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Compilation of reported protein changes in
the brain in Alzheimer’s disease

Manor Askenazi 1, Tomas Kavanagh2, Geoffrey Pires3, Beatrix Ueberheide3,4,5,
Thomas Wisniewski 3 & Eleanor Drummond 2,3

Proteomic studies of human Alzheimer’s disease brain tissue have potential to
identify protein changes that drive disease, and to identify new drug targets.
Here, we analyse 38 published Alzheimer’s disease proteomic studies, gen-
erating a map of protein changes in human brain tissue across thirteen brain
regions, three disease stages (preclinical Alzheimer’s disease, mild cognitive
impairment, advanced Alzheimer’s disease), and proteins enriched in amyloid
plaques, neurofibrillary tangles, and cerebral amyloid angiopathy. Our dataset
is compiled into a searchable database (NeuroPro). We found 848 proteins
were consistently altered in 5 ormore studies. Comparison of protein changes
in early-stage and advanced Alzheimer’s disease revealed proteins associated
with synapse, vesicle, and lysosomal pathways show change early in disease,
but widespread changes in mitochondrial associated protein expression
change are only seen in advanced Alzheimer’s disease. Protein changes were
similar for brain regions considered vulnerable and regions considered resis-
tant. This resource provides insight into Alzheimer’s disease brain protein
changes and highlights proteins of interest for further study.

The cause of sporadic Alzheimer’s disease (AD) is currently unknown.
Mass spectrometry-based proteomic studies of human brain tissue are
an excellent way to uncover the disease mechanisms involved in AD.
Protein changes are particularly important to study for a disease such
as AD because post-translational events such as protein accumulation,
aggregation or post-translational modifications of proteins directly
mediate disease1. This has been particularly highlighted by recent
studies reporting a poor correlation between mRNA and protein
changes in human AD tissue2–4, thus emphasising the need for pro-
teomic studies when examining AD pathogenesis and identifying new
biomarkers and/or drug targets.

In recent years there has been a large increase in the number of
human AD proteomic studies5–7. These studies have examined protein
differences in AD in a variety of brain regions2–4,8–29 and tissue fractions
(e.g. insoluble, synaptic, membrane or blood vessel-enriched

fractions30–35). Additional studies have performed localised pro-
teomics of neuropathological lesions such as amyloid plaques, neu-
rofibrillary tangles (NFTs), and cerebral amyloid angiopathy (CAA)36–42.
Individually, each of these studies have generated important new
insight into AD pathogenesis and have uncovered new potential drug
targets and biomarkers for AD. Despite these benefits, each of these
studies has been somewhat limited when analysed in isolation by
either low sample size, inclusion of a limited number of brain regions,
or analysis of only one clinical stage of AD.

We hypothesised that a combined analysis of AD human brain
tissue proteomic studies would: (1) identify the highest confidence
protein changes in AD; (2) resolve potential concerns about inter-study
consistency; (3) provide a more comprehensive analysis of AD-
associated protein changes that could be used to answer key out-
standing questions about AD pathogenesis. Therefore, the aim of this
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studywas to performa combined analysis ofmass spectrometry-based
proteomic studies examining human AD brain tissue (inclusive of any
brain region, any time point in AD, any tissue fraction) to identify
consistent protein changes in AD. Inclusionwas restricted to studies of
human brain tissue, given concerns that animal or cell models do not
reflect the complexity of human disease26,40,43,44. We have compiled
these data into an online database—NeuroPro—which is a user-friendly
resource for the scientific community that details protein changes in
three clinical stages of AD (preclinical AD, mild cognitive impairment,
and advanced AD), 13 brain regions, and proteins enriched in the three
neuropathological hallmarks of AD (amyloid plaques, neurofibrillary
tangles, and cerebral amyloid angiopathy). Additionally, we demon-
strate the utility of NeuroPro, by using this resource to answer key
questions about AD pathogenesis, including identification of the ear-
liest protein changes in AD, protein changes associated with selective
vulnerability in AD, and correlation of protein enrichment in neuro-
pathological hallmarks and surrounding tissue.

Results
Studies included in NeuroPro
Thirty-eight publications met the inclusion criteria for NeuroPro
(Table 1 and Fig. 1). This included 32 studies that identified protein
differences in bulk tissue homogenate between AD and controls, four
studies that identified the proteome of amyloid plaques, two studies
that identified the proteome of NFTs and 1 study that identified the
proteome of CAA. Combined, these studies resulted in 59 unique
comparisons of AD vs controls in bulk tissue. The number of individual
comparisons was higher than the number of included publications due
to some studies examining either multiple brain regions or multiple
stages of AD, which each counted as a unique comparison in our
analysis. Together, thesebulk tissue studies enabled the comparisonof
protein changes in 13 brain regions and protein changes at three
clinical stages of AD (preclinical AD, MCI, AD). A high variance in the
number of differentially expressed proteins (DEPs) identified in each
study was observed, largely reflecting the sample size in each study. In
sum, NeuroPro currently contains data for 18,119 reported protein
changes in AD human brain tissue, corresponding to 5311 significantly
altered proteins in AD (Supplementary Data 1).

Most consistently identified protein changes in AD
Fifty-four proteins were identified as DEPs in at least 15 different stu-
dies (NeuroPro score ≥15; Fig. 2B and Supplementary Data 1). The
consistent identification of these proteins as significantly altered in AD
across so many studies suggests that these protein changes are the
most prevalent in AD humanbrain tissue. 94% (51/54) of these proteins
were consistently altered in the samedirection across all comparisons:
29 were consistently increased in AD and 22 were consistently
decreased in AD. Only three proteins were inconsistently altered:
VCAN, UCHL1 and IDH2. VCAN was predominantly increased in AD
bulk tissue studies (11 comparisons) but wasdecreased in the insoluble
brain fraction inMCI and preclinical AD31 and in the CA4/dentate gyrus
regionof thehippocampus inAD12. IDH2waspredominantly decreased
in AD (10 comparisons), but was increased in the insoluble fraction of
the frontal cortex in preclinical AD and AD31 and in the wall of the
lateral ventricle in AD18. UCHL1 showed a more binary split between
studies: it was increased in five studies and decreased in eight studies,
and there was no obvious reason for this inconsistency; it did not
appear linked to differing expression between vulnerable and resistant
brain regions, differences between tissue fractions or AD clinical stage.

The most consistently increased proteins in human AD brain tis-
sue were GFAP, APP, HSPB1, CD44 and CLU. The most consistently
decreased proteins in human AD brain tissue were VGF, RPH3A,
CORO1A, ACTN2 and HOMER1 (Fig. 2B). These proteins were con-
sistently altered in the same direction across multiple brain regions
and often also in preclinical AD and MCI. While some of these most

prevalent protein changes were also enriched in neuropathological
lesions (Fig. 2B), this was not always the case, showing that protein
enrichment in AD bulk tissue does not necessarily equal enrichment in
neuropathological lesions. In addition, there were two instances of
proteins that were decreased in AD brain tissue but enriched in neu-
ropathological lesions: VGF and SH3GL1 were both consistently
decreased in AD brain tissue, but enriched in plaques and CAA,
respectively (Fig. 2B). These differences could be due to sample pre-
paration differences between bulk tissue and neuropathological lesion
studies, or it may suggest that VGF and SH3GL1 could have unique
roles in AD pathogenesis.

Surprisingly, despite consistent detection as DEPs in many AD
proteomics studies, 46% of these top 54 proteins are currently
understudied in the AD field (classified as ≤10 previous publications
linking a protein to AD; Fig. 2B; Supplementary Data 1). In fact, four of
these top 54 proteins are novel to the AD field, with no literature
directly linking these proteins to AD; two of these novel proteins were
consistently increased in AD (CAPG and PBXIP1) and two were con-
sistently decreased in AD (AP3D1 and SUCLA2). Intriguingly, CAPG is
also enriched in both plaques and NFTs, suggesting a potentially
important role in pathology. The consistent detection of these pro-
teins as significantly altered in AD proteomic studies warrants future
studies examining their role in AD and highlights the power of our
combined analysis approach.

Consistency of bulk tissue proteomic studies
There was remarkable consistency between bulk tissue proteomic
studies, particularly given different sample preparation and mass
spectrometry methods, different brain regions, different solubility
states and fractionation steps, and different clinical disease stages. 848
proteins were identified as DEPs in AD in ≥5 comparisons of bulk tissue
(Fig. 2A and Supplementary Data 2). Of these proteins, there was very
high consistency between studies for the direction of change: 306
proteins were consistently increased in AD vs controls and 442 pro-
teins were consistently decreased in AD vs controls. Only 100 proteins
showed an inconsistent directional change in AD between studies. It is
important to note that inconsistency between studies does not
necessarily suggest technical issues, but rather could reflect important
pathological protein differences between different stages of disease,
different brain regions or different tissue fractions.

This subset of 848 proteins altered in ≥5 comparisons were highly
interconnected (Fig. 3; p < 1.0 × 10−16; protein–protein interaction
enrichment). Within this broader protein network, there was evidence
of significant enrichment of proteins associatedwith particular cellular
components or biological processes, many of which are known to be
associated with AD. For example, there was evidence of significantly
decreased synaptic proteins, mitochondrial proteins and vesicle pro-
teins, while there was evidence of significantly increased extracellular
and inflammatory proteins (Fig. 2C, D and Supplementary Data 3). Our
analysis suggested that therewas a particularlywidespreaddecrease in
many structural components and processes associated with synaptic
function, including both pre- and post-synaptic proteins, proteins
associated with neurotransmitter release (particularly glutamate) and
vesicle trafficking (particularly clathrin-coated vesicles). Unexpect-
edly, our combined analysis also uncovered evidence of decreased
kinases associatedwith tau phosphorylation (includingGSK3A,GSK3B,
CDK5, MARK1 and ROCK2), despite the increased phosphorylation of
tau in AD (Supplementary Data 3). There was also strong evidence of
increased blood microparticle proteins in AD, and increased proteins
associated with neurofibrillary tangles and amyloid plaques.

Interestingly, this high inter-study consistency suggests that
protein changes in AD consistently occur in the same direction,
regardless of brain region or tissue fraction examined. The biggest
determinant of inconsistency between studies appeared to be the
power of individual studies: as expected, lower-powered studies
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identified only themost extreme protein differences andmissedmore
subtle protein changes. Importantly, however, lower power studies did
not appear to have a higher prevalence of false positive results, only
false negative results, meaning that they were still valuable to include
in this combined analysis. The high consistency between studies pro-
vided us with increased confidence that NeuroPro could be used to
examine fundamental unanswered questions about Alzheimer’s dis-
ease pathogenesis. Key examples of how NeuroPro can be used to
examine AD pathogenesis are included in the sections below.

Neuropathology associated proteins
A unique aspect of NeuroPro is that it includes proteomic data
examining the three neuropathological hallmarks of AD: amyloid pla-
ques, NFTs and CAA. This allows a direct comparison of proteins
enriched in each neuropathological lesion and provides insight into
how protein enrichment in neuropathology and more widespread
alteration in bulk tissue are related. Studies included in NeuroPro to
date identify 2324 plaque proteins, 615 NFT proteins, and 246 CAA
proteins (Supplementary Data 1). Proteins were classified as enriched
or depleted in a neuropathological lesion based on a >1.5-fold change
difference when compared to surrounding control tissue. Alter-
natively, proteins were classified as present if they were present in
neuropathological lesions in at least three cases within a study.

Weweremost interested to compareproteins thatwere enriched/
depleted in neuropathological lesions, as these proteins are more
likely to be pathologically relevant. We identified 300 proteins enri-
ched in plaques, 125 proteins depleted in plaques, 54 proteins enriched
in NFTs, 58 proteins depleted in NFTs, 192 proteins increased in CAA-
containing blood vessels and 54 proteins depleted in CAA-containing
blood vessels (Fig. 4 and SupplementaryData 1). Only a small subgroup
of proteins were commonly enriched in multiple neuropathological
lesions (Fig. 4A), suggesting that protein enrichment in neuropatho-
logical lesions is selective and not simply a result of the stickiness of Aβ
and tau. Only three proteins were commonly enriched in all neuro-
pathological lesions: C4A, CLU and GFAP. As expected, plaques and
CAA showed the greatest number of commonly enriched proteins (37
proteins), including many known amyloid-interacting proteins such as
APOE, CLU, C3 and C4A. One notable exception was APP: APP was not
reported as enriched in CAA in the one CAA-specific study included in
NeuroPro, contrasting with the large body of evidence confirming that
Aβ is the primary component of CAA. This highlights the important
caveat that work in this area is still advancing and proteomic results
can be significantly influenced by technical factors (e.g. solubilisation
failure in sample preparation or search parameters). Eleven proteins
were commonly enriched in plaques and NFTs, likely reflecting the
abundant proteins present in phosphorylated tau-rich dystrophic
neurites present in neuritic plaques. GO enrichment analysis showed
that amyloid plaques were significantly enriched in the extracellular
matrix and lysosomal proteins (Fig. 4C and Supplementary Data 4),
while NFTs were particularly enriched in neuronal and lumen proteins
(Fig. 4D and Supplementary Data 4). There was almost a complete
separation of proteins depleted in neuropathological lesions: only one
protein—TARDBP (or TDP43)—was commonly depleted in plaques and
NFTs (Fig. 4B). The fact that all other depleted proteins were unique to
each neuropathological lesion suggests that depleted proteins in

neuropathological lesions are likely cell environment specific respon-
ses to each unique type of neuropathology.

A comparison of neuropathology-enriched proteins and bulk tis-
sue studies showed that neuropathology-enriched proteins are not
simply those that are also highly enriched in bulk tissue. 214/300 (71%)
plaque-enriched proteins, 25/54 (46%) NFT-enriched proteins and 99/
192 (52%) CAA-enriched proteins were not consistently altered in ≥5
bulk tissue studies (Fig. 4E). Intriguingly, there were also a small
number of proteins that were consistently depleted in AD in ≥5 bulk
tissue studies, while being enriched in neuropathological lesions. This
shows that bulk tissue studies cannot be directly used to infer
neuropathology-specific changes in AD; while there are some con-
sistencies, this is not always the case.

Protein changes at different clinical stages of AD
We were next interested in identifying high-confidence protein chan-
ges that occur in the early clinical stages of AD. This is because these
protein changes are likely to be initiating drivers of disease and are
potentially drug targets for early AD. Fifteen studies of early AD
reached our inclusion criteria for NeuroPro. This included six studies
ofMCI26,28,31 and nine studies of preclinical AD2,3,14,15,21,23,31,33 (Fig. 5A). The
proteomic data examining protein changes in preclinical AD is parti-
cularly robust, having been obtained from multiple high-powered
studies. In contrast, the proteomic data currently available for MCI is
less comprehensive and was obtained from lower-powered studies.
Based on this limitation, wedefined early AD as either preclinical AD or
MCI in our analysis below of early-stage AD proteomic changes.

A comparison of the protein changes in early-stage and advanced
AD identified 258 protein changes that occurred in both early-stage AD
and in ≥5 advanced AD studies. Of these, 240/258 protein changes
(93%) occurred in the same direction in both early-stage and advanced
AD (Fig. 5A and Supplementary Data 5), suggesting that it is not
common for proteins to be increased in early-stage AD and decreased
in advancedADor vice versa.Wepropose that the 240protein changes
that are consistently altered in the same direction in both early-stage
and advanced AD are high-confidence early AD protein changes. Of
these early-stage AD protein changes, 99 proteins were increased, and
141 proteins were decreased in AD vs controls. This subgroup of early
AD proteins was significantly interconnected (p < 1.0 × 10−16;
Protein–protein interaction enrichment). Pathway analysis particularly
highlighted early increases in collagen-containing extracellular matrix
proteins (Supplementary Data 6). Proteins decreased in early-stage AD
were predominantly synapse proteins, which broadly clustered into
three groups; those associated with the clathrin vesicle coat (most
notably strong enrichment of subunits of the AP-2 adaptor complex),
those associated with synaptic vesicles, and those involved in actin
filament organisation (Supplementary Data 6). Together, this broadly
suggests that there is an early synapse dysfunction in AD, pre-
dominantly in glutamatergic synapses.

Pathway analysis also showed that most of the earliest affected
cellular components (e.g. synapses, cytoskeleton, lysosome and
clathrin vesicles) start with changes in a core cluster of proteins in
early AD, which then causes a wave of further protein changes in
associated proteins as AD progresses (Fig. 5B). For example, there
was strong evidence for exacerbated synapse dysfunction in

Systematic Literature Review
Inclusion criteria:
• Human brain tissue
• Use of LC-MS/MS
• Published before    

March 2022

38 Studies

Bulk Tissue
(32 studies)

Neuropathology
(7 studies)

Compilation in NeuroPro
https://neuropro.biomedical.hosting

Bioinformatics
AD associated proteins

Fig. 1 | Schematic of methods used in this study. Note that one study42 reported two datasets, one of bulk tissue and one of a neuropathological lesion, therefore
accounting for the discrepancy between the number of individual studies and the total number of studies.
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advanced AD, which startedwith a core cluster of protein changes in
early AD. In particular, there was strong evidence for decreased
levels of one type of glutamate receptor—AMPA receptors (evi-
denced by consistent decreases in three of the four protein subunits
GRIA1, GRIA2 and GRIA3)—in advanced AD, but not in early-stage
AD. Subunits belonging to other glutamate receptors (Kainate and

NMDA receptors) were comparatively less affected in advanced AD
(Supplementary Data 5). One notable exception to this typical pat-
tern of protein changes through AD progression were widespread
changes in mitochondrial proteins, which appeared to be unique to
advanced AD (Fig. 5B). In advanced AD, while decreases in proteins
from all five complexes of the electron transport chain were
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Fig. 2 | Most consistent protein differences in AD human brain tissue.
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observed, this wasmost prevalent for protein subunits of complex I.
Proteins associated with the tricarboxylic acid cycle (TCA cycle),
were also selectively decreased in advanced AD, but not early-stage
AD (Supplementary Data 6).

Very few proteins were changed in opposite directions in early-
stage and advanced AD. Eleven proteins were decreased in early-stage
ADbut increased in advanced AD and seven proteins were increased in
early-stage AD but decreased in advanced AD (Fig. 5A and

Supplementary Data 5). These proteins are particularly interesting as
they could represent initially protective protein changes that fail in
later disease stages. Remarkably, 5/7 proteins that were increased in
early-stage AD and decreased in advanced AD were mitochondrial
proteins (PDHB, DBT, NDUFV1, IDH3G and MMUT), supporting a
potential influential mitochondrial role in early-stage AD that is driven
by select proteins and not widespreadmitochondrial protein changes.
The 11 proteins that decreased in early-stage AD but increased in
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advanced AD showed no enrichment of any pathway, function or cel-
lular component.

Region-specific protein changes in Alzheimer’s disease
Next, we were interested in identifying proteins that were linked to
selective vulnerability in AD. For this analysis, we used NeuroPro to
compare protein changes in advanced AD in 12 brain regions, which
were classified as vulnerable or resistant brain regions in AD (Fig. 6A
and Supplementary Data 7). We were particularly interested in deter-
mining if there were consistent protein changes in brain regions that
are vulnerable and resistant to AD. After filtering for high-confidence
protein changes, 510 proteins were identified as altered in vulnerable
brain regions in advancedAD (Fig. 6A). 40% (203/510) of theseproteins
were altered in the same direction in both resistant and vulnerable
brain regions (90 proteins were increased in both; 103 proteins
decreased in both; Fig. 6B), providing evidence of AD-associated
protein dysfunction in resistant brain regions that do not have wide-
spread neuropathology.

21% (64/307) of protein changes that were uniquely present in
vulnerable brain regions, but not resistant brain regions were
proteins enriched in neuropathological lesions (e.g. GFAP, APP,
VGF, HTRA1, MDK, SMOC1 and SQSTM1), confirming that neuro-
pathology is not a predominant feature in resistant regions in
advanced AD (Supplementary Data 7). Very few proteins showed
opposite protein changes in vulnerable regions vs resistant

regions (ten proteins; all decreased in vulnerable regions but
increased in resistant regions).

Based on the significant overlap in protein changes in vulnerable
and resistant brain regions in advanced AD, we hypothesised that
protein changes in resistant brain regions in advanced AD (e.g. sensory
cortex, motor cortex and cerebellum) may be the same as those in
vulnerable regions in early-stageAD. If so, thiswould reflect a temporal
wave of progressive protein dysfunction through affected brain
regions as AD progresses. To test this hypothesis, we directly com-
paredprotein changes in resistant regions in advancedADwith protein
changes in vulnerable regions in early-stage AD (Supplementary
Data 8). This analysis showed considerable overlap between these two
groups of proteins, supporting our hypothesis. Sixty-four proteins
were altered in the same direction in the two datasets (Fig. 7A and
Supplementary Data 8); 35 proteins were decreased in AD and 29
proteins were increased in AD. We propose that these protein changes
are some of the earliest protein changes in AD, occurring prior to the
development of neuropathology and persisting throughout disease
progression. Notably, while this subset of pre-neuropathology protein
changes includesmany well-known AD-associated proteins (e.g. APOE,
MAOB and AQP4), it does not include APP and MAPT. This reflects the
fact that widespread neuropathology is not yet present in resistant
brain regions. Pathway analysis of pre-neuropathology protein chan-
ges highlighted increased levels of chaperones associated with
aggregated Aβ and tau (HSPB1, HSPB8, BAG3, APOE and APCS),
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increased levels of enzymes associated with energy production and
biosynthesis of neurotransmitters (SPR, PKM, PAICS, MTAP, MAOB,
LTA4H, GYG1, BBOX1 and ALAD) and proteins involved in innate
immunity. A significant subgroup of these pre-neuropathology protein
changeswere synaptic proteins (24/64 proteins; Fig. 7B). These altered
synaptic proteins were associatedwithmany intracellular components
in both the pre- and post-synapse (Fig. 7B), suggesting widespread
early synaptic dysfunction in AD. Based on this analysis we propose
that there are three phases of protein changes in AD human brain
tissue: Phase 1 (pre-neuropathology protein changes), Phase 2 (Early-
stage AD protein changes which occur early in the disease alongside
neuropathology development) and Phase 3 (Advanced AD protein
changes) (Supplementary Data 9).

Discussion
NeuroPro provides a comprehensive roadmap of protein changes that
occur in the humanbrain throughout the progression of AD. NeuroPro
provides insight into AD pathogenesis and highlights potential drug
targets and biomarkers for AD. As such, we propose that it is a useful
innovative resource for the AD field. Its novelty lies in our combined
analysis approach of diverse mass spectrometry datasets that often
have limited power when analysed in isolation. Our online database
allows users to immediately place AD brain protein changes in the

context of clinical disease stage, brain region specificity, association
with neuropathology and subcellular/biochemical changes in disease
(e.g. subcellular localisation or insolubility in disease). To demonstrate
the power of NeuroPro, we have used it here to examine key questions
about ADpathogenesis. In doing so, we have: (1) shown that proteomic
studies of AD tissue are highly consistent, (2) shown that proteins
enriched inplaques,NFTs andCAAare largely unique and independent
of broader protein changes in bulk tissue, (3) shown that there are
many similar protein changes in resistant brain regions in AD and early
clinical stages of AD (4) identified some of the earliest protein changes
in AD, including a subset that we hypothesise to occur prior to neu-
ropathology development. These results are just a few examples of the
type of analyses that can be performed using NeuroPro. An additional
key benefit of NeuroPro is that users can search their own datasets.
NeuroPro provides immediate context to newly generated data about
the involvement of protein hits in AD and allows rapid comparison
between protein changes in AD and other diseases.

One of our key findings was that widespread decreases in synapse
proteins appear to be one of the earliest pathological changes
observed in humanAD brain tissue. While synaptic changes are known
to have a pivotal role in AD45,46 and have been reported in both pre-
clinical AD andMCI47–49, exactly how early synaptic dysfunction occurs
in human AD and the initiating protein drivers involved are unknown.
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We identified a subgroupof 24 synapseproteins thatwere significantly
altered in resistant brain regions prior to the development of local AD
neuropathology, suggesting that these synaptic protein changes could
be among the first pathological changes in AD. We hypothesise that
these initial synaptic protein changes promote downstream synaptic
dysfunction in neighbouring proteins, interactors or members of the
same networks as AD progresses, which is reflected in the increased
number of synaptic protein changes at later stages of AD. These pre-
neuropathology synapse protein changes were observed throughout
both the pre- and post-synapse and were associated with many sub-
cellular compartments, suggesting widespread dysfunction through-
out the synapse in early AD. While little is known about how most of
these proteins are mechanistically involved in AD, the role of some of
these proteins in AD has been previously explored: for example,
DNM1L50,51, SYNPO52 and YWHAZ53,54 all appear to promote AD-
associated pathology. Mechanistic roles for other non-synaptic pro-
tein changes in this pre-neuropathology phase have also been repor-
ted, strengthening support for the potential importance of this subset
of proteins. For example, there is evidence that HSPB155, BAG356,
GPNMB57, AQP458, HSPB859,60, PKM61, DKK362, GLRX63 and GAS764 are
protective in AD, while MAOB65 and CD4466 appear to promote AD-
associated pathology. These previous studies confirm that many of
these pre-neuropathology protein changes are potential drivers of AD
and suggest that themechanistic roles of the remaining proteins in this
group should be examined in future studies.

Another key finding was that enrichment of proteins in neuro-
pathological lesions is a selective process that is unique to each spe-
cific type of lesion. We hypothesise that the enriched proteins present
in each type of lesion reflect the processes involved in lesion devel-
opment. For example, plaqueswere significantly enriched in lysosomal
proteins, nicely complementing recent studies that suggest that
amyloid plaques form after the accumulation of intraneuronal Aβ in

autophagic vacuoles67. In contrast, NFTs were significantly enriched in
neuronal and endoplasmic reticulum proteins, supporting previous
studies showing a strong association between tau and ribosomal pro-
teins that can pathologically impair translation68,69. In addition, our
results highlight the importance of localised proteomics
approaches70–72 to identify neuropathology-enriched proteins, as pro-
tein enrichment in neuropathology was often not reflected in bulk
tissue studies.

We were intrigued to see that many AD-associated protein chan-
ges were consistently observed in the same direction in early AD,
advanced AD, vulnerable brain regions and resistant brain regions.
Together, our results suggest that resistant brain regions in advanced
AD may develop the same protein changes observed in vulnerable
brain regions in early AD; supporting a hypothesis that theremay be a
temporal wave of progressive protein changes throughout the brain in
AD. While it is well established Aβ and tau progressively spread
through the brain in AD73,74, here we show that this same process may
occur for many other proteins also. Importantly, a subset of these
protein changes (many of them synaptic proteins) appears to occur
before Aβ and tau accumulation, suggesting that they may be early
disease drivers. Our results support the concept that resistant brain
regions are initially protected against pathology (possibly due to a
range of factors75–77); however, once these protective measures even-
tually fail, the same initiating protein changes observed in vulnerable
brain regions in early AD become apparent. If true, this has potential
implications for experimental studies as resistant brain regions in
advanced AD could be used as a proxy to study early AD-associated
protein changes in human brain tissue. Given these implications, these
results should be further explored in future studies to confirm our
preliminary findings proposed here.

There are several limitations to our study, which highlight critical
future research directions. For example, only a limited number of MCI
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proteomic studies were available, and these were largely under-
powered. Future, high-powered proteomic studies comparing protein
changes inMCI and preclinical AD tissue are needed, as these could be
used to specifically identify protein changes linked to cognitive
impairment while controlling for neuropathology. This is additionally
important because there is still debate about whether preclinical AD
cases are, in fact, early AD, as they could instead be individuals resilient
to AD. Future high-powered proteomic studies directly comparing
preclinical AD to MCI are needed to address this important question.
Furthermore, most AD proteomics studies to date have examined
protein changes in the frontal cortex: only a handful have examined

other brain regions. Additional high-powered studies examining other
brain regions, particularly resistant brain regions, would be excep-
tionally useful to determine the temporal progression of protein
changes throughout the progression of AD. In addition, more studies
are required to confirm proteins enriched in neuropathological
lesions. While proteins that are present in neuropathological lesions
are interesting, proteins that are selectively enriched in neuropatho-
logical lesions in comparison to neighbouring control tissue are more
likely pathology drivers. In particular, additional datasets examining
CAA are needed given that the current single dataset that met our
inclusion criteria did not identify Aβ and other major amyloid-
associated proteins42, which we propose to be due to the lack of
solubilisation of Aβ in these samples because of the lack of formic acid
treatment during sample preparation prior to mass spectrometry in
this study. Looking forward, NeuroPro will continue to expand as
proteomic studies increase in the future. There is potential for the
inclusion of proteomic studies of disease models (such as iPSCs or
animal models), which would be useful for addressing important
questions about how closely these models reflect human AD. With
regards to iPSCs, it would be important for future studies to compare
the proteome of multiple unique patient-derived lines from both AD
and controls to reflect the inter-patient variability typically present in
human brain tissue studies. Additionally, NeuroPo could be expanded
to include changes in protein post-translational modifications (e.g.
phosphorylation, acetylation, ubiquitination etc.), which are known to
be critical disease mediators in AD. Only a small number of proteomic
studies examining post-translational modifications in human AD brain
tissue have been performed to date; however, as studies in this area
increase, these would be an excellent future addition to NeuroPro.

To conclude, we have shown thatNeuroPro is a powerful resource
that provides insight into AD pathogenesis and highlights many novel
or understudied proteins in the AD field, providing exciting avenues of
research for future studies. This has the potential to increase the
impact and widespread use of proteomic data and will hopefully pave
the way forward for new therapies and biomarkers for AD.

Methods
Systematic literature review and inclusion/exclusion criteria for
NeuroPro
A comprehensive literature search was performed to identify all LC-
MS/MS studies of human AD brain tissue. The following search terms
were used on Pubmed: ’Alzheimer’s proteomics’ and ’mass spectro-
metry human brain Alzheimer’s’. All papers published prior to March
15, 2022, were included in the search. In addition, our own accepted
manuscript36 was also manually included. Search results were auto-
matically filtered on Pubmed prior to manual screening using the
English and Human filters and reviews were excluded. Results were
then manually screened by one reviewer (ED) to identify acceptable
studies that defined protein changes in bulk tissue homogenate

Fig. 7 | Proposed pre-neuropathology protein changes. A High-confidence pro-
tein changes were mapped to three successive phases of the disease: pre-
neuropathology phase, early AD phase and advanced AD phase. The 64 proposed
pre-neuropathology protein changes are identified by gene IDs. Text size reflects
the total number of studies each protein has been reported to be significantly
altered in (i.e. NeuroPro score). Orange text: proteins consistently increased in AD
vs controls; blue text: proteins consistently decreased in AD vs controls. B 24 pre-
neuropathology protein changes were synaptic proteins. Schematic highlights
simplified key locations of each of these 24 altered proteins based on GO terms,
noting the caveat thatmanyof these proteins havemultiple functions and locations
within the synapse, which is not represented here. Twenty-two synaptic proteins
were downregulated (blue text), while two synaptic proteins were upregulated
(orange text). * indicates proteins that are reported to be located in both the pre-
and post-synapse. For simplification, each protein is only highlighted once in either
the pre- or post-synapse. AD Alzheimer’s disease.
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between (i) AD vs controls, (ii) mild cognitive impairment (MCI) vs
controls and (iii) preclinical AD (also referred to in the literature as
asymptomatic AD, prodromal AD or high pathology control) vs con-
trols. In linewith the current literature, wedefinedpreclinical AD as the
presence of amyloid plaques in the absence of cognitive impairment78.
Inclusion criteria for bulk tissue homogenate studies were: analysis of
human brain tissue, use of LC-MS/MS, and sufficient accessible LC-MS/
MS data. Proteins were considered to be differently expressed
between disease and control (DEPs) based on any of the following
statistical approaches: FDR of <5%, p <0.05 using ANOVA and an
appropriate post hoc test (e.g. Tukey’s or Holm’s comparison post hoc
test), p < 0.05 using Kruskal–WalisH-test, or a combination of p <0.05
using t-test combined with a fold change difference >1.5-fold. Studies
using 2D-gel electrophoresis were excluded. Studies that did not
specify brain regions (e.g. analysed proteins in ’cortex’) were excluded.
Studies that did not provide a protein identifier (or an adequate
identifier that could be used to map a corresponding protein identi-
fier) in their datasets were excluded.

Data were manually collected from published manuscripts and
their supplementary data by a single reviewer (ED). Data collected
fromeach study included lists of all proteins identified in the study and
accompanying statistical and fold change data (if available) or similar
data for significantly altered proteins if the full list of identified pro-
teins was not provided. Datasets were manually adjusted to permit
direct comparison between studies using the following methods: Sin-
gle gene ID andUniProt IDweregenerated for each reported protein; if
multiple gene IDs for a single protein were provided, the first listed
Gene ID was used. UniProt IDs were stripped of isoforms. Duplicate
gene IDs within a dataset were removed. p-values (generated using
unpaired, two-sided t-test) and fold change differences between AD
and control groups were manually performed using published data if
not provided in the original study and sufficient data were available.
Proteins identified by only one peptide were excluded. Published lists
of DEPs were manually filtered to only include those that reached our
stringency criteria detailed above.

Proteomics studies examining the proteome of amyloid plaques,
neurofibrillary tangles (NFTs) or cerebral amyloid angiopathy (CAA)
were also included. Inclusion was limited to studies that selectively
isolated neuropathological lesions using either laser capture micro-
dissection (for plaques and NFTs) or a dextran/Ficoll gradient extrac-
tion (for CAA-containing blood vessels). A protein was considered
present in plaques or NFTs if it was present in ≥3 cases within a study.
Reported results were manually filtered to exclude proteins identified
by only 1 peptide. Proteins were considered increased or decreased in
a plaque, NFT, or CAA-containing blood vessel based on >1.5-fold
change difference between plaques:non-plaque regions, NFT con-
taining neurons:non-NFT containing neurons or CAA-containing blood
vessels:non-CAA-containing blood vessels.

NeuroPro database
Data from selected studies were uploaded into NeuroPro: https://
neuropro.biomedical.hosting. All proteins were annotated with both a
protein identifier (UniProt ID) and gene ID. Proteins were grouped
within NeuroPro using GeneID. The entire NeuroPro dataset can be
downloaded in the meta-analysis tab within the NeuroPro database. A
NeuroPro Score for each protein was generated based on the number
of times that protein was reported as significantly altered in AD in
published studies. In NeuroPro, proteins can be filtered according to
brain region, disease stage, association with neuropathology or
direction of change in AD, either alone or in combination in the meta-
analysis tab. The resulting filtered datasets can be exported. Users can
also directly compare datasets of interest (e.g. user-generated data or
published proteomic data examining a different disease) in the Multi-
Protein Query tab, which categorises searched proteins into known or
novel AD-associated proteins in the Novel vs. Confirmed tab.

Analysis of NeuroPro
Consistency of directional change. Data was exported from Neuro-
Pro for analysis on 7-21-22 (SupplementaryData 1). TheNeuroPro score
for each protein was obtained from NeuroPro and an additional Neu-
roPro (Bulk Tissue) Score was generated, which was a count of the
number of times a protein was designated a DEP in studies of bulk
tissue homogenate only (i.e. excluding studies of neuropathological
lesions). Proteinswere designated as Increased/Decreased inAD if they
were consistently altered in the same direction in ≥5 studies of bulk
tissue homogenate, with one outlier permitted (to accommodate the
range of brain regions, fractions, and disease stages). DEPs in ≥5 stu-
dies of bulk tissue homogenate with two or more outlier directional
changes were designated Inconsistent in AD.

Comparisonof protein changes in early-stagevs advancedAD. Bulk
tissue data were exported from NeuroPro. DEPs were filtered into
those occurring in preclinical AD,MCI and advanced AD and individual
NeuroPro Scores were assigned for each clinical stage of AD. Proteins
were designated as Increased or Decreased in each clinical stage of AD
if they were consistently altered in the same direction in all studies
within that clinical stage of AD. One-directional outlier was permitted
only in cases where a protein was altered in ≥5 studies within a clinical
stage. Proteins that were increased in AD received a positive score and
proteins thatwere decreased in AD received a negative score. All other
proteins were classified as having Inconsistent directional change
within that clinical stage of AD and did not receive a score. The
resulting dataset was then filtered to only contain proteinswith a score
in at least one stage of AD (Supplementary Data 5).

Protein changes were compared in early-stage AD (defined as
either preclinical AD or MCI) and advanced AD. Advanced AD protein
changes were restricted to include high-confidence protein changes
only, which were classified as consistently present in ≥5 studies of
advancedAD (onedirectional outlier permitted). Protein changeswere
grouped into those that were (1) altered in the same direction in both
early-stage and advanced AD (proposed early-AD protein changes), (2)
uniquely altered in advanced AD and not early-stage AD (proposed
advanced AD protein changes), (3) altered in the opposite direction in
early-stage and advanced AD or altered only in early-stage AD and not
in advanced AD (proposed opposite protein changes in advanced AD
and Early-AD). All other proteins were classified as Unable to group.
This dataset was then compared to MitoCoP—a dataset of high-
confidence human mitochondrial proteins79 and SynGo—a dataset of
high-confidence human synaptic proteins (2021 download; https://
www.syngoportal.org/), to highlight mitochondrial and synaptic pro-
teins, respectively.

Comparison of protein changes in different brain regions. Bulk
tissue data examining advanced AD was exported from NeuroPro.
This analysis was restricted to advanced AD as current proteomic
studies of early-stage AD tissue have largely been restricted to the
frontal cortex, therefore precluding an in-depth regional compar-
ison. Advanced AD proteomic data was available for 13 brain
regions; frontal cortex, hippocampus, parahippocampal cortex,
entorhinal cortex, temporal cortex, parietal cortex, cingulate gyrus,
precuneus, motor cortex, sensory cortex, occipital cortex, ventricle
wall and cerebellum. Brain regions were designated as either vul-
nerable or resistant in AD based on consensus in the literature about
the timing and extent of neuropathology. Vulnerable regions
included: the entorhinal cortex, hippocampus, parahippocampal
cortex, temporal cortex, frontal cortex, parietal cortex, precuneus,
cingulate gyrus and occipital cortex. Resistant regions included: the
sensory cortex, motor cortex and cerebellum. Data examining
proteomic changes in the ventricle wall18 were not included in this
analysis as there is not sufficient literature available to determine
whether this region is vulnerable or resistant to AD. A brain region-
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specific NeuroPro score was generated for each region, which was a
count of the number of studies where that protein was reported to
be significantly altered in AD within that brain region. Proteins
consistently increased in AD vs controls received a positive score
and proteins consistently decreased in AD vs controls received a
negative score.

An analysis of protein differences in Vulnerable and Resistant
brain regions was performed (Supplementary Data 7). High-
confidence protein differences were identified as those with a
combined region score of ≥5. These high confidence protein chan-
ges were then categorised as; (1) Increased in Vulnerable; Unchan-
ged in Resistant, (2) Decreased in Vulnerable; Unchanged in
Resistant, (3) Increased in Vulnerable and Resistant (4) Decreased in
Vulnerable and Resistant, (5) Increased in Vulnerable; Decreased in
Resistant, (6) Decreased in Vulnerable; Increased in Resistant and
(7) Inconsistent.

Analysis of the pre-neuropathology AD protein changes. Pre-
neuropathology protein changes were designated as those con-
sistently present in the same direction in resistant brain regions, early-
stage AD and advanced AD (Supplementary Data 8, 9). This subset of
pre-neuropathology protein changes was identified by direct com-
parison of early-AD protein changes (Supplementary Data 5) and
protein changes in resistant brain regions (Supplementary Data 7).
Proteins that were consistently altered in both early-stage AD and
advanced AD, but not in resistant brain regions were designated as
Early AD protein changes and protein changes that were consistently
altered only in advanced AD were designated as Advanced AD protein
changes. Protein changes thatwere altered in an inconsistent direction
between any of the protein subsets analysed (resistant protein chan-
ges; early AD protein changes; advanced AD protein changes) were
classified as inconsistent protein changes and excluded from analysis
(Supplementary Data 10).

Pathway/network analysis or comparison with previous
datasets
General data manipulations and grouping were performed in R v4.0.2
using the tidyverse v1.3.2 collection of packages. Plots were generated
in R with the packages ggplot2 v3.4.0, ggpubr v0.5.0, ggrepel v0.9.3,
and all figures were edited in Adobe Illustrator v27.1.1. Gene Ontology
(GO) enrichment analysis was performed in R using the packages
enrichplot v1.16.2, clusterProfiler 4.4.4, using the genome-wide anno-
tation for human, org.Hs.eg.db v3.15.0. Prior to analyses gene IDs were
mapped to Entrez IDs with the ‘bitr’ function of clusterProfiler. GO
terms were filtered to an FDR <0.05 and the full list of proteins
detected were used as the background list (5,311 proteins). Primarily
the GO cellular compartment (GOCC) and GO biological process
(GOBP) annotations were used. GO terms were reduced with the
‘simplify’ function from clusterProfiler to reduce heavily redundant
terms prior to plotting. GO terms were plotted as either top ten ‘lol-
lypop’ plots or enrichment maps where nodes (GO annotations) are
connected by shared proteins. Protein–protein interaction networks
were generated in STRING v11.5 and the networks were edited in
Cytoscape v3.9.1 and Adobe Illustrator. Pathway collections were
annotated manually based on string gene ontology outputs. Venn
diagrams were generated with the R package Venerable v 3.1.0.9000
and edited in Adobe Illustrator. Selected figure panels were created
with BioRender.com.

Comparison with previous literature
Systematic Pubmed searches were performed to determine a
particular protein’s known association with AD. Search terms used
were “protein name” or “gene ID” Alzheimer’s”, and the search was
performed on 15-9-22. The protein name was obtained from
UniProt.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study was obtained from prior publications that
were obtained from Pubmed (listed in detail with accompanying cita-
tions in Table 1). All data used in this study is available on the open-
access NeuroPro website: https://neuropro.biomedical.hosting. All
data used in sub-analyses are included in full in the supplementary data
of this manuscript.

Code availability
No new code was generated in this manuscript. All software used is
open source publicly available or licenced and options used beyond
the default are noted in methods.
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