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Virtual alignment of pathology image series
for multi-gigapixel whole slide images

Chandler D. Gatenbee 1 , Ann-Marie Baker 2, Sandhya Prabhakaran 1,
Ottilie Swinyard2, Robbert J. C. Slebos 3, GunjanMandal4, EoghanMulholland5,
Noemi Andor1, Andriy Marusyk 6, Simon Leedham5, Jose R. Conejo-Garcia 4,
Christine H. Chung 3, Mark Robertson-Tessi 1, Trevor A. Graham 2 &
Alexander R. A. Anderson 1

Interest in spatial omics is on the rise, but generation of highly multiplexed
images remains challenging, due to cost, expertise, methodical constraints,
and access to technology. An alternative approach is to register collections of
whole slide images (WSI), generating spatially aligned datasets. WSI registra-
tion is a two-part problem, the first being the alignment itself and the second
the application of transformations to hugemulti-gigapixel images. To address
both challenges, we developed Virtual Alignment of pathoLogy Image Series
(VALIS), software which enables generation of highly multiplexed images by
aligning any number of brightfield and/or immunofluorescent WSI, the results
of which can be saved in the ome.tiff format. Benchmarking using publicly
available datasets indicates VALIS provides state-of-the-art accuracy in WSI
registration and 3D reconstruction. Leveraging existing open-source software
tools, VALIS is written in Python, providing a free, fast, scalable, robust, and
easy-to-use pipeline for registering multi-gigapixel WSI, facilitating down-
stream spatial analyses.

Cellular interactions and the structureof the tumormicroenvironment
can affect tumor growth dynamics and response to treatment1–3.
Interactions and the effect of tissue structure can be elucidated via
spatial analyses of tumorbiopsies, although there aremany challenges.
Among these are the limited number of markers that can be detected
on a single tissue section. This can be overcome by repeated cycles of
staining on the same tissue section or by staining serial slices for dif-
ferent subsets ofmarkers. However, the captured imageswill likely not
align spatially due to variance in tissue placement on the slide, tissue
stretching/tearing/folding, and changes in physical structure fromone
slice to the next. Without accurate alignment, spatial analyses remain
limited to the number of markers that can be detected in a single

section. While there are methods that can stain for a large number of
markers on a single slide, they are often highly expensive, destructive,
and require considerable technical expertise4–8.

Image registration is the process of aligning one image to another
such that they share the same coordinate system, and therefore offers
the potential to align histology images. However, aligning histology
images presents several challenges, which include: spatial variation in
color intensity due to markers binding in different regions of the tis-
sue; lack of a commonmarker across images (in the case of IHC); inter-
user or inter-platform variation in staining intensity; tissue deforma-
tions (e.g., stretching, folds, tears); unknown order of serial sections;
largenumbers of images; andmassivefile sizes, often several gigabytes
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(GB) when uncompressed (Fig. 1). For these reasons, among others,
registration of WSI remains a challenging problem.

There have been a great many efforts to develop computational
methods that automatically register WSI, with some more recent
methods shown in Table 1. Some are limited to hematoxylin and eosin
(H&E) staining9–12, while others are designed toworkwith slides stained
for different markers13–18. Some are designed to align only 2 slides19,20,
while others can align multiple slides9,21. There also exist methods to
register immunofluorescence (IF) images, which can be an easier task
as each image usually contains a DAPI channel that stains for nuclei22.

Table 1 describes the features present in several of the more
recent WSI registration methods. We would argue that for a method
to be scalable, it must: be able to read, warp, and write full resolution
WSI to facilitate downstream analyses; be fully automated; have a
command line interface so that the registrations can be performed
on high-performance computer (HPC) clusters; be freely available to
everyone. Examination of Table 1 reveals that only a handful of
methods have the complete set of features that make a method
scalable. However, those that do have the ability to scale tend to be
designed for specific problems, such as: aligning only brightfield
images20,21,23–25; aligning only images that have been stained with
H&E9; designed to construct an image by registering raw image tiles,
meaning it can’t be applied to the stitched images that are already
poorly aligned26. Importantly, each of thesemethods require the user
to specify a reference image to which the others will be aligned.

Selecting the correct reference image is not trivial, especially when
an H&E image is not available. Choice of a reference image can make
or break the registration when applied to datasets with more than
two images. This is because for these methods to work, one must
determine which slide looks most like the others, and if that chosen
slide is not similar enough to the rest, the registration can fail, as
some may align to it, while others do not.

Here, we present Virtual Alignment of pathoLogy Image Series
(VALIS), a fully automated, flexible, scalable, and robust WSI registra-
tion software package that works with any number of brightfield and/
or immunofluorescence images, without theneed todefine a reference
image. VALIS is also fully documented with examples on ReadTheDocs
(https://valis.readthedocs.io/en/latest/), and available for downloadon
GitHub (https://github.com/MathOnco/valis)27, PyPi (https://pypi.org/
project/valis-wsi/), and DockerHub (https://hub.docker.com/r/
cdgatenbee/valis-wsi). VALIS therefore provides several features that
make it a useful and practical solution for WSI registration:
1. A newgroupwise,multi-resolution,multi-modal, rigid and/or non-

rigid registration method that can align any number of images
while solving the issue of needing to define a reference image.

2. Easy to use software that can register brightfield and/or immu-
nofluorescence (IF) images, the latter ofwhich can bemerged into
a single multi-channel image.

3. Registration software that can read322 formats usingBio-Formats
or Openslide, meaning it can be used with themajority ofWSI28,29.

CD68 Ki67 CD31 COX2CD8 CK PD-L1 StackedCD8 Ki67 CD20 H2AXa

b

c

10mm 10mm 10mm 10mm 10mm 10mm

10mm 10mm 10mm 10mm 10mm 10mm

Fig. 1 | Example of a challenging dataset. VALIS handles potential batch effects
from IHC images that would otherwise make image registration challenging. Such
batch effects include large displacements (rotation, translation, etc.); deforma-
tions (stretches, tears); and spatial variation in color and luminosity due to dif-
fering spatial distributions of markers and/or different staining protocols. Large
file sizes also present challenges to registeringwhole slide images (WSI).a Six serial
slices of a colorectal adenoma were stained by three different individuals, with
each marker stained with Fast Red or DAB. Note the substantial spatial variation in
color andbrightness, due to the heterogeneous spatial distribution of different cell
types (each type stained with a different marker), and different staining protocols

where some images are heavily stained and others lightly stained. The rightmost
image shows the result of stacking the un-registered images, where each color
shows the normalized inverted luminosity of each image. Each slide is also too
large to open in memory, with each being ~32GB when uncompressed. b VALIS
finds the rigid and non-rigid transformations to align the WSI. These images show
the same transformation applied to a triangularmesh overlaid on each image, with
color indicating the direction and magnitude of change. c Left: Alignment of the
same slides using VALIS. Right: Image stack after image registration using VALIS.
The transformations found by VALIS can subsequently be used warp each of the
32Gb slides, which can be saved as ome.tiff images for downstream analyses.
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4. Provides the ability to warp, save, and convert huge multi-
gigapixel WSI to ome.tiff, an opensource image format that can
store multiple large pyramid images with metadata28–32.

5. Offers a straight-forward way to warp coordinates using image
transformation parameters. Can therefore be used to warp cell
coordinates from existing cell segmentation data, transfer
annotations from one image to another, etc…

6. Software that can also warp WSI with user-provided transforma-
tions and/or registration methods (by sub-classing the relevant
object classes).

Results
Overview
A full description of the registration pipeline is described in the
Methods section, but briefly, it goes as follows (Fig. 2):
1. WSI are converted to numpy arrays. As WSI are often too large to

fit intomemory, these images are usually lower resolution images
from different pyramid levels.

2. Masks are created and applied to the images, focusing registration
on the tissue.

3. Images are processed to single channel images. They are then
normalized to one another to make them look as similar as
possible.

4. Image features are detected and then matched between all pairs
of images.

5. If the order of images is unknown, they will be optimally ordered
based on their feature similarity, such that the most similar ima-
ges are adjacent to one another in the z-stack. This increases the
chances of successful registration because each image will be
aligned to one that looks very similar. This step can be skipped if
the order is known (such as with 3D tissue reconstruction).

6. Rigid registration is performed serially, with each image being
rigidly aligned towards (or optionally, directly to) the reference
image. That is, if the reference image is the 5th in the stack, image
4 will be aligned to 5 (the reference), and then 3 will be aligned to
the now registered version of 4, and so on. If a reference image is
unspecified, it will be set to be the image at the center of the
z-stack. Only features found in both neighboring images are used
to align the image to the next one in the stack. VALIS uses feature
detection to match and align images, but one can optionally
perform a final step that maximizes the mutual information
between each pair of images.

7. The masks are rigidly warped and combined to create a non-rigid
registration mask. The bounding box of this mask is then used to
extract higher resolution versions of the tissue from each slide.
The higher resolution images are then re-processed and used for
non-rigid registration, which is performed either by: aligning each
image towards (or to) the reference image following the same
sequence used during rigid registration (the default); using
groupwise registration that non-rigidly aligns the images to a
common frame of reference.

8. One can optionally perform a second non-rigid registration using
even higher resolution versions of each image. This is intended to
better align micro-features not visible in the lower resolution
images used in the previous steps, and so is referred to as “micro-
registration”.

9. Error is estimated by calculating the distance between registered
matched features in the full resolution images.
The transformations found by VALIS can then be used to warp the

full resolution WSI. It is also possible to merge non-RGB registered
slides to create a highly multiplexed image. These aligned and/or
merged slides can then be saved as ome.tiff images. The transforma-
tions can also be used to warp processed versions of the WSI (e.g.,
those that underwent color deconvolution, additional cleaning, etc…),
or point data, such as cell centroids, annotations, polygon ver-
tices, etc…

Benchmarking
There exist many excellent registration methods (Table 1), so a key
question is how well does VALIS perform in comparison? To address
this question, we first benchmarked VALIS using the Automatic Non-
rigid Histological Image Registration (ANHIR) Grand Challenge
dataset33. This includes eight datasets of brightfield images originating
from different tissues, with multiple samples and stains per dataset.
Each image is accompanied by hand selected tissue landmarks that are
evenly distributed across the image and found in other serial slices
taken from the same sample, making it possible to measure biologi-
cally meaningful alignment accuracy between pairs of images. In total,
there are 49 unique samples, with public training landmarks available
for 230 image pairs. There are an additional 251 private landmark pairs
used to evaluate registration accuracyafter theuser hasuploaded their
results. Therefore, the results presented on the leaderboardmaydiffer
slightly than what the user calculates using the publicly available
training landmarks. The goal of the challenge is to register pairs of
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Fig. 2 | Overview of the VALIS alignment pipeline. VALIS uses Bio-Formats and
OpenSlide to read the slides and convert them to images for use in the pipeline,
meaning it is compatible with 322 image formats. Once converted from slides,
masks are created and applied to each image, which will focus the registration on
the tissue (mask outline highlighted in green). Next, images are processed and
normalized to look as similar as possible. Features are then detected in each image
and then matched between all possible pairwise combinations. Feature distances
are used to construct a distance matrix, which is then clustered and sorted,
ordering the images such that each image should be adjacent to its most similar
image. Once ordered, the matches undergo another round of filtering, wherein
features used to rigidly register an image to the next image must also have been
matched in the previous image. Unique matches to previous and next images are

shown as purple or blue lines, while those remaining after neighbor filtering are
shown as green lines. Images are then aligned serially towards the center of the
image stack (or reference image, if specified), going from the inside out. Serial rigid
transformations are found first, using the neighbor-filteredmatches. The bounding
box around the region where masks overlap or touch is used to slice out a higher
resolution image for use in non-rigid registration, again performed serially from the
inside out. The non-rigid transformations are accumulated as one moves towards
the edges of the stack, which can bring distant features together. A final optional
“micro-registration” step canbeperformed,which is accomplishedbyperforming a
second non-rigid registration on higher resolution non-rigidly warped images.
Once registration is complete, the slides can be warped and saved in their native
resolution as ome.tiff images for downstream analyses.
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images, the accuracy of which can be measured by applying the
transformations to the landmarks and then measuring the distance
between the newly registered landmarks. More specifically, error is
measured as the median relative target registration error (median
rTRE), where rTRE is the Euclidean distance between registered land-
marks, divided by the diagonal of the target image, thereby normal-
izing error between 0 and 1.

In addition to benchmarking VALIS using default parameters (e.g.,
groupwise registration using the default image sizes and no micro-
registration), we also assessed performance using micro-registration,
both using the groupwise approach (referred to as “group” in Fig. 3a),

or registering directly to the target image after an initial groupwise
registration (referred to as “pair” in Fig. 3a). These experiments were
conducted by performing micro-registration at four different levels of
downsampling: 0.25, 0.5, 0.75, 1.0 (i.e., the full resolution image). The
results of these experiments can be found in Fig. 3a.

VALIS’medianmedian rTRE (MMrTRE, the primarymetric used to
rank scores on the leaderboard) is 0.00172, ranking 8/44 overall
(although several methods have multiple entries), but being the sec-
ond most accurate published and/or available method (as of February
20, 2023). A detailed breakdown ofMMrTRE per tissue can be found in
Supplementary Fig. 1. The majority of methods that rank higher are
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unpublished/unavailable,meaning one cannot use thosemethods. The
exception is the Structural Feature Guided (SFG) convolutional neural
network method, which uses sparse and dense structural components
(e.g., SIFT features and pixel level feature maps, respectively) to opti-
mize the structural similarity between the source and target image34.
The goal of SFG is to provide an automated and highly accurate
method to register histology images, which it does quite well. How-
ever, while SFG successfully addresses the first challenge of WSI
registration, it does not address the second practical, but critical, issue
of WSI registration, i.e., being able to read, warp, and write the regis-
tered multi-gigapixel images saved in specialized formats.

We next benchmarked VALIS using the The AutomatiC Registra-
tion Of Breast cAncer Tissue (ACROBAT) grand challenge dataset,
which was part of MICCAI 202235. Similar to ANHIR, the goal is to
automatically register pairs of WSI, using hand-matched landmarks to
quantify registration accuracy. However, unlike ANHIR, the images
were collected from routine diagnostic workflows, and so often con-
tained artifacts common to realworld datasets, such as cracks, streaks,
pen marks, bubbles, etc… that increased the difficulty of image
registration. There are a total of 397 unique samples used to assess
registration accuracy, with 100 images pairs used for a validation lea-
derboard (used to aid in developing the algorithm), and 297 for a test
leaderboard, for which a total of 13,130 landmark pairs were used to
assess accuracy. Importantly this means that only the images can be
used to find the registration parameters. Scores are calculated by
uploading the registered landmarks to the submission system. The
primary score used to measure accuracy was the 90th percentile of
physical distances between registered moving and fixed land-
marks, in μm.

Due to the challenging nature of the images, a custom Image-
Processer class was created to clean up and process theWSI. All image
pairs were then registered using the default settings, followed by
micro-registration using an image that was 25% of the full WSI’s size.
Using this approach, VALIS had a high accuracy score of 131.96μm in
the validation dataset, and 123.3μm in the test dataset (y-axis
of Fig. 3b).

As ACROBAT measures error in μm, and VALIS estimates error
basedonmatched features, this datasetmakes it possible todetermine
how well VALIS estimates error. It should be noted that prior to VALIS’
error calculation, the matching feature positions used to calculate
error are scaled to their location in the full resolution image, and then
converted to biological units, if possible. Figure 3c shows the rela-
tionship between the estimated (VALIS) and true (ACROBAT) errors,
with VALIS estimated error on the x-axis, error based on ACROBAT’s
hand annotations on the y-axis, and the identity line in red. These
results indicate that VALIS tends to overestimate the error, with the
true error being much lower. This discrepancy may be because the
features used by VALIS to estimate error are based on much smaller
versions of the WSI, and so their position is not as precise as those
detected by hand.

3D reconstruction is also a common use case forWSI registration.
To assess the performance of VALIS with this task, we performed
benchmarking using the datasets described by ref. 36. Briefly, two
datasets are provided: one murine prostate to be reconstructed from
260 serially sliced 20xH&E images (0.46μm/pixel, 5μm in depth), and
one murine liver to be reconstructed from 47 serial slices (0.46μm/
pixel, 5μm in depth). Accuracy of the alignment of the liver is deter-
mined using the positions of laser-cut holes that pass through the
whole tissue, and should, in theory, form a straight line. In the case of
the prostate dataset, for each pair of images, human operators
determined the location of structures visible on both slices, pre-
ferentially selecting nuclei split by the sectioning blade. The authors
refer to these landmarks as “fiducial points”, and TRE wasmeasured as
the physical distance (μm) between said fiducial points. We next
compare VALIS’ TRE to the methods presented in Tables 1 and 2 of
ref. 36., which provides the mean TRE using observed landmarks (i.e.,
the “TRE μ“ column). Benchmarking using the liver dataset indicates
that VALIS produces a mean TRE of 52.98, compared to the baseline
reference value of 27.3 (LS 1) (y-axis of Fig. 3d). In the case of prostate,
VALIS scored 11.41μm, compared to the baseline reference value of
15.6 (LS 1) (y-axis of Figs. 3d and 6e). According to the authors,
methods with scores approaching the LS 1 value can be considered
“highly accurate”, indicating that VALIS is suitable for 3D
reconstruction.

As with ACROBAT, the pixel unit, in μm, was provided by36, again
making it possible to compare the true registration error (asmeasured
using the fiducial points) with the error estimated by VALIS, which is
based on matching image features (Fig. 3d,e). Consistent with the
ACROBAT dataset, this comparison indicates that VALIS tends to
overestimate the error. As such, the error estimates producedbyVALIS
may serve better to provide a sense of successful registration and/or
assessing how changing parameters affects the registration quality.

Validation
To test the robustness and generalizability of VALIS, we performed
image registration on an additional 613 samples, with images captured
under a wide variety of conditions (Fig. 4). These images were col-
lected for routine analysis, and so were not curated in any sort of way.
That is, these are “realworld” images that reflect the regular challenges
associated with WSI registration. Each sample had between 2 and 69
images; 273 were stained using immunohistochemistry (IHC), and 340
using immunofluorescence (IF); 333 were regions of interest (ROI) or
cores from tumor microarrays (TMA), while 280 were whole slide
images (WSI); the original image dimensions ranged from 2656× 2656
to 104,568 × 234,042 pixels in width and height; 162 underwent stain/
wash cycles, 451 were serial slices; 49 came from breast tumors, 109
from colorectal tumors, 156 from head and neck squamous cell car-
cinomas (HNSCC), and 299 from ovarian tumors. In total, this valida-
tion dataset involved registering and calculating the error for 4099
image pairs.

Fig. 3 | Benchmarking results. a Benchmarking results of VALIS using the publicly
available Automatic Non-rigid Histological Image Registration (ANHIR) Grand
Challenge dataset. Values are the median median rTRE (MMrTRE) for each of the
N = 230unique imagepairs used to assess registrationaccuracy. Eachmajor column
is for a registration strategy, with “group”meaning only groupwise registration was
performed, while “pair” means that micro-registration was used to directly align
each image to the target image after the initial groupwise registration. Minor col-
umns indicate the amount of downsampling used for themicro-registration. Values
inside the bubbles at the bottomof eachminor column indicate theMMrTRE for all
image pairs, the default metric used to rank methods on the ANHIR leaderboard.
Rows indicate the tissue type. In each box, the center line indicates themedian, the
top andbottom indicate the 75th and25thpercentiles, respectively, the topwhisker
the largest value that is no further than 1.5 Interquartile range (IQR) from the 75th
percentile, the bottom whisker the smallest value no more than 1.5IQR from the

25th percentile, and points indicate outliers. b VALIS’ estimated performance (x-
axis) versus actual performance (y-axis) in the ACROBATGrand Challenge, with the
solid line being the identity line. These results show that VALIS performed well in
the grand challenge, but also that VALIS tends to overestimate error. c Waterfall
plot showing the estimated error over the true error, illustrating that VALIS fre-
quently overestimates error. d Using the Kartasalo (2018) dataset, error (i.e., mean
TRE, in μm) calculated using the fiducial landmarks is compared to the error esti-
mated by VALIS, which is measured using matched image features. Solid line is the
identity line. These results show that VALIS tends to overestimate registration
error, as themajority of points fall below the identity line (i.e., VALIS error > fiducial
error). e Waterfall plot showing the estimated error (VALIS) divided by the true
error (Fiducial), again showing that VALIS frequently overestimates registration
error. Source data are provided as a Source Data file57.
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For themost part, the default parameters andmethods were used
to align the images in all of the datasets. The exception was howmuch
to resize the images. Typically, full slides were resized to have a max-
imum width or height around 850–1000 pixels, while smaller images
with cellular resolution (e.g., TMA cores, ROI) were resized to have
maximum width or height around 500 pixels.

For each image, registration error was calculated as the median
distance (μm) between the features in the image and the corre-
sponding matched features in the neighboring image (see Methods
section for more details) (Fig. 5). The registration error of the sample
was then calculated as the average of the images’ registration errors,
weighted by the number of matched features per pair of images. The
registrations provided by VALIS substantially improved the alignments
between images, particularly in the case of serial IHC (Fig. 5a). As
suggested in Fig. 3b-e, the quality of the registration may actually be
better than the estimated error suggests.

Potential applications
We next provide a few examples of how the registration parameters
found by VALIS can be used to facilitate spatial analyses (Fig. 6). One
strategy is to use the registration parameters to align and merge the
full resolution WSI to create highly multiplexed images. Figure 6a
shows the results of registering and merging 11 rounds of CyCIF to
create a single 32 channel image. A similar approach can be taken for
brightfield images aswell, as shown in Fig. 6b, where VALISwas used to
align 18 cyclically stained IHC images. The registration parameters
were then used to warp and merge stain-segmented versions of each
WSI, thereby creating single 18-channel image from cyclical IHC
staining. In these cases, the merged CyCIF image was accurate enough
for spatial analyses using cell positions, while quadrat-based approa-
ches could be used to spatially analyze the less accurate brightfield IHC
alignments (see Supplementary information and Supplementary
Fig. 4). Both analyses highlight how themultiplexed images generated

by VALIS can be used to quantify the tumor ecology, shedding light the
role of the microenvironment and quantifying spatial interactions.

Cell segmentation can be a difficult task, and it may not be
desirable to re-perform that analysis on newly registered images. For
this reason, VALIS also provides the functionality to warp coordinates,
meaning that the registration parameters can be used to warp existing
cell segmentation data (Fig. 6c). These methods could also be used to
warp annotations and regions of interest coordinates. Since VALIS can
register different modalities (Fig. 6d), this also makes it possible to
transfer annotations from H&E images to a corresponding IF dataset.
As discussed above, VALIS can also be used for 3D tissue reconstruc-
tion (Fig. 6e). Other promising areas where VALIS, and image regis-
tration ingeneral, couldbeuseful are, amongothers, aiding generation
of trainingdata for virtual staining37, or aligning spatial transcriptomics
images to brightfield and/or IF images.

Discussion
VALIS introduces a new groupwise WSI rigid and/or non-rigid regis-
trationmethod that increases the chances of successful registrationby
ordering images such that each will be aligned to their most similar
image. This is performed serially, meaning that transformations
accumulate, aligning all images towards the center of the image stack
or a specified reference image. Since images are aligned as a group,
there is no need to select a reference image, which canmake or break a
registration. There is an emphasis on acquiring good rigid registration,
which in turn facilitates accurate non-rigid registration. This is
accomplished through automated pre-processing, normalization, tis-
sue masking, and three rounds of feature match filtering (RANSAC,
Tukey’s approach, and neighbor match filtering) (Fig. 2). VALIS also
provides the option to refine the registration through micro-
registration using a higher-resolution image. Finally, VALIS is flexible,
being able to register both brightfield and fluorescence images.
Combined with the selection of feature detectors, feature descriptors,
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Fig. 4 | Example of images of extra datasets used to validate VALIS. a Head and
neck squamous cell carcinoma (HNSCC). This sample set included four marker
panels, each of which included between 13–20markers stained using IHC. A single
slice underwent the corresponding number of stain wash cycles, but all 69 images
collected from the four panels have also been co-registered. b Human colorectal
carcinoma or adenoma IHC serial slices, each with 1–2 markers per slide, and
6 slides per sample. cDCIS and invasive breast cancer serial slices, 1–2markers per
slide (stained using IHC), seven slides per sample. d Human colorectal carcinomas

and adenomas, stained using RNAscope, 1–2 markers per slide, five slides per
sample. e Human colorectal carcinomas and adenomas, stained using cyclic
immunofluorescence (CyCIF), 11–12 images per sample. f Human colorectal carci-
nomas and adenomas stained using immunofluorescence, two slides per sample.
g In addition to registering WSI, VALIS can also be used to register images with
cellular resolution, such as cores from an immunofluorescent tumor microarray
(TMA) taken from humanovarian cancers (two slides per sample), or h 40× regions
of interest from HNSCC samples, taken from images in the same dataset in (a).
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and non-rigid registration methods, this approach is able to provide
registrations with state-of-the-art accuracy.

In addition to other applications that can benefit from image
registration (e.g., using annotations across multiple images, retrieving
regions of interest inmultiple images, warping cell coordinates, etc…),
VALIS also makes it possible to construct highly multiplexed images
from collections multi-gigapixel IF and/or IHC WSI. However, a chal-
lenge of constructing multiplexed images by combining stain/wash
cycling and image registration is that multiple cycles eventually
degrade the tissue and staining quality can decrease because antibody
binding weakens as the number of cycles increases. It has been esti-
mated that t-CyCIF images can reliably undergo 8-10 stain/wash cycles,
and possibly up to 20 in some cases38. In our examples, we use four
markers per cycle (including DAPI), suggesting one could construct a

24–60plex imageusing a similarprotocol.We suspect this numberwill
increase as technological advances in staining protocols are made.

To maximize the number of markers used to generate multi-
plexed images with image registration, one can conduct experiments
wherein each individual antibody undergoes multiple stain/wash
cycles, measuring antibody sensitivity after each repeat. One can then
use the results of these experiments to determine howmany cycles an
antibody can undergo while maintaining sensitivity. With this data in
hand, one can order the staining sequence such that weaker stains are
used first, and more robust stains are used in the later cycles. Such an
approach should helpmaximize the numbermarkers one can stain for.
Using this approach, we were able to find staining sequences that
allowed between 13–20 IHC stain/wash cycles per tissue slice (HNSCC
data in Fig. 5c).
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Fig. 5 | Validation results.Results of registeringN = 4099 unique image pairs from
the datasets shown in Fig. 4, which were captured from a variety of tissues, pro-
tocols, imaging modalities, and resolutions. a Boxplots showing the distance (μm)
betweenmatched features in the full resolution slides, before registration (yellow),
after rigid registration (red), and then non-rigid registration (blue). In each box, the
center line indicates the median, the top and bottom indicate the 75th and 25th
percentiles, respectively, the top whisker has the largest value that is no further
than 1.5 Interquartile range (IQR) from the 75th percentile, the bottomwhisker the

smallest value no more than 1.5IQR from the 25th percentile, and points indicate
outliers. b Median amount of time (minutes) taken to complete registration as a
function of the processed images' size (by largest dimension, on the x-axis) and the
number of images being registered. These timings include opening/converting
slides, pre-processing, and intensity normalization. c Empirical cumulative dis-
tribution plots of registration error for each image dataset. Source data are pro-
vided as a Source Data file57.
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The impacts of stain/wash cycles on stain quality does not appear
to affect registration accuracy. The CyCIF images, which underwent 11
cycles, had very low registration error, the maximum being estimated
at 6μm. Likewise, most samples in the HNSCC panels had similar error
distributions, despite each undergoing differing numbers of IHC
staining rounds, being between 13 and 20 rounds depending on the
staining panel (HNSCC data in Fig. 5c). These results did not include
the micro-registration step, which should bring the error even lower.
These experiments suggest stain/wash cycling has little impact on
registration accuracy, and that VALIS is able to “fix” tissue deforma-
tions that can occur during repeated washing.

WhilstVALISwasdesigned tobe robust,flexible, andeasy to use, it
does have several limitations. We have successfully tested VALIS on
more than 5000 images, however, there will still be cases where
registration fails. Such failures could be due to large distances between
serial sections, severe tissue deformations, poor staining/lighting,
major image artifacts, etc… Relatedly, while VALIS can register both
RGB (i.e., brightfield images) and single/multi-channel images, it has
only been tested with brightfield and immunofluorescent images.
However, it is possible for a user todevelop customPython classes that
can pre-process other imagemodalities for registration. These custom
classes can then be used in the VALIS pipeline, thus making it possible
to register additional modalities.

As VALIS is limited to the CPU, choosing to perform registration
on very large images can be time-consuming (Supplementary Fig. 2c).
This wouldmostly be relevant during the (optional) micro-registration
step. It is worth noting, however, that accuracy gains acquired by
registering the images at higher resolution tend to be small, and may
or may not be worth the additional computational cost, depending on
the application (Supplementary Fig. 2c).

Another limitation of VALIS is that it does not precisely estimate
the accuracy of the registration (Fig. 3b-e). Perhaps fortunately, the
error tends to be over-estimated, and the registration may be more
accurate than the summary statistics suggest. An accurate judgment of
the alignment is thus best made by the user.

Despite VALIS’ limitations, and that it uses existing feature
detectors, feature descriptors, and non-rigid registration methods,
VALIS does provide several strengths. The approach of using feature
matches to create and sort an image similarity matrix enables a pipe-
line that increases registration accuracy and has several additional
benefits:
1. Sorting the images and then aligning serially ensures that images

are aligned to the most similar looking image, increasing the
chances of successful registration for each image pair.

2. Feature match quality is improved by using only the matches
found in both neighbors, which should represent true tissue
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Fig. 6 | Potential applications of VALIS. aMerging registered CyCIF slides, in this
case creating a 32-channel image. b Merging registered and processed IHC slides.
Here, VALIS found the transformation parameters using the original images, but
applied the transformations to stain segmented versions of 18 cyclically stained
slides (see supplementary Table 3 for list of markers). c Applying transformations
to cell segmentation data. d Registering an H&E slide to the DAPI channel of an IF

slide, whichmay be useful in cases where annotations onH&E images would like to
beusedwith IF images. Here, to visualize the alignment, the registeredH&E image is
overlaid on the DAPI channel. e 3D tissue reconstruction from serial sections. The
left image shows the results of stacking the original images, while the right image
shows the result of stacking the registered serial slices.
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features. This reduces the number of poor matches included in
the estimation of rigid registration parameters, thereby increas-
ing registration accuracy. This is only possible because the images
have been sorted by similarity, and so an image can access the
shared features of its neighbors.

3. Ordering the images and aligning them serially solves the non-
trivial problem of selecting a reference image. If aligning more
than two images, selecting the wrong reference image can cause a
registration to fail. This can be especially challenging if an H&E
image is not available, since it may not be obvious which image
looks most similar to the others.

4. Because transformations accumulate, distant features in dissim-
ilar images can be better aligned than might be possible if only
performing pairwise registration. This too is only possible
because the images have been sorted and aligned serially (Sup-
plementary Fig. 3b).

5. Since images are sorted and aligned serially, any number of ima-
ges can be registered at the same time, in contrast to manually
conducting several pairwise alignments. Again, this is only possi-
ble because images were ordered by similarity.

In addition to presenting a new groupwise registration method,
the preprocessing method described here is stain agnostic. Instead of
extracting stains through color deconvolution (which requires pro-
viding or estimating a stain matrix, a challenge in itself), our method’s
approach is to standardize each image’s colorfulness/chroma. This
allows VALIS to work with a wide variety of stains.

Another strength of VALIS is that it provides a bridge betweenBio-
formats and libvips, making it easier to workwith hugemulti-gigapixel
WSI saved in various formats. This interface is also available to theuser,
which we hope will help others in their projects involving very large
WSI saved in specialized formats.

VALIS is also designed such that it is possible to add new image
processors, feature detectors, descriptors, and non-rigid registration
methods,meaning that it can be updated and improved over time, not
being limited to the current choices or imaging modalities. As such,
VALIS offers more than just access to a new WSI registration method,
and we hope it will aid others with their work using WSI. In that vein,
issues and feature requests can be handled through GitHub, such that
VALIS can grow and accommodate the scientific image analysis
community’s needs.

Methods
Datasets
FFPE samples representing human adenomas, adenomas with foci of
cancer (“ca-in-ads”) and carcinomas (CRC) were selected from the
histopathology archives of University College Hospital, London, under
UK ethical approval (07/Q1604/17) or John Radcliffe Hospital, Oxford
under ethical approval (10/H0604/72). DCIS samples originated from
the biobank at University College Hospital, London. Ovarian tumor
tissue microarrays (TMAs) were obtained from three different
resources: the Tissue Core at Moffitt Cancer Center in Tampa, FL
(approval MCC no. 50264); TriStar Technology Group, LLC (Rockville,
MD); and US BioMax, Inc. (Derwood, MD). HNSCC samples were col-
lected at Moffitt Cancer Center in Tampa, FL (approval MCC no.
18754). Datasets for the ANHIR grand challenge are described in33,
while the ACROBAT dataset is described in35. The datasets used to test
3D tissue reconstruction are described in36. Written informed consent
was waived by the relevant RECs due to the retrospective and anon-
ymous nature of this study.

Reading the slides
Whole slide images (WSI) can be challenging to work with because they
are frequently saved using various formats and are often several giga-
pixels in size (i.e., several billionsof pixels). The resultinguncompressed

files are frequently on the order of 20GB in size, which often precludes
opening the entire image directly in memory. To address the issues of
working withWSI, VALIS uses libvips (with OpenSlide support) and Bio-
Formats28,29 to read each slide. In cases where the format is not sup-
ported by libvips/OpenSlide, VALIS uses Bio-Formats to read the image
in tiles, converting those tiles to libvips images, and then combining the
tiles to rebuild the entire image as single whole-slide libvips image29,32.
The images used for registration tend to be relatively small (i.e., come
from an upper pyramid level), so this conversion takes only a few sec-
onds, while converting a larger image/pyramid level to warp and save
the full resolution may take over a minute (Supplementary Fig. 2a).
However, while conversion may take some time, libvips uses “lazy
evaluation”, meaning that the WSI can then be warped and saved
without having to load all of it into memory, making it ideal for large
images such asWSI. Using this approach, VALIS is able to read, register,
and save any slide that Bio-Formats or OpenSlide can open.

VALIS uses tissue features to find the transformation parameters,
and therefore a lower resolution version of the image is used for fea-
ture detection and finding the displacement fields used in non-rigid
registration. The lower resolution image is usually acquired by acces-
sing an upper level of an image pyramid. However, if such a pyramid is
unavailable, VALIS can use libvips to rescale the WSI to a smaller size.
The default target shape is an image with a maximum dimension less
than or equal to 850 pixels in width and/or height, without padding.
We have found that increasing the size of the image used for regis-
tration does not always increase accuracy, and that gains tend to be
small, despite the fact thatWSI are frequently substantially larger than
the default 850 pixels in width and/or height used by VALIS (Supple-
mentary Fig. 2c). Figure 6a-b also provides examples of how registra-
tion using lower resolution images can translate to accurate alignment
of the image at its native resolution.

Preprocessing
For image registration to be successful, images need to look as similar
as possible. In the case of IF, the DAPI channel is often the best option
touse for registration. However, unless one is onlyworkingwithH&E, a
preprocessing method to make IHC images look similar must be used.
The default method in VALIS is to standardize the color information
from the image. This is accomplished by first converting the RGB
image to the polar CAM16-UCS colorspace39, setting C = 0.2 and H = 0
(other values can be used), and then converting back to RGB (RGB to
CAM16-UCS conversion conducted using the color-science package
for Python40). The transformed RGB image is then converted to grey-
scale and inverted, such that the background is dark, and the tissue
bright. Benchmarking reveals that this preprocessing method pro-
duces registrations with relatively low mean error and small disper-
sion, indicating it yields more accurate and robust registration results
than other frequently used methods, such as grayscale conversion,
global histogram equalization of grayscale images, and contrast lim-
ited adaptive histogram equalization (CLAHE) of grayscale images
(Supplementary Fig. 2b)33.

After all images have been processed (IHC and/or IF), they are
then normalized to one another to have similar distributions of pixel
intensity values. The normalizationmethod is inspired by41, where first
the 5th percentile, average, and 95th percentile of all pixel values is
determined. These target values are then used as knots in cubic
interpolation, and then the pixel values of each image are fit to the
target value. A final denoising step, using total-variation (TV)
denoising42, is used to verymildly smooth the images while preserving
edges, thereby reducing noise that can confound the registration.

Mask creation
To help focus registration on the tissue, and thus avoid attempting to
align background noise, VALIS generates tissue masks for each image.
The underlying idea is to separate background (slide) from foreground
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(tissue) by calculating how dissimilar each pixel’s color is from the
background color. The first step converts the image to theCAM16-UCS
colorspace, yielding L (luminosity), A, and B channels. In the case of
brightfield images, it is assumed that the background will be bright,
and so the background color is the average LAB value of the pixels that
have luminosities greater than 99% of all pixels. The difference to
background color is then calculated as the Euclidean distance between
each LAB color and the background LAB, yielding a new image, D,
where larger values indicate how different in color each pixel is from
the background. Otsu thresholding is then applied to D, and pixels
greater than that threshold are considered foreground, yielding a
binary mask. The final mask is created by using OpenCV to find, and
then fill, all contours, yielding a mask that covers the tissue area. The
mask can then be applied during feature detection and non-rigid
registration to focus registration on the tissue.

Rigid Registration
VALIS provides a groupwise rigid registration method for serially
aligning any number of images, using feature detection andmatching,
with transformation matrices being estimated from the matched fea-
ture coordinates using the method described in43, as implemented in
scikit-image44. The default feature detector and descriptor are BRISK
and VGG, respectively45,46. This combination was selected after con-
ducting experiments wherein it was found that the BRISK/VGG pair
consistently produced the largest number of good matches between
four serially sliced H + E images in each of 27 samples (Supplementary
Fig. 2d). Once features have been detected, all pairs of images are
matched using brute force, with outliers removed using the RANSAC
method47.

RANSAC does an excellent job of removing most outliers, but
some still get considered as inliers. Including the coordinates of such
mismatched features will produce poor estimates of the transforma-
tionmatrices thatwill align feature coordinates, resulting in inaccurate
alignments. To address this, we perform a secondary match filtering
using Tukey’s box plot approach to outlier detection. Specifically, a
preliminary rigid transformation matrix between source image Ii and
target image Ij , M

0
i,j, is found and used to warp the source image’s

feature coordinates to their position in target image. Next, the Eucli-
dean distances between warped source and target coordinates is cal-
culated, d 0

i,j . Inliers are considered to be those with distances between
the lower and upper “outer fences”, i.e., between Q1-3IQR and
Q3 + 3IQR, where Q1 and Q3 are the first and third quartiles of d 0

i,j , and
IQR is the interquartile range of d 0

i,j .
In order to increase the chances of successful registration, VALIS

orders the images such that each image is surrounded by the twomost
similar images. This is accomplished by using matched features to
construct a similarity matrix S, where the default similarity metric is
simply the number of good matches between each pair of images. S is
then standardized such the maximum similarity is 1, creating the
matrix S0, which is used to create the distance matrix, D= 1� S0.
Hierarchical clustering is then performed on D, generating a dendro-
gram T . The order of images can then be inferred by optimally
ordering the leaves of T , such thatmost similar images (i.e., leaves) are
adjacent to one another in the series48. This approachwas validated by
reordering a shuffled list of 40 serially sliced H+ E images from12,
where the original ordering of images is known. All 40 images were
correctly ordered (Supplementary Fig. 2e), indicating that this
approach is capable of sorting images such that each image is neigh-
bored by similar looking images.While VALIS can sort images based on
similarity, it is also possible to align the images in a specified order,
based on the filename. This option is particularly useful if the aim is to
construct a 3D image by registering serial sections, as shown in Fig. 6e.

Once the order of images has been determined, VALIS finds the
transformationmatrices that will serially rigidly warp each image to an
adjacent image in the stack. Specifically, images are aligned towards

(not directly to) the image at the center of the series (or a reference
image, if one is specified). For example, given N images, the center
image is I N

2ð Þ. Therefore, I N
2ð Þ�1 is aligned to I N

2ð Þ, then I N
2ð Þ�2 is aligned to

the rigidly warped version of I N
2ð Þ�1, and so on. While the combination

of RANSAC and Tukey’s outlier detection methods remove most poor
matches, VALIS performs a thirdmatchfiltering step, whichwe refer to
as neighbormatch filtering. In this step, only features that are found in
the image and its neighbors are considered inliers, the idea being that
matches found in both neighbors reflect good tissue feature matches
(Supplementary Fig. 3a). That is, the features used to align image Ii and
Ii�1 are the features that Ii also has in common with Ii+ 1, and thus
consequently that Ii�1 also has in common with Ii + 1. This approach
may be thought of as using a sliding window to filter out poormatches
by using only features shared within an image’s neighborhood. The
coordinates of the filtered matches are then used to find the trans-
formationmatrix (Mi) that rigidly aligns Ii to Ii�1 or Ii + 1 (depending on
the position in the stack).

After warping all images using their respective rigid transforma-
tion matrices, the group of images has been registered. However, one
can optionally use an intensity-based method to improve the align-
ment between Ii and its neighbor. One option is to maximize Mattes
mutual information between the images, while also minimizing the
distance between matched features49. Once optimization is complete,
Mi will be updated to be the matrix found in this optional step. This
step is optional because the improvement (if any) may be marginal
(distancebetween features being improvedby fractions of a pixel), and
it is time consuming.

Non-Rigid Registration
Non-rigid registration involvesfinding 2Ddisplacementfields,X andY,
that warp a “moving” image to align with a “fixed” image by optimizing
ametric. As the displacementfields are non-uniform, they canwarp the
image such that local features align better than they would with a
single global rigid transformation50. However, these methods require
that the images provided are already somewhat aligned. Therefore,
once VALIS has rigidly registered the images, they can be passed on to
one to a non-rigid registration method.

Recall that rigid registration is performed on low resolution
copies of the full image. However, it may be that the tissue to be
aligned makes up only a small part of this image, and thus the tissue is
at an overly low resolution (Fig. 2). However, the lack of detailed
alignment can be overcome during the non-rigid registration step,
which can be performed using higher resolution images. This is
accomplished by creating a non-rigid registration mask, which is
constructed by combining all rigidly aligned image masks, keeping
only the areas where all masks overlap and/or where amask touches at
least one other mask. The bounding box of this non-rigid mask can
then be used to slice out the tissue at a higher resolution from the
original image (Fig. 2, additional examples in Supplementary Fig. 3c).
These higher resolution images are then processed and normalized as
before, warped with the rigid transformation parameters, and then
used for non-rigid registration. This approachmakes it possible to non-
rigidly register the images at higher resolution without loading the
entire high-resolution image into memory, increasing accuracy with
low additional computational cost (due to re-processing the image).

Currently, VALIS can conduct non-rigid registration using one of
three methods: Deep Flow, SimpleElastix, or Groupwise
SimpleElastix51–54. In the case of the first two methods, images are
aligned in the same order as used during rigid registration. Each ima-
ge’s displacement fields, Xi and Yi, are built through composition,
allowing transformations to accumulate. A benefit of accumulating
transformations serially is that distant features can be brought toge-
ther, which may not occur if performing direct pairwise registration
(Supplementary Fig. 3b). For the third method (Groupwise
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SimpleElastix), this process of aligning pairs of images and composing
displacement fields is not necessary, as it uses a 3D free-form B-spline
deformation model to simultaneously register all of the images.

Micro-registration
The above transformations are found using lower resolution images,
but a second optional non-rigid registration can be performed using
higher resolution images, which may improve alignment of “micro-
features” not visible in the smaller images used for the initial regis-
tration. This is accomplished by first scaling and applying the above
transformations to a larger image, and then performing a second non-
rigid registration following the steps described above. This yields two
new deformation fields, X0

i and Y0
i, which can be added to the original

displacement fields to get updated displacements that will align
microstructures (Supplementary Fig. 3d). If the images are large (e.g.,
greater than 10Gb), each image will be divided into tiles, which will be
registered, and each tile’s deformation fields stitched together to
create the full size deformation fields. A caveat is that the increase in
accuracymay be small and the computational cost high, so this step is
optional (Supplementary Fig. 2c).

An alternative useof thismicro-registration step can be to directly
align images to a specified reference image after performing the
default groupwise registration. This can be a good approach after
using the groupwise method because all images should be closely
aligned, and this step can improve the alignment directly to the
reference image. An example of how this can improve registration to a
target image is shown in Fig. 3a.

Warping and Saving
Once the transformation parameters Mi, Xi, and Yi have been found,
they can be scaled and used to warp the full resolution image, which is
accomplished using libvips. The warped full resolution image can then
be saved as a pyramid ome.tiff image, with the ome-xml metadata
being generated by the Python package ome-types, and image writing
done using libvips29,31. Once saved as an ome.tiff, the registered images
can be opened and analyzed using open-source software such as
MCMICRO26, QuPath55, ImageJ56 or commercially available software,
such as Indica Labs HALO® (Albuquerque, NM, USA) or Visiopharm
image analysis software. As the ome.tiff slides can be opened using
libvips or Bio-Formats, one can also use the aligned slide in a more
tailored analysis using custom code.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ANHIR Grand Challenge dataset is available at https://anhir.grand-
challenge.org/Data/. The ACROBAT Grand Challenge datasets are
available at https://acrobat.grand-challenge.org/. The 3D datasets
provided by36 is available at http://urn.fi/urn:nbn:fi:csc-
kata20170705131652639702. All other images are part of on-going
studies and will be made available upon their publication. Source data
are provided as a Source Data file57.

Code availability
Code is available on GitHub (https://github.com/MathOnco/VALIS)27,
PyPi (https://pypi.org/project/valis-wsi/), and DockerHub (https://hub.
docker.com/r/cdgatenbee/valis-wsi). Full documentation canbe found
on Read the Docs (https://valis.readthedocs.io/en/latest/).
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