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Getting personal with epigenetics: towards
individual-specific epigenomic imputation
with machine learning

Alex Hawkins-Hooker1,2,3,5 , Giovanni Visonà 2,5, Tanmayee Narendra 1,4,
Mateo Rojas-Carulla2, Bernhard Schölkopf2 & Gabriele Schweikert 1,4

Epigenetic modifications are dynamic mechanisms involved in the regulation
of gene expression. Unlike the DNA sequence, epigenetic patterns vary not
only between individuals, but also between different cell types within an
individual. Environmental factors, somaticmutations and ageing contribute to
epigenetic changes that may constitute early hallmarks or causal factors of
disease. Epigenetic modifications are reversible and thus promising ther-
apeutic targets for precision medicine. However, mapping efforts to deter-
mine an individual’s cell-type-specific epigenome are constrained by
experimental costs and tissue accessibility. To address these challenges, we
developed eDICE, an attention-based deep learning model that is trained to
imputemissing epigenomic tracks by conditioning onobserved tracks. Using a
recently published set of epigenomes from four individual donors, we show
that transfer learning across individuals allows eDICE to successfully predict
individual-specific epigenetic variation even in tissues that are unmapped in a
given donor. These results highlight the potential of machine learning-based
imputation methods to advance personalized epigenomics.

Epigenetic mechanisms play an essential role in developmental biol-
ogy and human disease1,2. They act at the intersection of genetic and
environmental factors to control, regulate, and propagate cellular
responses, significantly contributing to diverse cellular phenotypes.
Importantly, their influence on gene activity is reversible without
altering the underlying DNA sequence. Therefore, they provide unique
diagnostic and therapeutic opportunities and offer promising targets
for precision medicine approaches3–5, with particular interest in
applications in cancer treatment6,7. Advances in epigenome editing
technologies arepaving theway for including epigeneticmodifications
not just as biomarkers, but also as direct intervention targets for novel
treatments8–10. However, crucial challenges remain, mainly because
epigenomes are cell-type specific and dynamically changing on dif-
ferent time scales, for example during the cell cycle, development, or

ageing. Therefore, decoding epigenetic patterns is particularly labor-
ious, expensive, and data-intensive.

A more in-depth understanding of epigenetic modifications has
shednew light on themechanisms involved in certain neurological and
neurodegenerative diseases, developmental disorders, and some
forms of cancer3,11–13. Large-scale efforts to map the functional prop-
erties of human epigenomes proved essential for these developments
and have provided a crucial resource to understand how the interplay
between genetic and epigenetic factors affects cellular identity and
function14,15. While these projects aim to profile diverse cell types
exhaustively using various epigenetic assays, the associated experi-
mental costs impose constraints that lead to incomplete maps, with
many cell types still sparsely analysed. This sparsity presents a parti-
cular challenge for the study of individual-specific epigenomic
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variation. Individual-specific epigenomic signatures have the potential
to inform personalized predictions for risk stratification16, drug
resistance17,18, or personalized therapies19, however producing com-
prehensive individual-specific epigenomic maps remains practically
infeasible, not least becauseof the difficulty of obtaining samples from
certain tissues.

As a result, computational approaches that can leverage existing
epigenomic data to impute the results of as-yet unperformed assays
are of considerable interest, particularly if they are able to predict
individual-specific variation. As well as advancing overall under-
standing of the epigenomic landscape, effective imputation methods
have the potential to play a role in the development of novel precision
medicine workflows, for example by predicting the results of epige-
netic assays in tissues that are difficult to probe in living patients, or
aiding in the prioritization of epigenomic measurements20. Previous
work in epigenomic imputation has shown that machine learning
models can be trained to exploit the correlations between sets of
epigenomic marks within and between cell types to successfully pre-
dict missing measurements21–23. However, these studies have focussed
on the imputation of reference epigenomes, andhave not explored the
use of imputation methods to generate individualized predictions.

In this work, we introduce eDICE (Fig. 1a), a Transformer-inspired
imputation model, which is trained to impute missing epigenomic
tracks given sets of observed tracks. eDICE learns to encode the epi-
genomic signal in a set of observed tracks into factorised local repre-
sentations of each cell type and each assay, enabling imputations to be
made forunseen combinations of cell type and assaybydecoding from
the appropriate representations. We first show that our architecture
leads to improved imputation performance relative to previous
methods on the reference Roadmap epigenomes while conveying
significant practical benefits. Next, we use recently published
individual-specific epigenomes from EN-TEx24 to test whether eDICE
can be used to generate individualized epigenomic imputations.
Inspired by precisionmedicine applications, we devise a task designed
to assess the utility of imputation methods for predicting individua-
lized epigenomes in hard-to-access tissues and find that transfer
learning across individuals allows eDICE to predict individual-specific
epigenomic variation in this setting.

Results
eDICE and previous work on epigenomic imputation
In 2015, Ernst and Kellis pioneered work in the field of large-scale
epigenomic imputation by introducing ChromImpute21, an imputation
strategy for the reference epigenomic datasets produced by the
Roadmap and ENCODE projects15,25. Given sets of reference epigen-
omes generated by performing various epigenomic assays in a set of
cell-types, the epigenomic imputation task posed by ChromImpute is
that of predicting epigenomic tracks representing combinations of
cell-type and assay for which experimental data are not available,
thereby ‘completing’ the epigenomic map. To solve this problem,
ChromImpute adopts a regression-based approach, requiring the
training of a separate ensemble of models for each target track. While
ChromImpute has shown effective performance, it relies on the man-
ual engineering of input feature sets and the training of thousands of
separate models, preventing the effective sharing of information
across the highly related tasks of the imputation of different tracks.

Subsequently, imputation strategies based on tensor factoriza-
tion have been proposed as a way of reducing the complexity of
ChromImpute. PREDICTD22 generates predictions via a linear combi-
nation of learned factors representing cell type, assay, and genomic
location. Avocado23 replaces the linear combination of factors used in
PREDICTD with a learned nonlinear operation, by passing con-
catenated embeddings corresponding to each factor through a neural
network. Tensor factorization approaches have the appealingproperty
that given a learned set of factors, predictions can be generated at any

genomic location, for a track corresponding to any combinationof one
of themodelled cell-types and assays.Nonetheless, theperformanceof
these approaches has only outstripped ChromImpute on a subset of
metrics.

Seeking to combine the strengths of prior approaches, we
developed a deep learningmodel, eDICE (epigenomic Data Imputation
via Contextualized Embeddings), based on framing the epigenomic
imputation problem as one of masked input reconstruction. During
training, a random subset of the observed signal values for a set of
epigenomic tracks at a single genomic position is masked out, and the
model is tasked with learning to impute the masked values given the
remaining observed values. Unlike in standard masked input recon-
struction applications, the epigenomic imputation problem requires
models to be capable of predicting signal values for tracks never seen
during training, representing novel combinations of cell type and
assay. To achieve this combinatorial form of generalization, eDICE
encodes the input signal at the genomic position of interest into
separate latent representations summarizing the local epigenomic
state of each cell type and the local activity profile of each assay. The
signal value in a masked track is then reconstructed by concatenating
the representations for the relevant cell type and assay and passing
them through a Multi-Layer Perceptron (MLP) decoder. At test time,
predictions for new tracks can be generated in the same way, by
feeding themodel with the signal values of a set of observed tracks at a
genomic location of interest, and decoding from the representations
of the target cell type and assay.

To implement the factorized encoding of local epigenomic signal,
we developed a self-attentive neural networkmodule (Fig. 1), based on
the Set Transformer architecture26. This module starts by indepen-
dently encoding the signal in each cell type and each assay, then
constructs ‘contextualized’ representations of each cell type and each
assay by transferring information among related cell types and related
assays using self-attention. By conditioning on observed signal values
to build representations of the local epigenomic state, rather than
learning location-specific embeddings, eDICE achieves the general-
ization capacity of tensor factorization models while offering sub-
stantial improvements in both training efficiency and performance. A
full description of the architecture and training procedure is provided
in the Methods section.

eDICE imputations are highly accurate on the reference
epigenomes
For direct comparison with previous imputation work, we evaluated
the accuracy of eDICE imputations on a dataset of epigenomic tracks
collated by the Roadmap project27 and used in previous studies21–23.
This dataset consists of 1014 signal tracks from 24 epigenomic assays
in 127 cell types. All but one of the assays target histonemodifications,
with the remaining assay profiling chromatin accessibility via DNase-
seq. A core set of five assays (H3K4me1, H3K4me3, H3K36me3,
H3K27me3 and H3K9me3) is available in most cell types, while cov-
erage of the cell typeswith the remaining assays varies widely.Weused
the first train/test split defined by Durham et al.22, which consists of
709 training tracks, 102 validation tracks, and 203 test tracks (Sup-
plementary Fig. 1 and Supplementary Section 3.1). To compare the
performance of imputation methods, we report a series of metrics
assessing the quality of imputations of the tracks in the test set by
models trained on tracks in the training and validation sets (and
optionally using these tracks to provide inputs at test time). The
metrics are computed across chromosome 21 of the hg19 assembly,
the smallest human chromosome, spanning approximately 48 million
base pairs. As baselines, we report results for the prior methods
ChromImpute, PREDICTD, and Avocado (see the Methods section for
further details). Finally, as a parameter-free baseline, we also report
predictionsmade by averaging the signal of the target assay in all other
cell types in the training data except the target cell type (AVG).

Article https://doi.org/10.1038/s41467-023-40211-2

Nature Communications |         (2023) 14:4750 2



Fig. 1 | Schematic representation of the eDICE model. a For each cell type, we
collect all measured signal values from assays performed in that cell type at the
target bin, and project this set of values into a shared embedding space, where it is
combined with a global embedding representing the cell type (1). We do likewise
for assays, projecting the sets of values measured in different cell types from each
assay into a distinct embedding space. We then apply self-attention over both sets

of embeddings, allowing the network to capture relationships between cell types
and assays to produce `contextualized' latent embeddings which are functions of
the local signal values in all observed tracks (2). Finally, a feed-forward neural
network combines the contextual embeddings for a target cell type-assay combi-
nation to generate a prediction for the local signal value (3). b Transfer learning
scheme for the imputation of unseen tissues in the EN-TEx dataset.
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Previous studies of imputationmethods have varied in the choice
of the primary metrics by which to assess performance21–23. In an
attempt to provide a balanced view of model quality, we report per-
formanceon a selectionofmetrics designed to capture three desirable
characteristics of imputations: (i) global similarity between imputa-
tions and ground truth values (ii) similarity between imputations and
ground truth values focusing on foreground (Fg) and background (Bg)
bins, as determined by MACS228 and (iii) discriminative accuracy for a
peak vs non-peak classification task. The first two categories are
assessed using mean-squared error and Pearson correlation on the
arcsinh-transformed signal values, while in the latter category, we
measure peak classification performance via the threshold-agnostic
area under the precision-recall curve (AUPRC), as well as by precision
and recall after calling peaks on the imputations using MACS2. Addi-
tional details on all metrics are found in Methods and Supplementary
Section 3.2.

The performance of the models is presented in Fig. 2 and Sup-
plementary Figs. 2–9, with numeric values reported in Supplementary
Table 2. eDICE outperforms PREDICTD andAvocado across allmetrics,
and ChromImpute across the majority, although ChromImpute shows
strong performance for the prediction of peak height in the fore-
ground (Fig. 2a, c, Supplementary Figs. 2, 3). eDICE’s relative dis-
advantage here suggests a tendency to systematically underestimate
the absolute signal values within peaks, which is exemplified in the
trade-off between precision and recall compared to ChromImpute.
However, it ranks peak and non-peak regions relative to each other
more accurately than ChromImpute, as demonstrated by the fact that
it outperforms all baselines on the AUPRCmetric, thereby offering the
best overall imputation in terms of global discriminatory power. We
emphasize that while PREDICTD and Avocado generated imputations
respecting the same data split used for eDICE, the ChromImpute
imputations were produced in a leave-one-out fashion, so our model’s
improved performance comes despite a considerable handicap rela-
tive to ChromImpute in terms of the available training data.

Qualitatively, eDICE presents many of the characteristics that
were present in its predecessors, such as a general smoothing of the
imputed tracks, which is especially notable in the background regions
(example in Fig. 2b). Additionally, the imputed tracks reduce the
impact of outlier values, such as the extremely high peaks present in a
few tracks for H3K4me3. Such peaks are not necessarily a direct
representation of the high significance of the local enrichment but can
be heavily affected by the control samples’ coverage and quality,
which, when low, can bias the estimated p-values towards extreme
values (see further discussion in Supplementary Section 3.1).

To confirm that these aggregate results were not unduly influ-
enced by variation in the range of metric values across different types
of assay, we also examined the metrics at the level of individual tracks
(Fig. 2c and Supplementary Figs. 4–6) and aggregated by assay
(Fig. 3a). The track-level comparisons confirm that eDICE’s perfor-
mance improvements are consistent across different combinations of
cell-type and assay. Grouping tracks by assay reveals significant dif-
ferences in the performance of imputationmethods depending on the
type of epigenetic mark. For example, all models tend to perform
relatively poorly when predicting H3K27me3 and H3K9me3 (Fig. 3a
and Supplementary Figs. 7–9). Comparing the average assay-level
performance of each model shows that the improvements brought by
eDICE are consistent across the board despite these discrepancies
between assays (Supplementary Fig. 2).

Finally, we explored whether differences in performance between
types of assays could be related to differences in specific properties of
the epigenetic marks. Some histone modifications can be classified as
either narrow-peak (H3K27ac, H3K4me2,H3K4me3,H3K9ac) or broad-
peak marks (H3K27me3, H3K36me3, H3K4me1, H3K79me2,
H4K20me1). Comparing the performance of eDICE on test tracks
across these two groups, we observed that performance tended to be

higher on narrow-peak than on broad-peak marks for correlation and
classification metrics (Fig. 3b). Furthermore, a similar divide is
observed when splitting histone modifications into repressive
(H3K27me3, H3K9me3) and activating marks (the active promoter-
associated H3K9ac, H3K4me2, H3K4me3, active enhancer-associated
H3K4me1 and H3K27ac and DNAse-seq, Fig. 3c). As repressive marks
are often linked to heterochromatin configurations, this discrepancy is
possibly due to biases introduced by the processing pipelines because
of systematic sequencing differences in these regions. However, as
repressive marks also tend to display broad peaks, it is challenging to
pinpoint the precise reason for the observed differences.

Importantly, the performance benefits of eDICE are coupled with
increased efficiency in the training procedure. Relative to Chro-
mImpute, this is a result of training only a single model rather than a
separate ensemble of models for each target track. Relative to Avo-
cado and PREDICTD, eDICE can make accurate genome-wide predic-
tions without needing to train on every genomic location, leading to
major improvements in training efficiency. To highlight this, in Fig. 2d,
we show the results of training eDICE on smaller subsets of the ran-
domly selected genomic locations. Even when trained on a small
fraction of the available genomics data, eDICE outperforms Avocado,
suggesting that the tensor factorization models severely over-
parameterize the imputation problem by learning a representation for
each genomic bin.

Imputations capture significant differences between tissues
Epigenomic patterns differ between cell types to control and register
cell function and identity. It is critical that imputations accurately
capture these differences if they are to constitute valuable resources of
cell-type-specific epigenomic landscapes. However, within the scale of
the whole genome, these cell-type-specific differences are subtle and
global evaluation metrics such as those considered above are domi-
nated by regions that have a shared functionality across cell types,
such as large intergenic regions.

In the analysis of epigenetic modifications, it is crucial to capture
not just a single instance of the local signal measured by experimental
assays, but also the local variabilitywhichmay characterize each tissue.
To distinguish potentially functional differences from either technical
or biological fluctuations, established experimental protocols expli-
citly require several biological replicates to estimate local variability.
This is essential for robust statistical hypothesis testing29. On the other
hand, experimental tracks are generally pooled for imputation tasks,
and predictions thus constitute mean epigenomic tracks per cell type,
where the inherent variability is lost. We present here a case study in
which we estimated local variability on the training data and then
generated simulated replicates from the mean epigenomic imputa-
tion. This strategywas used to predict and identify differential peaks in
H3K9ac tracks across two tissues (corresponding to Roadmap cell
types Adipose-Derived Mesenchymal Stem Cell Cultured Cells (E025)
and Muscle Satellite Cultured Cells (E052)).

We highlight that the overall shape of individual peaks is
remarkably conserved between individual experimental replicates
for corresponding tracks (Fig. 4a). In the case of tissue-specific
peaks, on the other hand, the signal shapes are distinct between
replicated measurements derived from different tissues (Fig. 4b).
We have previously exploited this observation for differential peak
calling30, where we considered the genomic region of the peak as a
metric space and treated the pile-up of sequenced reads like a
sample from a hidden probability distribution on that space. This
strategy dramatically improves the test’s statistical power com-
pared tomethods based on total counts alone. We also note that the
shape differences are well captured by the mean signals (Fig. 4a, b
bottom panels). To quantify differences in peak shapes across the
two cell types, we computed theWasserstein (WS) distance between
the pooled ground truth signals across the two cell types, and
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likewise between the imputed signals. Figure 4c shows that the
distances in imputed and ground truth tracks are strongly corre-
lated, indicating that the imputations accurately capture cell-type-
specific differences in the shape of signal enrichment at peak
regions.

As an independent analysis, we next took advantage of the
robustnessof the existing differential peak analysismethod, DiffBind31.
Since DiffBind requires replicates for statistical testing, we estimated
the local variability of cell-type-specific test tracks (Supplementary
Section 3.4). Assuming a negative binomial distribution, the estimated

Fig. 2 | Comparison of imputation methods on the Roadmap reference epi-
genomes. a Performance metrics for the imputation of the n=203 test tracks on
chromosome 21 for eachmodel. Boxes represent the interquartile range (IQR), with
the middle line representing the median; the whiskers represent points that lie
within 1.5 IQRs of the lower and upper quartiles while remaining outliers are
explicitly displayed. Metrics presented include Mean Squared Error (MSE) and
Pearson correlation coefficient (Corr) for the Genome-wide (GW/Global), Fore-
ground (Fg) and Background (Bg) regions, as well as the Area Under the Precision-
Recall Curve (AUPRC), Precision, and Recall for the classification of peaks detected
with MACS2. b Examples of observed epigenomic tracks with the signals imputed
by eDICE for the assay H3K9ac in two selected tissues (E025, E052). Below the
tracks, the peaks detected with MACS2 highlight how the imputations accurately
capture enriched regions. The peaks were detected using a one-sided Poisson

hypothesis test with Benjamini-Hochberg correction for multiple test corrections
and a cut-off value of0.01. cPercentages of test tracksonwhicheDICEoutperforms
the baselines for each metric. ChromImpute shows good performance on tasks
related to the height of the peaks, while eDICE outperforms PREDICTD and Avo-
cado on all metrics. d Learning curves that display several global performance
metrics against the number of genomic positions used in training. Tensor factor-
ization models such as Avocado need to be trained on the whole genome to make
genome-wide predictions. eDICE, on the other hand, can be trained efficiently on a
small subset of genomic regions and still obtain improvedperformance, suggesting
that previous models severely overparameterized the imputation problem. Data
are presented asmean ± 95% confidence interval forn = 203 test tracks. Source data
are provided as comma-separated-values (csv) files.
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variance parameters were subsequently used to simulate replicates
from the imputed mean signal tracks on chromosome 21. While an
arbitrary number of replicates can readily be generated in this way, we
chose to use three to four simulated replicates, similar to typical
experimental scenarios. Those tracks were fed into the standard dif-
ferential analysis pipeline, and the outcome was compared with the
results obtained from the corresponding analysis of actual replicated
measurements. We emphasize that the simulation procedure

employed only replicates from the training set and tissue-specific
control samples in addition to the imputed tracks, andmade no use of
any information from the test set.

Employing the DiffBind library31 we compared binding affinity
scores, which are indicative of the strength of interaction betweenDNA
and biomolecules (such as modified histones). Figure 4d shows a
correlation heatmap for the similarity of affinity scores for different
samples. The block structure highlights the expected relationship

Fig. 3 | Imputation performance varies significantly between different assays.
a Grouping the tracks by assay reveals considerable differences in the imputation
performance. This phenomenon is observed in the previous models as well, indi-
cating that it is most likely due to the nature of the specific modifications and the
biases that their signal includes. The colour of each dot indicates the number of
training tracks that share the cell type with that specific test track, while the light
blue bars in the background show the number of training tracks that share the same
assay.bAssays split into broad- and narrow-peakmarks show consistently different

performance for the imputation task. For each metric, we performed a 2-sided
Welch’s t-test under the null hypothesis that both sets of metrics have the same
mean and reported the resulting p-value at the bottom of each plot. c Splitting the
histonemarks by functionality (repressive vs. activating) shows a similar bias as the
comparison in (b). For eachmetric,weperformed a 2-sidedWelch’s t-test under the
null hypothesis that both sets of metrics have the same mean and reported the
resulting p-value at the bottom of each plot. Source data are provided as comma-
separated-values (csv) files.
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between the replicates derived from different tissues; however,
the simulated replicates show high similarity across tissues, possibly
due to the adopted procedure underestimating the biological variance
between samples.

Within DiffBind, we used DESeq2 to identify peaks of differential
enrichment with default parameters. Specifically, we used a
‘glmGamPoi’ fit type to estimate dispersion and used a Wald test for

negative binomial distribution (‘nbinomWaldTest’) to identify statisti-
cally significant peaks. A total of 1165 and 1299 peaks were detected as
differentially enriched in measurement and imputations, respectively
(FDR threshold of 0.05). 855 peaks (~73% of the measured peaks) are
shared between the two sets, resulting in a Positive Predictive Value of
0.66 (Fig. 4e). Binding affinity scores for each differentially enriched
peak in the consensus peak set derived from imputations and
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measurements are shown in Fig. 4f, where the block structure resulting
from agglomerative clustering of the measurements (left side) is
replicated in the imputations (right side).

The differential analysis procedure was repeated for all the
models analysed, with eDICE outperforming Avocado and Chro-
mImpute; the model PREDICTD showed comparable performance
(Supplementary Fig. 23). In summary, we conclude that the imputa-
tions accurately capture cell-type-specific differences, both in terms of
altered shapes of signal enrichment at peak regions and also regarding
integrated total counts in the peak regions, when considering local
variability. In general, increasing the number of replicates in a
sequencing experiment leads to more robust results32. Therefore, a
similar augmentation strategy could also be applied to complement
certain existing experimental data sets with additional replicates from
an imputed mean track.

eDICE accurately predicts personalized epigenomes in unseen
tissues
Recent advances have highlighted the role that alterations in the epi-
genetic machinery play in human disease33–35. In the field of precision
medicine, epigenetic mutations are currently examined mainly for
their potential role in early detection and drug response
prediction36–38. However, increasingly robust epigenome editing
methods8 open up exciting opportunities for direct interventions on
the epigenome for the treatment of illnesses such as cancer10.
Achieving a more in-depth understanding of individual- and cell-type-
specific epigenetic patterns and their effect on the cellular machinery
will be crucial to realizing the promise of such applications.

Recently, a collaboration between the ENCODE25,39 and the
Genotype-Tissue Expression (GTEx) consortia created data sets that
include extensive individual-specific histone modification measure-
ments from four donors24. We decided to use this dataset to test
whether eDICE could be applied to impute epigenomicmeasurements
in an individual-specific manner. One particular use case for imputa-
tions in this setting could be to predict epigenomic measurements in
otherwise hard-to-access tissues, potentially avoiding the need for
invasive procedures. Motivated by this use case, we developed a task
to test the prediction of epigenomic measurements in a particular
individual in tissues for which no epigenomic information for that
individual is available. Specifically, we aim to impute epigenomic
tracks for a target tissue in one individual patient ("target individual”),
by using other observations from the same individual, aswell as amore
complete set of observations for another individual ("training indivi-
dual”), which include the target tissue. To adapt eDICE to this task, we
adopt a transfer learning approach. We first train an eDICE model on
the complete set of observations for the training individual. Themodel
is then fine-tuned on the set of observations for the target individual
that do not include the target tissue, before imputing the target
observations (Fig. 1b). We employed an eDICE model with the same
architecture as used for Roadmap, but altered the masking process
used during training to reflect the tissue-based prediction task,
ensuring that the set of masked tracks at each genomic bin all belon-
ged to a single randomly selected tissue.

To get a better understanding of this task, we performed an initial
analysis of epigenomic variation between individuals in the EN-TEx
dataset. The data include measurements spanning 25 different tissues
from two adult males, 37 and 54 years old, and two adult females, 53
and 51 years old. We selected for further study 29 tissue-assay com-
binations comprising measurements of histone modifications avail-
able for all four individuals (Supplementary Table 3), focussing on
chromosome 21 in all cases. Initial analysis of observed tracks revealed
both a large degree of similarity in epigenomic signal across indivi-
duals in numerous instances (Fig. 5a) as well as the dominant role of
tissue identity in determining epigenetic patterns, in particular for
marks H3K27ac, H3K4me1 and H3K9me3 (Fig. 5b). Individual-specific
peaks unique to only one or a subset of individuals are nonetheless
observed, most notably for H3K9me3 (Fig. 5c). Three-dimensional
histograms of co-occurrences across tissues and individuals highlight
that across allmarks individual-specific peaks are typically also specific
to one or a small number of tissues and that the frequency of such
peaks varies substantially between marks (Fig. 5d and Supplementary
Figs. 17–21). These personal epigenomic differences may either reflect
underlying DNA sequence variants, in which case they may be obser-
vable across different tissues of the same individual, or theymay result
as a consequence of ageing or due to interactionswith external stimuli,
potentially in a tissue-specific manner.

We next assessed the accuracy of eDICE imputations generated
using the transfer learning scheme described above. We compared
these predictions to imputations from two model-free baseline
methods. The firstmethoddirectly uses the corresponding track in the
training individual as a prediction of a given track in a target individual.
The second method generates a predicted track by averaging the
tracks from the target assay in all tissues apart from the target tissue in
the target individual (i.e., an individualized version of the AVGbaseline
used previously). For each method, we consider all possible combi-
nations of target tissue, target individual, and training individual, and
evaluate the resulting predictions. Using the transfer learning strategy
presented, eDICE produces imputations which are globally more
accurate than either of the baselinemethods, asmeasured byMSE and
Pearson correlation (Fig. 5e), indicating that transfer learning suc-
cessfully adapts eDICE to the context of a new individual, while
retaining the understanding of tissue types inherited from the training
individual to allow successful prediction in tissues without measure-
ments in the target individual.

eDICE captures epigenetic variation between individuals
Finally, we used the same transfer learning framework to assess eDI-
CE’s ability to predict individual-specific epigenomic signatures.
Defining such signatures is far from trivial; a robust analysis would
requiremore than four individuals to properly understand the overlap
of enriched regions and the external factors that influence them. As a
working approximation, we define individual-specific peaks as those
enriched regions detected from the measured samples that span at
least 150 bp (i.e., the approximate length of theDNAwrapped around a
nucleosome) and which are present only in the target individual, and
not the training individual. This definition aims to capture peaks such

Fig. 4 | Differential peak analysis using imputed epigenomic tracks. a, b show
examples of non-specific and tissue-specific peaks respectively for H3K9ac in the
two chosen tissues (E025 and E052). The upperpart shows themeasured replicates,
while the lower portions display the aggregate p-value tracks for the observations
and the corresponding imputations. The aggregate tracks do not capture the
information on the biological variability between samples. c A scatter plot of the
Wasserstein distance between the signal in the two tissues, for each peak in the
enriched peakset of E025. The x-axis displays the WS distance between observed
signals, while the y-axis is between imputed signals. The imputations retrieve most
of the information contained in the measurements, especially for the stronger
differences between tissues. We highlighted the two points corresponding to the

peaks shown in (a) and (b).dCorrelation heatmapof the affinity scores for different
replicates. The simulated replicates correctly retrieve the expected relationships to
the measured replicates, although they show a high degree of similarity between
themselves, likely an artefact of the simulation procedure. e Venn diagram repre-
senting the peaks that are detected as differentially enriched between tissues using
imputed andmeasured signals. The imputed signal retrieves 66% of the true peaks.
f Binding affinity heatmaps for the measured replicates and the imputed pseudo-
replicates. Each row corresponds to one of 1609 differentially enriched peaks
detected in either of the measurements and imputations. The imputed replicates
display the same global block structure as themeasurement replicates. Source data
are provided as comma-separated-values (csv) files.

Article https://doi.org/10.1038/s41467-023-40211-2

Nature Communications |         (2023) 14:4750 8



Fig. 5 | Imputation of individual-specific epigenomic patterns. a Sigmoid Colon-
H3K4me3 track spanning 800kb and showing consistent patterns for all four
individuals. For the central peak, we display a slice across the epigenomic tensor
demonstrating signal conservation across tissues and individuals. b Occupancy
histograms for the enriched bins across tissues. c Occupancy histograms for the
overlap of enriched bins across individuals. d Occupancy across tissues and indi-
viduals for each enriched bin in the tracks forMale 37 for the EsophagusMuscularis
Mucosa tissue. e Pearson correlation and MSE for the leave-one-tissue-out

imputation of chromosome 21 using transfer learning from one training individual
to the target individual. n = 72 imputed tracks for the `Training Ind. Track' baseline
and eDICE for each assay except H3K36me3, where n = 60. n = 24 for the “AVG”
predictor for each assay except H3K36me3, where n = 20. Boxes represent the IQR,
with themiddle line representing themedian; thewhiskers represent points that lie
within 1.5 IQRs of the lower and upper quartiles. Source data are provided as
comma-separated-values (csv) files.
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as the example shown in Fig. 6a, where H3K4me3 is clearly found in
one individual. This task presents significant challenges due to the
relatively small portion of epigenetic enrichments that meaningfully
differ between individuals and because of the complex epigenetic
patterns that arise in these regions of variability, exemplified by the
heatmaps displayed in the lower portion of Fig. 6a. In these cases, local
variability is observed not just between individuals, but also between
tissues within the same individual (Fig. 6b).

To assess the ability of eDICE to predict these individual-specific
peaks, we compared imputations to test tracks after excluding enri-
ched regions shared with the training individual. We additionally
excluded enriched regions specific to the test individual but spanning
less than 150bp. Within the remaining regions, we assessed the extent
towhich the imputations successfully distinguished individual-specific
peaks from the background using the area under the precision-recall
curve (AUPRC). For completeness, we included the fraction of positive
samples (Pos. Fraction) as a standard baseline for the AUPRC
measure40. The results, presented in Fig. 6c, show that eDICE improves
the prediction of individual-specific enrichment compared to the

model-free baselines. A track-level comparison of eDICE’s improve-
ment over the model-free baselines is shown in Fig. 6d.

Capturing individual-specific differences is crucial for the robust
application of state-of-the-art machine learning models to epigenetics
within a clinical context. The case study presented aims to be a guiding
example for the development of better andmore accuratemodels that
may be included in a clinical workflow.

Discussion
We presented eDICE, a deep-learning-based epigenomic imputation
frameworkwhichachieves high accuracy by combining the advantages
of its predecessor models. Like ChromImpute, eDICE uses the local
signal of observed tracks to encode information on the genomic
position, removing the need to learn explicit embeddings for each
position. Similar to the tensor factorization models PREDICTD and
Avocado, eDICE uses factorized representations to achieve combina-
torial generalization,while drastically reducing the requiredparameter
count (Supplementary Table 1). On reference epigenomes, eDICE’s
performance is robust across a variety of metrics capturing different

Fig. 6 | Imputation for precision epigenomics. a Individual-specific H3K4me3
enrichment for (Male 37) in EsophagusMuscularis Mucosa tissue. For this genomic
location, we display a slice of the epigenomic tensor for each of the four indivi-
duals, highlighting the challenge of imputing these varied patterns. Peaks were
detected with MACS2 using a one-sided Poisson hypothesis test with Benjamini-
Hochberg correction for multiple test corrections and a cut-off value of 0.01.
bObserved and imputed tracks for the H3K4me3 assay inMale 37 across tissues in
the same genomic region as (a). c AUPRC for the prediction of individual-specific

enrichment in the LOO EN-TEx imputations, where the peaks shared with other
individuals have been masked out. n = 72 imputed tracks for each model for all
assays except H3K36me3, where n = 60 for each model. Boxes represent the IQR,
with themiddle line representing themedian; thewhiskers represent points that lie
within 1.5 IQRs of the lower and upper quartiles. d Track-level AUPRC for the
prediction of individual-specific enriched bins. Source data are provided as
comma-separated-values (csv) files.
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facets of imputation performance, surpassing all baselines across the
majority of metrics, while offering significant practical benefits as a
simple single-model approach that is efficient to train and run.

We emphasize the need for imputation models to be trained and
designed with the aim of including imputations in established bioin-
formatics processes. As a case study, we explored the possibility of
simulating biological replicates from the imputed data, which are then
used for differential peak calling obtaining results compatible with the
measured replicates. We pose that future developments in the field of
epigenomic imputation should account for and predict not only the
average value of measurements but also the intrinsic biological varia-
bility of different samples. Explicitly modelling the variance of epige-
nomic measurements would allow for a more robust analysis to
distinguish the differences caused by fluctuations due to the natural
variability of the samples from the true differences between tissues
and marks that encode the functional variations of cell profiles.

Finally, we demonstrated the possibility of imputing persona-
lized epigenomic tracks, showing how eDICE can be adapted to
generate imputations for unseen tissues that outperform those from
model-free baselines. The transfer learning approach adopted allows
the model to learn representations for all tissues from a training
individual, which can then be transferred to a target patient, enabling
accurate imputations in tissues where no data for the target indivi-
dual is available. While our results offer a proof of concept for the
direct applicability of methods originally designed for the imputa-
tion of reference epigenomes in this setting, individual-specific
imputation presents additional challenges which future works might
seek to address directly. In particular, further enhancements in
accuracymight be unlocked by incorporating information from DNA
sequences, as well as information aggregated across other indivi-
duals and from reference datasets to augment the relatively limited
number of measurements in any single individual. In order to fully
leverage the promise of transfer learning across epigenomic data-
sets, further consideration should be paid to the role of systematic
biases introduced by differences in experimental methodology and
bioinformatics pipelines used to process sequencing data, as high-
lighted by the findings of the ENCODE imputation challenge41, to
which we submitted a prize-winning entry using a predecessor of
eDICE. We believe that our results offer a strong indication that
machine learning methods are well-placed to address these chal-
lenges, and, in so doing, to help overcome the experimental con-
straints that limit our understanding of epigenetic variation.

Methods
Data
A dataset of epigenomic measurements from the Roadmap
Consortium15 was selected to allow direct comparison with prior
imputation methods. The Roadmap dataset consists of 1014 signal
tracks from 24 types of epigenomic assay in 127 cell types. Each signal
track is obtained by mapping a set of sequence reads to a genome to
form a genome-wide activity profile. All but one of the assays target
histone modifications, with the remaining assay profiling chromatin
accessibility via DNase-seq. A core set of five assays, targeting
H3K4me1, H3K4me3, H3K36me3, H3K27me3 and H3K9me3, is avail-
able in each cell type, while coverage of the cell types with the
remaining assays varies widely. We use the first train/test split defined
by22, which consists of 709 training tracks, 102 validation tracks, and
203 test tracks. Supplementary Fig. 1 gives an overview of the data
splits over training, validation, and testing.

Following previous imputation work, we work with signals in the
formof�log10 p-value tracks, which indicate the statistical significance
of a mark at each genomic position, and seek to impute the average
�log10 p-value within each non-overlapping 25 base pair interval in a
given subset of the genome. We additionally preprocess the �log10
p-value signal using an arcsinh transform, which reduces the impact of

outliers and differences in distribution between different types of
assay, again inspired by prior work22,23,42.

The EN-TEx dataset contains the results of a variety of functional
genomic assays in 25 tissue types from four donors (in the main text,
for consistency with prior publications, we use ‘tissues’ to refer to
biosamples in EN-TEx and ‘cell type’ to refer to biosamples in Road-
map; for the purposes of the imputationmethod the two terms should
be treated as interchangeable). We selected 116 histone modification
tracks common to all four individuals (Supplementary Table 3). These
tracks were processed in the same manner as those from Roadmap.
The tracksmeasured for the ‘thoracic aorta’ and ‘ascending aorta’were
merged to cover all four individuals.

Enrichment detection and evaluation metrics
WeusedMACS228 to detectpeaks in observed tracks, using a one-sided
Poisson hypothesis test with Benjamini-Hochberg correction for mul-
tiple test corrections and a cut-off value of 0.01. We refer to the 25-bp
genomic bins belonging to the peaks detected by MACS2 for a given
track as ‘enriched bins’ or ‘foreground regions’ for that track. Enriched
bins detected in thiswaywere used to define evaluationmetrics for the
tasks of both reference epigenome imputation and individual-specific
imputation, as described in detail below and in Supplementary
Section 3.2.

Roadmap imputation metrics. The global quality of imputations was
measuredusing themeansquared error (MSE) andPearson correlation
coefficient applied to imputed and ground-truth tracks. Thesemetrics
were also evaluated separately on foreground and background
regions. Recovery of enriched bins (i.e., bins occurring in MACS2
peaks) was measured using the threshold-agnostic area under the
precision-recall curve (AUPRC). Finally,MACS2was applied to imputed
tracks to generate a set of predicted peaks using the same fixed
parameters as used to call peaks on the observed tracks. The resulting
peaksets were then compared with the peaksets returned from the
observed tracks using precision and recall.

Individual-specific imputation metrics. Global imputation perfor-
mance was measured as above. For the prediction of individual-
specific peaks, we used the AUPRC to compare imputed tracks and
MACS2 peaks, after excluding all genomic regions containing peaks
conserved across individuals involved in the transfer learning and
spurious individual-specific peaks of less than 150bp.

Tensor factorization
Given a set of observed tracks that are the result of performing at least
one of a set of na assays ða1, . . . ,ana

Þ in each of a set of nc cell types
ðc1, . . . ,cnc

Þ, the goal is to generate imputations for all assay-cell type
combinations which are not represented by tracks in the observed set.
The complete set of possible measurements (all assays in all cell types
at all genomic locations) can be represented as a rank-3 tensor Y, with
Yijk the signal observed at the kth genomic position when performing
the jth assay in the ith cell type.

Tensor factorization approaches model entries in the tensor as
interactions between separate representations for each dimension. In
PREDICTD and Avocado, learned cell type embeddings, c, assay type
embeddings, a, and genomic bin embeddings, b, are combined via a
parametric function gθ to reconstruct or impute tensor elements:

Ŷijk = gθðci,aj ,bkÞ: ð1Þ

The embeddings are learned to optimally reconstruct the
observed tensor entries. Crucially, the use of a factorized functional
form allows such models to generate predictions for arbitrary com-
binations of cell-type, assay and genomic location, meaning that
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missing values in the tensor can be straightforwardly imputed given
the learned embeddings.

eDICE model
Given that individual epigenomic tracks are either completely
observed or completely missing, to impute a particular missing entry
Yijk corresponding to the signal value in a missing track at a particular
genomic location k, the most important source of information is the
observed values of other tracks at the same location. Let Y k represent
the partially observed (nc × na) matrix corresponding to taking a slice
of the tensor at a particular genomic position. Our strategy is to learn
to impute masked subsets of entries in Y k given the remaining entries,
by learning a factorized regression function:

Ŷ
k
ij = gθ cið~Y

kÞ,ajð~Y
kÞ

� �
: ð2Þ

Here ~Y
k
is the matrix of local signal values in which a subset of

tracks has been masked by setting the corresponding entries of the
matrix Y k to 0. All missing tracks likewise have their values set to 0.
Factorization is achieved by encoding the matrix of local signal values
into cell-type- and assay-type- specific representations, cið~Y

kÞ and
ajð~Y

kÞ. These representations are thusdirectly conditionedon the local
signal, unlike in the case of tensor factorization approaches, where
cell-type and assay representations are global and parameterized
directly.

The model produces the local embeddings cð~Y ðkÞÞ and að~Y ðkÞÞ via
separate cell and assay encoders. First, these encoders embed the local
signal in each cell and each assay, then use self-attention to produce
cell and assay embeddings that are informed by the signal in related
cells and assays, respectively.

Themodel is trained byminimizing themean squared error of the
predictions of signal values in masked tracks in expectation over
masks. The loss for a single genomic location is then:

Lðθ,ϕ,YkÞ= 1
∣M∣

X
fijg2M

ðŶ k
ijðθ,ϕÞ � Yk

ijÞ
2
: ð3Þ

The mean squared error is minimized with respect to the para-
meters of the encoders ϕ and decoder θ over a fixed training set of
randomly selected genomic locations. At each iteration, a single mask
M is drawn at random for each location and used to compute a Monte
Carlo estimate of the loss. In practice, we mask 120 tracks at a time
(∣M∣ = 120) and use the remaining tracks as ‘context’ to predict the
masked values. This training objective can be seen as a kind of self-
supervised learning, similar to that employed by denoising
autoencoders43, but differing in the use of a factorized encoder and
decoder. At test time, all tracks from the training set are used as inputs
to predict the values of held out tracks.

Cell encoder. Let yðkÞ
ci denote a partially observed signal vector char-

acterizing the signal in tracks across all assays in cell type ci in the kth

bin (i.e., the size of this vector is na, where na is the total number of
assays, some of which may be missing, and therefore set to 0 for the
cell type in question). This cell-specific local signal vector ismapped to
an embedding space through a non-linear function fϕC

, shared by all
cell types, and implemented through a fully connected layer with
parametersϕC and a ReLU activation function. To allow the network to
combine the local signal representation with knowledge of the global
properties of the cell type, we add to the local signal embedding a
learned global cell type embedding uc, which plays the role of a posi-
tion embedding in the standard Transformer architecture.

hk
ci
= fϕC

ðyk
ci
Þ+uci

ð4Þ

The cell encoder then applies a Transformer-style self attention
block to the resulting embeddings:

c1ð~Y
kÞ, . . . ,cnc

ð~YkÞ=SABðhk
c1
, . . . ,hk

nc
Þ ð5Þ

The self-attention block (SAB) is identical to a standard self-
attentive Transformer layer44, except for the removal of Layer Nor-
malisation, which we did not find important in our shallow networks.

To account for differences in the number of observed entries
across cell types, a scaling step is applied in the signal embedding. This
step involves multiplying the activations of the fully connected layer
ϕC by a factor 1

nobs
, where nobs are the number of observed assays in the

cell type, in an attempt to account for the uneven mapping of the
epigenome, similar to the activation scaling used in Dropout45.

Assay encoder. The assay encoder operates analogously to the cell
encoder, taking as inputs assay signal vectors whose entries are the
local signal values observedwhenperforming a given assay in each cell
type:

hk
aj
= fϕA

ðyk
aj
Þ+uaj

ð6Þ

a1ð~Y
kÞ, . . . ,ana

ð~YkÞ=SABðhk
a1
, . . . ,hk

ana
Þ: ð7Þ

Signal Decoder. The result of the factorized self-attention is a set of
cell representations ðc1k , . . . ,cknc

Þ and a set of assay representations
ða1k , . . . ,akna

Þ, each of which is a function of the identity of the
particular entity being represented and the full set of local signal
values in all observed tracks at the k-th genomic bin
ðcki � ciðci,Y ðkÞ

obsÞ and akj � ajðaj,Y
ðkÞ
obsÞÞ. Given these representations,

theprediction for a given cell type-assaypair is obtainedbypassing the
corresponding contextual cell type and assay representations through
the fully connected neural network gθ (Eq. (2)).

Hyperparameters and training details
The model uses cell and assay embeddings of dimension 256 at all
stages inprocessing.Within the self-attentionblock,weuse 4 attention
heads, whose output is concatenated and fed to a feed-forward neural
network with a single hidden layer with 128 neurons and a 256-
dimensional output. Finally, the combination of cell and assay repre-
sentations is fed to a multilayer perceptron with 2 hidden layers with
ReLU activations and 2048neuronsper layer.During training, Dropout
with a rate of 0.3 is applied to each hidden layer in the output MLP.

The model used to analyse the eDICE performance in the Results
section was trained on the union of the training and validation set for
50 epochs, using the Adam optimizer with a learning rate of 3 × 10−4,
andmasking 120 randomly selected tracks to use as imputation targets
for each training bin. Hyperparameters for this model were manually
adjusted to maximise performance on the validation set.

For the EN-TEx imputations, the reconstruction task is modified
so that the masked values belong to the same cell type in each indi-
vidual bin, which closer mimics the generalization task analysed. The
EN-TEx models have a reduced number of parameters in the embed-
ding layers (128-dimensional) and the MLP hidden layers (512-dimen-
sional), to account for the smaller dataset size. The transfer learning
procedure involves training on one individual for 30 epochs, followed
by 15 epochs of fine-tuning on the target individual with a reduced
learning rate of 3 × 10−5.

Baselines
ChromImpute and PREDICTD imputations were downloaded directly
from the resources accompanying their respective publications21,22. In
the case of ChromImpute, these imputations were generated in a
leave-one-out manner, while PREDICTD’s imputations for tracks in our
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test set were generated by models respecting the same train-test split
used to train eDICE, and thus directly comparable to our results.
Avocado’s publicly available imputations, on the other hand, were
generated by a model trained on the full Roadmap dataset (i.e., on all
tracks, including the tracks in our test set), and therefore cannot be
used to compare performance with other models. We, therefore,
retrained an Avocado model from scratch to respect the data splits
used here. To achieve this, we followed the two-stage procedure
from23, first training all parameters on chromosome4, then freezing all
parameters other than the genomic location embeddings, and fitting
these for chromosome 21, to allow the generation of predictions for
the test tracks on this chromosome. All results for Avocado refer to
imputations made using this re-trained model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheRoadmapdataset is available at http://www.roadmapepigenomics.
org/. The epigenomic tracks for the 4 individuals part of the EN-TEx
dataset can be found on the portal for the ENCODE project https://
www.encodeproject.org/. The accession codes used for the EN-TEx
analysis are listed in the Supplementary Material. The processed HDF5
files containing the training bins and chromosome 21 for the Roadmap
dataset, and chromosome 21 for the selected tracks of the EN-TEx
dataset can be found online at on Edmond, the open research data
repository of the Max Planck Society46. Source data are provided with
this paper.

Code availability
Source code for eDICE47 can be found at https://github.com/alex-
hh/eDICE.
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