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Engineering tRNA abundances for synthetic
cellular systems

Akshay J. Maheshwari 1,3, Jonathan Calles 1,3, Sean K. Waterton2 &
Drew Endy 1

Routinizing the engineering of synthetic cells requires specifying beforehand
how many of each molecule are needed. Physics-based tools for estimating
desired molecular abundances in whole-cell synthetic biology are missing.
Here, we use a colloidal dynamics simulator tomake predictions for how tRNA
abundances impact protein synthesis rates. We use rational design and direct
RNA synthesis to make 21 synthetic tRNA surrogates from scratch. We use
evolutionary algorithms within a computer aided design framework to engi-
neer translation systems predicted to work faster or slower depending on
tRNA abundance differences. We build and test the so-specified synthetic
systems and find qualitative agreement between expected and observed sys-
tems. First principles modeling combined with bottom-up experiments can
help molecular-to-cellular scale synthetic biology realize design-build-work
frameworks that transcend tinker-and-test.

Cellular-scale synthetic biology has not yet been made routine by any
method. The practical impacts of synthetic genomics1–6 and modeling
cellular behavior7–10 remain limited by scientific mysteries and techni-
cal complexities11,12. Functional abstractions well-developed for indi-
vidual parts, devices, and pathways13–16 often fail when combined
within complex self-mixing molecular milieus comprising entire
cells17,18. The history of routinization of engineering practice (e.g.,
structural, aeronautical, computational) suggests theory, modeling,
and empiricism must be combined to progress further19. We hypo-
thesized that a first principles approach for representing, designing,
and building cellular-scale systems might enable functional abstrac-
tion appropriate to the design of cellular-scale systems and support
future routinization.

Protein synthesis Using Recombinant Elements (PURE) is a
defined system of 108 molecules, capable of expressing DNA. PURE is
widely used as a starting point for bottom-up synthetic cell
research20,21. PURE itself has been optimized via design and empirical
testing22–24. Significant progress is beingmade toward engineering self-
regenerating PURE25,26. We choose PURE as a suitable empirical system
for testing computational frameworks that might improve routiniza-
tion of cellular-scale systems engineering.

Colloidal Dynamics (CD) modeling enables unfitted simulation of
cellular-scale system behavior with single molecule resolution27. Start-
ing frommolecular abundances and volume fractions we can compute
expected cellular system behaviors28. We wondered if CD modeling
could help design PURE-based systems that behave as expected.

Most latency in protein synthesis is due to physical transport of
ternary complexes28,29. So, we focused on varying tRNA abundances in
PURE. We created a Computer-Aided Design (CAD) tool, Colloidal
Dynamics CAD (CD-CAD), to optimize tRNA abundance distributions
for faster and slower protein synthesis. We applied CD-CAD to design
optimized tRNA abundance distributions for synthetic cells designed
for evolutionary containment30.

We developed a method for building PURE systems that contain
designer tRNA abundance distributions assembled directly via RNA
synthesis, or Tunable Implementation of Nucleic Acids (TINA), to test
our predictions. We used TINA to build synthetic cell-scale systems
withCD-CAD specified tRNAdistributions.We found thatTINAworked
well, qualitatively matching the performance specifications requested
of our CD-CAD tool. CD-CAD plus TINA serves as an example of rou-
tinization of engineering for molecular-to-cellular systems via work-
flows that enable design-build-work outcomes.
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Results
Establishing an expected dynamic range for protein synthesis
rates from tRNA abundances
We examined how variation from wild-type E. coli tRNA abundances
impacts protein synthesis rates. We leveraged a colloidal-scale model
for representing protein synthesis within cytoplasm28. Spontaneous
diffusion of and interactions among individual ternary complexes,
ribosomes, and native proteins are represented with nanometer and
nanosecond resolution. The model enables first-principles estimation
of translation elongation latencies (i.e., the time required to form
peptidebonds) bydirectly simulating how long individual tRNA take to
find and react with matching ribosomes. We developed a method for
post hoc modification of relative tRNA abundances in prior
simulations28 to efficiently estimate how elongation latencies might
change with changing tRNA abundances (“Methods”).

We compared the expected performance of the wild-type E. coli
tRNA distribution to a set of 10,000 randomly generated tRNA abun-
dance distributions. To ensure all random distributions were non-
trivial (i.e., remain capable of translating a cell-scale transcriptome),we
required all tRNA maintain an abundance between the lowest (i.e., no
trivially absent tRNA) and highest wild-type tRNA abundances (0.15%
and 8.5% of total, respectively). We also held the total tRNA con-
centration fixed at ~225 µM28. Wild-type E. coli tRNA abundances are
positively correlated with transcriptome-wide codon usage, unlike
random distributions (Figs. 1A and S1 and S2), as expected31,32. The
average elongation latency across the wild-type transcriptome was
193 ± 5.5ms (mean± SD) for wild-type tRNA abundances. Randomly
generated tRNA abundance distributions were all expected to be
slower in translating the wild-type transcriptome, with a mean expec-
ted elongation latency of 214 ± 5ms (Fig. 1B).

Rational design of tRNA abundance distributions to broaden
dynamic range
We explored how rationally designed tRNA distributions might
enable faster or slower average protein synthesis rates. We first
explored a uniform distribution in which each tRNA is present at
equal abundance, as previously established experimentally30. We
found the correlation between transcriptome codon usage and
matching tRNA was low for the uniform tRNA distribution (slope =
0.1) (Fig. 2A). The slight positive correlation arises from the
degeneracy of coding; while most codons have a single matching
tRNA themost frequent codon (CUG) happens to have twomatching
tRNA (Leu1 and Leu3). We simulated the expected elongation
latencies across all E. coli transcripts, estimating an elongation
latency of 214 ± 1.4ms.

We developed stepwise correlated and anticorrelated tRNA dis-
tributionswherein eachof the 40unique tRNAare sorted indecreasing
order of how often their corresponding codons appear in the tran-
scriptome, and assigned stepwise decreasing or increasing relative
abundances, respectively (Fig. 2B, C). tRNA corresponding to themost-
used codons were assigned the highest relative abundance while tRNA
corresponding to the least-commonly used codons were assigned the
lowest relative abundance, or vice versa (lowest relative tRNA abun-
dancewas set to 0.12%, second-lowestwas set to 0.24%, and so on,with
highest relative abundance set to 4.8%, as needed to keep constant
total tRNA mass). We found expected elongation latencies of
194 ± 5.0ms (correlated) and 232 ± 3.8ms (anticorrelated), the latter of
which is ~20% slower than wild type.

We wondered if any tRNA abundance distribution might result in
faster than wild-type elongation rates or if still-slower rates could be
possible while still translating all transcripts. We engineered a codon-
weighted tRNA distribution by exactly weighting tRNA to their corre-
sponding codon usage (Fig. 2D). As anticipated, the codon-weighted
distribution had a stronger positive correlation between tran-
scriptome codon usage andmatching tRNA (slope = 1.26) compared to
both wild type and stepwise correlated. Predicted elongation latencies
were 4% faster than wild type (185 ± 6.7ms). We engineered a codon-
weighted anticorrelated distribution that reversed the weighting, such
that tRNAwith the greatest corresponding codon usage were assigned
the relative abundances of tRNA with the least corresponding codon
usage and vice versa (Fig. 2E). As expected, the correlation between
transcriptome codon usage andmatching tRNA reversed, producing a
stronger negative correlation (slope = −0.90); predicted elongation
latencies were 23% slower than wild type (237 ± 4.2ms).

Computer-aided design of tRNA abundance distributions
enables purposeful specification of protein synthesis rates
We developed a genetic algorithm (GA) to iteratively optimize a
population of competing tRNA abundance distributions. The GA
initialized via a population of random tRNA abundance distributions
and then applied rounds of computational mutation and selection for
better performing distributions (“Methods”, Table S1). The perfor-
mance of each individual tRNA abundance distribution was calculated
using the colloidal dynamics simulator. The genetic algorithm plus
underlying simulator result in a design tool that allows engineers to
specify a desired translation elongation rate and receive a tRNA
abundance distribution computed from first principles to produce the
desired result. We named our tool Colloidal Dynamics Computer-
Aided Design, or CD-CAD. We used CD-CAD to search for still-faster
and still-slower tRNA abundance distributions, seeking to establish the
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Fig. 1 | Natural abundances of tRNA in wild-type E. coli should account for an
11% quickening of protein synthesis compared to random abundances. A tRNA
abundances (percentages, color bar) in wild-type E. coli compared to a repre-
sentative random tRNA abundance distribution. tRNA are ordered based on
decreasing frequency of cognate codons in the transcriptome. B Distribution for

computed elongation latencies of randomly generated tRNA abundance distribu-
tions (gray; average: black line) compared with the elongation latency of the wild-
typeE. coli tRNAabundancedistribution (green line). Sourcedata are provided via a
Zenodo repository (https://doi.org/10.5281/zenodo.7953836).
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Fig. 2 | Most rationally engineered tRNA abundance distributions should hin-
der protein synthesis. For each tRNA abundance distribution (A–E): Left: relative
tRNA abundances (percentages, color bar). tRNA are ordered based on decreasing
frequency of cognate codons in the E. coli transcriptome. Middle: the fraction of
cognate tRNA per codon (each codon is represented by its relative usage in the

transcriptome). Right: the per-transcript elongation latency distribution (purple;
average, black line) vs. that of wild-type E. coli (average, gray line; percentage
change in elongation). Source data are provided via a Zenodo repository (https://
doi.org/10.5281/zenodo.7953836).

Article https://doi.org/10.1038/s41467-023-40199-9

Nature Communications |         (2023) 14:4594 3

https://doi.org/10.5281/zenodo.7953836
https://doi.org/10.5281/zenodo.7953836


full dynamic rangeof protein synthesis rates thatmight beobtained via
precise engineering of tRNA abundances (Fig. 3A). To improve the
likelihood that any designed tRNAdistributions could be implemented
for any transcript (i.e., organismal-scale functionality), we again con-
strained individual tRNA abundances to be within the bounds of
naturally observed tRNA abundances and kept total tRNA abundance
constant.

We selected the resulting fastest and slowest tRNA abundance
distributions for further analysis. The fast-performing tRNA distribu-
tion assigned, in general, even greater relative abundance to tRNAwith
highly-used codons and even lesser relative abundance to tRNA with
rarely-used codons; likewise, the slow-performing tRNA distribution
assigned, in general, the opposite (Fig. 3B). We found that the fastest
performing CD-CAD tRNA distribution exhibited a strong positive
correlation (slope = 1.51) between transcriptome codon usage and
matching tRNA compared to all rationally designed distributions
(Fig. 3C). As desired, the elongation rates resulting from the compu-
tationally evolved tRNA distribution showed a systematic 10% average
speed up across all transcripts with an average elongation latency of
175 ± 8.6ms (Fig. 3D). Our analysis of the slowest performing tRNA
distribution showed analogous results: the slow distribution exhibited
a strong negative tRNA-codon usage correlation relative to all ration-
ally designed distributions and the resulting protein synthesis rates
showed a systematic 25% average slowdown across all transcripts with
an average elongation latency of 244± 2.9ms (Fig. 3E, F).

We noted that neither of the CAD-produced distributions were
monotonically decreasingor increasing, unlike the earlier stepwise and
codon-weighted distributions (Fig. 2). For example, in the fast dis-
tribution, the leucine tRNA Leu1 abundance is lowered despite being
associated with the most-used codon (CUG). Since leucine tRNA Leu3
encodes the same codon (CUG), but also an additional codon (CUA),
one possibility is that CD-CAD identified that redistributing relative
abundance away from Leu1 should be a more efficient scheme.

To test this hypothesis, we performed a pairwise perturbation
analysis in which we modified the relative abundance of each nearest-
neighbor pair of tRNA (ordered by codon frequency) such that the
relative abundanceof themore frequent tRNAwas 10%higher than the
less frequent tRNA, while maintaining total relative abundance across
the pair. We found that perturbations toward increasedmonotonicity,
and in particular redistribution between Leu1 and Leu3, led to slower
elongation latencies (Fig. S9A). Stacking of pairwise perturbations
together and iteratively to further increase themonotonicity of the fast
distribution led to slightly slower elongation latencies, validating the
non-monotonic CAD-produced distribution as optimal and high-
lighting that elongation speed is relatively robust to small changes in
the monotonicity of the tRNA abundance distribution (Figs. S9B
and S10).

Given that codon choice is known to be biased across different
genes33, we also tested whether variation in optimized tRNA distribu-
tions for transcriptome sub-populations could underlie the CAD-
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Fig. 3 | Computer-aided design of tRNA abundances enables a broad dynamic
range of specifiable translation elongation rates. A Iterative selection of tRNA
abundance distributions by CD-CAD enables either faster (blue) or slower (red)
elongation compared to the initially random population that seeds the genetic
algorithm (gray). Eachdistribution represents the expected average transcriptome-
wide elongation latencies among individual tRNA distributions competing in the
genetic algorithm (Methods); average elongation latencies computedwith thewild-
type tRNA distribution (green dashed line) and the uniform tRNA distribution
(black dashed line). B tRNA abundance distributions produced by CD-CAD that

enable the fastest or slowest elongation compared to wild-type E. coli (color bar,
percentages). C The fraction of cognate tRNA per codon (each codon represented
by its relative usage in the transcriptome) for the tRNA distribution that enables the
fastest elongation. D Per-transcript elongation latency distribution for the tRNA
abundance distribution that enables the fastest elongation (green) vs. the wild-type
abundance distribution (purple). E, F Same as (C, D) but for the tRNA abundance
distribution producedbyCD-CAD that enables the slowest elongation (red). Source
data are provided via a Zenodo repository (https://doi.org/10.5281/zenodo.
7953836).
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produced non-monotonic distribution. As expected, we found that
transcriptome sub-populations with high, intermediate, and low
expression all had different optimal tRNA distributions (Fig. S11),
indicating that codon-usage diversity across different gene sets is an
important determinant of the optimal tRNA distribution for the full
transcriptome. Notably, taking this stratification analysis to the limit
and producing an optimal tRNA distribution for just a single gene with
CD-CAD resulted in a non-monotonic distribution that could not be
made faster by making the distribution more monotonic (Fig. S12).
This finding supports the assertion that the degeneracy of translation
itself is an important feature underlying CAD-discovered tRNA dis-
tributions, consistent with our findings in the pairwise perturbation
analysis above.

Designing tRNA abundances for quantitative control of syn-
thetic cellular systems with fail-safe genomes
We previously reported designs for genetic codes that recognize only
20 sense codons, in which mutations in protein-coding sequences
should most typically result in ribosome stalling and be selected
against, regardless of the identity of the so-encoded proteins30. We
refer to such codes as fail-safe codes because they are intended to
constrain the evolutionary trajectories of so-encoded synthetic biolo-
gical systems.We explored if CD-CAD could be used to design optimal
tRNA abundance distributions for synthetic organisms encoded via
fail-safe genomes.

We computationally recoded the E. coli transcriptome into one
such fail-safe code, RED20, which only uses 20 sense codons (Figs. 4A
and S3, “Methods”). tRNA abundances corresponding to null tRNA
were reassigned to the tRNA encoding the same amino acid. We used
our colloidal dynamics model to compute the elongation latencies of
the so-modified transcriptome, estimating an expected average elon-
gation latency of 164 ± 4.6ms (~18% faster than wild-type E. coli).

We used CD-CAD to search for tRNA distributions capable of
faster or slower elongation latencies (Fig. 4B). The fastest distribution
had a positive correlation between matching tRNA and transcriptome
codon usage (slope =0.67) and an average elongation latency of
157 ± 5.0ms (~5% faster than with wild-type abundances) (Fig. 4C, D).
The slowest distribution was highly polarized, with nearly all tRNA
abundance being assigned to tRNA Pro1 and Trp (two of the least
common codons in the reduced-code transcriptome), corresponding
to a slightly positive cognate tRNA-codon usage correlation (slope
~0.14) and an average elongation latency of 248 ± 1.9ms (~50% slower
than wild-type abundances) (Fig. 4E, F).

Design, construction, and experimental tests of CD-CAD engi-
neered tRNA abundances for a synthetic cellular-scale system
expressing a fail-safe encoded gene
We wanted to directly test whether designs produced via CD-CAD
work as expected. We previously showed how PURE lacking all
tRNA (PUREΔtRNA) can be supplemented with 21 synthetic tRNA
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Fig. 4 | Computer-aided design of tRNA abundances for quantitative control of
synthetic organisms encoded by fail-safe genomes. AComputationally designed
fail-safeE. coli engineered tohaveonly 20 sense codons (adapted fromCalles et al.30

under a Creative Commons CC BY license); white boxes represent sense codons.
B Reduced tRNA abundance distributions produced by CD-CAD that enable the
fastest elongation or slowest elongation compared to the wild-type distribution
(color bar, percentages). C The fraction of cognate tRNA per codon, with each

codon represented by its relative usage in the transcriptome, for the reduced tRNA
abundance distribution that enables the fastest elongation. D Per-transcript elon-
gation latency distribution for the reduced tRNA abundance distribution that
enables the fastest elongation (green) vs. wild-type (purple). E, F are the same as
(C, D) but for the reduced tRNA abundance distribution that enables the slowest
elongation (red). Source data are provided via a Zenodo repository (https://doi.
org/10.5281/zenodo.7953836).
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(20 elongator tRNA plus an initiator tRNA) at equimolar
concentrations30. Here, we developed Tunable Implementation of
Nucleic Acids (TINA) to directly construct any specified distribution of
tRNA abundances (elongator tRNAplus initiator tRNA) from sequence-
specified synthetic tRNA. Resulting tRNA sets can be combined with
PUREΔtRNA to create functioning in vitro expression systems with
custom tRNA abundance distributions (“Methods”). We used TINA to
physically compose tRNA in precise relative ratios as specified by CD-
CAD and measured protein expression using a RED20-encoded green
fluorescent protein (GFP) reporter (Fig. 5A).

Using CD-CAD we designed two distributions, synFast and syn-
Slow, to translate RED20encoded GFP faster and slower, respectively
(Fig. 5B and Table S3). SynFast and synSlow elongation latencies were
predicted to be 160 and 221ms, respectively (i.e., synSlow is expected
to translate GFP at 73% the rate of synFast). We used TINA to compose
and test synFast and synSlow distributions in three independent bat-
ches (Fig. 5C–K). We numerically computed the derivatives of
observed protein expression traces and extracted the average rate
during the period of highest protein synthesis (“Methods”); we
expected that elongation latency dominates translation kinetics dur-
ing the period ofmaximumprotein synthesis, after tRNA charging is at
equilibrium and before PURE component depletion becomes rate
limiting.We found that synFast and synSlowbehaved as expected,with
synFast demonstrating faster protein synthesis across all batches
(p = 0.30 for batch 1, p =0.014 for batch 2, and p = 0.040 for batch 3,
using one-sided Kolmogorov–Smirnov tests) (Fig. 5E, H, K). We nor-
malized translation rates for tRNA distributions within each batch by
the average rate of synFast rates in the same batch. Combining results
from all three batches, we found that synSlow translates slower than
synFast (66% ± 30% vs. 100% ± 33%, respectively; p = 0.0001 using a
one-sided Kolmogorov–Smirnov test), qualitatively matching our
initial design specifications (Fig. S8). In our final batch of tRNA, we also
prepared a uniform distribution of synthetic tRNA to directly compare
synFast and synSlow to prior work30. Using ourmodeling we predicted
that the uniform distribution would have an elongation latency of
177ms (80% of SynFast). We found that uniform was slower than
synFast, as expected (62% ± 6.1%, respectively; p = 0.004 using a one-
sided Kolmogorov–Smirnov test); there was no significant difference
between uniform and synSlow (62%± 6.1% vs. 74% ± 17%, respectively;
p =0.35 using a two-sided Kolmogorov–Smirnov test).

Discussion
The engineering of synthetic cell-scale systems is not yet routine. We
establish how molecular-to-cellular modeling can contribute to routi-
nization of bottom-up engineering for a single cellular-scale process,
protein synthesis. We developed Colloidal Dynamics Computer-Aided
Design (CD-CAD) by overlaying a genetic algorithmon anunfitted first-
principles colloidal dynamics model, enabling design of tRNA abun-
dance distributions producing specified translation elongation rates.
We also established Tunable Implementation of Nucleic Acids (TINA)
to enable direct construction of any specified tRNA abundance dis-
tribution directly from synthetic RNA. Using both CD-CAD and TINA,
we designed, built, and tested reduced tRNA distributions for an
engineered reduced-codon synthetic system. Our TINA-implemented
designs behaved as expected, qualitatively matching the performance
specifications requested of CD-CAD.

We used CD-CAD to minimize or maximize one performance
metric (i.e., elongation rate) of one cell system (i.e., translation). We
did so as a proof of principle for using CAD tools to specify the
behavior of cell systemsgenerally. Our application ofCD-CAD suggests
that unfitted first-principles models can be used to direct design of
molecular-to-cellular systems. Our tool did not require feedback or
parameterization from our experiments, maintaining generalizability
for translation system design across different transcriptomes. While
the underlying colloidal dynamics simulation framework is

generalizable, the model we used here is limited to translation elon-
gation. Further models of cellular processes along with different
optimization methods can be added to our CD-CAD framework to
support design of other cellular-scale processes. We anticipate future
practitioners will use such tools to specify performance in more
nuanced ways. For instance, CD-CAD could be used to optimize
translation rate to facilitate optimal co-translational folding of a target
protein34.

Our CD-CAD tool builds upon prior simulations28 to enable low-
cost design work. The computational cost of the colloidal physics
simulations underlying our model was high due to the spatiotemporal
resolution required for accurate molecular-resolution modeling cou-
pled to the long simulation times needed to capture cellular-scale
processes (e.g., up to ~300,000 CPU-hours costing ~$10,000). Here,
we implemented a process for substituting tRNA distributions post
hoc into already existing simulation data, effectively treating prior
work as a training set to enable CAD work that is ~100,000-fold more
computationally efficient (~1.5 h per optimization on a personal com-
puter) (“Methods”). Constructing multipurpose simulation datasets
with high up-front costs but broad generalizability is a widely used
strategy that may be helpful for affordable routinization of molecular-
to-cellular-scale design (e.g., pre-computed models in machine learn-
ing tools like AlphaFold35).

We constrained our initial use of CD-CAD to a total fixed tRNA
concentration for three practical reasons. First, we wanted to focus on
understanding, in isolation, how manipulating relative tRNA abun-
dances might impact translation rates. Second, we expect that in
building synthetic cellular systems, resource management will be key:
shifting relative abundances among tRNA species, while maintaining
fixed total resources, offers a resource-independent means for opti-
mizing cell performance. Finally, by keeping tRNA concentrations
fixed we could take advantage of prior colloidal physics simula-
tions (above).

Our application of TINA, one-step precision integration of 21 RNA
without requiring iteration, was enabled by our use of unmodified
syntheticRNA as tRNA surrogates. In contrast to traditional extraction-
based methods, direct synthesis allowed us to have full control over
concentrations and fully avoid cross-species contamination. TINA
relies on direct RNA synthesis36,37 via commercial services, which are
relatively expensive (e.g., ~$200,000 per µmol, list price) and slow
(e.g., ~10 weeks from order to delivery). Moreover, synthesized RNAs
can degrade over time (e.g., expression dropped an order of magni-
tude within one freeze-thaw cycle (Fig. 5C, F). We thus limited our
experiments to a single reporter gene and were not here able to test if
CD-CAD can account for sequence specific factors known to impact
elongation rates (e.g., codon pair and dinucleotide biases38). Advances
in RNA synthesis methods, including precision modification of RNA,
will enable many exciting experiments and help make routine whole-
cell synthesis.

Reduced genomes and tRNA sets should support faster protein
synthesis. For example, we predicted that transcriptome-averaged
elongation latency is 23% faster for a codon-reduced genome with a
minimal tRNA set compared to a wild-type genomewith a full tRNA set
(164 vs. 214ms, respectively). Our prediction makes sense at the limit:
if a genome could be encoded by just one tRNA, protein synthesis
should be incredibly rapid since mismatching tRNA would no longer
need to be sampled and rejected by elongating ribosomes. While the
wild-type tRNA distribution itself already prioritizes minimizing the
split of tRNA abundance across isoacceptor tRNA (e.g., Leu1 has much
greater relative abundance than Leu2, Leu3, Leu4, or Leu5), ourmodel-
generated distributions take this concept further, significantly redu-
cing the split (Figs. 3 and S9 and S10).

Why are CAD-optimized tRNA distributions non-monotonic?
Intuition suggests that tRNA abundances directly weighted by corre-
sponding codon-frequency should lead to the fastest elongation rates.

Article https://doi.org/10.1038/s41467-023-40199-9

Nature Communications |         (2023) 14:4594 6



Fig. 5 | Experimental construction and validation of CAD-engineered tRNA
abundances in a synthetic system expressing a fail-safe encoded gene.
A Schematic overview of TINA with CD-CAD. We designed synthetic tRNA
sequences that we sourced via direct RNA synthesis. We used CD-CAD to design
tRNA abundance distributions and combined our synthetic tRNA as specified. We
built in vitro translation systems by supplementing PUREΔtRNA with synthetic
tRNA distributions plus synthetic initiator tRNA. Colors and color bars represent
concentration of each tRNA species per reaction mixture. Icons adapted with
permission fromTheNoun Project under aCreativeCommonsCCBY license.BCD-
CAD specified tRNA distributions optimized for faster (synFast, above) and slower
(synSlow, below) translation of RED20-encoded GFP. Color bars represent con-
centration of each tRNA species per reaction mixture. (C–K) Experimental data
from tRNA batch #1 (C–E, n = 3 technical replicates), tRNA batch #2 (F–H, n = 4
technical replicates), and tRNA batch #3 (I–K, n = 5 technical replicates). Protein
expression for three tRNA distributions is measured and analyzed: synFast (green),
synSlow (orange), and uniform (blue, I–K only) along with a negative control,

PUREΔtRNA (black, labeled as (-)). Colors are usedconsistently across (C–K). Traces
of GFP fluorescence over time (C, F, I), numerically computed derivatives of these
traces (D,G, J) and calculated protein synthesis rates (E,H,K). In (C, F, I), solid lines
represent the mean trace across replicates for each distribution. Shaded regions
represent the 95% confidence interval in the estimate of themean across replicates
within each condition. Dashed lines represent the mean of traces individually
smoothed with a Gaussian filter (see “Methods”). In (D, G, J), solid lines represent
the mean of smoothed derivatives across replicates for each distribution. Shaded
regions represent the 95% confidence interval in the estimate of the mean. In
(E, H, K), error bars represent 95% confidence interval in the estimate of the mean
and colors bars are mean values; colored dashed vertical lines are CD-CAD pre-
dicted rates. Solid black lines with labels show statistical significance (n.s. is not
significant, *p <0.05, **p <0.01); one-sided Kolmogorov–Smirnov (KS) tests used
for comparing synFast to all others, and a two-sided KS test used for comparing
synSlow to Uniform. Source data are provided via a Zenodo repository (https://doi.
org/10.5281/zenodo.7953836).
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Our sensitivity analysis indicates that the phenomena of non-
monotonicity in optimized tRNA distributions for natural tran-
scriptomes arises from at least two underlying factors: (1) degeneracy
of the translation code, enabling preferential choice between tRNA
encoding similar codons during optimization (Figs. S9, S10 and S12),
and (2) codon-usage variance across different subsets of the tran-
scriptome leading to a variety of optimized distributions (Figs. S11 and
S12). When these two phenomena are not present, such as in the
optimization of a single gene in a non-degenerate translation code,
CAD distributions and monotonic distributions perform similarly
(Fig. S13). Compared to the codon-weighted tRNA distribution, we
found that the CAD-optimized fast tRNAdistributionwas ~5% faster for
the wild-type E. coli transcriptome, ~4% faster for the RED20 codon-
reduced transcriptome, and ~2% faster for RED20-encoded GFP,
highlighting that CAD optimization can enable performance gains
especially-well in multi-gene systems with degenerate translation
codes (Fig. S14).

Why are faster tRNA distributions not already adopted by wild-
type E. coli? For example, given the direct relationship between elon-
gation rate and growth rate28,39 an 11% faster protein synthesis rate
could seemingly improve fitness by 11%, providing a significant evo-
lutionary advantage. Two explanations, amongothers, are: (1) accurate
protein folding can be contingent upon fine-tuned protein synthesis
rates, with too-fast protein synthesis leading to misfolded or
aggregation-prone proteins40; (2) too-fast protein synthesis could also
lead to excessive errors during translation, producing incorrect pro-
teins that are less functional or saturate protein recycling systems.
Such explanations may also explain our finding that elongation laten-
cies are more broadly distributed for wild-type tRNA abundances
compared to uniform abundances (Figs. 1 and 2). We anticipate that
additional experiments testing functional protein production vs.
overall protein production in bottom-up cell-building efforts using
different engineered tRNA distributions will help resolve these possi-
bilities and further strengthen model-based design capabilities.

Colloidal dynamics modeling and synthetic molecular compo-
sition can support molecular-to-cellular-scale synthetic biology.
Routine engineering of synthetic cells will ultimately require design-
build-work processes such as those described here for all life-
essential processes. Integrated computer-aided design tools and
system implementation methods supporting functional abstraction
and reliable composition for transcription, metabolism, membrane
biosynthesis and transport, replication, and cell division will be
exciting to imagine and make real.

Methods
Estimating elongation latency for specified tRNA distributions
We used a previously established colloidal dynamics model of trans-
lation elongation dynamics and associated ensembles of thousands of
translation voxel simulations to compute expected transcriptome
elongation latencies28. Translation voxels are representative sub-
volumes of cytoplasm that contain ternary complexes (aminoacy-
lated tRNA bound to EF-Tu-GTP), ribosomes, and average-sized pro-
teins representing all other native proteins; all molecules are
approximated as spheres and represented at experimentallymeasured
abundances. In translation voxel simulations, individual molecules
movebyBrownianmotionwith nanometer andnanosecond resolution
and ternary complexes and ribosomes undergo reactions; reactions
aremodeled as aMarkov process based on established intra-ribosomal
kinetics with non-cognate, near-cognate, cognate reactions having
different latencies and outcomes. Cognate reactions are represented
as able to succeed or fail while non-cognate and near-cognate reac-
tions are represented as always failing (i.e., misincorporations are not
considered). The elongation latency of any single voxel is calculated as
the time for a tracked ribosome loaded with a particular codon to
successfully react with a cognate ternary complex. A representative

elongation latency is derived via an ensemble average across thou-
sands of simulated voxels that span the statistical variation of mole-
cular abundances and transport and reaction dynamics.

We developed a method for post hoc modification of relative
tRNA abundances in already existing voxel simulations to estimate
elongation latencies for any specified transcriptome and tRNA abun-
dance distribution. We noted that prior analysis already computed
component elongation latencies for translation voxels across all pos-
sible combinations of relative cognate and non-cognate ternary com-
plex abundances (with fixed total tRNA abundance) as a sub-process in
computing overall elongation latency. We utilized this feature to
compute elongation latency with any specified tRNA distribution and
transcriptome as follows:
(1) Estimate the likelihood of different cognate:non-cognate ternary

complex ratios in a translation voxel for each possible codon via
Monte Carlo simulations that sample tRNA based on their speci-
fied relative abundances (simulations with zero cognates are
approximated as having one cognate to avoid trivial
distributions).

(2) Compute the elongation latency for each possible codon as a
weighted sum of elongation latencies for each pre-computed
cognate:non-cognate ratio component elongation latency, based
on likelihoods computed in (1).

(3) For each transcript in a specified transcriptome, compute the
relative abundance of each codon.

(4) Compute the elongation latency of each transcript in a specified
transcriptome as a weighted sum of elongation latencies com-
puted for each codon (2), based on relative likelihood of each
codon computed in (3).

(5) Compute the overall transcriptome elongation latency by aver-
aging the elongation latency of each transcript, weighted by the
frequency of each transcript.

This analysis can be used generally to test the impact of specified
tRNA distributions with different transcriptomes (e.g., E. coli tran-
scriptome, µ = 1.0 dbl/h used here), genetic codes (e.g., RED20 used
here), and single transcripts (e.g., RED20-encoded GFP used here).

Optimizing tRNA distributions using a genetic algorithm
(CD-CAD)
Our Colloidal Dynamics Computer-Aided Design tool (CD-CAD) uses a
genetic algorithm wrapped around the colloidal dynamics model. We
initialized our genetic algorithm by generating a population of N = 100
random relative tRNA abundance distributions, D1,D2, . . . ,D100, each
with 40unique relative tRNA abundances,Di,1,Di,2, . . . ,Di,40, such that
P40

j = 1 Di,j = 1. We then iteratively executed the following for 2000
generations, realizing convergence in all our simulations:
(1) For each tRNA distribution in the population we computed and

averaged the elongation latencies of the full specified tran-
scriptome, <τelong,1

>, <τelong,2
>, . . . , <τelong,100

>.
(2) Depending on whether we were optimizing for faster- or slower-

performing tRNA distributions, we computed the fitness of each
tRNA distribution as follows:

Fast : For i= 1, 2, . . . , 100, Fitness Di

� �
=

<τelong,i>
�1

PN

j = 1
<τelong,j>�1

, ð1Þ

Slow : For i= 1, 2, :::, 100, FitnessðDiÞ=
<τelong,i>

PN

j = 1
<τelong,j>

:
ð2Þ

(3) We then removed the 10 tRNAdistributionswith the lowestfitness
from the population.
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(4) From the remaining tRNA distributions, we randomly sampled
five pairs of unique tRNA distributions with choices for each dis-
tribution weighted by their fitness, pðDiÞ = Fitness(Di).

(5) For each pair, (DA, DBÞ, we swapped the values of eight randomly
chosen relative tRNA abundances within each distribution using a
recombination rate of 0.2.

(6) For each pair, (DA, DBÞ, we then used a mutation rate of 0.1 to
randomly select four tRNAandchanged their abundancevalues to
a randomly chosen value between theminimum andmaximumof
wild-type relative tRNA abundances (0.15% and 8.52%, respec-
tively, for the full transcriptome, or 1.2% and 12.8%, respectively,
for the reduced-code transcriptome).

(7) Finally, we added the 10 recombined and mutated tRNA dis-
tributions to the population.

Our algorithm was implemented with parallel processing using
Python 3.7.4 and took ~1.5 h per tRNAdistributionoptimization routine
on a personal laptop (2.3 GHz 8-Core Intel Core i9, 32 GB
2667MHz DDR4).

Developing the codon-reduced transcriptome
We computationally replaced each codon in the wild-type E. coli
transcriptome (µ = 1.0dbl/h) not represented in the minimal-code E.
coli (Fig. 4A) with the codon represented in the minimal-code E. coli
that encoded the same amino acid (e.g., all UUU were converted to
UUC).Weused theMG1655genomewith gene and sequencedata from
Ecocyc41 and Caglar et al.42.

Preparing expression plasmids
We previously prepared a RED20-encoded GFP reporter plasmid
(pSB1C3::pT7::sfGFP_RED20) and glycerol stocks of E. coli Top10
cells carrying this plasmid30. We plated cells on LB agar with chlor-
amphenicol (25 ng μl−1) and grew overnight at 37 °C to isolate indi-
vidual colonies. We outgrew a single colony in 100ml Terrific Broth
(TB) with chloramphenicol (25 ng μl−1) overnight at 37 °C with
shaking. We split the overnight culture into 20 batches of 5ml each
and prepared each batch separately using QIAprep Spin Miniprep
kits (QIAGEN, Cat No./ID: 27104) producing 20 × 50 μl preps. We
pooled preps into 5 batches of 200 μl to purify and concentrate
using QIAquick PCR & Gel Cleanup kits (QIAGEN, Cat No.ID: 28506).
Final DNA product was assessed for quantity and purity using a
NanoDrop 2000 (Thermo Scientific). An annotated sequence map
for sfGFP_RED20 is freely available (https://benchling.com/s/seq-
w63RBxrXRxi6uIruvKEM) and a physical copy has been deposited
with Addgene (Plasmid #135173).

Preparing specified tRNA distributions for in vitro protein
expression assays (TINA)
We sourced 21 tRNA sequences individually by direct RNA synthesis
without any base modifications (Agilent Technologies)30 (Table S2).
Each RNA was resuspended individually in nuclease free water to a
putative concentration of 100μM, as quantified by theQubit RNAHigh
Sensitivity (HS kit) (Thermo Scientific, Cat No. ID: Q32852) and stored
at −80 °C.

Each tRNA distribution tested in this work used 200μM total
elongator tRNA, or one-fifth the concentration previously used (see
Calles et al.30) to use concentrations closer to physiological values31

(Fig. S4). For example, the uniform distribution had a final con-
centration of 10 uMof each of the 20 elongator tRNA.We added 10 µM
initiator tRNA to each distribution because we found this concentra-
tion optimizes expression rates (Fig. S5). To prepare tRNA distribu-
tions for in vitro expression assays, we calculated the volume of each
tRNA stock required then manually pipetted each tRNA into a fresh
PCR tube to form a separate dilute tRNA stock for each condition. We
dried each tRNA stock in a Vacufuge centrifuge concentrator

(Eppendorf) at 45 °Cunder vacuum, then resuspended in nuclease free
water to produce 5x concentrated synthetic tRNA stock mixes ready
for downstream use. We stored stock mixes at 80 °C until ready
for use.

Expressing protein and measuring fluorescence in vitro
For each in vitro expression reaction, we mixed the following
reagents supplied in the PUREΔtRNA kit: 1 μl Solution A (minus aa,
tRNA), 1.5 μl Solution B, and 0.5 μl amino acidmastermix (3 μl total).
To each mixture, we added 0.5 μl murine RNase inhibitor at 40 U μl
−1 (NEB# M0314S), 60 fmol of pSB1C3::pT7::sfGFP_RED20, and
nuclease free water to 4 μl final volume, giving us PURE reaction
master mixes. We made PURE expression reactions by combining
4 μl PURE reaction master mix and 1 μl of 5x synthetic tRNA stock
mixes (preparation described above).

We performed reactions in black/clear bottom, 384-well
microtiter plates (Corning). For any given experiment, we assem-
bled all reaction mixtures for a given condition as a single master
mix, then pipetted 5 μl per replicate into separate wells. We carried
out reactions in a SpectraMax i3 plate reader (Molecular Devices) at
37 °C for more than 12 h, measuring protein expression by spectro-
scopy (excitation at 485 nm ± 9 nm; emission at 535 nm ± 15 nm)
every 5min.

Analyzing data from in vitro expression assays
We used Python 3.10 and its scientific analysis and visualization eco-
system (numpy 1.23.5, scipy 1.9.3, pandas 1.5.2, matplotlib 3.6.2, sea-
born 0.12.1)43,44. We first took individual fluorescence timeseries for
each replicate and smoothed them with a Gaussian filter to remove
high frequency noise. We then calculated background signal by aver-
aging smoothed traces across replicates of PUREΔtRNA and sub-
tracted this background signal from all smoothed traces. We
numerically calculated the derivative of each trace and smoothed the
derivative with a Gaussian filter. We sought to extract the protein
production rate during the period of maximal protein production. To
do so, we took the average of each smoothed derivative trace around
the vicinity of themax value of the derivative (above 50% of max value
both before and after the max) (Fig. S6). We show that our analysis is
qualitatively robust to threshold (Fig. S7).

Statistics and reproducibility
Sample sizes for simulations were determined based on replicates
required to distinguish between conditions. For experiments, we
conducted as many replicates as possible given how much of our
limiting reagent we could source (synthetic tRNA). No data were
excluded from the analyses. The experiments were not randomized.
The investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All input and output simulation files and all raw and processed experi-
mental data are available via a Zenodo data repository: https://doi.org/
10.5281/zenodo.7953836 (https://zenodo.org/record/7953836)45. Gen-
ome and sequence data from Ecocyc41 and Caglar et al.42 are also pro-
vided in the Zenodo repository.

Code availability
All computer code is available on Github (https://github.com/EndyLab/
tRNACAD) and has also been deposited on Zenodo: https://doi.org/10.
5281/zenodo.8088058 (https://zenodo.org/record/8088058)46.
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