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Hybrid topological photonic crystals

Yanan Wang1,9, Hai-Xiao Wang 2,9 , Li Liang1, Weiwei Zhu3, Longzhen Fan1,
Zhi-Kang Lin4, Feifei Li1, Xiao Zhang1, Pi-Gang Luan5, Yin Poo 1 ,
Jian-Hua Jiang4,6 & Guang-Yu Guo 7,8

Topologically protected photonic edge states offer unprecedented robust
propagation of photons that are promising for waveguiding, lasing, and
quantum informationprocessing.Here,we report on thediscoveryof a class of
hybrid topological photonic crystals that host simultaneously quantum
anomalous Hall and valley Hall phases in different photonic band gaps. The
underlying hybrid topology manifests itself in the edge channels as the
coexistence of the dual-band chiral edge states and unbalanced valley Hall
edge states.We experimentally realize the hybrid topological photonic crystal,
unveil its unique topological transitions, and verify its unconventional dual-
band gap topological edge states using pump-probe techniques. Furthermore,
we demonstrate that the dual-band photonic topological edge channels can
serve as frequency-multiplexing devices that function as both beam splitters
and combiners. Our study unveils hybrid topological insulators as an exotic
topological state of photons as well as a promising route toward future
applications in topological photonics.

Topological photonics is an interdisciplinary field at the interface
between photonics and topological physics, which has greatly ferti-
lized both fields in the past decade1–5. Hallmark topological phenom-
ena such as unidirectional backscattering-immune photonic edge
states were discovered with analog to quantum anomalous Hall (QAH)
insulators in time-reversal broken photonic systems6–15. Furthermore,
diversified topological photonic phases, including photonic Floquet
topological insulators16–20, photonic quantum spin Hall21–27, and pho-
tonic valley Hall (VH) insulators28–31 are observed and find remarkable
applications in integrated32–36, nonlinear37–40, and quantum
photonics41–43. For instance, owing to the robust topologically pro-
tected edge channels, topological insulator lasers can outperform
conventional lasers44,45. From the fundamental aspect, a unique feature
of photonic systems is their nonequilibrium nature, i.e., photons can
be excited, transported, and detected at any desired frequency. The
nonequilibrium nature of photons opens new possibilities and gives

rise to unconventional opportunities in topological photonics. Most
strikingly, the nonequilibriumnature of photons enables the discovery
of many topological phenomena at room temperature, even when
photon energy is significantly smaller than the thermal fluctuation
energy at room temperatures6–45. Furthermore, owing to the none-
quilibrium nature, photonic topological phenomena can involve mul-
tiple band gaps, leading to dual-band topology38,46–51 and even non-
Abelian topology52–55. Suchmulti-band-gap photonic topological states
can enable multiplexing of topological edge modes46–51 and edge-
enhanced resonant nonlinear photonic effects38.

However, most studies focus on multi-gap topological photonic
systemswith the same topological class38,47,49,50, while thatwith distinct
topological classes has not yet been realized. It was reported that the
topological valley and pseudo-spin edge states can coexist in a Kekulé
photonic system48 and a composite photonic crystal51, which seem to
be multi-gap topological photonic systems with different topological
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classes. However, from the symmetry consideration of photonic
topological phases in twodimensions, the photonic quantum spinHall
insulator phase is protected by concurrent parity (P) and time-reversal
(T ) symmetries. In comparison, the photonic VH insulator phase
requires the breaking of P, while the photonic QAH insulator phase
requires the breaking of T . Therefore, the photonic quantum spin Hall
insulator phase is incompatible with the latter two. In contrast, the
photonic VH insulator and QAH insulator phases are compatible with
each other. Therefore, it is possible in principle to have multi-band
topologyof theQAHandVH types in a singlephotonic system if bothP
and T are broken which, however, has not yet been realized.

Here, we report on the realization and discovery of an exotic
photonic topological phase that exhibits simultaneously QAH and VH
topology (see Fig. 1a, b) in a single photonic crystal system dubbed as
hybrid topological photonic crystals (HTPCs). An intriguing feature of
HTPCs is that the band topology can be switched from one type to
another different type by changing just the frequency of photons. In
other words, distinct topological phenomena can be realized in the
same photonic system to enable multiplexing photonic topological
edge transport with very different properties (see Fig. 1c, d). The
HTPCs give rise to the simultaneous emergence of the unidirectional
chiral edge states and unbalanced valley edge states in different band
gaps. Due to the breaking of both the P and T symmetries, the
unbalanced valley edge states have different absolute group velocities
for different valleys, which are distinct from the existing valley edge
states that have exactly opposite group velocities for different valleys.
Moreover, here the photonic VH phases have large valley Chern
numbers and are characterized by unconventional topological transi-
tions characterized by an unpaired quadratic point at the K orK′ point.
At the edge boundaries, the photonic VH phases studied here have

multiple valley-polarized edge states. These unconventional proper-
ties give promise to novel topological phenomena and valuable
applications in photonics such as advancedwave filters and frequency-
multiplexing devices that function as both beam splitters and
combiners.

Results
Design of the HTPC
The HTPC here forms a hexagonal lattice with the lattice constant
a = 21mm, as illustrated in Fig. 2a. Each unit cell includes a Y-shaped
gyromagnetic rod with three identical arms, of which the width is
W = 1.76mm and the length is L = 3.89mm (see Methods for more
material parameters). The HTPC is cladded by metallic plates from
above and below to form two-dimensional photonic systems domi-
nated by transverse-magnetic modes. The spatial symmetry and
topological phases of the HTPC are controlled by the rotation angle θ.
If one starts from the casewith θ =0° and zero external magnetic field,
the band structure has some paired Dirac points at the K(K′) point and
a quadratic point at the Γ point that are protected by both C3v and T
symmetries (see Supplementary Fig. 1). By applying an external mag-
netic field, all Dirac points are gapped and topological band gaps
(indicated by the light-blue blocks in Fig. 2b) are formed. For con-
venience, we term the band gap between the third and fourth bands
(the fourth and fifth bands) as gap II (III) and focus on the frequency
range within the blue box in Fig. 2b henceforth. The calculated pho-
tonic Chern numbers indicate that both gaps II and III are Chern gaps,
i.e., photonic analogs of the QAH phase (see Supplementary Note 1 for
details). Next, by increasing θ, both gaps II and III at the K valley are
reduced while those at the K′ valley are enlarged. At θ = 9.5°, gap III
closes at the K point (see Fig. 2c), yielding an unpaired quadratic point
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Fig. 1 | A hybrid topological systemwith distinct topology in the different band
gaps. a Bulk bands with a Chern gap and a valley Hall gap. The Chern gap is
characterized by an integer Chern number, while the valley Hall gap is character-
ized by valley Chern numbers. b–d The resultant edge states in the system.

b Illustration of the edge states in different band gaps. c TheChern gap hosts chiral
edge states. d The valley Hall gap hosts unbalanced valley edge states where the
absolute group velocity of the valley edge state around theK valley is different from
that around the K′ valley.
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at a finitemomentum (its dispersion is shown in Fig. 2d) as both theC3v

and T symmetries are broken. Here, the unpaired quadratic point
serves as an unconventional topological transition between the QAH
and VH phases in gap III (in comparison, similar transitions in the
Haldane model are through unpaired Dirac points56,57). Such an
unpaired quadratic Dirac point can be gapped by further increasing θ.
Figure 2e presents the band structure of HTPC with θ = 30°, in which
gap III is of the VHphase. Remarkably, herewe emphasize that gapping
a quadratic Dirac point gives rise to an integer valley Chern number,
in contrast to the common perception that a valley Chern number
takes a value of ± 1

2 when gapping a Dirac point at a finite
momentum28,29,31,33–36,47–51. This is confirmed via two approaches: Berry
curvature calculations (see Fig. 2f) and the analytical theory (see
Supplementary Note 2 for details).

The full phase diagram of the HTPC is shown in Fig. 2f when the
rotation angle θ is tuned from 0° to 120° (i.e., the minimal periodicity
considering the three-fold rotation symmetry of theHTPC). During the
whole tuning process, the Chern number of gap II remains as CII = 1.
Fromthephase diagram,wefind that the topological transitions of gap
III take place at θ = 60° × n ± 9.5° (n is an integer), where the unpaired
quadratic point appears at the K orK′ point. To reveal the nature of the
topological transition in gap III, we present a k · p theory for the
effective Hamiltonian of the photonic bands around the K and K′ val-
leys. We denote the Bloch states at the K (K′) point for the fourth and
fifth bands, respectively, as |4,K〉 (|4,K′〉) and |5,K〉 (|5,K′〉). Using the
basis (|4,K〉, |4,K′〉, |5,K〉, |5,K′〉)T, the k · p Hamiltonian can be written as

Hð~kÞ=AQτ̂0½ k2
x � k2

y

� �
σ̂x � 2kxkyσ̂z �+BQk

2τ̂0σ̂0 + ðmT τ̂0 �mvτ̂z Þσ̂z ,

ð1Þ

where k = (kx, ky) is the displacement of the wavevector relative to the
K or K′ point. AQ and BQ are the band parameters of the quadratic
point. Here, σ̂i and τ̂iði= x,y,zÞ are the Pauli matrices acting on the
orbital and valley subspaces, mV and mT are the mass terms induced
by breaking the C3v (through rotation) and T (through an external
magnetic field) symmetries, separately. When mT =mV = 0, i.e., in the

case with θ = 0° and zero external magnetic field, there are two
quadratic points located at the K and K′ points (see Supplementary
Fig. 1), respectively. By breaking the symmetries, a band gap can be
openwhosemagnitude is proportional to |mT −mV| at the K valley and
|mT +mV| at the K′ valley.

Starting from Eq. (1), by integrating the Berry curvature, one finds
that the valley Chern numbers (i.e., the Chern number of a specific
valley) are CK = −sgn(mT −mV) and CK′ = −sgn(mT +mV) (see Supple-
mentary Note 2). Here, the external magnetic field gives mT <0, while
the rotation operation givesmV <0 for θ∈ (0°, 60°) andmV >0 for θ∈
(60°, 120°). Therefore, at θ =0°, CK =CK′ = 1, and the total Chern num-
ber of gap III is CIII = 2. We find thatmV first decrease with θ. At θ = 9.5°,
mV =mT, and the gap at the K point is closed, leading to an unpaired
quadratic point. With the further decrease ofmV, the gap reopens but
CK switches sign, leading to CK = −CK′ = −1, i.e., a VH phase with large
valley Chern number58,59. After θ = 30°,mV starts to increase with θ.mV

comes back tomT at θ = 50.5°, leading to a transition back to the QAH
phase.With further increase of θ, similar transitions take place at theK′
point while the K point remains gapped in the phase diagram. The
difference here is that the valley Chern number is reversed in the VH
phase with θ > 60°, i.e., CK = −CK′ = 1.

Observation of multiplexing edge states with distinct
topological origins
We now test the multiplexing edge states depicted in Fig. 1. For sim-
plicity, we denote the HTPCs with θ = 30° and θ = 90°, respectively, as
HTPC1 and HTPC2. First, a ribbon-shaped HTPC2 supercell terminated
by perfect electric conductors (see Fig. 3a and Methods for more
simulation details) is used to calculate the edge spectrum. As shown in
Fig. 3b, two edge branches emerge in gap II whose typical electric field
patterns (labeled as A and B) and their Poynting vector distributions
are shown in Fig. 3c. These are the one-way photonic chiral edge states
due to theQAH topology ingap II: the group velocities of edge states at
opposite edge boundaries are of opposite signs. This unidirectional
feature is also confirmed by the energy flow (Poynting vector) dis-
tributions. Meanwhile, in gap III, unbalanced valley Hall edge states
emerge. Here, the electric field patterns (labeled as C and D) and the
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Fig. 2 | Hybrid topological photonic crystal (HTPC). a Schematic of an HTPC
consisting of Y-shaped gyromagnetic rods, where the lattice constant a = 21mm,
and the length (width) of the three identical arms isW = 1.76mm (L = 3.89mm). θ is
a tunable rotation angle.bPhotonic band structureof theHTPC forθ =0°under the
external effective magnetic field of 700Oe. Blue zones indicate the band gaps with
finite Chern numbers. The red number at each band indicates the Chern number of
the band. Inset: the first Brillouin zone. c Photonic band structure of the HTPC for
θ = 9.5°. The unpaired quadratic point at the K point is indicated by the red arrow.

d The quadratic dispersion around Dirac point. e Photonic band structure of the
HTPC for θ = 30° (HTPC1). The orange zone indicates the VH band gap with a zero
Chern number. f Calculated Berry curvature of all bands below gap III for θ =0°
(upper panel), θ = 30° (middle panel), and θ = 90° (lower panel), respectively. For
these cases, the Chern number of gap III is 2, 0, 0, separately. The Brillouin zone is
labeled by the hexagon. g Topological phase diagram versus the rotation angle θ,
where the light blue (orange) area refers to the QAH (VH) phase.
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Poynting vector distributions (see Fig. 3d) are quite different from the
chiral edge states in gap II. Figure 3d indicates that the edge states
localized at the upper edge have opposite energy flows. Besides, the
edge states in gap III at the sameedgeboundary have bothpositive and
negative group velocities, indicating that they are not unidirectional
edge states. Furthermore, there is no edge state in the lower edge
boundary in gap III since the HTPC with rigid boundary does not
strictly contribute a bulk-edge correspondence and the edge disper-
sions also depend on the boundary configuration,making it boundary-
configurable valley edge states60,61 (see SupplementaryNote 3 formore
details).

We then experimentally verify the coexistence of multiple edge
states ingaps II and III by implementing the transmissionmeasurement

in a finite-sized sample, as depicted in Fig. 3e, f. The experimentally
measured edge dispersions (indicated by the empty circles in Fig. 3b,
also see Methods for more experiment details) are in good agreement
with those from the finite-element simulation. To unveil the topolo-
gical behavior of the edge states in gaps II and III, we present both the
forward (labeled with “F”) and the backward (labeled with “B”) trans-
mission spectra for photon flow along the upper and lower edge
channels in Fig. 3g, h, respectively. For the frequency window ranging
from 10.61 to 11.25 GHz (indicated by the blue dashed box, also see
Supplementary Note 4 for the identification of the bulk gap), it is seen
that the nonreciprocal photon flows exist in both the upper and lower
edge channels, indicating the existence of the unidirectional edge
states. For the higher frequency window ranging from 12.34 to
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Fig. 3 |Multiplexingedgestateswithdistinct topologicalorigins. aSchematicof
the supercell consisting of ten HTPC2 unit cells terminated by perfect electric
conductors, where the supercell is expanded into four periods in the x-direction for
easy viewing. b The simulated (solid lines) and experimental (empty circles) edge
dispersions. The gray area refers to the bulk states and the colored edge states are
observed in both gaps II and III. c, d The electric field pattern of c the chiral edge
states A and B and d the unbalanced valley edge states C and D. Insets: zoom in on
the Poynting vector along the boundary. eA close viewof the sample boundedwith

a metallic cladding. f The experimental setups for transmission measurement.
g,hThe forward (labeledwith “F”) andbackward (labeledwith “B”) transmissions as
functions of frequency and the distance between the source and the detection
points along the upper (g) and the lower (h) edge channels, respectively. The blue
dashed boxes indicate the nonreciprocal propagation of chiral edge states in gap II.
The orange dashed box in g indicates bidirectional propagation of the valley edge
states in the upper edge channel, while in h indicates the absence of edge states in
the lower edge channel.
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13.17 GHz (indicated by the orange dashed box), the forward and
backward transmissions show the bidirectional propagation of the
valley-polarized edge states in the upper edge channel. Meanwhile, the
vanished forward and backward transmissions indicate the absence of
edge states in the lower edge channel, being consistent with the
simulated results in Fig. 3b.

Next, we study domain wall systems formed by the HTPC1 and
HTPC2 with opposite valley Chern numbers, where the HTPC2 on the
topofHTPC1 is termedDW1, and that on thebottomofHTPC1 is termed
DW2, as schematically shown in Fig. 4a, e, respectively (seeMethods for
more simulationdetails). Because these twoHTPCshave identical Chern
numbers of the gap II, no topological edge states can survive at DW1 or
DW2. In contrast, it is expected that two valley edge states emerge at
DW1 (DW2) since the absolute value of the valley-contrasting Chern
number (i.e., the difference in the valley Chern number across the
domainwall) is 2. The eigen spectrumof theDW1 andDW2 are shown in
Fig. 4b, f, respectively, where the gray regions and lines represent the
projections of bulkbands and the dispersions of valley edge states. Both
spectra indicate that twopairs of valley edge stateswithingap III emerge
at the domain walls. Note that for DW1, two valley edge states only
survive in a narrow frequency window. Despite it, the valley edge states
exhibit valley-momentum locking behavior, which can be checked by
the typical electric field patterns and their Poynting vector distributions
(labeled as A and B for DW, and C and D for DW2) in Fig. 4c, g.

To confirm the valley-polarized edge states, we implement
transmission measurements in the finite-sized samples (see the insets
of Fig. 4a, e, also see Methods for more experiment details). It is seen
that the measured valley edge state dispersions (indicated by the
empty circles in Fig. 4b, f) are in good agreement with the simulation
results. To further illustrate the valley edge dispersions, we consider
the forward transmission spectra with serval typical frequencies, as
displayed in Fig. 4d, h. For the DW1, it is seen that there are two peaks

with negative wavevector in the transmission spectrum with a fre-
quency of 12.66GHz (lower panel in Fig. 4d), identifying that DW1
supports two distinct valley edge modes. However, when increasing
the frequency to 13.13 GHz (upper panel in Fig. 4d), only one peakwith
a negativewavevector is observed, indicatingonlyone valley-polarized
edge mode survives in DW1. In parallel, for the DW2, it is seen that
there are two peaks in transmission spectra with frequencies of
12.74GHz (lower panel in Fig. 4h) and 13.03GHz (upper panel in
Fig. 4h), respectively, indicating that DW2 support two valley edge
modes. However, the phase velocities (wavevectors) of the edge
modeswith a frequency of 13.03GHz exhibit opposite signs, while that
of 12.74GHz hosts the same signs.

Frequency-dependent topological routing via HTPCs
The dual-band gap edge states with different boundary configurations
revealed above could be useful for designing frequency-dependent
topological routings. As depicted in Fig. 5a, a three-port topological
routing consisting of HTPC1 and HTPC2 are cladded by metallic walls
(see Methods for more simulation details). When an excitation source,
ofwhich the frequency iswithin gap II, is placed at theupper boundary,
it is expected that the wave can only propagate from P1 to P3 since
these two HTPCs have identical Chern numbers in gap II and thus no
edge states can survive in the sloped interface (indicatedby the orange
arrows in Fig. 5a). In contrast, no edge states exist at the upper
boundary of HTPC1 when the operating frequency is within gap III,
making the wave propagate from P1 to P4 (along the Z-shape route,
illustrated by the green arrows). The above topological routing effect
is further demonstrated by the simulated transmission spectrum (see
Fig. 5b) and electric field distributions (see Fig. 5c, d). For the straight
edge channel (from P1 to P3), the transmission is nearly unity within
gap II, while experiencing a decrease within gap III (light orange area).
In contrast, for the Z-shape edge channel (from P1 to P4), there exists
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(lower panel). Insets: schematics of the measurement setups.
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an obvious drop within gap II (light blue area) while the transmission
remains unity with gap III. A typical simulated electric field distribution
at 10.8 GHz in Fig. 5c, of which the frequency iswithin the gap II, shows
that the electromagnetic waves arewell confined at the perfect electric
conductor boundary and propagate along the straight edge channel.
Meanwhile, another typical simulated electric field distribution at
12.4 GHz in Fig. 5d, of which the frequency is within gap II, indicates
that the electromagnetic waves propagate unidirectionally along the
Z-shape edge channel.

In addition, exchanging the configurations of HTPCs yields
another three-port topological routing (see Fig. 5e). At this time, the

electromagnetic waves cannot propagate fromP1 to P4 (P3) due to the
nonreciprocity character induced by the breaking of T symmetry.
However, one can still realize a three-port topological routing by pla-
cing an emitter at either P3 or P4 and a receiver at P2. As illustrated in
Fig. 5e, the receiver placed at P2 can acceptwave signals either fromP3
with high frequency (along the inverted Z-shaped edge channel, indi-
cated by the green arrows) or P4 with lower frequency (along the
straight edge channel, indicated by the orange). Such a proposal is
further demonstrated by the simulated transmission spectrum in
Fig. 5f. It is seen that gap II is dominated by the straight edge channel,
whereas gap III is dominated by the inverted Z-shaped edge channel,
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Fig. 5 | Frequency-dependent topological routings based on HTPC structures.
a, e Illustration of frequency-dependent topological routing based on different
configurations: a Z-shaped boundary with HTPC1 on the left and e Z-shaped
boundary with HTPC2 on the left. In a the edge waves with a lower (higher) fre-
quency in gap II (III) propagate from P1 to P3 (P4), as indicated by the orange
(green) arrows. In e, the edge waves with a lower (higher) frequency in gap II (III)
propagate from P4 (P3) to P2, as indicated by the orange (green) arrows. b, f The
simulated transmission spectra for (b) and (f) that confirm the frequency-selective
topological routing in (a) and (e): i.e., gap II is dominated by the straight edge

channels whereas gap III is dominated by the Z-shaped and inverted Z-shaped edge
channels. The light yellow (green) region refers to gap II (III). c, g Typical simulated
electric field distributions of the straight edge channel in gap II for the configura-
tions in (a) and (e). Here, the electromagnetic waves are excited by point sources
(the orange stars) with a frequency of 10.8 GHz. d, h Typical simulated electric field
distributions of the Z-shaped and inverted Z-shaped edge channels in gap III for the
configurations in (a) and (e), which are excited by point sources (the green stars)
with a frequency of 12.4 GHz.
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similar to that in Fig. 5e. Furthermore, we also provide two typical
simulated electric field distributions at 10.8 and 12.4 GHz in Fig. 5g, h,
respectively. Indeed, it is seen that the electromagnetic waves are
mainly localized along straight (inverted Z-shaped) edge channels
when an excitation source placed at P4 (P3) with a lower (higher) fre-
quency is excited.

Discussions
We unveil an exotic topological phase of photons: HTPCs which have
distinct topology in adjacent band gaps as enabled by the breaking of
both P and T symmetries. Here, the two photonic band gaps exhibit
the QAH and VH topology, respectively, as characterized by distinct
edge states and topological numbers. In addition to its fundamental
value, the discovery of HTPCs may also benefit future applications in
topological photonics. For instance, HTPCs with multiplexing in edge
channels can enable the simultaneous realization of beam splitting62–64

and beam combining for photonic edge transport. It may also enable
highly efficient topological photon filtering due to the distinct edge
modes in different photonic band gaps. The photonic wave multi-
plexing in the edge channels of HTPCs offers a promising future for
topological wave manipulation in photonics. Finally, we remark that
although the HTPCs are demonstrated using gyromagnetic photonic
crystals, the main results here can be further extended to Floquet
photonic topological insulators16,17,65–69 (see Supplementary Note 6 for
our proposed model of Floquet hybrid topological photonic crystal
with intriguing multi-gap topology). Therefore, the concept of hybrid
topologywith distinct topological classes can be generalized to optical
frequencies via Floquet photonic topological insulators. Moreover,
when nonlinear effects are considered, interactions between the
topological edge states of distinct nature can enable nonlinear switch
of photonic flows in the topological edge channels, e.g., switching
from the unidirectional photonic edge flow to the bidirectional pho-
tonic edge flow via the nonlinear optical effects (see Supplementary
Note 7 for a concrete example that demonstrates such an effect via
simulations), which enriches the degree of freedom for the manip-
ulation of photon propagation in topological edge channels. These
discoveries unveil exotic phenomena and possibilities in the field of
topological photonics.

Methods
Materials
All the gyromagnetic rods used in the experiment are made of yttrium
iron garnet (YIG), a typical magneto-optical material in the microwave
regime to break the T symmetry. The relative permittivity is about
15.29 at X-band. Typically, under fully transverse saturated magneti-
zation, the YIG ferrite processes strong anisotropy corresponding to
tensor permeability expressed as follows

μ=

μr �iκ 0

iκ μr 0

0 0 1

0
B@

1
CA ð2Þ

where

μr = 1 +
ωmðω0 + iαωÞ

ðω0 + iαωÞ2 � ω2
, ð3aÞ

κ =
ωmω

ðω0 + iαωÞ2 � ω2
, ð3bÞ

andωm = 4πγMs is the characteristic frequencywith gyromagnetic ratio
γ = 2.8MHz/Oe and saturation magnetization 4πMs = 1884 Gaussian.
ω0 = γH0 is the resonant frequency proportional to the external mag-
netic field H0. ω is the operating angular frequency.

Simulations
All simulations in this paper are implementedwith the radio frequency
module of COMSOL Multiphysics. To obtain the bulk bands, the
boundaries of the primitive cell are set to be periodic. The band
structures in Fig. 3 are calculated using a supercell that consists of ten
HTPC2 terminated by perfect electric conductors, while another
supercell consisting of eight HTPC1 and eight HTPC2 cladded by per-
fect electric conductors are employed to calculate the valley edge
dispersions in domain wall systems in Fig. 4. The stimulated trans-
mission spectra and the electricfield patterns in Fig. 5 are calculated by
exciting a point source with scanning frequencies.

Experiments
Two samples are fabricated in our experiments. A sample consisting of
HTPC2 with 5 × 12 unit cells is designed to demonstrate the coex-
istence of multiple edge states in gap II and III in Fig. 3e. The other
sample is composed of HTPC1 and HTPC2 with 8 × 12 unit cells, as
shown in the insets of Fig. 4a, e, respectively. The experimental setups
for transmission measurement are illustrated in Fig. 3f, where both
fixed feed probe and slidable detect probe are inserted in the interface
betweenHTPCs and ametallic wall. The whole structure is sandwiched
between twometallic paralleled plates with three sides surrounded by
electromagnetic absorbers to mimic a two-dimensional environment.
The external magnetic field is applied with H0 = 900Oe (the effective
magnetic field is 700Oe after considering the demagnetization). The
measured edge dispersions in experiments utilize the Fourier-
transformed field scan method. Note that the measured dispersion
has been shifted downwards by 0.5 GHz to account for the air layer
between the sample and upper plate of the parallel plate waveguide
(see Supplementary Note 5 for the original dispersion of the valley
edge states).

Data availability
All data were available in the manuscript and the Supplementary
Information. Additional information is available from the corre-
sponding authors through proper request.

Code availability
We use the commercial software COMSOLMULTIPHYSICS to perform
electromagnetic wave simulations and eigenstates calculations. All
related codes can bebuilt using the instructions in theMethod section.
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