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Construction of C-B axial chirality via
dynamic kinetic asymmetric cross-coupling
mediated by tetracoordinate boron

Kai Yang1,4, Yanfei Mao1,4, Zhihan Zhang2,4, Jie Xu1, Hao Wang1, Yong He1,
Peiyuan Yu 2 & Qiuling Song 1,3

Catalytic dynamic kinetic asymmetric transformation (DyKAT) provides a
powerful tool to access chiral stereoisomers from racemic substrates. Such
transformation has been widely employed on the construction of central
chirality, however, the application in axial chirality remains underexplored
because its equilibrium of substrate enantiomers is limited to five-membered
metalacyclic intermediate. Here we report a tetracoordinate boron-directed
dynamic kinetic asymmetric cross-coupling of racemic, configurationally
stable 3-bromo-2,1-azaborines with boronic acid derivatives. A series of chal-
lenging C-B axially chiral compounds were prepared with generally good to
excellent enantioselectivities. Moreover, this transformation can also be
extended to prepare atropisomers bearing adjacent C-B and C-C diaxes with
excellent diastereo- and enantio-control. The key to the success relies on the
rational design of a reversible tetracoordinate boron intermediate, which is
supported by theoretical calculations that dramatically reduces the rotational
barrier of the original C-B axis and achieves the goal of DyKAT.

Catalytic dynamic kinetic asymmetric transformation (DyKAT) has
emerged as a powerful platform for 100% theoretical conversion of
racemic, configurationally stable substrates into high-value optically
pure compounds1,2 like numerous pharmaceuticals and natural
products3–6. Mechanistically, these reactions normally entail a chiral
catalyst-mediated equilibration of substrate enantiomers, involving
formation of diastereomeric substrate−catalyst intermediates with
unstable configuration (DyKAT type I, Fig. 1a) or a common chiral
intermediate that has lost the substrate’s chiral center (DyKAT type II,
Fig. 1a). DyKAT strategy has been widely employed on central
chirality2, in recent years, it has also demonstrated important appli-
cations on the construction of heterobiaryl atropisomers7, which are
prevalent in natural products, medicines, ligands, catalysts and
materials8–17. The transition-metal-catalyzed DyKAT of racemic, con-
figurationally stable heterobiaryl substrates have been applied in the

synthesis of axially chiral heterobiaryl compounds18–25 since the pio-
neeringworks by Lassaletta & Fernandez18 and Virgil & Stoltz19. The key
of these elegant works all depends on the fast interconversion of dia-
stereomeric substrate−catalyst intermediates promoted by five-
membered metalacyclic intermediates18–25 (Fig. 1b). However, the
monotonous reactionmode significantly restricts the wide application
of DyKAT on axial chirality, and the challenge is to explore and find
more modes to promote equilibrium of substrate enantiomers.

Compared with the common C(sp2)−C(sp2) atropisomers, the
C(sp2)−C(sp3) atropisomers have a lower rotational barrier because the
conical space of sp3 carbon is more conducive to rotation26–33 (Fig. 1c).
It can be imagined that (1) if an atom of the stereogenic axis of the
diastereomeric intermediates in DyKAT changes from sp2 to sp3 under
the action of additional reagents, the group on the stereogenic axis
may be easier to rotate; (2) if the conversion from sp2 to sp3 is
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reversible, it might be a new model for the interconversion of dia-
stereomeric intermediates in DyKAT. As a result of our continuous
interest in tetracoordinate boron chemistry34, we envisioned that the
reversibility between B(sp2) and B(sp3)35–40 could support B(sp3)-direc-
ted DyKAT and fabricate optically pure C-B axially chiral molecules41,42

(Fig. 1d), which as elusive atropisomers and this type of chiral orga-
noborons are underdeveloped and represent a big hurdle and chal-
lenge in boron chemistry as well as in axial chirality compared to their
congeners with C-C or C-N axis, owing to the lower rotational
barrier which is caused by longer C-B bond43–47. If successful, this
reaction would develop an interesting diastereomeric intermediate
equilibrium process that differs from previous chelation-directed
DyKAT of racemic heterobiaryls18–25. Herein, we present a palladium-
catalyzed dynamic kinetic asymmetric cross-coupling of racemic,
configurationally stable 3-bromo-2,1-azaborines48–53 with boronic acid
derivatives via an equilibrium mode of DyKAT mediated by

tetracoordinate boron intermediates. By doing so, the DyKAT strategy
could be employed to the assembly of challenging atropisomers with
C-B axis or adjacent C-B and C-C diaxes.

On the basis of the previous reports of DyKAT2,7 and asymmetric
Suzuki−Miyaura coupling reactions54–67, our proposed catalytic DyKAT
version is shown in Fig. 1d. Oxidative addition of racemic 3-bromo-2,1-
azaborines to chiral Pd(0) species and subsequent anion exchange
afford diastereomeric intermediate I. The fast equilibration of inter-
mediate (R)-I and (S)-I could occur through the tetracoordinate boron
intermediate II formed by the transfer of the hydroxy group fromPd68.
Then, the transmetalation between intermediate I and boronic acid
derivatives and final reductive elimination generates C-B axial chirality
and regenerates the chiral Pd(0) catalysis. It is important that one of
the diastereomeric intermediate I ((R)-I or (S)-I) undergoes the trans-
metalation step faster than the other, so as to achieve the goal
of DyKAT. Although mechanistically appealing, there are several
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considerable challenges: (1) the sterically hindered environment
around B atom may inhibit the formation of tetracoordinate boron
intermediates; (2) it is still uncertain whether the tetracoordinate
boron intermediate could really reduce the rotation barrier and facil-
itate rotation of the aryl group on B atom around the C-B stereogenic
axis; (3) competitive intramolecular self-coupling side reactions might
occur69; (4) the simultaneous diastereoselective and enantioselective
synthesis of axially chiral molecules with multiple axes by one-step
reactions is still in its infancy70–74.

Results
To validate our hypothesis, we first designed and synthesized racemic
3-bromo-2,1-borazaronaphthalene 1a. Preliminary density functional
theory (DFT) calculations were performed to evaluate the feasibilities
of the racemization processes of three different species. As depicted
in Fig. 2a, substrate 1a with a C–B axis has a rotation barrier of
31.8 kcal/mol to 1a’ since the congested steric environment of the
planar geometry in transition states induces large distortions of aro-
matic rings. Compared with 1a, substrate 1a-C for the traditional
asymmetric Suzuki-Miyaura coupling possesses not only a shorter C–C
axis but also stronger aromaticity, which renders a much higher rota-
tional barrier of 47.8 kcal/mol to 1a-C’, making direct dynamic kinetic
asymmetric transformation from the substrate (DyKAT) even more
unattainable (Fig. 2b). However, the Lewis acidic boronic complex 1a-
Pd, the intermediate after oxidative addition of 1a to Pd followed by
ligand exchange, allows the coordination of the hydroxide ligand to
form a chiral tetracoordinate boron species. In TS-Pd, the tetra-
coordinate boron species own elongated C–B axis. The corresponding
rotational barrier from 1a-Pd to 1a-Pd’ is significantly reduced to

16.7 kcal/mol (Fig. 2c), which makes the free rotation of the aryl group
aroundC–B stereogenic axis feasible and fully supports our conjecture.

Encouraged by the results from theoretical calculations, we then
investigated this envisioned dynamic kinetic cross-coupling using
racemic 3-bromo-2,1-borazaronaphthalene 1a and trifluoroborate 2a
as model substrates (Fig. 2d). Delightfully, this reaction with Pd2(dba)3
as catalyst, the P-chiral monophosphorus ligand L1 as ligand and
Cs2CO3 as base in toluene/H2O furnished the desired C-B axially chiral
product (R)-3a in 81% NMR yield with 25% enantioselectivity excess
(ee) at 40 °C (Fig. 2d, entry 1). This result proved the feasibility of our
hypothesis and encouraged us to further evaluate other ligands. The
P-chiral monophosphorus ligands with small steric hindrance led to
higher ee values (Fig. 2d, entries 1–3). The substituents on the aryl units
of the ligands have an effect on this reaction (Fig. 2d, entries 4-5), and a
better result (Fig. 2d, entry 5, 92% yield and 76% ee)was obtainedwhen
ligand L5 with tetrahydrobenzofuran group was used. Subsequently,
we investigated the effect of bases and found that these bases all
promoted this reaction well, but the enantioselectivities of this reac-
tion were sensitive to bases (Fig. 2d, entries 6–10). In general, weak
bases were more favorable for enantioselectivities than strong bases.
Overall, the optimized reaction conditions for this DyKAT are shown
below: 1a (1 equiv), 2a (1.3 equiv), Pd2(dba)3 (2mol%), L5 (6mol%),
NaHCO3 (2 equiv) in toluene/H2O at 40 °C for 34 h (Fig. 2d, entry 11). In
addition, the same yield and enantioselectivity were obtained by
reducing the proportion of water when 3-methoxyphenylboronic acid
(2a’) was used as the substrate (Fig. 2d, entry 12).

To better understand the racemization process of the DyKAT, the
following experiments were performed. As illustrated in Fig. 3a, the
profile of the ee values or yields of the recovered 1a and the product 3a
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versus time indicated that two enantiomers of 1a were consumed
together and one of the enantiomers was decreased more rapidly,
suggesting a kinetic resolution (KR) process. In addition, the reactions
of enantioenriched 1a (37% ee) with two ligands with different config-
urations were carried out, and the profile of the ee values of the

recovered 1a versus time was shown in Fig. 3b. The results also sup-
ported a KR process. Finally, no obvious racemization of enantioen-
riched3-bromo-2,1-azaborine 1aunder standard conditionswithout aryl
trifluoroborates, excluding adynamic kinetic resolution (DKR) pathway.
To demonstrate that the process is indeed a DyKAT, DFT calculations
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were performed to probe the mechanism of the racemization process.
After oxidative addition and anion ligand exchange, benefiting from the
boron Lewis acidity, IM0 first underwent an intramolecular hydroxide
migration to form a tetracoordinate boron species IM1 via TS1. The C-B
bond in IM1 is free to rotate with a small barrier of 5.2 kcal/mol. The
analysis of the geometry ofTS2 indicates that owing to the formation of
tetracoordinate structure, the naphthalenemoiety undergoing rotation
is placed on the axial position to avoid repulsions with the benzylic
group sprouted on the equatorial position. Meanwhile, the C–B bond is
elongated by ~0.1 Å, which also provides more space to relax the strain
in TS2. Interestingly, IM2 is more stable than its diastereomer IM1 due

to the formation of an intramolecular hydrogen bond. The overall
energy barrier for the racemization process is 13.8 kcal/mol, endorsing
our strategy that the rotation around C–B axis could be realized even
with very bulky ligands.

Applying the optimized reaction conditions to a range of sub-
strates demonstrates the generality of this DyKAT (Fig. 4). This
approach was compatible with aryl trifluoroborate bearing electron-
rich groups, including alkoxy (3a, 3b, and 3e–3j), methylthio (3c), and
N,N-diphenyl (3d), delivering the corresponding C-B axially chiral
products in high yields with good to excellent enantioselectivities
(80–96% ee). The absolute configuration of (Ra)-3awas determined by
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X-ray crystallographic analysis (CCDC 2245394, the CIF file is provided
in Supplementary Data 1). Aryl trifluoroborate with an electron-
withdrawing group was tolerated well under the standard conditions
(3k, 70% yield and 93% ee). The tetrastyryl group could also be intro-
duced into the desired product 3l by this method, which provides the
possibility for a chiral AIE molecule. Polycyclic aryl trifluoroborates
(3m and 3n) and unsubstituted phenyl trifluoroborate (3q) were suc-
cessfully coupled with excellent enantioselectivities to desired pro-
ducts. Moreover, aryl trifluoroborates bearing heteroaromatic
components, including carbazoles (3o and 3p), furan (3r), thiophene
(3s), and benzothiophene (3t), could be smoothly converted into the
target products with good to excellent enantioselectivities (82–96%
ee). Alkenyl trifluoroborates underwent this reaction well, and the
better enantioselectivities of 1-substituted alkenyl trifluoroborates (3v
and 3w) than (E)-styryl trifluoroborate (3u) may be due to steric
hindrance.

Next, a wide range of racemic 3-bromo-2,1-borazaronaphthalenes
could all undergo this DyKAT to render the corresponding

enantiomerically enriched C-B axially chiral molecules (Fig. 5a).
Methoxy (3x), methyl (3y and 3ah), and fluoro (3z)-substituted
racemic 3-bromo-2,1-borazaronaphthalenes could successfully deliver
the desired products in excellent efficiency (77–98% yields and
96–98% ee). Notably, BN-phenanthrene (3aa) was a viable framework
for this transformation, providing the corresponding product with
excellent enantioselectivity. Moreover, substituents on the N atom of
the 2,1-borazaronaphthalene including benzyls (3ab-3ad), n-butyl
(3ae), and thiophen-2-ylmethyl (3af) were readily tolerated well.
Despite lower yield, the transformation also tolerated bulky (iso-
propyl) moiety on the N atom of the 2,1-borazaronaphthalene with
excellent enantioselectivity (3ag, 33% yield and 97% ee). Low enan-
tioselectivities were obtainedwhen theOMegroupwas changed to the
OEt (3ai) or SEt (3aj) groups with larger steric hindrance.

In view of the successful application of the DyKAT strategy to
prepare the C-B axially chiral compounds, we turned our attention to
the synthesis of atropisomers with C-B adjacent diaxes of C-B and C-C
bonds (Fig. 5b). (2-Methoxy-1-naphthyl)boronic acid was tested in the
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reaction, and to our delight, the desired axially chiral products 3ak-
3an were obtained with excellent diastereoselectivities and enantios-
electivities (>20:1 dr, 95–97% ee). The absolute configuration of 3ak
was determined by ECD and two-dimensional NMR experiments (for
details, see Supplementary Figs. 1–4 and 6–10)75–77.

This transformation is also applicable to the synthesis of C-B
axially chiral compounds bearing complex fragments derived from
natural products or therapeutic agents, whose high functional-group
compatibility is fully linchpinned. Aryl trifluoroborates derived from
clofibrate (4a), estrone (4b), and tyrosine (4c) were transformed into
the corresponding C-B axially chiral compounds with ease (Fig. 6a).
In addition, C-B axially chiral compounds could be further
modified. Firstly, demethylation of product 3m could generate a C-B
axially chiral molecule 5 with free naphthol, which has the potential
for further transformations (Fig. 6b). Meanwhile, product 3u could
be converted to isopropyl-substituted C-B axially chiral molecule
6 via hydrogenation, and could also react with indole under acid
catalysis to afford compound 7 with high retention of the enantio-
purity (Fig. 6c).

In conclusion, we developed a palladium-catalyzed DyKAT pro-
cess of racemic, configurationally stable 3-bromo-2,1-azaborines for
the construction of C-B axial chirality. The experiments and calcula-
tions demonstrated that the reaction is a DyKAT process and that the
reversible tetracoordinate boron intermediate is the key to its success.
This chemistry offers practical access to chiral organoborons bearing
C-B axis or adjacent C-B and C-C diaxes in generally high yields with
excellent diastereoselevtivities and enantioselctivities.

Methods
General procedure for the synthesis of atropisomers with a
single C-B stereogenic axis
In air, a 25mL Schlenk tube was charged with 1 (0.1mmol, 1 equiv), 2
(0.13mmol, 1.3 equiv), Pd2(dba)3 (2mol%), L5 (6mol%), and NaHCO3

(0.2mmol, 2.0 equiv). The tubewas evacuated and filledwith argon for
three cycles. Then, 1.5mL of toluene and 0.3ml of water was added
under argon. The reaction was allowed to stir at 40 °C for 34 h. Upon
completion, a proper amount of silica gel was added to the reaction
mixture. After the removal of the solvent, the crude reaction mixture
was purified on silica gel (petroleum ether and ethyl acetate) to afford
the desired products.

General procedure for the synthesis of atropisomers with adja-
cent diaxes of C-B bond and C-C bond
In air, a 25mL Schlenk tube was charged with 1 (0.1mmol, 1 equiv), 2-
methoxy-1-naphthyl)boronic acid (1.3–4.0 equiv), Pd2(dba)3 (2mol%),
L5 (6mol%), and Li2CO3 (2.0–4.0 equiv). The tube was evacuated and
filledwith argon for three cycles. Then, 1.5mL of toluene and0.15mlof
water was added under argon. The reactionwas allowed to stir at 40 °C
for 46–76 h. Upon completion, a proper amount of silica gelwas added
to the reaction mixture. After the removal of the solvent, the crude
reaction mixture was purified on silica gel (petroleum ether and ethyl
acetate) to afford the desired products.

Data availability
The data that support the findings of this study are available within the
article and its Supplementary Information files. All other data are
available from the corresponding author upon request. Supplemen-
tary Tables 1 and 2 for mechanism experiment results, Supplementary
Table 3 for rotational barrier of 3a, Supplementary Figs. 1–4 and 10 for
additional computational results, Supplementary Fig. 5 for the plot of
ln(ee0/eet) vs time of 3a, Supplementary Figs. 6–9 for two-dimensional
NMR analysis of 3ai, Supplementary Figs. 11–237 for NMR spectra,
Supplementary Figs. 238–283 for HPLC spectra. The X-ray crystal-
lographic coordinates for the structure reported in this study have
been deposited at the Cambridge Crystallographic Data Centre
(CCDC), under deposition number 2245394 (3a). These data can be
obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif. The cartesian coor-
dinates of the optimized structures are provided in a source data
file. Source data are provided with this paper.
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