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Tapping the rhizosphere metabolites for the
prebiotic control of soil-borne bacterial wilt
disease

Tao Wen1,2,6, Penghao Xie1,6, Hongwei Liu 3, Ting Liu1, Mengli Zhao1,
Shengdie Yang1, Guoqing Niu1, Lauren Hale4, Brajesh K. Singh 3,
George A. Kowalchuk5, Qirong Shen 1 & Jun Yuan 1

Prebiotics are compounds that selectively stimulate the growth and activity of
beneficial microorganisms. The use of prebiotics is a well-established strategy
for managing human gut health. This concept can also be extended to plants
where plant rhizosphere microbiomes can improve the nutrient acquisition
and disease resistance. However, we lack effective strategies for choosing
metabolites to elicit the desired impacts on plant health. In this study, we
target the rhizosphere of tomato (Solanum lycopersicum) suffering from wilt
disease (caused by Ralstonia solanacearum) as source for potential prebiotic
metabolites. We identify metabolites (ribose, lactic acid, xylose, mannose,
maltose, gluconolactone, and ribitol) exclusively used by soil commensal
bacteria (not positively correlated with R. solanacearum) but not efficiently
usedby thepathogen in vitro.Metabolites application in the soil with 1 µmol g−1

soil effectively protects tomato andother Solanaceae crops, pepper (Capsicum
annuum) and eggplant (Solanum melongena), from pathogen invasion. After
adding prebiotics, the rhizosphere soil microbiome exhibits enrichment of
pathways related to carbon metabolism and autotoxin degradation, which
were driven by commensal microbes. Collectively, we propose a novel path-
way for mining metabolites from the rhizosphere soil and their use as pre-
biotics to help control soil-borne bacterial wilt diseases.

Soil-borne plant diseases cause devastating losses of plant yield and
farmprofitability across the globe1–3. Conventional chemical strategies
to combat such diseases have proven to be ineffective, unsustainable
and come at a severe environmental cost. Thus, biocontrol alternatives
have been proposed as a more environmentally friendly alternative to
chemical pesticides in agricultural ecosystems4. Microbial inoculants,
however, are often unstable or lose efficacy over time due to poor

adaptation to the environment where their activities are required. In
agricultural soils, inoculated microbial agents are subjected to multi-
ple environmental stresses and can be seen as “invaders” that must
compete for niches with populations within the native microbiome,
potentially reducing their effectiveness5. Soil microbial communities
naturally possess a range of organisms that can antagonize or out-
compete pathogens, thereby constraining the outbreak of diseases5,6.
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It has therefore been suggested that effective biocontrol might be
achieved via in situ manipulation of the resident rhizosphere micro-
biome to enhance the abundance and activities of beneficial
microbes7,8. To date, most prebiotics has been polysaccharides that
bring host benefits by promoting the abundance or activity of bene-
ficialmicrobes in a given system9–11. While prebiotics targeting human/
animal gutmicrobiomes have been widely explored12, efforts designed
for prebiotics to enhance plant microbiomes has received rather little
attention. As described in some studies, plant growth-promoting rhi-
zobacteria (PGPR) can serve as the plant equivalent of gut probiotics,
while certain substrates or additives that modify the composition/
diversity of plant microbiomes can function similarly to prebiotics in
humans13. This opens up a realm of possibilities for the utilization of
prebiotics in agriculture practices. For instance, organic amendments,
such as composts derived from plant and animal residues, contain a
diverse range of complex carbohydrates that act as prebiotics, nur-
turing beneficial microorganisms in soils14. Additionally, some bene-
ficial root exudate components can also function as prebiotics,
enhancing intercommunications between plants and beneficial
microorganisms15.

The soil zone on and around plant roots, collectively called the
rhizosphere, is a critical interface for plant nutrient acquisition, stress
tolerance, and disease suppression. As a source of carbon and nitro-
gen, rhizosphere metabolites can recruit beneficial microbes to
antagonize phytopathogens16. For example, malic acid has been linked
with the recruitment of Bacillus subtilis in Arabidopsis thaliana17, and
our previous study indicated that fatty acids and amino acids could
promote the abundanceof beneficial Pseudomonas strains in soil18. The
beneficial impacts of such recruited microbes may stem from direct
metabolic antagonism (e.g., via antibiotics), competition for
resources19, indirect effects via suppression of populations that facil-
itate pathogen growth20, or via induction of plant defenses. Most
importantly, the composition of metabolites in the rhizosphere
has been shown to change when confronted by plant pathogens,
and such shifts linked to development of disease-suppressive soils via
the recruitment of beneficial microbial populations9,10. Therefore, we
propose thatmetabolites that preferentially existed in the rhizosphere
in response to pathogen attack may serve as a natural library for
potentially valuable prebiotics. Harnessing such natural prebiotic
compounds could help develop more effective strategies for targeted
rhizosphere microbiome engineering to better manage soil-borne
diseases better. When applying prebiotic metabolites, it is also
important to consider potential disturbance of the resident microbial
community, as highly disturbed communities may be susceptible to
invasion by another pathogens. Indeed, the application of certain
compounds has been shown to decrease microbial community diver-
sity or disturb the soil microbiome18. Studies have shown that
increasing the variety of applied compounds alleviated declines in soil
microbial diversity21,22. Thus, the application of multiple prebiotic
compounds might represent a more suitable strategy than the use of
any single prebiotic compound.

In this study, we sought to develop a systematic strategy for the
development of prebiotics by focusing on natural rhizosphere meta-
bolites.We conducted a comparative analysis of themetabolic profiles
of rhizosphere samples fromdiseased versus healthy plants grown in a
soil conductive to bacterial wilt disease. We argued that the organic
metabolites that weremore abundant in the healthy plant rhizosphere
might be linked with the recruitment of beneficial microbes, thereby
contributing to the observed plant health status.

Afterward, wedelved into themechanismsbehind the stimulation
of commensal microbes for disease suppression using both in vitro
(e.g., carbon utilization test) and in situ tests (synthetic microbial
consortia approach). To validate our findings in tomato, we also
examined the effects of the prebiotics on other plant species. Finally,
our metagenomic analysis allowed us to gain a deeper understanding

of the mechanisms underlying prebiotic-driven rhizosphere microbial
ecology, and how it can be used to enhance disease resistance in
plants. Overall, we report a novel strategy for developing rhizosphere
prebiotics that can bring directional change in rhizosphere micro-
biomes to address biotic stresses of plants.

Results
Metabolomic analysis of the rhizosphere soil of healthy and
diseased tomato plants
In our field experiment, tomato plants were cropped in a bacterial wilt
disease conductive soil, where both healthy and bacterial wilt disease
infected plants at the fruiting stagewere collected for the investigation
of their rhizosphere metabolites. A total of 216 compounds were
identified in the rhizosphere soil metabolomes across all samples as
informed by the analysis of gas chromatography-time of flight mass
spectrometry (GC-TOF-MS). Principal components analysis revealed
that the metabolite composition in samples was distinct in the healthy
versus diseased plants (R = 0.785, p =0.026, Adonis), as also indicated
by PCA ordination with the X and Y axe explaining 44.68% and 16.34%
of the total variation, respectively (Supplementary Fig. 1). Among the
216 compounds, 32 sugars, six sugar alcohols, five sugar acids, 22 short
chain carbon organic acids, 23 long chain carbon organic acids, 14
esters, 23 alcohols, 18 amino acids and amides, two nucleotides, and 71
others were included. The results demonstrated a large diversity of
metabolites in the rhizosphere and their potential to interact with the
plethora of soil microbes. Importantly, sugars were more abundant in
the healthy tomato rhizosphere (34.8%) than in the diseased plant
rhizosphere (4.75%); while in contrast, long chain organic acids were
detected in larger abundance in the diseased plant rhizosphere (51.9%)
compared to that of the healthy plants (21. 9%) (Fig. 1a and Supple-
mentary Table 1).

We performed generalized linear model (GLM) analyses for each
metabolite, and 79 metabolites significantly (p <0.05, Turkey-HSD)
differed in relative abundance between the diseased and healthy rhi-
zosphere soils, among which 54 metabolites had higher abundance in
the diseased plants. In comparison, 25 metabolites had higher abun-
dance in the healthy plants (Fig. 1b). Subsequently, the random forest
analysis was employed to further identify the important metabolites
among the 79 differential ones, which could be potentially harnessed
for the development of plant prebiotics. The cross-validation results
indicated that the random forestmodel exhibited optimal stability and
accuracy when selecting top 30 metabolites. Subsequently, we deci-
ded on a selection of 19 metabolites, favored due to their relative ease
of acquisition in pure form for subsequent experiments (Fig. 1c). Based
on the results of GLM analysis and random forest model, 19 metabo-
lites (11 abundant in healthy samples and eight abundant in diseased
samples)were then selected to validate our hypothesis that the healthy
plant rhizosphere-associatedmetabolites assemble a microbiome that
leads to an enhanced plant disease tolerance. The selectedmetabolites
with significant enrichment in healthy samples including sucrose,
fructose,mannose, xylose, ribose, inositol, lactic acid, gluconolactone,
ribitol, melibiose andmaltose, and those enriched in diseased samples
including benzoic acid, malonic acid, 4-hydroxybenzoic acid, phytanic
acid, 4-hydroxyphenyl ethanol, glycerol, glutamine, and mono-
stearin (Fig. 1d).

Effects of differential compoundsonplant disease incidence and
the rhizosphere microbiome
We designed a prebiotic cocktail comprised of the 11 metabolites
described above that showed the most robust enrichment in the rhi-
zospheres of healthy tomato plants. To avoid the decreasing of
microbial diversity from single metabolite application, we then tested
the ability of this cocktail to reduce bacterial wilt disease in tomato
plants. The cocktail was amended in soil (collected from Changshu
city, China (31°35′36.19″N, 120°54′54.93″E), no tomato cultivation
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history) in four doses (once aweek for fourweeks) at 50 µmol per plant
along with R. solanacearum (5 × 108 CFU per plant) or sterile water in a
greenhouse experiment. Eight significantly enriched metabolites
(benzoic acid, malonic acid, 4-hydroxybenzoic acid, 4-hydroxyphenyl
ethanol, glycerol, glutamine, monostearin and phytanic acid) in the
diseased samples were added in the mix with the same dosage as
positive controls. Their impacts on tomato disease incidence were
monitored over a 16-day timeframe. Prebiotic application significantly
lowered disease incidence (32.0%) in the metabolites-applied treat-
ment (prebiotics with pathogen; PRS) more than in the water with
pathogen (WRS), while non-prebiotic metabolite application (NPRS)

increased the incidence by 22.4% compared to WRS (water with
pathogen) (65.6%) (Fig. 2a and Supplementary Table 2). Quantitative
PCR analyses of the abundances of the fliC gene (encoding the flagella
subunit of Ralstonia solanacearum) revealed a lower abundance of the
pathogen (−8.5%) in the metabolites-treated samples (PRS, prebiotics
with pathogen) than that in the control (WRS, water with pathogen)
post pathogen application (Fig. 2b and Supplementary Table 3).
Compared to the control (WRS), the application of NPRS increased the
abundance of pathogen by 8.3%. Furthermore, the total bacterial
abundances, as determinedbyqPCR targeting the 16S rRNAgene,were
significantly higher in the PRS (prebiotics with pathogen) and PW
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Fig. 1 | Metabolite profiles of rhizosphere soil in diseased and healthy plants.
a Rhizosphere metabolites profiles. Metabolites were grouped according to their
chemical properties and plotted as stacked column charts; b The flow plot showed
the relative abundances of individual metabolites in diseased and healthy samples.
Each line represented one metabolite, and the vertical axis indicates the relative
abundance of all identified 216 rhizosphere metabolites. The most abundant
metabolite plotted at the top of the diagram. Metabolites significantly enriched in
healthy samples by GLM analysis were highlighted in green. Significantly enriched
metabolites in diseased samples aremarked in red, and otherswere gray; c The top

30 marker metabolites were identified by applying random forest classification.
The marker metabolites are ranked in descending order of importance concerning
the model’s accuracy. The inset represents ten-fold cross-validation error as a
function of the number of input metabolites used to differentiate diseased and
healthy in order of variable importance; d Heatmap revealed differential abun-
dance of metabolites in healthy and diseased Samples. A total of 19 metabolites
were counted, with 11 rhizosphere metabolites abundances were higher in the
rhizosphere of healthy tomato plants, and eight rhizosphere metabolites abun-
dances were higher in the rhizosphere of diseased tomato plants.
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Fig. 2 | Effects of metabolites addition on plant disease occurrence and
microbial community. aDisease incidence (bacterial wilt) inNRPS, PRS, andWRS
treatments after pathogen inoculation was shown. All data are presented as
mean ± standard error of the mean (SEM) in line graphs (n = 6 biologically inde-
pendent samples); b Copy numbers of fliC and 16S rRNA genes among different
rhizosphere samples. Horizontal bars within boxes represent the median. The
tops and bottoms of boxes represent 75th and 25th quartiles, respectively. The
upper and lower whiskers represent the range of non-outlier data values. Outliers
were plotted as individual points. Different lowercase letters indicated significant
differences among respective groups based on two-sided tests for multiple
comparisons by Turkey HSD corrections (t-test, adjusted p <0.05, n = 6 biologi-
cally independent samples); c Simple Linear regression analyses performed with
the fliC and 16S rRNA genes. The solid lines represent regression lines and
transparent areas represent 95% confidence interval. Two-sided t-test was used to
test the significance of regression at 5% significance level; d Alpha diversity of the
soil bacterial communities across the different treatments. Shannon calculated
using the normalized ASV table. Horizontal bars within boxes represent the
median. The tops and bottoms of boxes represent 75th and 25th quartiles,

respectively. The upper and lower whiskers represent the range of non-outlier
data values. Outliers were plotted as individual points. Different lowercase letters
indicated significant differences among respective groups based on two-sided
tests by Wilcoxon rank-sum test followed by Dunn’s multiple comparison test
(adjusted p <0.05, n = 9 biologically independent samples); e Nonmetric multi-
dimensional scaling (NMDS) analysis based on Bray–Curtis dissimilarity on the
taxonomic profile (at the ASV level) of the bacterial communities; f stack bar plot
depicting the relative abundances (%) of the major phyla present in the bacterial
communities; g The absolute abundance of 470 genera negatively correlated/
uncorrelated with R. solanacearum varied across samples. Absolute abundances
were converted by multiplying the 16S rRNA gene qPCR quantification results by
the relative abundance of microorganisms. The horizontal coordinates represent
the 470 genera, and the vertical coordinates represent the absolute abundance.
The dots represent the values of absolute microbial abundance in different sam-
ples, and the curves represent the results of fitting the changes in microbial
abundance. WRS water with pathogen, PRS prebiotics with pathogen, NPRS non-
prebiotics with pathogen, PW prebiotics with water, NPW non-prebiotics with
water, WW only water.
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(prebiotics with water) than that of non-prebiotics treated samples
WRS (water with pathogen) and the water control (WW, only water)
(Fig. 2b and Supplementary Table 3). Furthermore, with the samples in
PRS (prebiotics with pathogen) and PW (water with pathogen) treat-
ment, univariate linear regression analysis revealed a significant
negative correlation between the pathogen load and the total bacterial
abundance in the rhizosphere (R = −0.91;p <0.05; R2 = 0.8), suggesting
that a larger bacterial population was associated with pathogen inhi-
bition in the tomato plant (Fig. 2c). The abundance of pathogen was
not significantly correlated with total bacterial abundance in the other
treatments (Fig. 2c).

We then evaluated changes in the soil bacterial community
diversity and composition in response to prebiotic cocktail amend-
ment using high-throughput 16S rRNA gene tag sequencing. Our
results of 16S rRNA amplicon sequencing of the plant and soil samples
indicated that the pathogen (Ralstonia solanacearum) was present in
soil of all treatments. It showed the lowest relative abundance in the
WW (only water) and PW (prebiotics with water) treatments, while
exhibited the highest abundance in the NPRS (non-prebiotics with
pathogen) andWRS treatments (waterwithpathogen) (Supplementary
Fig. 2). The cocktail application significantly increased the bacterial
community species richness and alpha diversity, based on Shannon
indices (p <0.05, Dunn’s), both in the presence (PRS vs. WRS) and
absence (PW vs. WW) of the pathogen (Fig. 2d). Furthermore, NMDS
analysis (using Bray–Curtis distance) exhibited apparent differences in
soil microbial community structure among treatments (stress = 0.13;
PERMANOVA p = 0.001, R =0.687) (Fig. 2e). Communities that had
received the prebiotic cocktail (PRS and PW) were distinct from the
control communities (WRS and WW) and non-prebiotic (NPRS and
NPW) communities. Two-factor PERMANOVA revealed that the
pathogen and prebiotics application (alone and together) explained
about 41% of the total variance in microbial community structure.
Individually, prebiotic application explained approximately 28% of the
community variance, while pathogen treatment explained a further 7%
(Supplementary Table 4 and Supplementary Table 5). At the phylum
level, prebiotic amendment significantly increased the relative abun-
dance of Actinobacteria but reduced the abundance of Proteo-
bacteria (Fig. 2f).

To investigate the impact of metabolites on the potential micro-
bial correlations within the soil microbial community, we conducted
co-occurrence microbial network analyses. Our findings demonstrate
that the rhizosphere soilmicrobiome exhibits a high degree of stability
(WW, only water) (Supplementary Fig. 3 and Supplementary Table 6).
The network stability decreases upon the addition of non-prebiotics
(NPW, non-prebiotics with water) or pathogens (WRS, water with
pathogen). However, the introduction of prebiotics (PRS) restores the
stability of the network (Supplementary Fig. 3). Further exploration of
community interactions was conducted at the genus level. Among all
491 identified genera, 474 genera were found to have negative or no
correlations with the pathogen in relative abundance (Supplementary
Table 7). Prebiotic application (PW and PRS) increased the abundance
of microorganisms that were not positively associated with R. sola-
nacearum compared to the water control and non-prebiotic metabo-
lites application (Fig. 2g). These microorganisms, which are not
positively correlatedwith R. solanacearum, may play an important role
in maintaining plant health as commensal bacteria in the soil. Com-
pared to the WW (only water), the abundance of microorganisms
positively associated with R. solanacearum increased in the non-
prebiotic treatment, while there was no significant change in the pre-
biotic treatment (PW and PRS) (Supplementary Fig. 4).

In-vitro and in-situ investigation of prebiotic impacts on
potential biocontrol mechanisms
To investigate potential mechanisms behind the prebiotic-induced
control of the pathogen (Fig. 2a), we first tested the hypothesis that

prebiotic application could directly stimulate the plant’s defensive
mechanisms, thereby reducing the disease incidence. However, the
results of our experiments conducted under limited bacterial condi-
tions did not support this hypothesis, as adding prebiotics did not
decrease disease incidence (Supplementary Fig. 5). We subsequently
tested a second hypothesis that these compounds favor the growth of
the commensal microbes in the rhizosphere, but not the pathogen,
thereby indirectly reducing the disease incidence in tomato plants.
This hypothesiswas basedonour observation of a negative correlation
between the pathogen and the total bacterial abundances in the
greenhouse experiment (Fig. 2c).

The metabolic ability of R. solanacearum was tested with pre-
biotics andnon-prebiotics, respectively. It was found that among the 11
prebiotics tested, sucrose, fructose,melibiose, and inositolwerebetter
utilized by R. solanacearum compared to the other seven prebiotics
(gluconolactone, inositol, lactic acid, maltose, mannose, ribose, and
xylose). In contrast, R. solanacearum could partially utilize non-
prebiotics (Fig. 3a). To further test the utilization efficiency of tomato
rhizosphere microorganisms for prebiotic metabolites (glucono-
lactone, inositol, lactic acid,maltose,mannose, ribose, and xylose) and
non-prebiotic metabolites (benzoic acid, malonic acid,
4-hydroxybenzoic acid, 4-hydroxyphenyl ethanol, glycerol, glutamine,
monostearin, and phytanic acid). We first isolated and purified tomato
rhizosphere microorganisms by dilution coating plate method and
obtained 158 strains, which were used to determine the growth curve
undermetabolite intervention (Fig. 3b). The results demonstrated that
tomato rhizosphere microorganisms exhibited a higher utilization
efficiency for prebiotics than non-prebiotics (benzoic acid, malonic
acid, 4-hydroxybenzoic acid, phytanic acid, 4-hydroxyphenyl ethanol,
glycerol, glutamine, and monostearin) (Fig. 3b). This suggested that
prebiotics may have a greater potential to support the growth of
microbes in the rhizosphere and contribute to plant health.

To validate our findings in-situ, a pot experiment was conducted,
where the 158 selected bacterial strains and R. solanacearum were
applied to soils along with a mixture of the non-prebiotics (1μmol g−1

soil) or prebiotic at three concentration levels (0.1 nmol g−1, 10 nmol g−1

soil and 1μmol g−1 soil). On the 1st, 3rd, and 5th day, soil with the
inoculated R. solanacearum and co-cultures of the bacterial isolates
were spread onto TSA and SMSA plates to count their cell numbers.
Consistently, we found that amendments of the prebiotic mixture at
HP (10mM) effectively reduced cell numbers of the pathogen (Fig. 3c
and Supplementary Table 8). The prebiotic mix did not impact the cell
numbers of total bacterial strains at LP (1 µM prebiotics mix) and MP
(100 µM prebiotics mix), but significantly increased in response to the
HP (10mM prebiotics mix) (Fig. 3c and Supplementary Table 8). The
trend of changes in cell numbers was consistent over time (Fig. 3c).
Furthermore, univariate linear regression analysis showed that the
abundance of the pathogen was negatively correlated with that of the
isolates in the LP (1 µM prebiotics mix), MP (100 µM prebiotics mix),
and HP (10mM prebiotics mix) treatments (Fig. 3f, R = −0.58; p <0.05;
R2 = 0.33), while the relationship in W (water) and NP (10mM non-
prebiotics mix) treatment was not significant (Fig. 3d, e).

The metabolite mixture consistently suppressed bacterial wilt
disease suppression in Solanaceae crops
Since prebiotics applied at 1μmol g−1 soil significantly reduced the
pathogen population and increased the other bacterial populations,
we further tested the impacts of the 1μmol g−1 soil, seven metabolites
(gluconolactone, inositol, lactic acid, maltose, mannose, ribose, and
xylose) mixture on disease suppression in a greenhouse experiment.
To examine whether our prebiotic cocktail was able to provide
pathogen protection on other crops besides tomato, we extended our
experiment to other Solanaceae crops; using pepper, eggplant, and a
second tomato cultivar. The metabolite mixture significantly reduced
bacterial wilt disease incidence in all three crops 30 days after
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inoculation of R. solanacearum and at a dose of 1μmol g−1 soil of
metabolite mixture (Fig. 4a and Supplementary Table 9). The abun-
dance of total bacteria was significantly increased, and the abundance
of pathogen was significantly decreased in all three species of Sola-
naceae crops after adding prebiotics compared to non-prebiotics

(Fig. 4b and Supplementary Table 10). The bacterial wilt incidence of
eggplant, pepper, and tomato increased by 16.1%, 9.54%, and 8.4%,
respectively, after the addition of non-prebiotics compared to the
control, while prebiotic application completely controlled disease
occurrence across the 30-day experiment (Fig. 4a and Supplementary
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Fig. 3 | The utilization of commensal bacteria and R. solanacearum with dif-
ferent metabolites as carbon source. a R. solanacearum utilization of different
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sphere metabolites were investigated, and those enriched in healthy tomato rhi-
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Table 9). The disease severity/incidence for pepper in the NPRS (non-
prebiotics with pathogen) treatment was significantly lower than the
other two crops (p < 0.05), but still, the prebiotics exhibited significant
disease suppression, with a 2.7% disease incidence in the PRS (pre-
biotics with pathogen) treatment, compared with 13.3% in the WRS
(water with pathogen) treatment and 22.8% in NPRS (non-prebiotics
with pathogen) treatment. Additionally, we tested the biocontrol
effect of prebiotics in tomato fields that had undergone continuous
cropping, leading to high disease incidence (>50%). As shown in
Fig. 4d, the disease incidence in tomatoes with added prebiotics was
25.0%, while with added non-prebiotics was 77.2%. In comparison, the
disease incidence in the control treatment was 51%. Quantitative
results showed that adding prebiotics significantly reduced the num-
ber of R. solanacearum (Supplementary Fig. 6).

To resolve the functional basis of prebiotics in assisting plant
disease resistance, we used a bird shot macro-genomic assay for rhi-
zosphere soils of three crops inoculated with prebiotic and non-
prebiotic in pot experiment. The data volume for each sample was
greater than 30 GB, yielding 1020G data, and a total of 18 million
predicted genes. Results revealed that prebiotics application increased
rhizosphere microbial community diversity (richness) in three crops,
with two crops (tomato and eggplant) significantly increased (p <0.05;
Dunn’s) (Fig. 5a). Ranking analysis of all genes by PCoA showed that the
prebiotic treatment was significantly (p <0.05; MRPP test) (Fig. 5b)
different when compared to non-prebiotic treatment.

The GSVA (gene set variation analysis) enrichment analysis
showed that prebiotic inputs significantly impacted glycosaminogly-
canmetabolism pathways, including galactosemetabolism, starch and
sucrose metabolism, and glycosaminoglycan degradation. Addition-
ally, the degradation pathway of autotoxin substances, such as toluene
degradation, xylene degradation, and fluorobenzoate degradation,
was also enriched in the prebiotic treatments (Fig. 4c). To further
investigate the diversity of microorganisms contributed to the meta-
bolism pathways of prebiotics and non-prebiotics, we performed
alpha diversity analysis. It was found that the diversity of micro-
organisms involved in the metabolism pathways of prebiotics was
significantly higher than that of non-prebiotics (Supplementary Fig. 7).

Commensal microbes contributed to functional changes in rhi-
zosphere soil microbial communities with prebiotics
application
We found that adding prebiotics increased the abundance of com-
mensal microbes (not positively with R. solanacearum) (Fig. 2g). To
investigate the relationship between the functional changes with the
application of prebiotics and commensal microbes, the random forest
methodwasused to assess the contribution of commensalmicrobes to
the function of the community. Among the top 30 functional path-
ways, twelve pathways identified by random forest method (including
Vancomvcin resistance, Degradation of aromatic compounds, Dioxin
decradation, Quorum sensing, Toluene decradation, Xylene degrada-
tion, Biosynthesis of siderophore group non-ribosomal peptides, Bio-
synthesis of vancomycin group antibiotics, Amino sugar and
nucleotide sugar metabolism, Glutathione metabolism, Starch and
sucrose metabolism, Fluorobenzoate degradation) (Fig. 5c) were
mainly contributed by commensal microbes and found to be enriched
in prebiotic application (Fig. 4c). However, only two pathways were
primarily driven by microbes positively correlated with by microbes
positively correlatedwithR. solanacearum (Fig. 5d) and enriched in the
treatment of non-prebiotic application (Fig. 4c).

Discussion
In this study, we identified a set of key rhizosphere metabolites which
were associated with healthy tomato plants under R. solanacearum
pressure. Importantly, these metabolites significantly reduced bac-
terial wilt disease incidence of tomato, pepper and eggplant when

applied as a 10mMmixture to soil infected with R. solanacearum. Our
results provide mechanistic knowledge that rhizosphere metabolites
can be employed to promote the growth and diversity of commensal
microbes in the plant rhizosphere, which resulted in effective patho-
gen suppression in plants and soils. These findings highlight the sig-
nificant potential for the rhizosphere metabolites to be developed as
novel prebiotics to control bacterial wilt diseases in important agri-
cultural crops. Although using prebiotics in botany and agriculture is a
relatively new concept, previous studies have provided some sup-
porting evidence. Organic amendments typically serve as “prebiotics”
and have been reported to regulate rhizosphere soil microbial
functions23. In particular, rhizosphere metabolites have been found to
play a central role in modulating plant-microbe interactions24. For
example, anti-microbial metabolites of Arabidopsis thaliana were
shown to confer tissue-specific resistance to a wide range of bacterial
pathogens25. Similarly, specific organic acids were linked to plant
performance and increased Pseudomonas abundance and colonization
of tomato roots26. Lastly, our previous results revealed that amino
acids (isoleucine, leucine, methionine, proline, tryptophan, and orni-
thine) and fatty acids mediated microbially induced plant defense
against foliar pathogens18. These lines of evidence, among others,
point to rhizosphere metabolites as promising compounds for the
development of “rhizosphere prebiotics”. In this study, we further
explored the function of prebiotics that decreased pathogen invasion
by demonstrating their stimulation of commensal rhizosphere
microbes.

A non-targeted metabolomic approach used in this study detec-
ted eleven metabolites enriched in the rhizosphere of healthy tomato
plants, with the majority being small-molecular weight sugars. Small
molecular weight carbohydrates, such as arabinose, glucose, galac-
tose, fructose, sucrose, pentose, rhamnose, raffinose and xylose, have
been previously reported to alleviate plant stresses27. For instance,
different plant species produced xylose in different concentrations in
the rhizosphere. A higher amount of xylose in the rhizosphere stimu-
lated a plant signaling pathway that triggers the biocontrol activity of
Bacillus velezensis28,29. Myo-inositol compounds were higher in con-
centration in tomato genotypes with salinity tolerance30, and have also
been demonstrated to play an important role in R. solanacearum
inhibition in Tamarindus indica31. This is further supported by the
upregulation of the plant genes encoding β−1,3-glucanase, chitinase
and cell wall invertase by the infection of Ralstonia solanacearum in
tomato32.

Previous studies on prebiotics have been focused on metabolites
which recruit beneficial microbes such as Bacillus, Streptomyces and
Pseudomonas33,34. In fact, the commensal (neutral) microbes, which do
not display obvious beneficial effects on plants, are often present in
larger abundances and with greater diversity than those deemed as
beneficial. The commensal organisms can directly influence plant
health. Our study provides a different mechanism of metabolite-
derived pathogen suppression than many previous reports where
plants actively called for beneficial microbes to suppress specific
pathogens35,36. The commensal microorganisms referred in this study
are the abundant soil microorganisms that do not show significantly
positive correlations with R. solanacearum (Fig. 2g), and those micro-
bial abundances and diversity were stimulated by the application of
the prebiotics (Fig. 2d–f). This suggests that commensal microbes,
stimulated by prebiotics, can outcompete pathogens in occupying
niches, thus reducing the occurrence of infections and diseases5,37.

Recently, synthetic microbial communities (SynCom) have been
regarded as a useful tool to understand the interaction between
microbes and plants, and many studies have provided a guideline in
constructing microbial communities38. We used the 158 isolates as a
commensalmicrobial SynCom that encompassed themain phylogenic
groups in soil with prebiotics to study their interactions with the
pathogen and host plants39. Though this SynCom did not fully
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represent the whole microbial diversity of the rhizosphere soils, it
provided direct evidence that the prebiotic-mediated effects were
driven by the enrichment of commensal bacteria.

Here, we utilized a metagenomic approach to show the bio-
synthesis of siderophore group non-ribosomal peptides enriched by
commensal microorganisms (Fig. 5c). In addition, we discovered sev-
eral important functions driven by commensal microorganisms,
including biosynthesis of vancomycin group antibiotics, degradation
of aromatic compounds, quorum sensing, fluorobenzoate degrada-
tion, vancomycin resistance, and dioxin degradation. Some of these
functions are related to the breakdown of harmful substances in the
soil, which can weaken plant immunity and promote disease. For
example, the degradation of aromatic compounds, fluorobenzoates,
and dioxins40.

The efficacy of this prebiotics on other Solanaceae crops
further supports the potential of disease control through modulation
of the soil microbiome (Figs. 4a and 5a). Metagenomic analysis of
rhizosphere soils revealed that prebiotics enhances carbon

metabolism-associated pathways such as galactosemetabolism, starch
and sucrose metabolism, and glycosaminoglycan degradation, along
with a high level of microorganisms driving these functional enrich-
ments (Fig. 4c andSupplementary Fig. 7). This suggests that prebiotics,
as “food” for commensal microbes, are important in shapingmicrobial
community structure and multifunctionality, thus reducing the eco-
logical niche for pathogenic bacteria to survive41,42. Furthermore, pre-
biotics could enhance the degradation ability of root autotoxins,
including toluene degradation, nitrotoluene degradation, xylene
degradation, and degradation of aromatic compounds, demonstrating
the ability of prebiotics to promote plant health by activating soil
microorganisms to eliminate harmful root autotoxins43.

Application of our metabolite mixture as prebiotics correlated
strongly with changes in abundance and diversity of the native rhizo-
sphere bacterial community. Ralstonia solanacearum infection also
dramatically influenced the composition and diversity of rhizosphere
microbiome. Notably, metabolites enhanced bacterial population size
and diversity, whereas pathogen infection reduced both metrics.
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D: Glycosphingolipid biosynthesis − lacto and neolacto series

a

Fig. 5 | Importance ranking of microbial functional features in random forest
analysis. a Alpha diversity of the rhizosphere soil bacterial communities across
different treatments. Richness was calculated using the normalized ASV table.
Horizontal bars within boxes represent themedian. The tops and bottoms of boxes
represent 75th and 25th quartiles, respectively. The upper and lower whiskers
represent the range of non-outlier data values. Outliers were plotted as individual
points. Different lowercase letters indicated significant differences among
respective groups based on two-sided tests byWilcoxon rank-sum test followed by
Dunn’s multiple comparison test (adjusted p <0.05, n = 9 biologically independent
samples); b Principal coordinate analysis (PCoA) with Bray–Curtis dissimilarity

performed on the functional profile of the eggplant, pepper and tomato micro-
biome at different treatment. The p-values were evaluated via the MRPP test;
c Ranking of functional pathways driven by commensal microbes (not positively
correlated with R. solanacearum) in prebiotic treatment; d: Ranking of functional
pathways driven by microbes (positively correlated with R. solanacearum) in non-
prebiotic treatment. *** indicated that thepathwaywaspresented simultaneously in
Fig. 5c, and Fig. 4c, or in Fig. 5d and Fig. 4c. Pep_NPRS pepper, non-prebiotic
treatment, Pep_PRS pepper, prebiotic treatment, Egg_NPRS eggplant, non-
prebiotic treatment, Egg_PRS eggplant, prebiotic treatment, Tom_NPRS tomato,
non-prebiotic treatment.
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Furthermore, themetabolite mixture alleviated the negative impact of
pathogen infection on the diversity of rhizosphere microbiome. Pre-
vious work demonstrated the effect of applied phages on a tomato
rhizosphere microbiome, where the phages were selected to kill R.
solanacearum44, and it is likely increased bacterial diversity was linked
to the targeted reductionof pathogen abundance. In the current study,
we stimulated a number of commensal bacteria and “targeted starva-
tion” of pathogen. The results suggested that “prebiotics” used in our
study could be a safe and environmentally friendly bioresource for
controlling plant pathogenic bacteria. The increasedbacterial diversity
can be beneficial for the resistance of other pathogen species. Addi-
tionally, this biocontrol was effective in several crops, pepper, tomato,
and eggplant and therefore is ideal for further biopesticide develop-
ment. We revealed rhizosphere metabolites that could not be effi-
ciently utilized by a targeted pathogen but could be consumed by a
diverse set of commensal microbes can be used as prebiotics to sup-
port plant health and disease suppression via engineering soil micro-
biome (Fig. 6).

Methods
Growth, disease development, and rhizosphere soil collection
from tomato plants
A field experiment was set up to examine the difference between the
rhizosphere metabolomes and microbiomes of disease-free versus
diseased tomato plants. Three hundred tomato seeds (Solanum lyco-
persicum cv. HeZuo 903 is a variety of tomato widely cultivated in the
Jiangsu province and was provided by the Vegetable and Flower
Research Institute of Nanjing) were soaked in 100mL NaClO solution
(0.75%, v/v) for 30min, washed five times with sterile water, and
pregerminated in sterile Petri dishes at 25 °C for 3 days. Approximately
240 germinated seeds were planted in a nursery substrate

(commercially available from Huaian Agricultural Technology Devel-
opment Ltd., Huaian, Jiangsu, China), with one seed sown per well
(5 × 5 × 5 cm) of the seeding trays (50 wells per tray). The substrate and
seedswere then incubated at 28 ± 3 °Cwith a 16 h/8 h (light/dark) cycle
in the greenhouse and watered daily as needed to maintain soil
moisture for three weeks. A total of 120 healthy seedlings were care-
fully transplanted to the field (31°43′ N, 118°46′ E) where 6 years of
continuous cropping of tomato (HeZuo903) had been conductedwith
two seasons per year. The average disease incidence for the past sea-
son was approximately 50%. All plant residues were removed at the
end of each season. This region has a typical subtropical monsoon
climate, with a mean annual temperature of 18 °C and an annual pre-
cipitation of 1416mm.The soil is classified as anUltisol, which is widely
distributed throughout the subtropical areas of South China. Tomato
seedlings were planted in a 2 × 5m plot, with 0.5m distance between
plants in March, 2017. At the fruiting stage (10 weeks after trans-
planting), we observed that someplants displayed typical bacterialwilt
disease symptoms; top leaves of the tomato plants appear dehydrated
with wilting and drooping, but the wilting leaves remain green for
some of the tomato plants. After this inventory, 12 healthy and 12
diseased plants were randomly selected across the experiment. The
roots of these plants were collected together with the adhering soil
and stored in bags on ice prior to transport to the laboratory. Then,
three plants of the same health condition (diseased/healthy) were
mixed as one biological replicate, thereby resulting in four composite
biological replicates for eachdisease condition. Soil sampleswere then
recovered according to previously described methods45,46 for micro-
biome and metabolite analyses. Briefly, soil loosely attached to the
roots was shaken off and discarded, and root tissues with tightly
associated soil were then cut into segments (~1 cm) under aseptic
conditions. These root segments were washed with 200mL sterile

Pathogen

Commensal microbes

Prebiotics

Fig. 6 | The conceptual figure illustrates the potential of prebiotics in alle-
viating bacterial wilt by recruiting commensal microbes. This figure illustrated
that prebiotics investigated from rhizosphere can prevent plant disease by

increasing the number of commensal microbes in the rhizosphere soils to antag-
onize pathogenic invasion in tomato and other plants.
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water and the resulting suspension was considered as the rhizosphere
sample. Half the suspension was lyophilized to remove water for
metabolite extraction. The rest of the suspension was centrifuged at
10,000g at room temperature for 10min, and the precipitate soil was
stored at −20 °C prior to DNA extraction.

Extraction of the rhizosphere soil metabolites
The metabolites from rhizosphere soil were extracted and analyzed
using a modified version of the protocol described by ref. 46. Briefly,
each soil sample was split into two equal parts (0.2 g each) in two 2mL
Eppendorf (EP) tubes, and 24μL of adonitol (1mgmL−1) was added to
each tube as an internal standard. One part of the rhizosphere soil was
homogenized in 0.5mL methanol solution (Vmethanol: VH2O = 3:1) using
a ball mill at 45 Hz for 4min and then ultrasonically treated 5 times for
a period of 5min each.

The soil was then centrifuged at 10,000 g at 4 °C for 15min, and
the supernatant (~0.4mL) was transferred to a fresh EP tube. A second
extraction was performed with 0.5mL ethyl acetate using the same
method as above, and the resultant extracts were combined (~0.8mL
in total). Then, 0.5mL of ethyl acetate and0.5mL ofmethanol solution
were applied to each soil sample at the end of the extraction proce-
dure. A second portion of soil samplewas extracted by another 0.5mL
ethyl acetate followed by 0.5mL methanol solution (Vmethanol:
VH2O = 3:1) using the same method, resulting in an additional extract
(~0.8mL). After four extractions, each sample yielded 1.6mL solution.
The extractions were analyzed by BIOTREE technology Co. Ltd.
(Shanghai, China) using a gas chromatograph (Agilent 7890) coupled
with time-of-flight mass spectrometry (GC-TOF-MS) as per the manu-
facturer’s instructions. Raw data processing and analyses were per-
formed as previously reported47. Briefly, Chroma TOF 4.3X software of
the LECO Corporation and the LECO-Fiehn Rtx5 database were used
for raw peaks exactions, data baseline filtering, calibration of the
baseline, peak alignment, deconvolution analysis, peak identification
and integration of the peak area48. Metabolites were identified using
both mass spectrum and retention index matches.

We compared the relative abundance of rhizosphere metabolites
of healthy versus diseased plants to identify compounds that were
more abundant in the healthy and diseased plant samples. Using the
general linear model (GLM) and random forest model, we identified
eleven compounds (melibiose, sucrose, ribose, lactic acid, xylose,
inositol, mannose, fructose, maltose, gluconolactone, and ribitol) with
high relative abundance in healthy samples and eight compounds
(benzoic acid, malonic acid, 4-hydroxybenzoic acid, phytanic acid,
4-hydroxyphenyl ethanol, glycerol, glutamine, and monostearin) with
high relative abundance in diseased samples. These compounds were
selected for further investigation.

Impacts of the selected compoundson tomatodisease tolerance
and the rhizosphere microbiome
Tomato seeds (Hezuo 903) were sterilized and germinated on half
strength Murashige and Skoog medium (MS, Haibo technology Co.
Ltd. in Qingdao, China) supplemented with 1% sucrose for 5 days (16 h
light, at 25 °C and 46% relative humidity; 8 h darkness, at 18 °C and 37%
relative humidity). Plant seedlings were then transplanted in pots
(length/width/height = 5 × 5 × 5 cm), eachwith 50 g soils and grown in a
greenhouse under a 16 h photoperiod (120μmol photons m−2s−1) at
23/20 °C day night−1 temperature.

A prebiotic cocktail was prepared with an equimolar proportion
of all of the eleven metabolites described above, and its ability to
impede the pathogen R. solanacearum was examined. The experi-
mental design consisted of the following six treatments, (1) PRS: pre-
biotics and the pathogen R. solanacearum; (2) PW: prebiotics and
water; (3)WRS: water and the pathogen; and (iv) WW: only water; (5)
NPRS: non-prebiotics (eight metabolites enriched form diseased
plants) and the pathogen R. solanacearum; (6) NPW: non-prebiotics

and water. Each treatment was conducted using 108 plants in three
replicates (36 plants per replicate). After an initial 4 weeks of plant
growth, 5mL of the prebiotic cocktail (each of the 11 compounds were
mixed with an equal volume of a 10mM solution) or water was applied
to the soil once a week for 4 weeks as 4 doses of 1 µmol g−1 soil. The
pathogen (5 × 108 CFU per 50 g per plant) was inoculated to the soil
after the first application of prebiotics. The plants were watered daily
to maintain soil moisture during the whole period of the greenhouse
experiment.

Plants with typical bacterial wilt symptoms (necrosis and droop-
ing leaves) were considered as diseased plants, and disease incidence
was quantified using the following formula: diseased plant number/
total plant number × 100%49. The plant disease incidencewas recorded
for each of the treatments throughout the experiment. To track
microbial community responses to prebiotic application, rhizosphere
soil samples were collected as described above from nine healthy
plants without the bacterial wilt symptom appeared, and stored at
−80°C prior to subsequent DNA extraction.

Profiling the tomato rhizosphere microbiome
Total genomicDNAwasextracted from0.5 g rhizosphere soil using the
PowerSoil DNA Isolation Kit (Qiagen, German) per the manufacturer’s
instructions, with resulting DNA quantified using a NanoDrop spec-
trophotometer (ND2000, Thermo Scientific, DE, USA). The V4 region
of the 16S rRNA gene was amplified by PCR using the primer pair 515 F
(5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACNVGGGT
WTCTAAT-3′).

The 50μL reaction mixtures contained 25μL 2× Premix Taq
(Takara Biotechnology, Dalian Co. Ltd., China), 1μL each primer
(10μM), 3μL DNA (20 ng/μL), and 20μL of sterilized ultrapure water.
The following cycles were used for PCR amplification with a Bio-Rad
S1000 (Bio-RadLaboratory, CA,USA): 95 °C for 5min, then 30cycles of
94 °C for 30 s, 52 °C for 30 s, and 72 °C for 30 s with a final extension at
72 °C for 10min. DNAMarker (100–2000bp; B500350SangonBiotech
(Shanghai) Co., Ltd.) was used as DNAmarker on a 1% agarose gel, and
samples with clear bands between 290 and 310 bp were combined for
sequencing. According to GeneTools analysis software (version
4.03.05.0, SynGene), PCR products were mixed at equal densities. A
Gel Extraction Kit (Omega, USA) was used to purify the mixture.

According to the manufacturer’s instructions, sequencing librar-
ies were prepared using the NEBNext® UltraTM DNA Library Prep Kit
for Illumina® (New England Biolabs, USA). The library quality was
assessed using a Qubit® 2.0 Fluorometer (Thermo Scientific) and an
Agilent Bioanalyzer 2100. The library was sequenced on an Illumina
Hiseq 2500 platform (Magigene, Guangdong). Based on the unique
barcode of each sample, 250-bp paired-end reads were filtered using
Trimmomatic (V0.33) to obtain clean, high-quality reads.

Total bacterial abundance and pathogen load in the rhizosphere
were quantified using quantitative PCR (qPCR). Primers 347 F (5′-GGA
GGCAGCAGTRRGGAAT-3′) and 531 R (5′-CTNYGTMTTACCGCGGC
TGC-3′)50 were used for quantification of total soil bacterial density.
The fliC gene (forward, 5′-GAACGCCAACGGTGCGAACT-3′; reverse, 5′-
GGCGGCCTTCAGGGAGGTC-3′)51, encoding the flagella subunit, was
the target used for R. solanacearum quantification52. All qPCR assays
were performed using a StepOne PlusTM Real-Time PCR System (ABI
Co. Ltd, USA). Standard curves were generated using 10-fold serial
dilutions of a plasmid containing the fliC gene from R. solanacearum
and the amplified fragment region from the V4 region comes from the
model strain Bacillus subtilis168. A serial dilution from 109 to 103 gene
copies/μL of the fliC gene and V4 region amplification products was
used as a standard, with an amplification efficiency of 103.6% and
98.6%, respectively. We then performed the qPCR assay with a 20μL
reaction mixture containing 10μL of SYBR Premix Ex Taq (2×), 1μL of
each primer (10 μmol/L), 0.4μL of ROX Reference Dye II, 1μL of
template DNA (20 ng/μL) and 6.6μL of sterile water. Each DNA sample
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was analyzed in three replicates. By analyzing melt curves and elec-
trophoresizing agarose gels, the specificity of the amplified fragments
was confirmed. After calculating the copy number of each target
fragment from the standard curves, the results were expressed as
log10 values (copies/g soil). The thermal cycling profile included a first
step at 95 °C (30 s) followed by 40 cycles of 95 °C for 5 s and 60 °C for
30 s, with a final extension at 72 °C for 5min.

Investigating potential interactions among prebiotics, resident
soil isolates, and bacterial wilt suppression
Bacterial isolation from the tomato rhizosphere. In order to test the
potential mechanism of prebiotic on commensal soil bacteria, we first
isolated bacterial strains from the rhizosphere of the tomato plant.
One half gram of lateral roots with the attached rhizosphere soil were
washedwith 1mL sterilewater in a 2mLcentrifuge tubeby vertexing at
3200 rpm/min for 30min. Then, 100μL soil suspension was used for
serial dilution using sterile water, and an aliquot of 100μL of a 10−6

dilution was inoculated on a 1/3 strength TSA plates in triplicates and
incubated at 28°C for 3 days in an incubator (Shanghai CIMO Medical
Instrument Manufacturing Co., Ltd, China). A total of 1000 single
colonies were picked from the plates and purified twice. To provide
taxonomic identification of each isolate, purified cultures were sub-
jected DNA extraction (B518255, Sangon Biotech, Shanghai), PCR
amplification and amplicon sequencing, which were performed at
Qingke Biotechnology (Nanjing, China) according to ref. 53. The
obtained raw sequences were quality filtered and demultiplexed and
taxonomy of the sequences was classified using the Greengenes 13.5
database (method detailed in the bioinformatics for 16S rDNA ampli-
con sequencing analyses of this study).

Effects of 11 metabolites on the growth of R. solanacearum and the
isolated bacterial strains. The selected metabolites were tested for
their effects on the growth of the pathogen and 158 bacterial strains.R.
solanacearum and isolated strains were experimented with using NB
(Nutrient Broth) and TSB (Tryptic Soy Broth) media, respectively. The
media inoculated with the microbes were shaken at 170 rpmmin−1,
28 °C for 24 h and cell density was diluted to anOD0.01 with sterilized
water. The bacterial suspension (2 µL)was then inoculated into a sterile
96-well plate (Costar, Coring Incorporated, USA)with 200 µL inorganic
salt medium ((NH4)2SO4 2.0 g L−1, MgSO4·7H2O 0.2 g L−1, CaCl2·2H2O
0.01 g L−1, FeSO4·7H2O 0.001 g L−1, Na2HPO4·12H2O 1.5 gL−1, KH2PO4

1.5 g L−1). A final concentration of 10mM for 11 healthymetabolites and
8 diseased metabolites was applied as carbon sources to the bacterial
culture in the respective wells of the plates. The same volume of the
bacterial suspension but amended with equal amount of sterile water
was used as control. Hereafter, all the 96-well plates were incubated at
28 °C at 170 rpm for 24h and the absorbance of the culture at OD600
was measured at specified time intervals using SpectreMax M5
(Molecular Devices, USA).

Co-culture of selected bacteria and pathogen to test the mechan-
ism of prebiotic mimic the rhizosphere condition. By examining
carbon source utilization by R. solanacearum, we eliminated four
metabolites (sucrose, inositol, fructose, and melibiose) from an initial
pool of eleven that exhibited improved utilization, and the remaining
seven metabolites (ribose, lactic acid, xylose, mannose, maltose, glu-
conolactone and ribitol) were designated as candidates for further
experimentation as potential prebiotics. To test the potential
mechanism of prebiotic, we set up a precise experiment by reintro-
ducing a SynCom with the above bacteria into the sterile soil. In this
experiment, 150g of soil were placed in tissue culture vessels and
autoclaved three times to deactivate all soilmicrobes. The efficiency of
the sterilization process was confirmed by plating samples on LB agar,
which resulted in no colony growth. Three replicates of 5-day-old
tomato seedlings (Micro-TOM) grown under sterile conditions were

transferred into the sterilized soil in the tissue culture vessels. Then, to
examine how application concentration impacted the effects of the
prebiotic cocktail, we used three concentrations (1 µM, 100 µM, and
10mM) of combined seven healthy metabolites and performed five
treatments: (1) LP, 1 µM compounds mix, (2) MP, 100 µM compounds
mix, (3) HP, 10mM compounds mix was, and (4) W, and (5) NP 10mM
non-prebiotics mix (benzoic acid, malonic acid, 4-hydroxybenzoic
acid, phytanic acid, 4-hydroxyphenyl ethanol, glycerol, glutamine, and
monostearin), sterile water. Fifteen milliliters of the solution for each
treatment were added once to soils 1-month after seedling transfer. All
bacterial strains were propagated using 50mL shake flask (170 rpm) in
TSBmedium, 28 °C for 24 h and cell density was diluted to an OD 0.01
(approximately ~107 CFU/mL) with sterilized water. Subsequently, an
equal proportion of each bacterial strain was mixed. The final con-
centration was adjusted to 1 × 108 CFU/mL. Then, a 15mL of mixture of
the 158 isolated bacterial strains were added. Each treatment con-
tained 144 plants.

The rhizosphere soils were collected on the 1st, 3rd, and 5th day
post inoculation and the soil bacterial abundance was enumerated by
serial dilutions and plate counts. At each timepoint, 40 plants were
harvested and combined into 5 replicates. TSA plates were used for
counting the total population of added 158 bacterial strains and semi-
selective medium of South Africa (SMSA) plates were used for the
pathogen counting54. All plates were cultured at 28 °C for 48 h in a
thermostatic incubator (Shanghai CIMO Medical Instrument Manu-
facturing Co., Ltd, China).

Effects of metabolites on plant health under sterile conditions
To test the effect of thesemetabolites directly on the plant defense, we
counted the disease incidence on tomatoes after irrigation with pre-
biotics and pathogen under sterile conditions. In this experiment,
150 g of soil were placed in tissue culture vessels and autoclaved three
times to deactivate all soil microbes. The efficiency of the sterilization
process was confirmed by plating samples on LB agar, which resulted
in no colony growth. After 1month of growth of sterile seedlings, 15ml
of the prebiotic was irrigated into the soil. The seedlings receiving
equal amounts of sterilized water and diseased metabolites were set
up as negative control and positive control, respectively. Each treat-
ment contained 108 plants. Then, the pathogen R. solanacearum was
added to the soil at a final density of 1 × 107 CFU g−1/soil. The disease
incidence was recorded after plants were cultured in the above con-
ditions for 60 days.

Impacts of prebiotics onbacterial wilt disease incidence of three
Solanaceae crops
Tomato (Solanum lycopersicum. cv. Micro-Tom), pepper (Capsicum
annum L. cv. Yinchuan Cavel) and eggplant (Solanummelongena L. cv.
Chunqiumoqie), which are all susceptible to bacterial wilt disease,
were used to validate the biocontrol effects of the prebiotics. All seeds
were first sterilized as described above, and planted in pots (length ×
width × height = 4 × 4 × 12 cm) with 150g soil (the same soil as above).
Three forma specialists of pathogenetic R. solanacearum strains for
tomato, pepper and eggplant were cultured from glycerol stocks from
−80 °C lab glycerol stocks and used in this experiment. Three treat-
ments were set up for each crop: WRS (water with pathogen), PRS
(10mM prebiotics with pathogen), and NPRS (10mM non-prebiotics
with pathogen). The 10mM metabolite concentration used in this
assay was based on the results from co-culture assay in rhizosphere
soil. Each treatment contained 108plants in three blocks (36 plants per
block). The application of prebiotics and the pathogen were as
described above. Briefly, after 1 month of plant growth, 15mL of a
solution prebiotics or non-prebiotics, or water was drenched in soil.
The solution ofmetabolites was applied to soils once everyweek at the
same dosage for 4 weeks. The pathogen (1 × 108 CFU mL−1) was
inoculated to the soil after the first application of metabolites.

Article https://doi.org/10.1038/s41467-023-40184-2

Nature Communications |         (2023) 14:4497 12



Bacterial wilt disease incidence was recorded every 5 days throughout
the experiment.

Rhizosphere soil samples collected from the three Solanaceae
crops were used for shotgun metagenomic sequencing. Library pre-
paration was performed in according to the Illumina, standard pro-
tocol. Briefly, DNA was fractionated by ultrasound, pooled libraries
containing equimolar amounts of barcoded 350–500bp fragments
were prepared, and 150 bp paired end fragments were sequenced by
Illumina Noveseq 6000. The raw metagenome sequence data
(1020Gb) were trimmed, filtered, assembled byMEGAHIT and contigs
longer than 300bp were used for further gene prediction and anno-
tation. Open reading frames (ORFs) from assembled metagenomes
were predicted usingMetaGeneMark. ThepredictedORFswith lengths
longer than 100 bpwere translated to construct a non-redundant gene
catalog with criteria of 95% sequence identity and 90% coverage, and
gene abundance in each sample was normalized into reads per kilo-
base million counts.

For taxonomic annotations, representative sequences in the gene
catalog were searched against the non-redundant protein database of
NCBI with an e-value cutoff of 1e−5 using DIAMOND and the lowest
common ancestor method was applied to estimate the assignment of
genes to specific taxa. For functional annotations, the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) annotation were conducted with
an e-value cutoff of 1e−5.

Effects of prebiotics on tomato bacterial wilt disease incidence
in field
To verify whether prebiotics can function effectively in the complex
environment of the field, we experimented in the field with initially
healthy and diseased tomato samples. Two treatments were set as
follows: (1) NP: 10mM non-prebiotics mix (benzoic acid, malonic acid,
4-hydroxybenzoic acid, phytanic acid, 4-hydroxyphenyl ethanol, gly-
cerol, glutamine, and monostearin); (2) P: 10mM prebiotics mix
(ribose, lactic acid, xylose, mannose, maltose, gluconolactone and
ribitol). Each treatment consisted of 90 tomato seedlings (3 replicates,
and 30 plants per replicate).

The soil properties, seedling cultivation, and preparation of the
metabolite solution were as previously described. The metabolite
mixture was added every 2 weeks, with each seedling irrigated with
200mL for 2 months. Disease incidence was recorded during the
fruiting stage of the tomato, and rhizosphere soil was collected for
qPCR analysis of pathogen and total bacteria. The collection method
for rhizosphere soil and DNA extraction were as previously described.
After the completion of the experiment, eight tomato plants were
selected from each treatment for rhizosphere soil collection.

Bioinformatics
Usearch (V. 10.1) and vsearch (V. 0.6.3) were used to process the
sequencingdata. First, the “vsearch --fastq_mergepairs” scriptwas used
to merge paired-end sequences; the “vsearch --fastx_filter” script was
used to cut primers; the “vsearch --derep_fulllength” script was used
for find unique sequence reads; the “usearch -unoise3” script was used
to generated ASVs; the “vsearch --usearch_global” script was used to
create an ASV table; and the “vsearch --sintax” script and RDP taxo-
nomic database were together used for annotation of representative
sequences. A normalized number of sequences was randomly extrac-
ted from each sample in order to calculate alpha diversity indices that
were estimated with the vegan R package55.

For taxonomic annotations, representative sequences in the gene
catalog were searched against the non-redundant protein database of
NCBI with an e-value cutoff of 1e−5 using DIAMOND and the lowest
common ancestor method was applied to estimate the assignment of
genes to specific taxa. For functional annotations, the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) annotation were conducted with
an e-value cutoff of 1e−5.

Statistical analyses
All statistical analyses were performed using the R 4.0 software
environment, unless specified otherwise. For the differential analysis,
the data were tested for normality by using the Shapiro-Wilk test of
normality and for homogeneity of variances by using Levene’s test for
homogeneity of variances.

Before the calculation of beta diversity, metabolites were stan-
dardized to relative abundance and Bray–Curtis similarity matrices
were prepared using the “vegan” package (Version: 2.5-7)56. PERMA-
NOVA (Adonis, transformed data by Bray–Curtis, permutation = 999)
was used to determine if beta diversity significantly differed among
treatments or plant disease states and principal coordinate analysis
(PCA) plots were generated based on Bray–Curtis similarity matrices
using the “ggplot2” package57 (Version: 3.3.5). For screening rhizo-
sphere metabolites for the development of prebiotic, the general lin-
ear model (GLM) was firstly used to identify differentially expressed
metabolites. TheRpackage “mvabund”58 wasused tofit themodel. The
significance threshold was set as adjusted p <0.05. The p-values were
corrected by the step-down resampling procedure for multiple com-
parisons. Then, metabolites were used to constructed random forest
model for seek the metabolites could be well distinguished healthy/
diseased. The “randomForest” package was used to develop random
forest models. We first used the importance () function to rank indi-
vidual metabolites on the basis of their contribution to the accuracy of
the models. We then used the rfcv() function to perform a tenfold
cross-validation that evaluatedmodel performance as a function of the
number of discriminant metabolites included in the model. We used
similar statistical tools to contrast microbiomes across samples based
on the 16S rRNA gene ASV table generated herein. Nonparametric
t-tests were used for detection of significant differences in bacterial/
archaeal community diversity/richness based on Shannon diversity,
Pielou evenness, and the Chao1 index. Before the calculation of beta
diversity, relative abundances were used to standardize the ASV pro-
files. Bray–Curtis distance matrices were prepared using the “vegan” R
package. PERMANOVA (Adonis, transformed data by Bray–Curtis,
permutation = 999) was used to test if the beta diversity differed
among treatments and principal coordinate analysis (PCoA) plots were
generated according to Bray–Curtis similarity matrices created using
the R package “ggplot2”57. Network analysis was performed using R
package “ggClusterNet”59. To reveal microbial taxa that were more
abundant in the metabolite treated samples, linear discriminant ana-
lysis (LDA) and effect size (LEfSe) analyses were performed with the
“MASS” packages (Version: 7.3-54).

Linear regression was performed using R and the R2 (R-squared)
and p-values were recorded with the function “lm” from the “stats”
package. The “ggpubr” R package (https://CRAN.R-project.org/
package=ggpubr) was used to produce correlation plots. If not spe-
cially specified, all plots were created with the “ggplot2” package in
R-Studio.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data required to reproduce the results are available in the Figshare
database (https://doi.org/10.6084/m9.figshare.23254319)60. Raw
sequence data obtained in this study have been deposited in Genome
Sequence Archive in the BIG Data Center, Chinese Academy of Sci-
ences under accession codes CRA005139. Source data are provided
with this paper.

Code availability
All codes used in this study are available on GitHub (https://github.
com/taowenmicro/TaoWen.et.al.tomato.2022) and Zendo61.
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