correspondence in a physical
system.

Quantum mechanical wavefunctions are written in complex numbers,
and so are the Bloch wavefunctions in crystals. These complex Bloch
wavefunctions are twisted in momentum space to form band topol-
ogy, following their mathematical structure of fiber bundles that is
characterized by a set of topological invariants corresponding to a
characteristic class. A famous example of the topological invariant is
the Chern number in the Chern class, which can be treated as a
topological charge that induces topological boundary states, following
the principle of bulk-boundary correspondence1. Such a correspon-
dence from bulk to boundary is generally one to one, since different

topological phases are incompatible and do not exist simultaneously
to host different topological charges. Materials classified in the Chern
class have been extensively explored for decades, leading to many
discoveries such as the Chern insulators, time-reversal-invariant
topological insulators, and Weyl semimetals2–7.

In the presence of symmetries, the properties of the Hamiltonian
eigenspace can be significantly modified8. A prominent example is the
spacetime inversion (PT) symmetry. In the field of non-Hermitian
physics, PT symmetry has played a central role as it can lead to real
eigenenergies that are unexpected for a non-Hermitian Hamiltonian9.
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In periodic Hermitian systems without spin-orbit coupling, while the
eigenenergies are already real, the application of PT symmetry is able
to refine the Bloch wavefunctions from complex numbers to real
numbers10,11. Accordingly, the Chern number must vanish in such a
scenario, and the Chern class classification is no longer applicable.
Instead, the Stiefel-Whitney (SW) class is responsible for the topolo-
gical classification of the PT-symmetric systems with purely real
eigenspaces12.

The SW class consists of two topological charges, the first and
second SW numbers, classifying 1D and 2D PT-symmetric systems,
respectively. A nontrivial first (second) SW number represents the
obstruction of finding a global real basis of fiber bundles for Bloch
wavefunctions in the 1D (2D) Brillouin zone12. This context is similar to
the Chern number in the obstruction of finding a global complex basis
for Bloch wavefunctions in the 2D Brillouin zone. While the first SW
number is equivalent to the quantized Berry phase13,14, the second SW
number is unique to the SW class, being able to protect 2D higher-
order topological insulators and 3D topological semimetals15–23, as
counterparts of Chern insulators and Weyl semimetals protected by
the Chern number. More intriguingly, recent theories suggest that
nontrivial first and second SW numbers can co-exist in a single
system17,18,20,21,23, leading to a doubled bulk-boundary correspondence
—the same bulk can be doubly charged with two topological charges
simultaneously, which give rise to two kinds of boundary states at
different locations.

Here, in a three-dimensional (3D) acoustic crystal, we experi-
mentally realize a nodal-line topological semimetal with a doublet of
SW topological charges as illustrated in Fig. 1a, withw1 andw2 the first
and second SW numbers, respectively (Supplementary Section 1 and
Supplementary Fig. S1). Such a nodal line can be named a real nodal
line due to its purely real eigenspace. Because of the nontrivial w2,
these nodal lines appear in pairs (see Fig. 1b, c)17,21, resembling the
Nielsen-Ninomiya theoremofWeyl points inWeyl semimetals24. The 1D
topological chargew1 leads to the first-order drumhead surface states
(SSs)25, which also appear in the case of a conventional nodal line (see
Fig. 1b). However, the additional 2D topological charge w2, which is
unique to the SW class, can give rise to odd PT-related pairs of hinge
Fermi arcs. In our experiment, this is demonstrated by a sample of a
long rectangular prism that hosts a single pair of PT-related gapless
hinges (see Fig. 1c). The novel distribution of hinge states (HSs) dis-
tinguishes this unconventional nodal-line semimetal from other
existing second-order topological semimetals that host HSs on all four
hinges26–28. This novelty is further experimentally confirmed on a
sample with a more irregular but still PT-invariant geometry.

Results
General idea
Let us start with introducing the minimal Dirac model for a nodal line
with a doublet of topological charges (w1,w2) (Supplementary sec-
tion 2 and Supplementary Figs. S2-S4):

HðkÞ= kxγ1 + kyγ2 + kzγ3 +mz iγ3γ4: ð1Þ

Here, γa with a = 1, 2,⋯ , 5 are the 4 × 4 Hermitian Dirac matrices
satisfying the Clifford algebra: {γa, γb} = 2δab14 and k = (kx, ky, kz) is the
wavevector. Without loss of generality, we represent the PT operator
as PT =K with K the complex conjugation. In model (1), we have
ordered the Dirac matrices so that γi with i = 1, 2, 3 are real and γ4,5 are
purely imaginary. A set of matrices representing γa can be found in
Methods. Hence, it is easy to check (1) is indeed a real Hamiltonian
preserving PT symmetry. Moreover, since iγ3γ4 anticommutes with γ3
while commutes with γ1,2, we may refer to mziγ3γ4 as the partial mass
term along the kz direction. The nodal line lies on the kx-ky plane, and
its radius increases monotonically asmz (see Fig. 2a). Whenmz = 0, the
ring shrinks into a Dirac point named a real Dirac point due to its real
eigenspace11.

Inspired by this continuum model, we develop a lattice con-
struction method briefly introduced as follows. First, we shall form an
eightfold degenerate band crossing point in the momentum space.
Although the crossing point is topologically neutral, we then add
appropriate symmetry-breaking dimerization patterns in order to split
it into two fourfold degenerate real Dirac points, eachwith topological
chargew2 = 1. The last step is to further spread each point into a nodal
line with certain appropriate dimerization patterns.

To achieve a nodal point with high degeneracy, we utilize pro-
jective symmetries, which stem from the gauge fluxes on the lattice
and can lead to high dimensional irreducible representations29,30.
Moreover, the Z2 lattice gauge fields are highly engineerable in artifi-
cial lattices (i.e., the sign of each real hopping amplitude can be flexibly
tuned to be + or − ; see Fig. 2b), as demonstrated in recently realized
projectively symmetry-protected topological phases in acoustic
crystals31,32.

Model construction
As aforementioned, to construct a realizable lattice model, we have
recourse to the projective symmetry algebra. We consider a 3D rec-
tangular lattice with the nearest-neighbor hoppings, which has flux π
for each rectangular plaquette along any direction. The flux pattern
can be described by numerous configurations of signs of hopping
amplitudes, and the onewe choose is given in Fig. 2c–e. Because of the
gauge fluxes, the unit translation operators Li with i = x, y, z, which
previously mutually commute, become pairwisely anti-commuting,
i.e., {Li, Lj} = 0 for i ≠ j, which constitute the projective symmetry alge-
bra of translations. The anti-commutation relation manifests the
Aharonov-Bohm effect, since the equivalent form L�1

j L�1
i LjLi = � 1

corresponds to that a particle accumulates a phase factor eiπ = − 1 after
circling the plaquette spanned by Li and Lj, as illustrated in Fig. 2b.
Similar analysis shows the projective algebraic relations {Mi, Mj} = 2δij
formirror reflectionsMi, and thosebetweenMi and Lj:MiLiMi = L

�1
i and

{Mi, Lj} = 0 for i ≠ j (see Fig. 2b). Here, Mi reverses the ith coordinate
with the center of the unit cell as the coordinate origin.We now turn to
the Brillouin zone, and denote the representations of Li and Mi as Lk

i
and Mi, respectively. Note that Lk

i depend on k, while Mi are inde-
pendent of k. Specializing at the point K = (π,π,π), their projective
algebraic relations are given by

� LK
i ,LK

j

n o
= Mi,Mj

n o
= 2δij , Mi,LK

j

n o
=0: ð2Þ

Since time reversal T is preserved at K, we further consider its repre-
sentation T , which commutes with all LK

i and Mi. The projective

Fig. 1 | Doubly charged nodal line. a Illustration of a nodal line with a doublet of
topological charges (w1,w2). w1 and w2 are defined on the chosen S1 and S2 sur-
rounding the nodal line, respectively. b Due tow1 = 1, the surface states (SSs) form
drumheads bounded by the projections of bulk nodal lines on the surface Brillouin
zone. c w2 = 1 leads to a PT-related pair of hinge state (HS) Fermi arcs bounded by
the projections of the bulk nodal lines on the hinge Brillouin zone.
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symmetry algebra generated by LK
i ,Mi and T is equivalent to the real

Clifford algebra C3,3 � C1,1 ffi C4,4 ffi Rð2d + 1Þ, which has a unique
complex irreducible representation with dimension 23. That is, there is
the desired eightfold degenerate crossing point at K protected by the
projective symmetry algebra (2). Since our unit cell consists of 8 sites,
all bands are enforced to cross at K to represent (2).

To have a nontrivial SW class, we consider the inversion symmetry
P centered at the x-bond of the unit cell in Fig. 2c (indicated by the red
star), i.e., P = LyLzMxMyMz. Following the aforementioned method, we
should proceed to add PT-invariant dimerization patterns that break
some Li and Mj to realize the real nodal lines. Let us consider two
dimerization patterns in order. The first patternD1 is the dimerization
along the x direction, which alternates along the y direction but is
invariant along the z direction as illustrated in Fig. 2d. AddingD1 splits
the eightfold degenerate topologically “neutral” crossing point into
two fourfold degenerate realDirac points chargedbyw2, each ofwhich
is modeled by (1) with mz =0. We then introduce the second dimer-
ization patternD2, which gives rise to the partial mass termmziγ3γ4 of
(1) and therefore can spread each real Dirac point into a nodal line.D2

is designed as the dimerization along the z-direction, which alternates
along both the x and y directions, as illustrated in Fig. 2e. Each of the
nodal lines, as shown in Supplementary section 3 and Supplementary
Fig. S5, carries a nontrivial doublet of topological charges (w1,w2) as
expected.

This tight-binding model with π fluxes on a simple rectangular
lattice can be implemented using the coupled acoustic cavity
structure31–40. Our designed acoustic crystal is shown in Fig. 3a, with
each site in the tight-binding model implemented by a cuboid cavity
supporting a dipolar resonance at around 3100Hz. The coupling
between two cavities is enabled by a tube with a square cross-section,
with the coupling sign determined by the position of the tube and the
coupling amplitude controlled by the width of the tube. Thus, by
carefully engineering the coupling tubes, the required gauge fluxes
and coupling dimerizations can be realized (see Fig. 3b). The whole
structure is filled with air and surrounded by photosensitive resins,
which can be treated as rigid walls for sound due to their large impe-
dance mismatch with air (see Methods). Figure 3c shows the equi-

frequency surface of the acoustic crystal obtained from full-wave
simulation at 3020Hz (slightly below the minimum frequency of the
nodal line), which reveals the existence of two nodal lines forming two
rings in the bulk dispersion and suggests the validity of this acoustic
design (see Supplementary section 4 and Supplementary Figs. S6-S7
for more details on the dispersion).

Drumhead surface states
We first demonstrate the existence of conventional drumhead SSs due
to the nontrivial first-order topology induced by ω1. To this end, we
scan the acoustic fields on the top surface excited by a speaker placed
at the surface center (see Methods and Supplementary Fig. S9). Fig-
ure 3d shows the corresponding Fourier intensity at 3045 Hz, where
the hot spots occur at positions inside the projections of the nodal
rings (denoted by the blue lines), consistent with the feature of the
drumhead SSs. To further confirm the existence of the drumhead SSs,
we also plot in Fig. 3e, f the frequency-resolved Fourier spectra along
the kx and ky momenta, respectively (indicated by the two white
dashed lines in Fig. 3d). As can be seen, the measured SSs connect the
projections of the two bulk nodal points (indicated by the blue dots)
from the same nodal ring, matching well with the simulated SS dis-
persion (indicated by the red dots).

PT-related hinge states
Next, we study the unconventional higher-order topology in this
acoustic crystal inducedby thenontrivial secondSWnumberw2. Let us
first consider a sample with a simple rectangular geometry as shown in
Fig. 4a. This sample consists of six (seven) cavities in the x (z) direction,
thus preserving the required PT symmetry. By imposing periodic
boundary condition along the ydirection,we can numerically compute
the dispersion for y-directional hinges. The results for ky =π/a are
shown in Fig. 4b and the results for all ky are given as colored dots in
Fig. 4d–g. As can be seen, there are two bands connecting the pro-
jections of the nodal rings. The eigen profiles of these two states are
given in Fig. 4c, showing they are indeed the hinge Fermi arcs states.
Notably, the HSs only exist on two of the four hinges related by the PT
symmetry. Interestingly, the locations of the HSs can be transferred

Fig. 2 | Illustrations for the Diracmodel, projective symmetry algebras and the
tight-binding model. a The fourfold degenerate real Dirac point (DP) is mono-
tonically spread into a real nodal line (NL) by the partial mass term of mziγ3γ4.
b Successively implementing operators sends a particle to circle the rectangular
plaquette with flux π. Here, positive (negative) hopping amplitudes are colored in
purple (blue). c The undimerized lattice with flux π through every rectangular
plaquette. The red star denotes the inversion center. A topologically neutral

eightfold degenerate crossing point resides at K = (π,π,π) in the Brillouin zone.
d, The dimerizationD1 is added along the x-direction, which is alternative along the
y direction and uniform along the z-direction. Hence, the eightfold degenerate
crossing point is split into a pair of fourfold degenerate real DPs, each with topo-
logical charge w2 = 1. e The dimerizationD2 along the z direction is further added,
which alternates along both x and y directions. Then, each real DP is spread into a
real NL.
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from the two off-diagonal hinges to the two diagonal ones by simply
reversing the dimerization along z (i.e., swap the values of dz1 and dz2;
see Supplementary Fig. S10).

To probe the hinge Fermi arcs, we place a speaker at the hinge and
scan the acoustic field along the hinge. This experiment is repeated for
all four hinges (see the labelings of the hinges in Fig. 4a) and the
measured dispersions are plotted in Fig. 4d–g. For hinge 2 (Fig. 4e) and
hinge 4 (Fig. 4g), the measured dispersions match with the simulated
hinge Fermi arcs (red dots), suggesting the existence of HSs on these
two hinges. In contrast, the excited states are bulk states when the
speaker is placed at hinge 1 (Fig. 4d) or hinge 3 (Fig. 4f). These results
demonstrate the off-diagonal distribution (i.e., only at hinge 2 and
hinge 4) of the HSs. In addition to the momentum space results, we
also conduct real space measurements to reveal the HSs. For each
hinge, a speaker operating at the HS’s frequency is placed at one end
and the acoustic field on the two adjacent surfaces is measured. As
shown in Fig. 4h–k, the measured acoustic intensity distributions
exhibit a hinge localization profile only for hinge 2 (Fig. 4i) and hinge 4
(Fig. 4k), which is consistent with the information from the simulated
andmeasured dispersions. Note that here the HSs do not show a clear
propagation along the hinge due to their small group velocity and the
system’s loss. Nevertheless, the strong field enhancement along the
hinge is a clear signature of the HSs. We also note that the system’s
loss, which can be modeled as a uniform imaginary number in the
diagonal terms of the Hamiltonian, will not change the band topology.

A fascinating aspect of this acoustic crystal is that the protecting
symmetry, i.e., the PT symmetry, can be easily preserved in various
geometries, not limited to regular ones like the square and rectangular
geometries. Furthermore, under different geometries with the same
bulk invariantw2, the forms of the HSs (e.g., the locations and number
of HSs) can also be different (see Supplementary section 5 and

Supplementary Fig. S8). This allows us to steer the HSs even without
changing the system parameters. To demonstrate this property, we
construct a sample with an irregular shape in the xz plane, as shown in
Fig. 5a. One can imagine a cutting procedure illustrated in Fig. 5b,
where the two off-diagonal hinges of a rectangle-shaped sample are
cut to get this irregularly-shaped sample. During such a process, the PT
symmetry remains intact while the pair of hinges that support the HSs
are removed. Interestingly, the generated new sample host three,
instead of one, pair of PT-related HSs (see Fig. 5c). To demonstrate this
phenomenon, wemeasure the transmission spectra at the eight hinges
of this sample. As shown in Fig. 5d, in the frequency range of the HSs,
the signals measured at hinge 1 and hinge 5 are much lower than the
signals measured at other six hinges. This indicates there are no HSs at
hinge 1 and hinge 5, consistentwith the simulation (see Supplementary
Fig. S11). The existence/absence of the HS at each hinge is also con-
firmed by real-sapce field measurements, as given in Supplementary
Fig. S13.

Discussion
In summary, we have demonstrated an acoustic real nodal-line crystal
in the nontrivial SW class, hosting ordinary drumhead SSs and
unconventional PT-related HSs featuring exotic properties. Our study
opens a new route to experimental studies on band topology con-
structed from real fiber bundles that were hardly explored previously.
While our demonstration is in acoustics, the proposed idea can also be
generalized to other classical wave systems with PT symmetry,
including photonic, mechanical and circuit systems41–44. Other intri-
guing properties such as the fractional charges and filling anomalies
can also be demonstrated with more specialized measurements45.
Besides, our results reveal the power of projective symmetries in rea-
lizing novel topological phases of matter, which could inspire more

Fig. 3 | Acoustic crystal design and the observationofdrumhead surface states.
a Experimental sample for measuring the surface states (SSs). The lattice constants
in the xy plane and along the z direction are a = 140 mm and az = 70 mm, respec-
tively. b Unit cell of the acoustic crystal, with tubes enabling positive and negative
couplings colored in purple and blue, respectively. The dimensions of the cuboid
cavities are l = 56mm,w = 28mm and h = 7mm. The width parameters of the tubes
are dx1 = 3.2 mm, dx2 = 7.8 mm, dy = 6 mm, dz1 = 3.2 mm and dz2 = 4.8mm. The
acoustic crystal is filled with air and surrounded by hard walls. c Equi-frequency

surfaceof the acoustic crystal inb at 3020Hz (slightly below the frequency rangeof
the nodal ring) calculated from full-wave simulations. d Experimentally measured
SS dispersion at 3045Hz (inside the frequency range of the nodal ring). The solid
blue curves denote the projections of the nodal rings. e, f Experimentallymeasured
SS dispersion along the horizontal (vertical) white dashed line in d. The gray and
red dots represent simulated eigenfrequencies of the bulk and SSs, respectively.
The blue dots denote the projections of the bulk nodal points.
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topological designs using artificial structures with gauge flux. On the
practical level, the PT-related HSs, with superior tunability in their
number and configuration compared to previous higher-order topo-
logical states, can provide robust and reconfigurable control over
sound and other classical waves.

Methods
Concrete form of the model and its symmetry operators
Since eachunit cell consists of 2 × 2 × 2 sites,we assign three sets of the
standard Pauli matrices σ, τ and ρ for the three dimensions x, y, and z,
respectively. Moreover, we introduce the seven Hermitian 8 × 8 Dirac
matrices as

Γ1 = ρ3 � τ3 � σ2, Γ2 =ρ3 � τ3 � σ1,

Γ3 =ρ3 � τ2 � σ0, Γ4 = ρ3 � τ1 � σ0,

Γ5 = ρ2 � τ0 � σ0, Γ6 = ρ1 � τ0 � σ0,

Γ7 = ρ3 � τ3 � σ3:

The Dirac matrices Γα with α = 1, 2⋯ , 7 satisfy {Γα, Γβ} = 2δαβ. With the
Dirac matrices, the tight-binding Hamiltonian in momentum space is
given by

HðkÞ=
X
i,a

f i,aðkiÞΓ2i�a+ 1

+ gx,1ðkxÞiΓ2Γ3Γ4 + gx,2ðkxÞiΓ1Γ3Γ4
+ gz,1ðkzÞiΓ5Γ7 + gz,2ðkz ÞiΓ6Γ7

ð3Þ

Let t denote the hopping magnitude along the undimerized y direc-
tion, and Jx,z1 and Jx,z2 be the two hopping magnitudes along the two
dimerized directions x and z, respectively. Then, the dimerization
strengths are measured by Jx,z� =Jx,z+ with Jx,z± = ðJx,z1 ± Jx,z2 Þ=2. The coeffi-
cient functions are given by f x,1ðkxÞ= � Jx+ ð1 + cos kxÞ, f x,2 = Jx+ sin kx ,
f y,1ðkyÞ= � tð1 + cos kyÞ, f y,2ðkyÞ= t sinky, f z,1ðkzÞ= Jz+ ð1 + cos kzÞ,
f z,2ðkzÞ= � Jz+ sinkz , and gx,1ðkxÞ= � Jx�ð1� cos kxÞ,
gx,2ðkxÞ= � Jx� sinkx , gz,1ðkz Þ= � Jz�ð1� cos kzÞ, gz,2ðkz Þ= Jz� sin kz .

The momentum-space symmetry operators for Mi are given by

Mx = ρ0 � τ0 � σ1 m̂x = � iΓ1Γ7m̂x ,

My =ρ0 � τ1 � σ3 m̂y = � iΓ3Γ7m̂y,

Mz =ρ1 � τ3 � σ3 m̂z = � iΓ5Γ7m̂z ,

where each m̂i is the operator sending ki to − ki with i = x, y, z. It is easy
to check the desired projective algebraic relations: fMi,Mjg= 2δij . The
momentum-space operators for the translations Li are given by

Lx = ρ0 � τ0 � 0 eikx

1 0

" #
,

Ly =ρ0 � 0 eiky

1 0

" #
� σ3,

Lz =
0 eikz

1 0

" #
� τ3 � σ3:

Fig. 4 | Observation of PT-related hinge states. a Experimental sample for
measuring the hinge states (HSs). The numbers—label the four y-directional hin-
ges. b Eigen frequencies for the sample shown in a at ky =π/a, obtained from full-
wave simulation. The blue dots represent the bulk and surface states, and the red
dots indicate the HSs. c, Eigen profiles for the two states highlighted in red in
b (∣p∣ denotes the absolute value of acoustic pressure). The color indicates the
amplitude of the acoustic pressure. d–g Experimentally measured dispersions for
hinge 1 d, hinge 2 e, hinge 3 f, and hinge 4 g. The gray dots represent simulated

eigenfrequencies of the bulk and SSs, and the red dots indicate simulated hinge
bands. The solid blue lines denote the projections of the nodal rings.
h–k Experimentally measured acoustic intensity distributions on two surfaces
adjacent to hinge 1 h, hinge 2 i, hinge 3 j, and hinge 4 k. The red star indicates the
position of the speaker and the red dashed line highlights the position of the
hinge. The operating frequencies of the speaker are chosen as: 3078Hz (hinge 1
and hinge 3), 3076Hz (hinge 2) and 3080 Hz (hinge 4), which are around the
eigenfrequencies of the HSs.
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We see that L2
i = e

iki for i = x, y, z, and fLi,Ljg=0 if i ≠ j. One can fur-
thermore to check the projective algebraic relations between Li and
Mj : fMi,Ljg=0 if i ≠ j, and MiLiMi = � Ly

i for i, j = x, y, z.
It is easy to check that all symmetry operators Li and Mj com-

mutewith time-reversal operator T =KÎ with Î the inversion of k andK
the complex conjugation. Specifically at K = (π,π,π), we see

LK
x =ρ0 � τ0 � ð�iσ2Þ,

LK
y =ρ0 � ð�iτ2Þ � σ3,

LK
z = ð�iρ2Þ � τ3 � σ3:

Together with operators Mi above, we can verify that the projective
algebraic relations (2) at K are indeed satisfied.

In the absenceof dimerization, i.e., Jx� = Jz� =0, it is straightforward
to check that all Mi and Lj commute with the Hamiltonian (3). After
the dimerization patterns D1 and D2 are introduced, all Li and Mj are
broken, and therefore Mi and Lj do not commute with (3) any more.
Nevertheless, the off-centered inversion symmetry P = LyLzMxMyMz is
preserved, and the momentum-space operator P for P can be derived
as a product of the corresponding operators presented above. Then,
the PT symmetry operator PT is given by

PT =
eikz 0

0 1

" #
� �eiky 0

0 �1

" #
� σ1K: ð4Þ

It is straightforward to check PT commutes with the Hamiltonian (3)
even with nonzero Jx� and Jz�.

With small dimerizations D1 and D2, the low-energy effective
model canbederived in the vicinity of eachnodal line. Each low-energy
effective model can be cast into the form of (1), namely the real Dirac
model with a “partial mass term” along the z direction, by appro-
priately choosing the basis of four low-energy modes. The 4 × 4

Hermitian Dirac matrices in (1) can be chosen as

γ1 = σ1 � τ0, γ2 = σ2 � τ2, γ3 = σ3 � τ0
γ4 = σ2 � τ3, γ5 = σ2 � τ1:

Here, σ and τ are two sets of the standard Paulimatrices, which have no
direct relation with those used to define Γα.

Full-wave simulation
All numerical simulations of the acoustic model are performed in the
commercial software Comsol Multiphysics, pressure acoustics mod-
ule. The software solves theHelmholtz equationwith thefinite element
method. In the simulations, periodic boundary conditions with Bloch
phase shifts are assigned to the periodic boundaries, while other
boundaries are set as sound rigid boundaries due to the large impe-
dance mismatch between the printing materials and air. The sound
speed and density of air are set to be 347.2m/s and 1.16 kg/m3,
respectively. The geometrical parameters of the acoustic model are
given in the caption of Fig. 3.

To get the equi-frequency contour of the bulk bands (Fig. 3c), we
compute all the eight bulk bands in area 0.5π/a < kx < 1.5π/a,
0 < ky <π/a and0.5π/az < kz < 1.5π/az, with 30 computing points in each
momentum direction. The contour at the other side of the Brillouin
zone is obtained through the time-reversal operation. In the simulation
of surface dispersion (Fig. 3d–f), we adopt an acoustic supercell with
periodic boundary condition along the x and y directions and 21 cav-
ities along the z direction. In the simulations of the hinge dispersions
(Figs. 4b–g and 5c), the simulated geometries in the xz plane are the
same as the experimental samples (see Figs. 4a and 5a), with periodic
boundary conditions imposed for the y direction.

Sample design and fabrication
To implement the sound rigid walls that surround the air cavities and
tubes, we design hard walls with a thickness of 5mm to cover the
whole sample. These walls are thick enough to provide the rigid wall

Fig. 5 | Increased number of hinge states. a Experimental sample for demon-
strating the odd number of pairs of PT-related hinge states (HSs). The numbers—
label the eight y-directional hinges. b Illustration of the process of obtaining an
irregularly shaped sample supporting three pairs of HSs by cutting two corners of a
rectangle sample with one pair of HSs. Here the red circles represent the HSs and

the blue circles denote the inversion centers of the samples. c Eigen frequencies for
the sample shown ina at ky =π/a, obtained from full-wave simulation. The blue dots
represent the bulk and SSs, and the red dots indicate the HSs. d Experimentally
measured transmission spectra at the eight hinges. The gray region indicates the
frequency range of the HSs.
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condition. In order to excite and measure the sound signals, we drill
two small holes (with radii of 5mm) on the boundary cavities. These
holes are covered with size-matched plugs when they are not in use.

The samples are fabricated through the stereolithography appa-
ratus technique, with a fabrication resolution of around 0.1mm. The
dimensions of the three samples (i.e., the samples shown in Figs. 3a, 4a
and 5a) are around 1.5m× 1.5m×0.2m, 0.4 m× 1.5 m×0.2m and
0.7m×0.5 m×0.5m, respectively. Due to their large sizes, these
samples are fabricated as separate parts and then assembled together.

Experimental measurement
All experiments are conducted using the same scheme, as illustrated in
Fig. S9 in Supplementary Information. The sound signal is launched by
a speaker (Tymphany PMT-40N25AL01-04) placed on the surface (for
measuring the SSs) or the hinge (for measuring the HSs). The speaker
generates a broadband sound signal from 2000Hz to 4000Hz, which
covers the frequency range of our interested bands. Twomicrophones
(Brüel &Kjær Type4182) are used to detect the amplitude andphaseof
sound in the sample. One of the microphones is placed at the position
of the source, serving as a reference probe. To ensure the accuracy of
the frequency-resolved spectra,wehave also checked that there are no
resonances in the spectrumof the source (see Supplementary Fig. S12).
The other microphone scan field distributions in the targeted areas in
the sample. The measured signal is processed by an analyzer (Brüel &
Kjær 3160-A-022 module) to obtain the experimental data with the
amplitude and phase of sound at each measured point for the fre-
quencies ranging from 0 Hz to 6400 Hz (the frequency resolu-
tion is 1 Hz).

Data availability
The experimental data are available in the data repository for Nanyang
Technological University at https://doi.org/10.21979/N9/NEB0G4.
Other data that support thefindings of this study are available from the
corresponding authors upon reasonable request.
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