
Article https://doi.org/10.1038/s41467-023-40235-8

MAPK inhibitor sensitivity scores predict
sensitivity driven by the immune infiltration
in pediatric low-grade gliomas

A list of authors and their affiliations appears at the end of the paper

Pediatric low-grade gliomas (pLGG) show heterogeneous responses to MAPK
inhibitors (MAPKi) in clinical trials. Thus, more complex stratification bio-
markers are needed to identify patients likely to benefit from MAPKi therapy.
Here, we identify MAPK-related genes enriched in MAPKi-sensitive cell lines
using the GDSC dataset and apply them to calculate class-specific MAPKi
sensitivity scores (MSSs) via single-sample gene set enrichment analysis. The
MSSs discriminateMAPKi-sensitive and non-sensitive cells in theGDSCdataset
and significantly correlate with response to MAPKi in an independent PDX
dataset. The MSSs discern gliomas with varying MAPK alterations and are
higher in pLGG compared to other pediatric CNS tumors. Heterogenous MSSs
within pLGGs with the same MAPK alteration identify proportions of poten-
tially sensitive patients. The MEKi MSS predicts treatment response in a small
set of pLGGpatients treatedwith trametinib.HighMSSs correlatewith a higher
immune cell infiltration, with high expression in themicroglia compartment in
single-cell RNA sequencing data, while low MSSs correlate with low immune
infiltration and increased neuronal score. TheMSSs represent predictive tools
for the stratification of pLGGpatients and should be prospectively validated in
clinical trials. Our data supports a role for microglia in the response to MAPKi.

Pediatric low-grade gliomas (pLGG) are themost common brain tumors
in children1. They comprise a variety of entities2 and are defined as grade
1 or 2 by theWorld Health Organization (WHO)3. They are characterized
by a generally favorable outcome, with a 20-year overall survival (OS)
ranging from 80 to 90%4. Event-free survival, however, is low when
incompletely resected5, and 10-year progression-free survival ranges
between 40 and 60% after adjuvant therapy6. This makes pLGG an often
chronic progressive disease, with some patients needing several lines of
systemic therapy and accumulating therapy-related sequelae5.

In the past decade, the mitogen-activated protein kinase (MAPK)
pathway was identified as the main driving force in pLGG7, such that
they are now considered to be a single-pathway-driven disease, with
virtually all driving alterations occurring mutually exclusively in the
MAPK pathway8. The most common alterations are KIAA1549:BRAF
fusions (~50%), BRAF V600E mutations (~10%), NF1 mutations (~15%) and
FGFR1/2 mutations (~10%)2.

Since its first discovery more than 30 years ago9, the MAPK
pathway has been thoroughly described, and many inhibitors of its
main mediators (i.e., BRAF10, MEK11, ERK12) have been synthesized and
characterized13. Many inhibitors have been approved by the FDA to
treat MAPK-driven diseases, such as the MEK inhibitor (MEKi)
trametinib14, binimetinib15, selumetinib16 and cobimetinib17, and the
type I1/2 BRAF inhibitor (BRAFi) encorafenib18, dabrafenib19 and
vemurafenib20. Consequently, several (pre-)clinical studies were initi-
ated to test the efficiency of such MAPK inhibitors (MAPKi) in pLGG.
Studies using the MEKi selumetinib21 and trametinib22 and the BRAFi
dabrafenib23,24 showed very encouraging results, although with less
extensive or durable responses than initially hoped for. Overall,
33–50% of treated patients had at least a partial response (PR) of their
tumor to the treatment. Stable disease (SD) was observed in a further
substantial fraction (24–67%), while progressive disease (PD), despite
treatment, was observed in 4–28% of patients21–24. This highlights the
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fact that patients harboring a pLGG will not respond homogeneously
to a MAPKi despite sharing a common MAPK alteration. This is con-
sistent with studies conducted in other MAPK-driven entities, mainly
KRAS-driven tumors, where it was shown that MAPK alteration status
alone does not necessarily correlate with MAPKi response25–27. For
instance, it was shown that the treatment of MAPK pathway-driven
tumors with MEKi can induce the activation of parallel pathways (e.g.,
receptor tyrosine kinase28, AKT pathway29) via the release of negative
feedback regulation of upstream partners, such as CRAF30. There is
therefore a need to improve the stratification of patients based on
their potential sensitivity to a given MAPKi in order to treat them with
the therapy with the highest probability of response, i.e., significant
tumor volume reduction.

Cell lines harboring the same MAPK alteration possess different
levels of MAPK pathway activation31. This highlights the potential role
that overallMAPKpathway activity levelmay have in predictingMAPKi
sensitivity in pLGG, as opposed to genetic MAPK alteration status,
which has been shown to be a poor predictor of MAPKi sensitivity32. In
addition, phospho-ERK (pERK) is often used as a surrogate marker to
assess MAPK pathway activity on formalin-fixed paraffin-embedded
(FFPE) samples and to predict MAPK pathway activity levels in the
clinical setting33. However, an increasing number of studies showed
that pERK is not an accurate readout to asses MAPK pathway
activity31,34, most likely because of negative feedback loops triggered
by ERK activity and involving the DUSP and SPRTY family proteins35.
Instead, investigators suggested that measuring MAPK pathway out-
put by expression of key MAPK target genes, such as the MAPK Path-
way Activity Score (MPAS), derived from aggregated gene expression
of 10 genes that have been reported in multiple gene signatures pre-
dictive of sensitivity toMAPK inhibition, would be amore accurateway
to assess MAPK pathway activity35,36.

As gene expression data from clinical sequencing analyses of
patients’ tumors are becoming a routine diagnostic method in preci-
siononcology, geneexpression-derived signatures are becomingmore
readily available as a new data type suitable for clinical applications
such as predictive stratification. The pediatric precision oncology
registry INFORM has shown the potential of using Next-Generation
Sequencing (NGS) approaches to provide a more precise diagnosis by
identifying driving alterations, thus refining treatment and improving
progression-free survival37. These NGS techniques are being used in
current recruiting and upcoming clinical trials, such as the LOGGIC/
FIREFLY-2 trial38 and its associated LOGGIC Core BioClinical Data
Bank39, generating valuable tumor-derived sequencing data. Using
transcriptome signatures that could predict sensitivity to several types
of drugs is therefore a realistic and clinically relevant stratification
approach that could be used prospectively in upcoming clinical trials.
Several studies have shown the relevance of gene expression-based
signatures from cell lines in the accurate prediction of drug
sensitivity31,40,41. Initiatives such as the Genomics of Drug Sensitivity in
Cancer (GDSC) study, in which sensitivity to over a hundred com-
pounds was measured in over 900 cell lines with known gene
expression profiles, greatly helped develop such drug sensitivity
signatures42.

In this work, we show that drug class-specific MAPKi sensitivity
scores (MSS) derived from gene expression signatures predict MAPKi
sensitivity in pLGG in vitro and in vivo, warranting further validation in
clinical trials. Our data also supports a role for microglia in the
response to MAPKi.

Results
MAPK pathway activity, as measured by MPAS, is insufficient to
predict sensitivity to allMAPKi classes inMAPK-altered cell lines
We first investigated the differential MAPK activation level in pLGG
using the MPAS measure in the Open Pediatric Brain Tumor Atlas
(OPBTA) dataset (Supplementary Fig. S1a). The MPAS showed a large

variability within each of the pLGG molecular subgroups (Supple-
mentary Fig. S1b), indicating that MAPK pathway activity can differ
within pLGGs harboring identical MAPK driving alterations. While all
pLGG sampleswith aMAPKalteration hadanMPAS significantly higher
than the pLGG samples with a wild-type MAPK pathway and normal
tissue, the BRAF V600E pLGG samples had the highest MPAS levels.

In order to determine howMAPK pathway activity levels correlate
with MAPKi sensitivity, we correlated the MPAS with MAPKi sensitivity
data (i.e., IC50 z-scores) from MAPK-altered cancer cell lines (n = 234)
from the Genomics of Drugs Sensitivity in Cancer (GDSC) dataset. This
showed amoderate positive correlation (r > 0.3) of theMPASwith IC50

z-scores for the MEKi and the BRAFi type I 1/2 and weak positive cor-
relation coefficients (r <0.3) with the BRAFi type II and ERKi (Supple-
mentary Fig. S2). Taken together, these data indicate that MAPK
pathway activity as measured by the MPAS might be suboptimal to
predict sensitivity to MAPKi, in particular to BRAFi and ERKi. We
hypothesized that class-specific signatures may be preferable to
increase the prediction’s efficiency.

Generation of drug class-specific gene signatures to calculate
MAPKi sensitivity scores (MSSs)
Class-specific MAPKi sensitivity gene signatures were generated from
the GDSC dataset42, which contains gene expression data of cell lines
paired with known response to several MAPKi in vitro. To stay true to
the pLGG biology, only cell lines with mutually exclusive MAPK
alterations, and for which MAPKi IC50 z-scores were available, were
selected (Supplementary Fig. S3a). The dataset was then split into a
Discovery set and a Testing set, ensuring equal proportions in terms of
tumor of origin (Fig. 1a), samples sensitive (Fig. 1b) and resistant
(Fig. 1c) to a given MAPKi, number of samples treated with the same
MAPKi (Fig. 1d) andMAPK alterations (Fig. 1e, f). The Discovery set was
used to generate the signatures, and the Testing set to validate them
(Fig. 1g). We excluded data from cell lines treated with a MAPKi (1)
without a clearly characterized mode of action to avoid drug mis-
classification, (2) that have already been excluded from clinical trials,
(3) with target inhibition reached at concentrations higher than
100nM, i.e., with an increased risk of off-target effects, and (4) for
which a more advanced derivative was already included in the dataset
(Supplementary Data 1).

For each MAPKi (n = 9; BRAFi Type I 1/2: dabrafenib, PLX-4720;
BRAFi Type II: AZ628; MEK1/2i: PD0325901, selumetinib, refametinib,
trametinib; catalytic ERKi (catERKi): ulixertinib; dual inhibitor ERKi
(dualERKi): SCH-772984), samples from the Discovery set were
grouped together based on their drug sensitivity, as determined by
their IC50 z-score across the entire GDSC dataset (Supplementary
Fig. S3b): samples with an IC50 z-score < −2 were considered sensitive,
while cell lines with an IC50 z-score >0 were considered non-sensitive
(see Supplementary Fig. S4a for more details). Sensitive and non-
sensitive groups were subjected to a Gene Set Enrichment Analysis
(GSEA). The genes contributing to the enrichment edge of the “Hall-
mark_KRAS_SIGNALING_UP” signature in the sensitive subset were
used as signatures. This was done to avoid the introduction of biases
from background genes related to the tissue of origin the cell lines
were derived from (e.g., melatonin production-related genes from
tumor cells derived from melanoma) and only keep MAPK-relevant
genes. This generated one signature per MAPKi, i.e., nine signatures
related to MAPKi sensitivity (Supplementary Data 2).

These signatures were used in a single-sample gene set enrich-
ment analysis (ssGSEA) to calculate corresponding predictive sensi-
tivity scores in the Testing set. The prediction ability of those scores
was evaluated in the Testing set (Supplementary Fig. S3c), using five
performance metrics: (1) Youden’s J stat and (2) F1-score, from a
Receiver operating characteristic (ROC) analysis for the scores to
predict MAPKi sensitivity; (3) Pearson’s correlation coefficient, mea-
suring the correlation between the scores and the measured MAPKi
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Fig. 1 | Class-based MAPKi predictive sensitivity signatures validation. The
GDSC dataset was split into a Discovery and Testing set, making sure that both sets
had nomajor differences. To do so, both datasets contain the same proportions of
a cell lines derived from a given tumor type,b sensitive and c resistant samples to a
given type of MAPKi, d samples treated with a given MAPKi, e, f cell lines with a
given MAPK alteration. g Simplified overview of the pipeline used to generate the
MAPKi sensitivity signatures. h Heatmap depicting the final consensus ranking for

all nine signatures based on their ability to best predict sensitivity to a given class of
MAPKi. To avoid confusion, signatures were assigned random numbers, but the
information from which MAPKi they are derived can be found in Supplementary
Data 4. The color in the heatmap represents the rank that the signature reached in
the consensus ranking in Discovery and Testing sets. i Venn diagram depicting
genes overlap between signatures and identification of a potential “Overlap MSS”.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-40235-8

Nature Communications |         (2023) 14:4533 3



response; (4) concordance indexbetween scores andmeasuredMAPKi
response; and (5) sensitivity prediction accuracy (see “Methods” sec-
tion). These ssGSEA scores and performance metrics were also mea-
sured in the Discovery set that the signatures were derived from to
obtain a “best performance” reference to compare with the results
obtained in the Testing set (Supplementary Data 3).

For each class of MAPKi (i.e., BRAFi Type I 1/2, BRAFi Type II,
MEK1/2i, catERKi, dualERKi), a consensus ranking was used to sort the
signatures based on their overall performance (see “Methods” section,
and Supplementary Fig. S5a). Consequently, we validated four sig-
natures that had consistent ranks across Discovery and Testing sets
based on their ability to predict sensitivity to either class of MAPKi
(Fig. 1h). Of note, the same signature reached the top rank for both
MEK1/2i and dualERKi. This can be explained by the fact that the
samples sensitive to MEK1/2i were also sensitive to the dualERKi
(Supplementary Fig. S5b, purple dashed rectangles).

Interestingly, our four signatures showed significant overlap,
indicating a possibility for a common signature that would predict
sensitivity to MAPKi in general (Fig. 1i). However, when tested for
correlation with MAPKi sensitivity, this signature based on the over-
lapping genes (overlap MSS) did not outperform our individual vali-
dated signatures (Supplementary Fig. S6a), indicating that each class
ofMAPKi seems to require a specific predictive signature. Of note, only
9/55 genes identified in all four MSS signatures were previously
described as being involved in MAPKi sensitivity31,35,36,43,44 (Supple-
mentary Fig. S6b).

In summary, we identified four validated signatures (BRAFi Type I
1/2, BRAFi Type II, catERKi_MEK1/2i and dualERKi) (list of genes avail-
able in Supplementary Data 4), which can be used to calculate ssGSEA-
derived MAPKi sensitivity scores (MSSs) that correlate with sensitivity
to five classes of MAPKi (BRAFi Type I 1/2, BRAFi Type II, MEK1/2i,
catERKi and dualERKi) in the GDSC dataset.

In order to illustrate the relevance of our approach, we generated
signatures for three drug classes thatmight be of potential interest for
the treatment of pLGG in future studies, i.e., NTRKi, FGFRi, andmTORi.
Since the cell lines comprising the dataset were not harboring relevant
genetic alterations (NTRK fusions, FGFR fusions or mutations, TSC1/2
mutations), the GDSC dataset was randomly split regardless of the
underlying genetic background. Sensitivity data from specific NTRKi
(GW441756, AZD1332), FGFRi (AZD4547, PD173074), and mTORi
(AZD2014, AZD8055, Temsirolimus, Rapamycin) were used. GSEA was
performed using pathway-specific gene signatures (“REACTOME_-
SIGNALING_BY_NTRKS”, “REACTOME_DOWNSTREAM_SIGNALING_O-
F_ACTIVATED_FGFR”, and “HALLMARK_PI3K_AKT_MTOR_SIGNALING”,
respectively). The same metrics as for the MSS were used to rank the
signature, except for the concordance with MAPK pathway activity.
Gene signatures topping the ranking in both Discovery and Testing
sets were identified, potentially identifying signatures predicting sen-
sitivity to mTORi (Supplementary Fig. S7a), NTRKi (Supplementary
Fig. S7b), and FGFRi (Supplementary Fig. S7c). Interestingly, the
mTORi signature score was the highest in a set of pediatric sub-
ependymal giant cell astrocytomas (SEGA) with TSC1/2 mutation
compared to normal brain tissue fromBongaarts et al. (Supplementary
Fig. S7d). The NTRKi signature score was the highest in primary pLGG
samples with NTRK fusions from the OPBTA (Supplementary Fig. S7e).
Finally, the FGFRi signature was the highest in the subset of pLGGwith
FGFR alterations compared to pLGGs with other alterations, and two
normal tissue samples (Supplementary Fig. S7f), the latter potentially
because of high expression of FGFR2 (comprised in the gene sig-
nature) in these samples (Supplementary Fig. S7g). Taken together,
these data validate our approach to sensitivity gene signature identi-
fication and identify gene signatures (Supplementary Data 4) poten-
tially associated with response to NTRKi, FGFRi and mTORi, which
could be further explored in subsequent studies.

MSSs outperform the MPAS in predicting MAPKi response in an
independent PDX cohort
In order to validate the predictivity of ourMSSs in an independent and
clinically relevant dataset, i.e., including primarymaterial, we used the
in vivo dataset from the PDX Pharmacogenomic database (XevaDB,
Novartis)41. Gene expression data from treatment-naïve patient-
derived primary material from carcinomas and melanomas harboring
mutually exclusive MAPK alterations only (Fig. 2a) were used to cal-
culate the MSSs. The scores were then compared to changes in tumor
volume, i.e., treatment response, in mice transplanted with the cor-
responding primary material and treated with encorafenib (Fig. 2b),
binimetinib (Fig. 2c) or trametinib (Fig. 2d).

Both BRAFi Type I 1/2 and MEK1/2i MSSs showed good con-
cordance (concordance index from 0.62 to 0.66) with treatment
response and a statistically significant correlation with treatment
response (Fig. 2b–d). When grouped per type of response, the MSSs
clearly discriminated between models with tumors responding to the
treatment (complete remission: CR, and partial response: PR) and
those that showed stable disease (SD) and/or experienced progressive
disease (PD) (Fig. 2b–d). However, statistical significance was only
reached for the encorafenib-treated cohort (Fig. 2b). In contrast, nei-
ther the MPAS (Supplementary Fig. S8a–c) nor our putative overlap-
MSS (Supplementary Fig. S8d–f) reached such results in this inde-
pendent PDX cohort, with lower concordance indices and low corre-
lation coefficients not reaching statistical significance. Finally, a ROC
curve following a simple logistic regression for the prediction of
encorafenib, binimetinib or trametinib based on the measured BRAFi
Type I 1/2 MSS or MEK1/2i MSS showed good efficacy in predicting
treatment outcome in the PDXs, with sensitivities and specificities
ranging from 67 to 83% and 71 to 91% respectively (Fig. 2e). In each
case, our MSSs outperformed the MPAS and the overlap MSS.

None of the BRAFi Type I 1/2 and MEK1/2i MSS correlated with
tumor progression in the untreated group, allowing to suggest that the
signatures are not affected by a confounding effect driven by the
spontaneous evolution of the tumor (Supplementary Fig. S9a). In
addition, none of the tested signatures predicted response to che-
motherapeutic agents such as 5-FU, gemcitabine, and dacarbazine
(Supplementary Fig. S9b–d), indicating specificity toward MAPKi sen-
sitivity rather than a general treatment response.

Taken together, our data demonstrate that our MSSs are able to
predict response toMAPKi in vivo specifically, regardlessof the natural
course of tumor progression, and that they outperform the MPAS to
predict sensitivity to BRAFi Type I 1/2 and MEK1/2i.

MSSs predict MAPKi response in pLGG cell lines in vitro
Since our signatures were derived from and validated in a pan-cancer
background, we decided to evaluate them in a pLGG-specific back-
ground. Wemeasured the MSSs in a panel of pLGG cell lines45,46 (n = 5)
comprising pilocytic astrocytoma (PA) cell lines harboring a
KIAA1549:BRAF fusion (DKFZ-BT66, DKFZ-BT308, DKFZ-BT317), a PA
and a pleomorphic xanthoastrocytoma (PXA) cell line harboring a
BRAF V600E mutation (DKFZ-BT314 and BT40, respectively), melanoma
cell lines (n = 55) with BRAFmutations and known high MAPK pathway
activity36 (from GSE7127; used as positive control), and multiple mye-
loid cell lines (n = 11) with MAPK wild-type and known low MAPK
pathwayactivity36 (fromGSE6205; used as negative control). The pLGG
cell lines with a BRAF V600E mutation showed BRAFi MSSs at the same
level as BRAF-mutated melanoma cells and had significantly higher
MSSs compared to the pLGG cell lines with a KIAA1549:BRAF-fusion
(Fig. 3a and Supplementary Data 5). The catERKi MSS was high in the
MAPK wild-type multiple myeloma cell lines, although consistent with
a recent study showing the efficacy of the catalytic ERKi LY3214996 in
multiple myeloma cell lines, even in the absence of a MAPK alteration
(OPM2 cell line)47.
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MAPKi treatment response (i.e., primary response as described in the original
publication; mRECIST criteria) for each sample, and dotplots were used to depict
corresponding MAPKi sensitivity scores. Samples were grouped based on treat-
ment response in boxplots. This tryptic analysis was done for PDX treated with
b the BRAFi type I 1/2 encorafenib, c MEK1/2i binimetinib, and d trametinib.

Boxplots depict the median, first and third quartiles. Whiskers extend from the
hinge to the largest/smallest value no further than 1.5 * IQR from the hinge (where
IQR is the interquartile range). Significance was calculated with one-way ANOVA
followed by Tukey’s ‘Honest Significant Difference’ test, not significant if not spe-
cified. e Receiver operating characteristic (ROC) curve for prediction of encor-
afenib, trametinib or binimetinib based on the measured BRAFi Type I 1/2 MSS or
MEK1/2i MSS. Are also indicated sensitivity (sens) and specificity (spe) at best MSS
threshold as identifiedbyYouden’s J statistics. Source data are provided as a Source
Data file.
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We then sought to determine whether the MSSs can predict
sensitivity toMAPKi in these pLGG cell lines. As previously described,
metabolic activity cannot be used in the DKFZ-BT pLGG cell lines to
assess MAPKi sensitivity45. To circumvent this, we previously devel-
oped a MAPK pathway activity reporter that allows us to measure
MAPK pathway activity response to MAPKi in these models48. We
performed a MAPKi mini-screen in the DKFZ-BT314 cells (BRAF V600E

mutation) and DKFZ-BT317 cells (KIAA1549:BRAF fusion) transduced
with this reporter and determined the IC50 of several MAPKi
belonging to of each class investigated in this study (Supplementary
Figs. S10 and S11, respectively). We collected the corresponding IC50

in DKFZ-BT66 and BT40 under similar culture and treatment condi-
tions which our group has previously published48 and pooled the
IC50s. Comparison of the MAPKi IC50 values with the MSSs from
BT40, DKFZ-BT66, DKFZ-BT314 and DKFZ-BT317 showed that higher
MSSs correlated with lower IC50s, indicating higher sensitivity to the

given MAPKi (Fig. 3b). We conclude that the MSSs could predict
MAPKi sensitivity in the pLGG cell lines tested in vitro.

MSSs are elevated inMAPK-driven pLGG and identify subgroups
of patients that could benefit from MAPKi therapy
In order to validate the MSSs in primary pLGG, we calculated these
scores in pediatric brain tumor samples from the OPBTA dataset49 and
a TCGA-derived dataset comprising RNAseq data from various tumor
entities and corresponding normal tissue as control (Supplementary
Fig. S12a, b). In the OPBTA dataset, pLGG had the highest MSSs, with a
median score significantly higher than the overall dataset’s median
(Fig. 4a). All other entities with MSSs higher than the overall median
either harbored a MAPK pathway alteration (glial neuronal tumors,
infantile hemispheric glioma) or had already shown to be targetable by
MAPKi (chordoma50, craniopharyngioma51, diffuse midline glioma52,
neurocytoma53 and subependymal giant cell astrocytoma54).
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Fig. 3 | MSSs in pLGG cell lines. a Scores were measured in a panel of pLGG cell
lines with BRAF V600E mutation (DKFZ-BT314 and BT40, examined over three inde-
pendent experiments), with KIAA1549:BRAF fusion (DKFZ-BT66, DKFZ-BT308 and
DKFZ-BT317, examined over three independent experiments), melanoma cell lines
with BRAF mutations (n = 55 biologically independent samples), and multiple
myeloma cell lines with wild-type MAPK pathway (n = 11 biologically independent
samples). Boxplots depict the median, first and third quartiles. Whiskers extend
from the hinge to the largest/smallest value no further than 1.5 * IQR from the hinge
(where IQR is the interquartile range). Colored dots represent biological triplicates.

One-way ANOVA followed by Tukey’s ‘Honest Significant Difference’ was used to
measure significance. Not significant if not specified. bMatching analysis was then
done between MAPKi sensitivity data measured from a MAPK-reporter assay and
the correspondingMSS in the BT40, DKFZ-BT66, DKFZ-BT314 and DKFZ-BT317 cell
lines to estimate the reliability of each class-basedMSS to predictMAPKi sensitivity.
Boxplots depict the median, first and third quartiles. Whiskers extend from the
hinge to the largest/smallest value no further than 1.5 * IQR from the hinge (where
IQR is the interquartile range). n = 4 cell lines examined over three independent
experiments. Source data are provided as a Source Data file.
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Consistently, in pLGG entities only, the samples harboring a MAPK
alteration showed higher MSSs compared to those with an unaltered
MAPK pathway and normal tissue (Fig. 4b).

To compare theMSSs to published response rates in clinical trials
and to describe the dynamic range of the MSSs across large patient
cohorts, we investigated the capability of the overall MSS (median of
all four MSSs) to identify potential overall MAPKi-sensitive clusters of

pLGG samples in the OPBTA dataset (Fig. 4c). Samples with an overall
MSS above the average (z-score > 0) were considered to have a high
predicted sensitivity score (potentially predicting PR/CR), samples
with an overall MSS significantly lower than the average (z-score < −2)
were considered to have a low predicted sensitivity (potentially pre-
dicting PD), and samples with an in-between overall MSS (z-score
between 0 and −2) were considered to have an intermediate predicted
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sensitivity (potentially predicting SD). Hence, we identified sample
clusters with several levels of predicted sensitivity (Fig. 4c). The pro-
portions of samples in each sensitivity group matched closely to what
has been observed in clinical trials: high sensitivity 59% compared to
33–55% PR/CR in clinical trials, intermediate sensitivity 36% compared
to 24–67% SD in clinical trials, and low score 5% compared to 4–28%PD
in clinical trials21–24. Interestingly, the MPAS, while reflecting MAPK
pathway activity, did not efficiently differentiate between high and low
sensitive clusters (Supplementary Fig. S13).

We then sought to validate the predictivity of our MSSs in pLGG
using sequencing data from MAPKi treatment-naïve primary samples
from patients who subsequently received a MAPKi therapy (trameti-
nib) and for which treatment response was available by MRI using the
RAPNO cirteria55 (see Supplementary Data 6). We showed that patients
with the best response (SD-IMP) type had a higher MEK1/2i MSS than
those with the poorest response (PD) (Fig. 4d). Of note, some patients
received other treatments prior to or concurrent with MAPKi therapy.
Nonetheless, this could indicate that our signatures might be used to
identify patients that could benefit from a MAPKi treatment, but also
those that would be resistant to the therapy.

To address the current lack of clinical response data of pLGG
patients toMAPKi pairedwith RNAseq data frombaseline, we analyzed
a publicly available RNA sequencing dataset frommelanoma patients,
withmutually exclusiveMAPK alterations and which were treated with
the BRAFi Type I 1/2 vemurafenib. Notably, the data showed that
patients who responded well to the treatment had a higher median
BRAFi Type I 1/2 MSS than those who did not respond, and this dif-
ference was almost significant despite the small sample size (Supple-
mentary Fig. S14). This finding supports the notion that theMSSmight
be useful in predicting response to treatment and should be further
evaluated and validated for clinical use.

Subsequently, we evaluated all four MSSs and the MPAS in other
non-central nervous system (CNS) tumors and their corresponding
normal tissue (Supplementary Fig. S15a–e). While the MPAS predicted
higher MAPK pathway activity in the MAPK-altered subgroups, not all
tumor entities were predicted to be sensitive to MAPKi therapy by the
MSSs (Supplementary Fig. S15f). Interestingly, a non-exhaustive lit-
erature research showed a correlation between the predictive
response to a MAPKi by MSSs and what was observed in clinical
trials56–66. This underlines the different properties of the MPAS and
MSS described in this study, with the MPAS measuring MAPK activa-
tion and the MSS potentially predicting sensitivity.

We also investigated whether the MSS could be useful in pre-
dicting response to combination treatments, as patients are often
treated with a combination of multiple MAPKis. To do so, we first
treated two pLGG models (DKFZ-BT314: BRAF V600E mutation; DKFZ-
BT317: KIAA1549:BRAF fusion) with the first FDA approved systemic
therapy for first-line treatment of pediatric patients with pLGG with a
BRAF V600E mutation, namely trametinib and dabrafenib. Since dabra-
fenib is not recommended for the treatment of KIAA1549:BRAF fusion

pLGG, we also tested a combination of the MEKi trametinib with the
currently clinically investigated BRAFi Type II tovorafenib (DAY101).
For bothof these BRAFi+MEKi combinations,wecould showan inverse
correlation between the measured combination log10(IC50) and the
predicted sensitivity to both combined drugs, i.e., increased MAPKi
sensitivity correlated with increased MSS (Supplementary Fig. S16a).
Other combinations were assessed in recently published data on
combinations of the first-in-class catalytic ERKi (ulixertinib) and sev-
eral MEKi (trametinib, selumetinib, and binimetinib) in several pLGG
models (BRAF V600E mutation and KIAA1549:BRAF fusion)67. Using these
data, we could show the same correlation between increased sensi-
tivity to the combination treatment and increased MSS (Supplemen-
tary Fig. S16b). Finally, using data from the XevaDB of in vivo PDX
treated with a combination of the MEKi binimetinib and the BRAFi
Type I1/2 encorafenib, we showed that the MSS for each drug was
positively associated with the response to the combination treatment,
i.e., the higher theMSS, the better the PDX responded (Supplementary
Fig. S16c), with the best responses in samples with high MSSs for both
drugs. In summary, these findings suggest that the MSS might be
useful in predicting response to combination treatments as well and
may be a valuable tool for clinical combination therapies.

We conclude that the determination of MSS is applicable in pri-
mary pLGG and that theMSSs can differentiate tumors with higher and
lower sensitivity scores within entities of the same driving alteration.
Prospective validation of the MSSs in clinical trials, including larger
patient cohorts treated with the respective MAPKi, is needed.

MSSs identify immune infiltration as a key factor in the pre-
dicted response to MAPKi therapy
We then investigated what factors were significantly associated with
ourMSSs (continuousoutcomevariable) in thepLGGsamples fromthe
OPBTA, such as age at diagnosis, tumor site, sex and molecular sub-
type (predictors). We also included the prediction of immune and
stromal infiltration in order to evaluate whether the tumor micro-
environment could have an impact on the predicted MAPKi sensitivity
using the ESTIMATE signatures68. Multiple linear regression analysis
showed that the predicted immune infiltration was highly significantly
associated with MSSs (Fig. 5a and Supplementary Data 7), indicating
that the microenvironment compartment could play a role in the
degree of sensitivity to MAPKi in pLGG.

The MSSs showed a strong correlation with the ESTIMATE score
(aggregationof both immune and stromal scores, reflecting thedegree
of infiltration) in the pLGG samples from the OPBTA cohort (Fig. 5b),
and in particular with the estimated immune infiltration score (Fig. 5c).
In contrast, the correlation with the estimated stromal infiltration was
weaker (Supplementary Fig. S17). Consistently, the primary pLGG
samples that showed the highest overall predicted sensitivity toMAPKi
(Fig. 4c) were the samples with the highest predicted proportion of
immune infiltration, while the samples with the lowest relative pre-
dicted sensitivity had the lowest proportion of predicted immune

Fig. 4 | MSSs in primary samples from pediatric gliomas. MAPKi sensitivity
scores were measured in the OPBTA dataset. a Boxplots depicting the corre-
sponding ssGSEA predictive MAPKi sensitivity score for each brain tumor entity.
Orange boxes represent pLGG entities and dashed orange lines pLGG median
scores. Salmonboxes represent entities with amedian scorehigher than the overall
median (dashed black line). One-way ANOVA followed by Tukey’s ‘Honest Sig-
nificant Difference’wasused tomeasure significance. The significance compared to
the pLGG group is only depicted. Boxplots depict the median, first and third
quartiles. Whiskers extend from the hinge to the largest/smallest value no further
than 1.5 * IQR from the hinge (where IQR is the interquartile range). MB medullo-
blastoma, EWS Ewin Sarcoma, EPN ependymoma, NB neuroblastoma, CNS other
CNS embryonal tumor, ETMR embryonal tumor with multilayer rosettes, SEGA
Subependymal Giant Cell Astrocytoma, CHDM chordoma, HGG high-grade glioma,
CRANIO craniopharyngioma, GNT glial neuronal tumor, DMG diffuse midline

glioma, pLGG low-grade glioma. b Boxplots focusing on pLGG samples only and
showing samples with a detected MAPK alteration vs samples with a wild-type
MAPK pathway. Boxplots depict the median, first and third quartiles. Whiskers
extend from the hinge to the largest/smallest value no further than 1.5 * IQR from
the hinge (where IQR is the interquartile range). One-way ANOVA followed by
Tukey’s ‘Honest Significant Difference’ was used to measure significance. Not sig-
nificant if not specified. cDotplot depicting the overall predictedMAPKi sensitivity
(median across all four signatures) z-score for the pLGG samples only, and split
based on their molecular alteration. The proportion of samples with a high, inter-
mediate and low sensitivity score is also depicted. d MEK1/2i sensitivity score was
measured in pLGG-derived primary samples frompatients who received trametinib
treatment. Gene expression wasmeasured on samples acquired prior to treatment
initiation. Since theMSS are not comparable across datasets, the samples were split
based on the institute of origin. Source data are provided as a Source Data file.
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infiltration (Supplementary Fig. S18). Conversely, the MPAS did not
correlate well with the total ESTIMATE or immune-specific scores
(Supplementary Fig. S19).

To validate this, we measured the MSSs in single-cell RNA
sequencing (scRNA-seq) data from 6 pLGG primary samples (Supple-
mentary Data 6). The analysis of key cell population markers (Fig. 6a
and Supplementary Fig. S20) allowed us to differentiate between glial-
type (n = 5) and neuronal-type (n = 1) tumors, as well as lymphoid and
myeloid cell populations. As expected, the ESTIMATE immune score
was exclusively limited to the lymphoid and myeloid compartments
(Fig. 6b). Regarding the different MAPK pathway scores, MPAS was
significantly enriched in the glial tumor-type compartment, while the
four MSSs were elevated in both the glial tumor and myeloid com-
partments, with the latter showing higher values in microglia than in
infiltrating macrophages. The increased MSS in the microglia

compartment was validated in an independent pLGG scRNA-seq data47

(Supplementary Fig. S21).
Interestingly, the predicted immune infiltration (ESTIMATE

immune score) did not correlate with the best MAPKi response type
(Supplementary Fig. S22). Overall, the samples with a higher predicted
immune infiltration were those with a better outcome, but the rela-
tionship was not linear. This suggests that the immune infiltrationmay
play a role in the treatment response but does not overrule the con-
tribution played by the tumor compartment in MAPKi response, as
suggested by Fig. 6b, where the MSS is found high in both cell
populations.

These data suggest that the microenvironment, and particularly
tumor-associated microglia, could be involved, along with the tumor
compartment, in the degree of sensitivity toward MAPKi, and might
represent a target of MAPKi in pLGG.

b
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Fig. 5 |MSSs identify the immune infiltration as a keyplayer inMAPKi response
in pLGG. The ESTIMATE algorithm was used to approximate the proportion of
infiltrating cells in the pLGG samples from the OPBTA dataset. a Dotplot depicting
the F-values obtained after multiple linear regression analysis followed by one-way
ANOVA to assess what coefficients are significantly associated with MSS.
bCorrelation betweenMAPKi sensitivity scores and ESTIMATE scores are depicted,

along with Pearson’s coefficient of correlation, the corresponding p-value (two-
tailed t-test), and the 95% confidence interval (error band). c The correlation
between the MAPKi sensitivity score and the immune signature score is also
depicted. Significance was calculated with a two-tailed t-test. Source data are pro-
vided as a Source Data file.
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MSSs are not confounded and are elevated in tumor-associated
microglia
Since the MSSs correlated with the ESTIMATE scores, we investigated
the overlap between these signatures to rule out potential biases. We
found that only a small number of genes from our signatures over-
lapped with the immune and stromal signatures (5 and 2 genes,
respectively), indicating that the correlation is not biased because of
gene overlap (Fig. 7a).

A recent study highlighted the potential for misinterpretation of
gene expression-derived signatures due to possible differential gene
expression across the tumor epithelium and microenvironmental
cells69. We tested the extent to which our gene signatures are con-
founded by the microenvironment transcriptome using the Con-
foundR platform. We compared our signatures’ enrichment in the
stroma compared to tumor epithelium and then within cell popula-
tions in the stroma only, using datasets derived from colon, breast,

b
BRAFi Type I½ MSS BRAFi Type II MSS MEK1/2i_dualERKi MSS catERKi MSS

B cells
NK/T cells
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Glial tumor
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Fig. 6 | MSSs identifymicroglia as a key player inMAPKi response in pLGG.Cell
marker expression and MSSs evaluation in a cohort of six pLGG primary sam-
ples. a UMAPs depicting the key cell population markers for the main cell
populations identified in the pLGG samples. b UMAPs depicting the MSS, MPAS

and immune score (ESTIMATE) in the different clusters. A dotplot summarizing
the signature scores in each cluster is also depicted. Source data are provided as
a Source Data file.
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pancreas, ovarian and prostate cancers (Fig. 7b). Our signatures were
found to be only moderately enriched (NES < 2) in the stroma, com-
pared to both immune and stromal signatures, here used as positive
controls (Fig. 7c). As expected, the stromal signature was significantly
enriched in fibroblasts and endothelial cells. In contrast, the immune
signature was significantly enriched in the leukocyte population.
Conversely, our signatures were not significantly enriched in any of
thesemicroenvironmental populations (Fig. 7d). Taken together, these

data indicate that our signatures are not confounded by micro-
environmental genes.

Since the ConfoundR platform uses data from non-CNS tumors
and therefore lacks data onmicroglia, wedecided to assess the relative
expression level of the genes comprised in our signatures in a pub-
lished scRNA-seq dataset with non-tumor-associated microglia (from
Alzheimer’s disease or epilepsy from young, middle-aged and aged
patients)70 (Supplementary Fig. S23). MSS genes were expressed in the
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same proportions across all immune and GFAP+ clusters, with overall
low expression levels (log(CPM+ 1) ≤ 2). Only 2/55 (4%) genes had a
high average expression (log(CPM+ 1) > 2) (SPP1 and FCER1G) in the
microglia clusters, of which one was expressed in only 2/4 MSS sig-
natures (SPP1), and the other also had an elevated average expression
in the monocyte cluster, while our MSSs were specifically elevated in
microglia in pLGG. The MPAS genes were also lowly expressed with
similar expression proportions across clusters. In contrast, the genes
comprising the immune score had similar percentages of expression in
the immune clusters (microglia, monocytes, B and T cells) only, with
23/200 (12%) genes highly expressed (log(CPM+ 1) >2) in at leastoneof
these clusters. This highlights that the high predicted sensitivity
toward MAPKi in microglia might be specific to tumor-activated
microglia and not to healthy microglia.

Of note, PDX-derived sensitivity signature analysis did not yield
signatures superior to our MSS (see Supplementary Materials and
Supplementary Fig. S24).

We finally tested the correlation between the MSS and the pre-
dicted immune infiltration inother tumors and tissues from theOPBTA
and the TCGA (Fig. 7e). The correlation coefficient between MSSs and
the immune score (ESTIMATE) tended to be the highest in central
nervous system tumors compared to non-CNS tumors and normal
tissues (Fig. 7f), in line with our hypothesis that, among all immune
cells involved in the tumor microenvironment, the MSSs are elevated
in the microglia compartment in CNS tumors. Of note, this does not
rule out a possible role played by tumor-associated macrophages
(TAMs), which also present high MSS (albeit lower compared to
microglia) in our pLGG scRNAseqdataset (Fig. 6b). Since thedifference
between CNS and non-CNS tumor doesn’t reach significance, it cannot
be excluded that monocyte-derived TAMs may contribute to MAPKi
response, especially in non-CNS tumors.

Taken together, these data indicate that our MSSs are not biased
by genes specifically expressed in stromal/immune cells, and in parti-
cular not from healthy microglia, and seem to be specifically elevated
in tumor-associated microglia in pLGG and potentially other CNS
entities.

pLGG samples with low MSSs are associated with a neuronal
phenotype
We finally investigated whether we could find potential markers/tar-
getable molecular mechanisms for the pLGG patients with low MSSs
(cluster intermediate and low) that would represent patients with
stable or progressive disease (Fig. 4c). Petralia et al. recently demon-
strated that pLGG samples could be split into a Hot and a Neuronal
cluster in a mutually exclusive manner. Since our MSSs positively
correlated with the proportion of immune infiltration and were the
highest in microglia, i.e., in Hot pLGG samples, we hypothesized that
pLGG samples with lowMSSs might be pLGGwith neuronal features71.
To test this, we used a neuronal signature from a scRNA-seq study on

glioblastoma72 to measure a neuronal score reflecting the proportion
of neuronal infiltration. We could show a significant negative correla-
tion between the MSSs and the neuronal score in the pLGG samples
from theOPBTA (Fig. 8a). The samples from theMSS low clusters had a
neuronal score significantly higher than the samples with a high/
intermediateMSS (Fig. 8b), suggesting a lower degree of sensitivity for
pLGG with neuronal features. In order to control for possible con-
founding factors where our MSSs would always positively correlate
with the immune score and negatively correlate with the neuronal
score, we calculated the correlation between theMSS and the immune/
neuronal score in the OPBTA dataset (Supplementary Fig. S25). While
the pLGG group had the strongest positive and negative correlation
with the immune andneuronal scores, respectively, the diffusemidline
gliomas had MSSs that positively correlated with both immune and
neuronal scores, hence ruling out confounding bias.We then validated
this in our independent pLGG scRNA-seq dataset (Fig. 8c). While the
pLGG samples with glial features and high proportion of microglia
infiltration had high MSSs in both tumor andmicroglia compartments
(PA1, PA3–5, PMA1), the pLGG samplewith neuronal features (PA2) and
almost no microglia infiltration had MSSs close to 0. Taken together,
these data suggest that pLGG with neuronal features might be at
higher risk of not responding to MAPKi compared to pLGG with
microglia infiltration.

Discussion
In the present study, we observed that MAPK pathway activity, as
measured by theMPAS, is not an accurate enough surrogatemarker to
predict responsiveness to any type of MAPKi. We showed that MAPK
pathway activity prediction did not correlate well with actual response
toMAPKi other thanMEKi in the GDSC dataset, in accordance with the
fact that the MPAS genes were validated in models treated with MEKi
trametinib and cobimetinib36. In addition, the MPAS poorly predicted
MAPKi response in the XevaDB PDX dataset.

We therefore generated gene expression-based MAPKi sensitivity
scores derived from in vitro drug sensitivity from a cohort of more
than 200MAPK-altered cancer cell lines (GDSC dataset). Many studies
aiming at identifying gene signatures use unsupervised approaches,
such as classifiers using elastic net logistic regression (E-net). Such
classifiers have proven useful in generating cell type-specific gene
signatures73. In our case, the risk of using such unsupervised methods
was to select genes that would not only differentiate between MAPKi-
sensitive and non-sensitive cells but genes that would also relate to the
tissue of origin the cell lines were derived from. To avoid such gene
selection bias, we decided to use a biologically supervised approach,
focusing onMAPK pathway-related genes only (200most stable genes
comprising the “Hallmark_KRAS_Signaling_UP” signature from the
Broad Institute). This rationale was strengthened by the work ofWagle
et al., which showed that a biology-driven gene selection performed at
least as good as the E-netmodel36. A commonpitfall of such supervised

Fig. 7 | MSSs are not confounded by gene signature overlap, microenviron-
mental transcriptome, or general bias. a Venn diagram depicting genes overlap
between an aggregation of our signatures and the immune and stromal signature
from the ESTIMATE. In the box are indicated the overlapping genes. b Schematic
presenting the comparison studied via GSEA with ConfoundR to test for micro-
environmental confounding effect. c Dotplot summarizing the indicated sig-
natures’ normalized enrichment scores (NES) when comparing stromal vs.
epithelial cell populations in six tumor types. Nominal p-value from the GSEA
output is used. d Dotplot summarizing the indicated signatures’ NES when com-
paring endothelial, fibroblast or leukocyte populations to the remaining cell
populations. Enrichment is depicted by warm colors, while the contrary is depicted
by cold colors. Dot size depicts the respective nominal p-value from the GSEA
output. e Dotplot summarizing the correlation coefficient (R) when comparing the
indicated signature to the predicted immune infiltration (from ESTIMATE) in the
OPBTA and TCGA datasets. The entities were split based on their median R across

all MAPKi sensitivity signatures (i.e., excluding the MPAS). R >0.7 was considered
biologically significant. Dot size depicts the respective p-value (two-tailed t-test).
The arrow points at the pLGG samples. f Boxplot grouping the R coefficient by
entity type (normal vs tumor) and by localization (CNS vs non-CNS). Each dot
represents the coefficient of correlation between MSSs and predicted immune
infiltration for n = 13 biologically independent CNS tumor types, n = 14 biologically
independent non-CNS tumor types and n = 14 biologically independent normal
tissue type. Boxplots depict the median, first and third quartiles. Whiskers extend
from the hinge to the largest/smallest value no further than 1.5 * IQR from the hinge
(where IQR is the interquartile range).One-wayANOVA followedbyTukey’s ‘Honest
Significant Difference’ was used to measure significance. Not significant if not
specified. Red dots depict the pLGG entities. CRC colorectal carcinoma, PDAC
pancreatic ductal adenocarcinoma, TNBC triple-negative breast cancer. Source
data are provided as a Source Data file.
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prediction, however, is themisuseof split datasets,where the selection
of genes is made on the full dataset74. We made sure the split of the
GDSCdatasetwasproportional and that the signatureswere generated
using the Discovery set only. The second common pitfall of using such
split datasets is the risk of confounding factors hidden in the dataset75.
To avoid this, we used an independent PDX dataset to validate the
robustness of our MSSs. Another shortcoming when using gene
expression-derived datasets has recently been discussed concerning
gene-expression signatures derived from bulk tumors being biased by
the expressionof stromal andmicroenvironment cells69. To control for
this bias, we used the published ConfoundR platform that showed that
none of our signatures were confounded by gene expression from the
microenvironment and stromal cells. Thiswasof particular importance
since the Hallmark_KRAS_Signaling_UP has been shown to be

confounded by gene expression from the stroma (using the ESTIMATE
stromal score) in all five tumor entities where thiswas investigated69. It
appears that our selection of genes specifically upregulated in MAPKi-
sensitive tumor cell lines was enough to correct this bias, as our sig-
natures poorly correlate with the ESTIMATE stromal score. All this
allowed us to generate biologically robust signatures used to calculate
their corresponding MSSs.

Wewere able to apply this approach to other pLGG-relevant drugs
(e.g., NTRKi, FGFRi, and mTORi), generating signatures that could be
further explored in future studies. This highlights the relevanceof such
a biology-driven approach to identify new drug-sensitivity signatures
from large pharmaco-genomics databases. A more comprehensive
analysis of the whole GDSC dataset, which includes hundreds of
compounds, is warranted, as it could lead to deeper discoveries and

Fig. 8 | Characterization of pLGG samples with low/intermediate MSSs.
a Correlation between MSSs and the neuronal score is depicted, along with Pear-
son’s coefficient of correlation, the corresponding p-value (two-tailed t-test), and
the 95% confidence interval (error band). b Boxplots depicting raw ssGSEA scores
for the neuronal score in the clusters from Fig. 4c from the OPBTA cohort. Dots are
colored based on the detected driving MAPK alteration. Data from n = 218 biolo-
gically independent samples were used. Boxplots depict themedian, first and third

quartiles. Whiskers extend from the hinge to the largest/smallest value no further
than 1.5 * IQR from the hinge (where IQR is the interquartile range). One-way
ANOVA followed by Tukey’s ‘Honest Significant Difference’ was used to measure
significance. c UMAPs depicting the MSS in each individual pLGG sample from our
scRNA-seq dataset. The relative proportion of each cell population in each pLGG
sample is also shown. PA pilocytic astrocytoma, PMA pilomyxoid astrocytoma.
Source data are provided as a Source Data file.
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further validate this approach. While our approach didn’t use nor
generate new tools to measure sensitivity score per se, the combina-
tion of themethods used allowed us to generate specific and unbiased
gene signatures thatmay captureMAPKi sensitivity in pLGG tumors. In
particular, our signatures were derived focusing on MAPK-related
genes only (Hallmark_Kras_UP signature) in order to avoid the inclu-
sion of any genes that would be specific to the tissue the tumor cells
were derived from. By doing so, we aimed to generate MAPKi sensi-
tivity signatures that would be free of any tissue/cell type-specific
genes (as confirmed by our confoundR analysis and PDX-derived MSS
analysis) to make the signatures virtually applicable to any cell type.

Our four signatures showed only a small overlap with already
published signatures related to MEKi and BRAFi response, as well as
MAPK activation (9/55 genes comprised in all four signatures). Inter-
estingly, the overlap across all signatures (overlap MSS) did not per-
formaswell as the single signatures topredict sensitivity to anyMAPKi.
This allows to suggest that each class of MAPKi, despite targeting the
same pathway, probably has a distinct output requiring specific pre-
dictive signatures.

Our MSSs showed consistent results in the pLGG background,
showing a clear dependency toward MAPK alterations, and accurately
predicted MAPKi sensitivity in a set of three pLGG cell lines in vitro.
These signatures, derived from in vitro cell lines, precisely recapitu-
lated pLGG biology in primary tumor samples. Indeed, the MAPKi
sensitivity signatures showed the highest scores in MAPK-altered
gliomas, and more particularly in low-grade gliomas/astrocytomas.
The MSSs also captured the proportion of responding patients
observed in recent clinical studies21–23, with scores indicating a pro-
portion of predicted responsive patients of around 59% and non-
responsive patients of about 4% in a cohort of primary pLGG samples.
We demonstrated that theMEK1/2i MSS correctly predicted treatment
response in five primary pLGG samples, with increasing MSS corre-
lating with a better response. Furthermore, we were able to demon-
strate a similar pattern in an independent melanoma dataset in
response to the BRAFi Type I 1/2 vemurafenib. This indicates that,
beyond pLGG, the MSSs described here could potentially also be
applied to predict MAPKi sensitivity in melanoma patients with
mutually exclusive MAPK alterations. Although these data warrant
further validation in larger datasets, this clearlyhighlights thepotential
for such scores to be further explored and validated in future clinical
trials. It isworth noting that in the context of combination therapy, our
MSS was also positively associated with the response to several types
of MAPKi in vitro and in PDXs in vivo. It appeared the best responders
were the samples with the highest MSS for both drugs (as opposed to
highMSS for onlyonedrug),whichmay suggest thatpatientswith high
MSS for two drugs might be more likely to benefit from combination
therapy. This observation will certainly need further validation in
upcoming clinical trials.

To date, several studies have shown the potential of such gene
signatures derived from preclinical studies and large datasets such as
the GDSC or TCGA76–80. However, translating the signatures’ output
into normalized scores, applicable to patient-derived gene expression
data from any cohort, remains a challenge for their translation into
clinical studies. For instance, the MPAS uses the sum of gene expres-
sion’s z-score, hence normalizing the scores across the whole dataset,
making its value vary when one or several samples are added or
removed. To circumvent this, we preferred the ssGSEA approach81,
allowing us to generate an enrichment score per sample independent
of the cohort composition and variability in the number of samples.
However, one pre-requisite to allow comparison is that every sample
has to be comparable, i.e., went through the same sample processing
and data processing pipeline, in order to obtain meaningful enrich-
ment scores, making scores comparable across several datasets/stu-
dies a challenge. Another challenge is the comparison of scores among
themselves, as it is at the moment not possible to compare ssGSEA

scores (i.e., MSSs) with each other, which would allow to estimate
whether one MSS is higher or lower than another. Some approaches
could be envisioned to circumvent these pitfalls, such as a resampling
procedure to generate null distributions for each of the MSSs82, which
will need further validation in prospective studies.

We observed that the MSSs strongly correlated with the ESTI-
MATE score, particularly its immune signature in primary pLGG sam-
ples. On a single-cell level, the MSSs were the highest in the microglia
compartment. This was unexpected, considering that our signatures
were exclusively derived from gene expression from tumor cell lines
and did not show indications of stromal-related gene expression bias.
Several studies have shown an interconnection between tumor
microenvironment and resistance to MAPKi in certain tumor entities,
mainly via dysregulation of macrophages83 and CD8 +T lymphocyte84

activity. In addition, the MAPK pathway is known to be active, in par-
ticular in macrophages/microglia cells, where it is involved in micro-
glia/macrophage polarization, metabolism, and pro-inflammatory
activities85–87. A recent study also described the dependency of
migrating glial progenitors toward MAPK pathway activity in the
development of NF1-associated optic pathway gliomas, where MAPK
inhibition was capable of preventing the expansion of such glial
progenitors88. This indicates that the MAPK pathway is a key pathway
in microenvironmental cells, particularly in microglia cell biology.
Since we showed that healthy human microglia and infiltrating mac-
rophages had lowMSSs, it could be thatmicroglia become sensitive to
MAPKi only following interaction with tumor cells, either via direct
contact or stimulation by secreted factors, such as the senescence-
associated secretory phenotype (SASP) factors89. This predicted
MAPKi sensitivity of tumor-associated microglia in pLGG will need
further validation. In vitro validation might represent a challenge,
however, considering that all the currentmicroglia cellmodels present
limitations90, the most important being their immortalization with the
SV40-largeT antigen, preventing any TP53-related apoptosis, as
already observed in SV40-transformed pLGG models45. scRNA
sequencing on short-term cultured primary samples treated with
MAPKi, or pLGG organoids might represent an alternative to investi-
gate this further. If confirmed, and considering the importance of
microglia in the support of glioma development91, this finding could
change the way we see pLGG treatment with MAPKi, and, more gen-
erally, in the way we consider pLGG biology: patients treated with
MAPKi therapy show signs of tumor volume reduction; however, the
main cell populations targeted are only hypothesized as being exclu-
sively pLGG tumor cells. In addition, the fast rebound often observed
upon treatment cessation is a counter-intuitive phenomenon to hap-
pen in tumors that are thought to be mainly in a senescent status.
Based on our results, it is conceivable to imagine that pLGG is partly
driven by immune cells, which are recruited and supported by senes-
cent tumor cells91. If microglia are at least as sensitive to MAPKi as the
glial tumor cells, such therapies might induce a reduction of the pro-
portion of themicroglia compartment (which can represent up to 30%
of a pLGG tumor92) as at least a part of the reduction of tumor volume.
Upon MAPKi withdrawal, microglia might be able to be quickly
recruited by the remaining surviving tumor cells via the production of
SASP factors, at least partly explaining the fast tumor rebound. This
hypothesis is worth further investigation in the future.

The MAPKi sensitivity prediction in the immune compartment
also underlined a limitationof one of our signatures: the BRAFi type I 1/
2 sensitivity signature predicted sensitivity in the normal microglia
compartment (i.e., BRAF wt cells). It is well known that such BRAFi
generally induces paradoxical activation of the MAPK pathway in non-
BRAF-altered cells93,94. Therefore, the immune cell population should
not be detected as a putative sensitive population. This false positivity
probably came from the fact that, by design, the signature relates to
MAPKpathwayactivity, which is increased inboth tumor andmicroglia
cells (although to a lower extent), while the paradoxical activation
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induced by BRAFi Type I 1/2 is purely intrinsic to the drug’s mode of
action10. Therefore, a cell population with an activated MAPK pathway
could be wrongly predicted as being sensitive to a BRAFi Type I 1/2.
However, this signature still accurately predicted the degree of sensi-
tivity to a BRAFi type I 1/2 in our GDSC-derived Testing set and the
independent PDX dataset, advocating that this signature could still be
relevant under the condition that the type of genetic MAPK alteration
is known before treatment initiation93.

Our signatures also allowed us to investigate potential molecular
and cellular mechanisms driving pLGG tumors with low sensitivity
toward MAPKi. We found that pLGG with neuronal features seems to
be less sensitive to MAPKi, as estimated with our MSSs. Petralia et al.
described a dichotomous classification of pLGGs in either Hot tumors
with a high degree of immune cell infiltration or Neuronal with a low
degree of immune cell infiltration71. In line with this observation, the
correlation of highMSSwith immune cell infiltration in theHot tumors
was inversed in the Neuronal tumors in our dataset. However, other
factors than just plain low immune cell infiltration may play a role in
decreased MAPKI sensitivity in Neuronal-type pLGGs. Interestingly, it
has been shown in adult low- and high-grade gliomas that neurons
could form synapses with glioma cells, hence forming so-called neu-
ronal-glioma synapses (NGS)95,96. These NSG have been shown to
promote gliomacell progression and survival through the activation of
several pathways, such as the Akt/mTOR pathway and the MAPK
pathway, which are mediated by N-methyl-D-aspartate (a.k.a. NMDA)
and amino-3-hydroxy-5-methyl-4-isoaxazolepropionate acid (a.k.a.
AMPA) receptors97. If validated in a larger dataset, this could poten-
tially pave theway for a new type of therapy for the treatment of pLGG,
where MAPKi could be used in combination with neurotransmitter
inhibitor, which could potentiate and increase the effects of MAPKi in
low responders/resistant pLGG patients.

Larger gene expression datasets derived from patients that
received aMAPKi treatment, coupledwith their respective response to
the treatment (such as in the upcoming LOGGIC Trial), are now
urgently needed to identify and validate sensitivity score thresholds to
assess the applicability of our MSS as stratification tools for clinicians.
Such large datasets will also allow further investigation of the invol-
vement of the microglia in treatment response and the relationship
between pLGG with neuronal features and MAPKi resistance. This will
ultimately allow a better understanding of pLGG biology and the
identification of new treatment modalities that could improve the
treatment and quality of life of all pLGG patients.

Methods
Ethical approval
Legal guardians provided written informed consent on behalf of all
pediatric patients for the use of tissues for research without com-
pensation. All samples from McGill collaborators (CHU Sainte-Justine
biobank) were collected under a protocol approved by the ethical
committee of CHU Sainte-Justine. All samples from Charité (archives
from the SIOP-LGG 2004 interim protocol) were collected under a
protocol approved by the ethical committee of Charité Uni-
versitätmedizin Berlin.

Cell lines and treatments
Pilocytic astrocytoma cell lines (DKFZ-BT66, DKFZ-BT308, DKFZ-
BT314, DKFZ-BT317) generated in our previous studies45,46 were cul-
tured in Astrocyte Basal Medium (ABM, cat. no. CC-3187, Lonza) plus
supplement (Astrocyte Growth Medium BulletKit, cat.no. CC-3186,
Lonza) with 1 µg/ml doxycycline (cat. no. sc-337691, Santa Cruz) to
inducecell proliferationasdescribedpreviously45,46. TheBT40cell line,
kindly provided by Prof. Houghton, was grown in RPMI (cat. no.
21875091, Thermo Fisher Scientific) supplemented with 10% FCS (cat.
no. S 0115, Biochrom). All cells were cultured under a 5% CO2 atmo-
sphere at 37 °C. Were indicated, DKFZ-BT317 cells transduced with the

pDIPZ reporter48 were seeded in a 384-well plate (1 × 106 cells per well)
and treated with the corresponding MAPK inhibitor (Supplementary
Data 8). Luciferase measurement was done 24 h after treatment, as
described previously, and data were acquired using the OPTIMA BMG-
Labtech software (v2.20R2)48. For combination IC50 measurements,
the IC50 of each single drug was measured. Both drugs IC50 were then
combined, and seven dilutions (4x, 2x, 1x, 0.5x, 0.25x, 0.125x, 0.06x) of
this mixture were used to draw the combination dose-response curve
and measure the IC50 of the combination.

RNA extraction and gene expression profiling from pLGG
cell lines
pLGG cell lines samples (untreated) and primary samples RNA
extraction was performed using the RNeasy Mini Kit (cat. no. 74104,
Qiagen) following the manufacturer’s protocol. RNA was submitted
to the DKFZ genomics core facility (Microarray Unit) to generate
gene expression profiles with Affymetrix Gene Chip human U133 Plus
2.0. Gene expression data were then uploaded on the R2 online
database (https://hgserver1.amc.nl/cgi-bin/r2/main.cgi) and MAS5.0
normalized.

RNA sequencing on primary samples with known response
to MAPKi
Fresh frozen primary material from pLGG patients with known
response to MAPKi (trametinib) therapy was collected from two
partner institutes (Charité, Berlin; McGill University, Montreal)
(cohorts’ details in Supplementary Data 6). Tumor material was sur-
gically collected before trametinib treatment initiation. Patients’
response to trametinib was assessed based on the RAPNO criteria55.

For the samples from Charité (n = 3), RNA extraction was per-
formed using the RNeasy Mini Kit (cat. no. 74104, Qiagen) following
the manufacturer’s protocol. cDNA synthesis and library preparation
were done using the Agilent SureSelect XT HS2 RNA kit, and sequen-
cingwas done on an Illumina NovaSeq 6000platform. For the samples
from McGill University (n = 2), total RNA was isolated using AllPrep
DNA/RNA/miRNA Universal kit (Qiagen), according to the manu-
facturer’s instructions. RNA samples were rRNAdepleted usingQIAseq
FastSelect (Human/Mouse/Rat 96rxns). cDNA synthesis was achieved
with the NEBNext RNA First Strand Synthesis and NEBNext Ultra
Directional RNA Second Strand Synthesis Modules (New England
BioLabs). The remaining steps of library preparation were done using
the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England
BioLabs), and sequencing was done on an Illumina NovaSeq 6000
platform. There was no material left over after extraction.

Fastq files were finally submitted to the RNAseqWorkflowpipeline
on the OTP platform for automated reads trimming, mapping to the
hg19/GRCh37 human genome, and calculation of TPMper transcript98.

scRNA sequencing and data analysis of primary pLGG samples
Fresh tumor material from the Münster pLGG samples (n = 6) was
subjected to papain digestion to generate a single-cell solution. Non-
vital cells were removed by 7-AAD staining (cat. no. 00-6993-50,
Thermo Fisher) using a FACSAria II cell sorter (BD Biosciences), and
approximately 10,000 vital cells were used as input for scRNA-seq.
Single-index libraries were generated by Chromium Single Cell 3’ v3.1
technology (10x Genomics) and sequenced using an Illumina NextSeq
2000 sequencing system at the Genomics Core Facility (University
Hospital Münster, Germany). The samples were analyzed with the 10x
GenomicsCellRanger v6.0.2 pipeline and Seurat R package v4.0.5. Raw
data were converted to Fastq format with the CellRanger mkfastq
function and subsequently aligned against the human reference tran-
scriptome GRCh38 v2020-A with CellRanger count and default values.
Seurat objects were created for both samples based on the following
filter criteria: aminimumof 3 cells, aminimum feature number of 200,
and cells with <25% of mitochondrial genes. Outlier cells with a high

Article https://doi.org/10.1038/s41467-023-40235-8

Nature Communications |         (2023) 14:4533 15

https://hgserver1.amc.nl/cgi-bin/r2/main.cgi


nCount_RNA value were classified as doublets and removed (thresh-
old: 30,000–35,000). The filtered data were then normalized, inte-
grated and clustered with Seurat’s SCTransform routine using a
resolution parameter of 0.5. Feature plots, UMAPs and dotplot visua-
lizations were created with Seurat functions; a cluster-based cell type
annotation was conducted based on the expression of characteristic
marker genes per cell type.

Other gene expression datasets
For signature generation, the Genomics of Drug Sensitivity in Cancer
(GDSC)datasetwas used. RMA-normalizeddata canbedownloadedon
the GDSC website (see “Data availability” section).

For signature validation in the PDX cohort, RNAseq data from the
“Database For PDX Pharmacogenomic Data” (XevaDB, Novartis) was
used99. FPKM values were converted to TPM values in order to make
sample comparison possible for subsequent single-sample Gene Set
Enrichment Analysis (ssGSEA), as recommended by the Broad Institute
(https://software.broadinstitute.org/cancer/software/gsea/wiki/index.
php/Using_RNA-seq_Datasets_with_GSEA). The type of response fol-
lowed the mRECIST criteria described in the original publication. All
PDXs showed a primary response, almost always followed by the
emergence of treatment resistance induced by newly acquired genetic
alterations. Since this is extremely rare in pLGG100, we only considered
the primary response in our study.

Processed genomic data from the Open Pediatric Brain Tumor
Atlas dataset is available through the Open Pediatric Brain Tumor Atlas
portal (https://github.com/AlexsLemonade/OpenPBTA-analysis).

Finally, unified TCGA sequencing data is accessible on figshare101

(https://figshare.com/articles/dataset/Data_record_3/5330593), and
mutation status was retrieved from already published work102.

Since we aimed to identify gene signature that would be applic-
able for pLGG, where all driving MAPK alterations are mutually
exclusive, all non-pLGG datasets (i.e., GDSC, XevaDB, TCGA) were pre-
filtered to only keep samples with mutually exclusive driving MAPK
alterations.

MAPKi sensitivity gene signature generation
MAPKi sensitivity signatures were generated from the Genomics of
Drug Sensitivity in Cancer (GDSC) dataset42. Both GDSC1 and GDSC2
drug sensitivity runs were kept in the analysis. As both GDSC1 and
GDSC2 datasets were included, the same cell line could have been
tested with the same inhibitor several times. For clarity in that case, we
will henceforth describe these as “samples” treated with MAPKi. The
data from the GDSC2 dataset was used preferentially in case of con-
flicting results across datasets 1 and 2, as suggested by the GDSC
authors42. The list of cell lines comprising both sets can be found in
Supplementary Data 9. The metrics described below were used to
assess the signature’s predictive power.

ROC binary evaluation (Youden’s J statistics & F1-score)
Measured IC50 (i.e., IC50 z-score) and predicted sensitivity (i.e., sig-
nature’s ssGSEA score = discrimination threshold) were used to eval-
uate the efficiency of each signature to classify each sample into a
sensitive or non-sensitive category. The IC50 z-score thresholdwas set
at 0 to allow to differentiate between the samples that would respond
to MAPKi (clinically equivalent to stable disease with small tumor
volume reduction, to partial response or complete remission) and the
samples thatwould not respond (clinically equivalent to stable disease
with small tumor volume increase, or tumor progression). Homo-
genously distributed predicted sensitivity thresholds (n = 100) ranging
from the lowest to the highest ssGSEA score and ROC curves were
generated. The optimal predicted sensitivity threshold was then
selected using Youden’s J statistics, and the following metrics were
used to assess the signature’s efficacy: Youden’s J statistics (tomeasure
the difference between true positive rate (TPR) and false positive rate

(FPR)), and F1-score to assessmodel performance considering TPR and
precision.

Pearson’s correlation coefficient
Pearson’s correlation coefficient was measured to assess the linear
correlation between MAPKi IC50 z-score and the predicted sensi-
tivity scores in order to take into account the identification of sig-
natures that not only differentiate between two groups (i.e., binary
output) but are also capable of accurately capturing the different
degrees of sensitivity of a given sample to a MAPKi (i.e., continuous
output).

Concordance analysis (concordance index)
Ideally, a MAPKi predictive signature should be related to the MAPK
pathway activity level. However,MAPK pathway activity itself does not
correlatewell withMAPKi sensitivity31.We used the concordance index
to control for a link between the MAPK pathway activity score (MPAS)
and predictivity scores, which indicates the probability of equidirec-
tional ranking of the signature score and the MPAS when comparing
pairs of samples.

Percentage of correct prediction (prediction accuracy)
Prediction accuracy of each signature to assign samples into four
categories based on their predicted sensitivity scores (i.e., sensitive,
medium-sensitive, medium-resistant, resistant) was calculated based on
the measured sensitivity and the predicted sensitivity: IC50 z-score
thresholds were assigned to define each measured sensitivity category
(sensitive = IC50 z-score <−2; medium-sensitive = −2 < IC50 z-score <0;
medium-resistant = 0< IC50 z-score < 2; resistant = IC50 z-score > 2).
We subsequently identified the predicted ssGSEA sensitivity score
threshold that allowed to differentiate between sensitive, medium-
sensitive and medium-resistant cells in the GDSC dataset (Supplemen-
tary Fig. S4B). These thresholds (measured and predicted) were used to
estimate the proportion of correctly classified samples, allowing cal-
culation of the prediction accuracy.

Consensus ranking
For each class of MAPKi (i.e., BRAFi Type I 1/2, BRAFi Type II, MEK1/2i,
catERKi, dualERKi), the nine signatures were ranked per drug and
metric. The ranks were then aggregated across drugs using average
ranks to give the smallest Euclidean distance. This led to the genera-
tion of a consensus ranking for the nine signatures across drugs for
each of the five metrics separately. This was followed by a consensus
ranking across all five metrics, allowing to generate an overall ranking
of the signatures based on their performance to predict sensitivity to
all MAPKi included in the given MAPKi class.

MAPK pathway activity score (MPAS) and MAPKi sensitivity
scores (MSS)
To measure MAPK pathway activity, the previously described MPAS
signature was used36. In order to palliate the cohort-dependent effect
induced by the use of gene expression z-score used in the original
paper, ssGSEAwas performed to generate signature scores on a single-
sample basis.

Statistics and reproducibility
All statistical analyses were performed in R Studio (R Version 1.4.1103)
using the following packages:

Correlation analysis and Pearson coefficient were carried out
using the “stats” package (v4.2.1), and ROC analysis with the “pROC”
package (v1.18.0).

Concordance indices were calculated using the “survival” package
(v3.4-0).

Consensus ranking and related figures were done using the
“challengeR” package (v1.0.2)103.
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Signatures overlap and Venn diagrams were generated using the
“VennDiagram” package (v1.7.3).

Significance between groups was calculated using ANOVA fol-
lowed by Tukey’s ‘Honest Significant Difference’ test in the “stats”
package.Multiple linear regression analysis was performedwith the lm
function after ensuring that the data followed a normal distribution
(Shapiro-Wilk normality test).

Gene Set Enrichment Analysis (GSEA) was performed using the
Broad Institute software (GSEA_4.0.3). The ssGSEA module (v10.1.0)
from Gene Pattern was used to measure ssGSEA scores104, using the
parameters recommended in the documentation. Of note, ssGSEA
scores were not normalized and are therefore considered asmeasured
in arbitrary units.

The testing of the extent to which our signatures are confounded
due to the microenvironmental transcriptome was done using Con-
foundR (https://confoundr.qub.ac.uk/)69.

scRNAseq data was analyzed using the “Seurat” package in R
(v4.3.0). scRNAseq data from Reitman et al. was re-analyzed with the
“Seurat” package using the parameters described in the original pub-
lication, and signature scores were measured using the “UCell” pack-
age (v2.0.1).

Graphical representations were done in R Studio using the
“ggplot2” package (v3.4.1) for the correlation plots, waterfall plots and
boxplots. The “ComplexHeatmap” package (v2.12.1) was used to gen-
erate the heatmaps.

IC50 calculation was performed using GraphPad Prism 5 software
(Version 5.01, GraphPad Software Inc., San Diego, USA), using a
4-parameter dose-response model.

For all in vitro experiments carried out in this study, experiments
were carried out in three independent biological replicates as standard
practice. Bulk RNAseqwas performed on n = 5 samples, and scRNA seq
was performed on n = 6 samples, as these were the only patient sam-
ples available at the time of the study. The rest of the analyses were
carried out on publicly available datasets.

Data were excluded from the publicly available datasets used in
the study based on criteria defined beforehand. These criteria were
chosen to stay relevant to pediatric low-grade glioma biology (i.e.,
samples/cell lines with mutually exclusive genetic MAPK alteration)
and to stay clinically relevant (i.e., exclusion of data generated from
drugs other than MAPK inhibitors or MAPK inhibitors without a clear
mode of action/already excluded from clinical trials).

Allmeasures performed experimentally were always done in three
independent biological replicates. All replicates are shown in the
manuscript. All attempts at replication were successful. For in vitro
experiments, cells were randomly allocated into control and experi-
mental groups. The investigators were not blinded to allocation during
experiments and outcome assessment.

Sex and/or gender were not a criterion for the study design or
data interpretation. This information was not collected.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Gene expression data (RMA-normalized expression data) can be
accessed from the GDSC website (https://www.cancerrxgene.org/
gdsc1000/GDSC1000_WebResources/Home.html). Cell lines’ drug
response and genetic features can be downloaded at the following link
(https://www.cancerrxgene.org/downloads/anova). Gene expression
data and drug response from the Novartis PDX cohort can be accessed
at the following address: https://www.xevadb.ca/ and in the Supple-
mentary information from the original publication99. The already
published gene expression profiles from pLGG cell lines45,46,89, mela-
noma (GSE7127) and multiple myeloma (GSE6205) can be accessed on

the R2 platform [https://hgserver1.amc.nl/cgi-bin/r2/main.cgi] (see
also Supplementary Data 10 for MAS5.0 normalized data). Processed
genomic data from the Open Pediatric Brain Tumor Atlas dataset is
available through theOpen Pediatric Brain TumorAtlas portal [https://
github.com/AlexsLemonade/OpenPBTA-analysis]. Finally, unified
TCGA sequencing data is accessible on figshare101 [https://figshare.
com/articles/dataset/Data_record_3/5330593], and mutation status
was retrieved from already published work102. Publicly available RNA
sequencing datasets from melanoma primary samples with MAPKi
response105 can be accessed from the GEO platform (GSE65185). Gene
expression from pediatric SEGA samples with TSC1/2 mutation54 can
be accessed from the publication and the EuropeanGenome-phenome
Archive (EGAS00001003787). The RNA sequencing data from our
pLGG primary samples with trametinib response (GSE222406) and
scRNA sequencing data from n = 6 pLGG samples (GSE222850 gener-
ated in this study are both available from the GEO platform. All RAW
data are available. Source data are provided with this paper.

Code availability
The customR script used to select the best predicting signature can be
found in the Supplementary Software file.
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