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Three-dimensional molecular architecture
of mouse organogenesis

Fangfang Qu1,2,3,9, Wenjia Li1,3,4,9, Jian Xu1,9, Ruifang Zhang 1, Jincan Ke5,
Xiaodie Ren1, Xiaogao Meng5,6, Lexin Qin5, Jingna Zhang1, Fangru Lu1, Xin Zhou1,
Xi Luo5, Zhen Zhang5, Minhan Wang5, Guangming Wu1,3,7, Duanqing Pei 8,
Jiekai Chen 1,5, Guizhong Cui 1,3,7 , Shengbao Suo 3,4 &
Guangdun Peng 1,5

Mammalian embryos exhibit sophisticated cellular patterning that is intri-
cately orchestrated at bothmolecular and cellular level. It has recently become
apparent that cells within the animal body display significant heterogeneity,
both in terms of their cellular properties and spatial distributions. However,
current spatial transcriptomic profiling either lacks three-dimensional repre-
sentation or is limited in its ability to capture the complexity of embryonic
tissues and organs. Here, we present a spatial transcriptomic atlas of all major
organs at embryonic day 13.5 in the mouse embryo, and provide a three-
dimensional rendering of molecular regulation for embryonic patterning with
stacked sections. By integrating the spatial atlas with corresponding single-cell
transcriptomic data, we offer a detailed molecular annotation of the dynamic
nature of organ development, spatial cellular interactions, embryonic axes,
and divergence of cell fates that underlie mammalian development, which
would pave the way for precise organ engineering and stem cell-based
regenerative medicine.

Organogenesis sets up the functional layout of the animal body from
three germ layers. This intricate process involves intensive cell–cell
interaction, cell fate determination, cell proliferation, as well as the
spatial arrangement of cells into distinct tissues and ultimately func-
tional organs. Recent advancements in technology, such as single-cell
transcriptomes and in vitro stem cell-based organoids models, have
opened up new avenues for understanding organ development1. For
instance, systematic single-cell analysis has revealed hundreds of cell
types and states and developmental trajectories for many organs

during mouse organogenesis2. Similarly, human embryo organogen-
esis at single-cell resolution has also been reported and major cell
types and developmental regulation programs have been delineated3.
However, the anatomically stringent organization of embryos at
organogenesis stages poses challenges for dissociation-based single-
cell genomics, as it masks the high-order tissue architecture and
location-dependent mechanisms.

Spatially resolved transcriptome technology represents a sig-
nificant breakthrough in gaining unprecedented views of the
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molecular regionalization of complex tissues and processes. Recently,
emerging spatial transcriptome approaches such as Geo-seq4,
seqFISH5, DBiT-seq6, Stereo-seq7, and sci-Space8, have disentangled the
molecular architecture of embryo development by mapping the spa-
tial organization of genes in cells of the embryo, revealing the rela-
tionships between gene expression patterns and embryonic
development. For example, sagittal sections from mouse embryos
spanning E9.5 to E16.5 with one-day intervals have been spatially
mapped to achieve a global view of organogenesis at cellular
resolution7. Similarly, a two-dimensional (2D) section of a whole E10
embryowas also spatially charted, defining the anatomic annotation of
major tissue regions6. However, the cells in the embryo exist in a three-
dimensional environment where structure, morphology, and char-
acteristic biophysical and biomechanical signals play a significant role
in influencing cell functions, such as migration, proliferation, and
interaction, as well as patterning and axes formation. It is worth noting
that some cellular processes that govern differentiation and morpho-
genesis tend to occur more efficiently in three dimensions rather than
two dimensions. Therefore, it is crucial to profile the spatial tran-
scriptome of tissue and organ-specific microarchitecture by aligning
serial tissue sections of mouse organogenesis embryos to a 3D tem-
plate, which has not yet been reported.

Embryo organogenesis, characterized by synchronized cellular
and morphological changes, lays the foundation for the functional
manifestationoforgans. The early stages of organogenesis, specifically
embryonicday 9.5–13.5 (E9.5–E13.5), remainparticularly intriguing due
to its immediate implication for organoids studies, tissue engineering
and dissecting major developmental defects2,9. Moreover, under-
standing the co-evolution and 3D interactions of various organswill be
instrumental in designing the strategies for in vitro organogenesis10–12.
Here, utilizing the 10× Visium platform which provides high gene-
detecting ability and substantial cell coverage, we built an organo-
genesis spatial atlas that encompasses collective transverse sections of
the E13.5 mouse embryos. This spatial atlas of organogenesis repre-
sents almost all organ primordia configured at this stage and offers
insight into the dynamic cell location, cell–cell communication, spatial
heterogeneity, and organ architecture formation at the whole-embryo
scale, consequently providing a molecular basis for understanding
cellular interactions and allocation during mouse organogenesis.

Results
Construction of a spatial transcriptomic atlas of embryo orga-
nogenesis at E13.5
To generate a comprehensive molecular architecture of embryo devel-
opment at E13.5, we utilized the 10× Genomics Visium platform to per-
form spatial transcriptomics sequencing on three individual mouse
embryos. The whole embryo was serially cryo-sectioned into
~1000 sections at a thickness of 10μm along the craniocaudal axis. To
create a comprehensive and concise representation of the anatomic
structures of E13.5 mouse embryo, we collected a total of 10 sections
from a male embryo (Embryo 1, E1) that were spaced approximately
every 100 sections apart, serving as a reference three-dimensional atlas
(Fig. 1a). RNA-sequencing of these sections generated a high quality of
spatial molecular map, with a median depth of 244.7 million reads per
library, 16,418 spots from the entire sections, a median of 5668 genes
and22,253 uniquemolecular identifiers (UMIs) per spot (Supplementary
Fig. 1a, b). We compared two sections from a replicate embryo (E2) and
found that gene expression correlation, cluster identifications and spa-
tial expression of marker genes are consistent, suggesting a high
reproducibility of the spatial transcriptome and spatial expression
domains among different embryos (Supplementary Fig. 1c–o). Mean-
while, the spatial distribution of marker genes also matched with in situ
hybridization (ISH) data obtained from Mouse Genome Informatics
(MGI) or Allen Brain Atlas (ABA)13 (Supplementary Fig. 1o). We then
focused our analysis on tissue sections from the reference embryo.

To systematically reveal the spatial molecular architecture of the
E13.5 mouse embryo, we merged all 10 sections of the embryo and
performed dimensional reduction using principal component analysis
(PCA) and unsupervised clustering. By applying the uniform manifold
approximation and projection (UMAP)14, the spatial clusters were
separated into two major groups: head and body parts (Fig. 1b). We
identified 19 consensus spot clusters and annotated thembased on the
expression of the signaturegenes, enrichedGeneOntology (GO) terms
and tissue images (Fig. 1b–d, Supplementary Fig. 2a, b and Supple-
mentary Data 1). The spatial transcriptome atlas covered the majority
of tissue and organs at this stage, including the brain cerebrum, spinal
cord, respiration tract systems, gastrointestinal tract systems, circu-
lation system, bone, skin, gonad, etc., providing a comprehensive view
of the organs from head to tail. We found that the spatial clusters
aligned well with the defined spatial anatomy structures when map-
ping spots back to the original coordinates of the tissue sections
(Fig. 1c and Supplementary Fig. 2b). TheD1-muscle domain (marked by
Myog and Tnnc2, Fig. 1e and Supplementary Fig. 2a, b) were con-
sistently observed across all seven sections of the body parts, while
brain-related clusters such as domain D7-midbrain, D11-telencephalon,
D14-neopallium, and D12-cephalic mesenchyme, as well as blood ves-
sels (markedby Ptgds andAtp1a2, Fig. 1e and Supplementary Fig. 2a, b),
were predominantly distributed in the head parts. Meanwhile, spatial
domains D16-medulla oblongata and spinal cord, D13-ganglion
(marked by Gal and Sncg, Fig. 1e and Supplementary Fig. 2a, b), and
D9-cartilage matrix were consistently presented across the assayed
embryo sections due to their ubiquitous existence (Fig. 1b, c and
Supplementary Fig. 2b, c). In addition, we also identified organ-specific
clusters. For example, D6-hepatic parenchyma, characterized by spe-
cific expression of Afp and Apoa215, was predominately located in the
liver; D19-heart exhibited differential expression of Nppa and Myh6,
which are associated with heart contraction and blood circulation
regulation (Fig. 1d and Supplementary Fig. 2a, b)16,17. Furthermore, to
evaluate the spatial expression of identified top marker genes, we
performed whole mount in situ (WISH) and verified the specific
expression of Sfn, a relatively newmarker gene in D15-skin, and Pantr1,
which showed specific expression in D14-neopallium (Supplementary
Fig. 2d–f). Altogether, this organism-level of spatial atlas provided a
holistic molecular annotation for tissue architecture of mouse orga-
nogenesis at E13.5.

In addition, as the sex of the embryo at E13.5 hasbeendetermined,
we collected four additional sections from the body part of a female
embryo (E3) to accommodate a better coverage of sex differentiation
(Supplementary Fig. 3). The sex of these embryos was confirmed by
PCR and the spatial expression of marker genes (Supplementary
Fig. 3c, d). By merging all sections from these two embryos (E1 and E3)
together, we observed a minimum batch effect (Supplementary
Fig. 3e), indicating high compatibility of the spatial transcriptome
between these two embryos. Consequently, we annotated the spatial
region of E3 by transferring labels from the represented embryo E1.
The annotation of the spatial domains aligned consistently with the
spatial anatomic structure and matched well with those sections from
comparable positions in E1 (Supplementary Fig. 3f–i).

Next, we further evaluated the dataset of 10 sections fromembryo
E1 by integrating it with E13.5 data from theMOSTAdataset, whichwas
collected on one sagittal section using stereo-seq technology7. Despite
the use of different spatial technologies, these two datasets showed a
compatible pattern as visualized in the UMAP (Supplementary Fig. 4a,
b). We observed relatively consistent labeling of spatial regions by
transferring annotations of our dataset to the MOSTA dataset7 (Sup-
plementary Fig. 4c–e). Taken together, our dataset of 10 sections
illustrated a not complete but reasonable representation of the major
organs and tissues of the embryo, spanning from head to tail, with
minimal sampling bias. Therefore, it has the potential to serve as a core
spatial atlas for E13.5 mouse embryos.
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Fig. 1 | 3D spatial transcriptional atlas for mouse organogenesis at E13.5.
a Schematic overview of experimental design and analysis workflow for the spatial
transcriptome of mouse organogenesis at E13.5. b UMAP projection and clustering
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To facilitate the intuitive visualization of the spatial char-
acteristics, we reconstructed a 3D embryonic model and depicted
the spatial view of the identified spatial domains within the virtual
embryo model (see the “Methods” section and Supplementary
Movie 1). We also developed a web portal that provides a 3D

illustration of spatial gene expression (http://most.ccla.ac.cn).
These efforts highlighted the 3D recapitulation of molecular
activities in the organogenesis embryo through meticulous align-
ment and collective integration of multiple spatial-transcriptome
(ST) sections.
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Regionalization and orchestration of gene regulatory network
activity for organ development
To reveal the regionalized transcriptional regulatory activity under-
lying spatial gene expression patterns, we implemented the single-cell
regulatory network inference and clustering (SCENIC) pipeline18 and
calculated the regulon activity score (RAS) for each spatial spot. We
found the spatial domains based on RAS were consistent with the
spatial gene expression clusters (Supplementary Fig. 5a–c), indicating
that the activity of transcription factors (TFs) regulatory network may
be involved in determining the cell fates and locations.

We then sought to systematically identify critical TF regulators
associated with each spatial domain by computing the regulon speci-
ficity score (RSS) of each regulon for all 19 spatial domains based on
the Jensen–Shannon divergence19. We identified significantly enriched
regulons in each spatial domain (Fig. 2a, b and Supplementary Data 2
and 3). This allowed us to obtain organism-level key TF networks that
specifically function in a location- and cell-type-dependent manner
(Fig. 2a, b and Supplementary Fig. 5d). For example, Hnf1a, Nr1h3 and
Cebpe regulons were identified as top regulons in D6-hepatic par-
enchyma, in agreement with their known functions in hepatocyte
development, differentiation or bile acid homeostasis20–23. The
Bhlhe40 regulon showed specific and strong activity in the D9-
cartilage domain, while Trp63 exhibited specific activity in theD15-skin
domain. Similarly, in pan-muscle cells,Myf6 andMyod1were identified
as master TF regulons24–26. Notably, Isl2 and Prrxl1 emerged as top-
ranked regulons in the D13-ganglion region, and Dlx3 regulon exhib-
ited high specificity score in the domain of D2-craniofacial pri-
mordium, consistent with their reported roles in the regulation of
craniofacial bones development27. Of note, besides known cell type
markers, the 3D spatial atlas delineated unappreciated TFs enriched in
each respective organ (Supplementary Data 3), such as Rxrg in muscle
cells andMecom in limb tissues (Fig. 2a, b)28. We also observed specific
expression of TFs in enriched spatial domains, which was relatively
restricted compared to the RAS of the corresponding regulons (Sup-
plementary Fig. 5d, e). These results suggest that the unrecognized
spatial-domain-specific regulons identified fromour spatial atlas could
serve as an important resource for further functional analyses.

During embryogenesis, TFs often coordinate and regulate gene
expression in a combinatorialmanner. Understanding the divergent or
convergent TF regulation mechanisms, both within and outside
developmental lineages, is of particular interesting. To further reveal
the regionalized transcriptional regulation networks in our spatial
atlas, we calculated the similarity of top selected regulons using the
connection specificity index (CSI)29. Hierarchical clustering was then
applied to identify potential function-related regulon groups, by
computing the averaged RAS score for each TF regulonmodule across
spots.Wediscovered distinct spatial regulonmodules that highlighted
the orchestration of TF regulons in particular tissue regions (Fig. 2c).
Interestingly, the TF regulons formed seven co-activation modules for
the 19 spatial tissue domains, indicating a shared co-regulatory
mechanism for particular organs during this early stage of organo-
genesis. For example, regulon module 1 (M1), which includes key
regulators such as Sox1 and Pou3f2, showed high activity in D7-mid-
brain, D16-spinal cord, and cerebrum domains, indicating a general
regulation mechanism for neural development. Regulon module 7

(M7) was associated with neural crest derivatives, such as craniofacial,
endochondral bone and cartilage development. To reveal the under-
lying connections in each module, we further constructed a TF co-
expression network on the basis of their CSI value (Fig. 2d). Collec-
tively, this network analysis of regulatory interactions provided
insights into the spatially dissected regulatory mechanisms across
different cell types and locations in controlling embryo organogenesis.

Spatial signaling pathway activity at the whole embryo scale
The patterning and regionalization of embryos during development
are highly dependent on morphogenetic signals. To systematically
map the spatial distribution of signaling pathways activities in the
entire embryo, we examined the enrichment score of signaling genes
(including ligands, receptors, key signaling effectors and regulators)
for seven pathways: Wnt, Bmp, Fgf, Hippo, Nodal, Notch and Hedge-
hog. We gained a comprehensive view of spatial signaling landscape at
both global and individual spatial-domain level (Fig. 2e, f).

Of note, the spatial distribution of the developmental signaling
scores revealed relatively high activity across the telencephalon,
ependyma, limb, cartilage and skin, while showing particularly low
activity in the liver, midbrain and spinal cord domains. This suggests
differential induction and patterning scheme in different tissues and
organs. For example, Nodal signaling mainly exhibited strong activity
in regions of the cerebrum, part of the midbrain and jaw area of the
craniofacial primordium, indicating its important roles in neurogen-
esis and specifying the function of themouth30 (Fig. 2e, f). On the other
hand, Notch signaling, which mediates juxtracrine cell-cell
communication31,32, showed enrichment in the brain and spinal cord
ependyma region, cerebrum, and part of the skin domain. Bmp sig-
naling activity was relatively high in the limb and less represented in
liver and cerebrum and midbrain domain, consistent with previous
studies33,34 (Fig. 2e). Hedgehog and Fgf signaling also showed moder-
ate activity in the cartilage and limb, suggesting that these pathways
may coordinate with Bmp to play important roles in limb and bone
morphogenesis (Fig. 2e).

Furthermore, we assessed the spatial distribution of the pro-
liferation state by calculating the “Cell cycle score”. Regions containing
nerve progenitors, such as D14-cerebrum, part of D11-cerebrum and
D17-ependyma, exhibited high levels of G2M and S phase score. In
contrast, themidbrain and the gangliondomains showed relatively low
activity scores for bothG2Mand Sphases (Fig. 2g). Hence, this analysis
uncovered the regionalization of proliferation activity at the whole-
embryo scale.

Spatially resolved molecular characterization of major organs
In the organism-level classification, the spatial domain of D5 (Fig. 1c)
was a major cluster consisting of spots from multiple visceral organs.
To achieve a finer annotation, spots of D5 were subjected to further
unsupervised clustering and we obtained 10 sub-clusters (Fig. 3a, b),
each with distinct spatial expression patterns, anatomical structure,
specific expressed marker genes and enriched GO terms. We assigned
these sub-clusters as pancreas, bladder, gonad, stomach, gut, meta-
nephros, lung, umbilical, trachea andmesenchyme (Trachea_Mes) and
mesonephros-spleen-superior recess of omental bursa (Nep_sp_Om).
This finer annotation provided a full spectrum of all major visceral

Fig. 2 | Spatial gene regulation network, signaling and proliferation activity.
aHeatmap ofmean regulon activity score of selected top regional specific regulons
for each spatial domain. b Spatial distribution of regulon activity scores across
embryonic tissues for selected domain-specific regulons. c The hierarchical clus-
tering of heatmap showing the seven regulon groups based on CSI matrix, with
associated spatial domains, representative TFs and spatial plots visualizing the
spatial distribution ofmean activity score across each section. d The co-expression
network based on CSI for the seven regulon groups. The nodewith different colors
represents the regulon in each module and width of edge represents the CSI value

of two nodes (filtered with CSI > 0.85). Color of the edges represents positive
(brown) or negative (green) correlation. eActivity of development-related signaling
pathways in each spatial domain. Differentially activated signaling in spatial
domains computed by two-sided Wilcoxon rank-sum test are marked with * for
mean score greater than 0 and p-value less than 0.001. f UMAP and spatial plots
showing activities of Notch and Nodal signaling in all spots and all sections of
embryo tissue. g. Spatial plots showing the spatial distribution of cell cycle activity
of G1, G2M and S phase in embryo tissue and the spatial expression of Mki67.
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organs during the mid-organogenesis embryo (Fig. 3b, c and Supple-
mentary Fig. 6a–c), which allowed us to define visceral organ-specific
signatures (Supplementary Data 4). For example, we found Nkx2-1, a
key factor known for its role in regulating the development of brain
and lung structures, showed specific expression in both lung and brain
regions35 (Fig. 3d). The stomach domain was characterized by the

expression of tissue-specific gene Barx1 (Fig. 3d), which has been
shown in the control of thoracic foregut specification and tracheo-
esophageal septation36. Additionally, we identified less-studied genes
such as Fst, Tmem200a and Egln3 co-expressed with Barx1 in the sto-
mach domain, indicating their potential involvement in stomach
development (Supplementary Fig. 6b).
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With its high sensitivity and comprehensive tissue coverage, the
spatial atlas allowed us to investigate signature genes of embryonic
visceral organs that have not been adequately explored. For example,
Sprr1awas found to have spatially exclusive expression in the bladder
(Supplementary Fig. 6b), whileUncx, Calb1 and Foxd1 showed spatially
restricted expression in the metanephros regions. Lypd8, Colec10 and
Col6a4 were specifically expressed in the gut. Among these sub-
domains, the pancreas expressed more region-specific genes, indi-
cating its strong and unique organ characteristics (Supplementary
Fig. 6b). Cel, Neurog3, Nkx2-2, and Pdx1 were identified as markers for
pancreas development.

Since the represented embryo (E1) was male and the collected
sections of the repeated female embryo (E3) also covered the regions
of the visceral organs,we annotated and identified the spatial locations
of all subclusters except for the Stomach in female visceral organs by
applying for label transfer from E1 (Fig. 3e). The specific expression of
the topmarker genes in gut, metanephros, bladder and pancreas were
further validated in the corresponding section from the female
embryo (Supplementary Fig. 6d). For the development of Gonad,
which involved sex determination and differentiation at E13.5, the
spatial expression of common and sex specific gonad genes were
explored (Fig. 3f, g). Interestingly, Lefty1 and Lefty2 genes were found
to be specifically expressed in the male gonad, which have been
reported to regulate the male germ cell fate segmentation37. Several
genes such as Irx338 and Lgals7, were identified specifically expressed
in female gonad.A set of gonad-specific genes in both female andmale,
such as Dppa3 and Text19.1, was also identified (Fig. 3g and Supple-
mentary Fig. 7a). Functional enrichment analysis showed that female
and male-specific genes were highly related to the corresponding sex
development, while the common gonad-specific genes were involved
in DNA modification, such as alkylation or methylation, besides the
terms related to gonad development, indicating the critical role of
dynamic DNA modification involved in gonad differentiation (Sup-
plementary Fig. 7b).

Furthermore, we also identified regional-specific TF regulons that
distinguish the subregions of these visceral organs (Supplementary
Data 5, Fig. 3h and Supplementary Fig. 7c–e). For example, Neurog3,
Nr5a2 and Ptf1a were associated with pancreas development39, 40

(Supplementary Fig. 7c), while Cdx2 and Nkx2-1 were the key regulons
for gut and lung, respectively (Supplementary Fig. 7d, e). Sall4 and
Zfp42 were found to be highly expressed regulons associated with
Gonad (Fig. 3h)41. The regulon activity score of these organ-specific
regulons was examined and validated in the repeated embryo E3
(Fig. 3h and Supplementary Fig. 7d, e), showing a consistent activation
pattern in both male and female embryos. These findings thus char-
acterized previously unappreciated tissue structures at the transcrip-
tional level within the subclusters of visceral organs.

Next, we sought to illustrate the fined and detailed molecular
structures in the sub-organ resolution during the organogenesis of

mouse embryos. Using the developing heart as an example, we iden-
tified four spatial molecular sub-regions by unsupervised clustering of
spots extracted from D19-heart of section 6 (S6) of E1. These spatial
domainsmatchedwellwith typical heart anatomical structures, andwe
annotated them as Atrial, Ventricular (Ven), Outflow Tract (OFT), Epi-
cardium (Epi) respectively (Fig. 3i). Subsequently, we identified a set of
transcriptional features specific to each sub-region of the heart at this
developmental stage (Supplementary Fig. 8a, b and Supplementary
Data 6). For example,Myl1 and Sln, which are well-known Atrial maker
genes, showed restricted expression in the Atrial domain. Msln and
Nsrp1 displayed epicardium-specific expression, in which Msln was
previously reported to be specifically expressed in the epicardium42,
and Nsrp1 is relatively new (Fig. 3j). Furthermore, we assessed and
illustrated the spatial distribution of cell types involved in heart
development by performing deconvolution analysis using corre-
sponding heart scRNA-seq data43 (Fig. 3k, l), and the cell type dis-
tribution also agrees with the anatomical structure. Finally, we
investigated the spatial expression pattern of genes associated with
congenital heart diseases (CHD) and identified a group of CHD-
associated genes that share a similar spatial pattern and show high
expression in the OFT sub-region at this mid-organogenesis stage
(Supplementary Fig. 8c–e). Of note, Eln, a gene associated with pul-
monary valve atresia (PA)44, and Mgp, which is related to peripheral
arterial disease, were included in this cluster. Collagen-related genes
Col3a1 andCol1a2, whichwerenot specifically associatedwith a certain
type of CHD, also showed high expression in the OFT region. Although
limited toone stage, thesefindings shed light onpotentialmechanisms
underlying CHDs. Reassuringly, we further repeated cell type decom-
position and validated the spatial expression of the topmarker gene in
the repeated female embryo E3 (Supplementary Fig. 8f–h). Altogether,
these findings showcase the valuable utilities of this spatial atlas in
dissecting sophisticated tissue organizations.

The craniocaudal, dorsoventral and radial axes in establishing
the spatial patterning of spinal cord
During embryonic development, a crucial event at around E13.5 is the
acquisition of positional identities within the neural tube, which ulti-
mately gives rise to the brain and spinal cord. The neural tube
undergoes patterning along the craniocaudal, dorsoventral and radial
axes to establishdistinct domains. Previous studies utilizing scRNA-seq
have provided many insights into nervous system development45–47.
Herein, we aimed to explore the spatial patterning of the neural tube at
the whole embryo scale.

One of the key regulators involved in establishing the regional
identities along the anterior–posterior (AP, craniocaudal) axis of
both the hindbrain and spinal cord is the family of Homobox (Hox)
genes. These genes form a ‘Hox code’ and play a critical role in
determining the boundaries and positions of different neuronal
subtypes along the AP axis48. Hox genes are generally categorized

Fig. 3 | Spatially resolved molecular characterization of major organs and sex
specification. a UMAP embedding of spots from D5 (visceral organ) labeled by
subclusters in embryo E1. b Spatial distribution of the 10 subclusters of D5. Seg-
mented regions are highlighted on S9 (right) and colored according to the denoted
anatomical structure. Subcluster 6 Nep_sp_Omwas further divided into 6.1 and 6.2
to represent finer structures. Trachea_Mes, trachea and mesenchyme; Nep_sp_Om,
mesonephros-spleen-superior recess of omental bursa. cThe heatmap showing the
expression pattern of selected top marker genes for each subcluster. d Spatial
expression of selected marker genes Barx1 for Stomach (top) and Nkx2-1 for lung
(middle) across all embryo sections. The dashed box showing the region-specific
expression of Barx1 in the stomach region of S9 (bottom left) and Nkx2-1 (bottom
right) in the lung region of S7 and their corresponding regions in tissue images.
e Subcluster annotation of D5 (top) and segmented regions are highlighted
according to the denoted anatomical structure (bottom) on section 9.5 (F9.5) in
embryo E3. fHeatmap showing the sex-related gonad-specificmarker genes for the

female and male embryos, of which pink represents female-specific, light blue
represents male-specific, and gray represents common-specific marker genes.
g Spatial distribution of sex-related gonad-specific marker genes Dppa3 for com-
mon, Lefty2 formale and Irx3 for female in S9 ofmale embryo E1 and F9.5 of female
embryo E3. h Rank plot for regulons in gonad based on regulon specificity score
(left). Spatial distribution of regulon activity scores for regulon Sall4 and Zfp42 in
both male and female tissue sections. i The spatial distribution of annotated sub-
clusters of D19-heart. Ven, Ventricular; OFT, Outflow tract; Epi, Epicardial. j Spatial
expression of selected sub-domain specific marker genesMyl1 (Atrial),Myl2 (Ven),
Eln (OFT), and Nsrp1 (Epi). k The spatial map of predicted cell types in the heart
region. l Spatial visualization of deconvoluted weights of 8 heart-specific cell types
including atrial cardiomyocytes (atrial_cm), ventricular cardiomyocytes (ven-
tricular_cm), endocardial endothelial cells (endocardial_ec), vascular endothelial
cells (vascular_ec), epicardial cells, fibroblast-like cells, immune cells, and blood
cells. S section, D domain.
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into anterior (Hox 1–3/4), trunk/central (Hox 4/5–9) and posterior
(Hox 10–13) paralogues groups (PGs), reflecting their arrangements
along each genome cluster49. We first examined the expression of a
total of 26 expressed Hox genes in the spatial domain of D16-medulla
oblongata and spinal cord (Fig. 4a, b). As expected, the anterior Hox
PGs were predominantly expressed in the rostral sections, while the

posterior Hox PGs showed increased expression in the posterior
regions (Fig. 4a). In order to identify new genes involved in A–P
patterning, we arranged the spatial spots along the anterior to pos-
terior plane ordered by the expressed Hox genes to establish a
pseudo-space trajectory (Fig. 4b). Next, we performed differential
gene analysis to identify genes that showed distinct A–P patterning
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along this pseudo-space trajectory. To further refine these candidate
genes, we applied correlation analysis between the gene expression
of each spot and the combinatorial pattern of AP slices (Supple-
mentary Fig. 9a and Supplementary Data 7). We identified A–P
region-specific genes including Igfbpl1 (Fig. 4c) in the rostral region,
Atp1a3 in the central and AC162693.1 in the relative caudal region
(Fig. 4c). These newly identified genes expand our understanding of
potential regulators involved in establishing the body plan.

We also examined the dorsal–ventral (D–V) patterning during
embryonic spinal cord development, taking advantage of our trans-
verse collection strategy. Along the D–V axis, diverse neurons with
distinct structures and functions are generated, controlled by precise
spatial expression genes and signals50, 51. To investigate this patterning,
we allocated the combinatorial expression of a curated marker gene
list that is used to define different domains of progenitors in single-cell
RNA-seq45 to the spinal cord spots, including dorsal gene sets (D) by
combinatorial marker expression of roof plate (RP) and dp1–dp6,
medial gene sets (M) bymarker territory of p0–p2, aswell as ventral (V)
gene sets by pMN, p3 and floor plate (FP) genes. Similarly, we cate-
gorized gene sets for neuronal regions into dorsal (D, marked by
dl1–dl6),medial (M,marked by V0–V2b) and ventral (V, marked byMn
andV3) subdomains. This allowed us to observe clear separation of the
dorsal, medial and ventral structures within the spinal cord (Fig. 4d).
To predict new genes involved in spinal cord patterning, we identified
domain-specific genes along the D-V axis in different spinal cord
regions (Fig. 4e, Supplementary Fig. 9b and Supplementary Data 8).
For example, Zic1, Bcl11a, Celf2 and Npy were specifically expressed in
thedorsal region,whileOtp andBarhl1wereup-regulated in themedial
region. Furthermore, genes such as Esrrg, Uts2b, Nefl and Nefm were
highly expressed in the ventral region (Fig. 4e). We performed single
molecular fluorescence in situ hybridization (smFISH) on serial sec-
tions of the spinal cord (Fig. 4f and Supplementary Fig. 9c) and validate
the expression of D–V patterning-related genes. Accordingly, we fur-
ther identified TF regulons associated with both A–P and D–V pat-
terning (Supplementary Fig. 10a–d). As expected, the Hox TF family
ranked highly in spatial patterning. Several Sox TFs, known for their
importance in neural development52, were also identified as regulons
associated with A–P patterning. Notably, Mnx1 exhibited specific reg-
ulon activity in the ventral part, consistent with its role as a TF specific
to spinal cord motor neurons53.

To further investigate the spatial differences along the radial axis
(medial–lateral) that are relevant to neural progenitor proliferation
and differentiation, we conducted differentially expressed gene (DEG)
analysis along the inner and outer layers of spinal cord spots (Fig. 4g).
We found well-known marker genes of neural progenitors such as
Hes5, Qk and Sox254–57, as well as genes with limited study in neural
progenitor cells, such as Hopx, Dbi and Ttyh1 which were expressed in
the inner regions. Whereas genes including Tubb5, Tuba1a, Rtn1,
Stmn2, Nsg1 and Calm2, which may be related to differentiated neu-
ronal cells, showed high expression in the outer layers. We performed
smFISH on serial sections from anterior to posterior, confirming the
distinct patterns of expression for Ttyh1, Hopx, Nsg1 andCalm2 (Fig. 4h
and Supplementary Fig. 9c). Our analysis therefore suggests that
numerous additional genes with spatially restricted expression

patterns can be identified to constitute the regionalized patterning of
neural tube. Hence the spatial atlas may provide new clues for neu-
ronal specification and patterning of the developing spinal cord.

Integration of single-cell and spatial atlases illustrates spatially
resolved cell interactions
Each spot in the Visium platform is expected to consist of a mixture of
around 20 cells and probably includes multiple cell types. To investi-
gate the cell type heterogeneity in the spatial regions, we performed
cell type deconvolution using Robust Cell Type Decomposition
(RCTD)58 with E13.5 mouse single cells derived from the TOME dataset
as the reference1.

We defined specific spatial distribution for 46 cell types within
each spatial domain at the E13.5 stage (Fig. 5a, Supplementary
Figs. 11–13 and Supplementary Data 9). As expected, myocytes were
the most abundant throughout spatial regions, and endothelial cells
and white blood cells were also widely distributed (Fig. 5a and Sup-
plementary Fig. 11a). Visualization of the deconvoluted cell type
weights on tissues showed that the assigned coordinate of organ-
specific cells corroborated known tissue functions (Supplementary
Figs. 11–13). For example, epithelium cells were exclusively located in
the otic, branchial arch, lung, pancreatic and renal (Fig. 5b). By
examining the top abundant cell types in each spatial domain, we
observed a consensus between cell types and their anatomical struc-
tures. For example, D6-hepatic parenchyma was dominated by hepa-
tocytes and definitive erythroid lineage cells (Fig. 5b and
Supplementary Fig. 13b). Similarly, the dominant cell types in D19-
heart were cardiomyocytes and endothelium, which are essential
functional units of the heart (Fig. 5a, b and Supplementary Fig. 13b).
Interestingly, early chondrocytes, osteoblast progenitors A, osteoblast
progenitors B and connective tissue progenitors were located in the
physically distinct but proximal areas (Supplementary Fig. 11b), indi-
cating their potentially close interactions. Of note, posterior floorplate
cells were detected within a limited area near the ventral region of the
spinal cord, with only one to two spots per section across the body
trunk, indicative of high fidelity of spatial mapping (Supplementary
Fig. 12b). The identified marker genes in TOME dataset, such as Slit1,
Ntn1 and Shh shared a high expression level in the corresponding
spatial regions of posterior floor plate1 (Supplementary Fig. 12b).

To investigate how spatial proximity of cell types may influence
each other and shape the signaling landscape to coordinate the
developmental programs, we developed a spatial cell–cell commu-
nication (CCC) analysis workflow (named STcomm). STcomm inte-
grates spatial cellular colocalizations with enriched ligand–receptor
(L–R) co-expression patterns inferred from both spatial and single-
cell transcriptomic data. The underlying assumption is that spatially
co-localized cells within spot level can more reliably infer L–R
mediated CCC (Fig. 5c and Methods). Firstly, we quantified the
colocalization of cell-type pairs within spots by calculating the
Pearson correlation coefficient (PCC) based on cell-type composition
predicted by RCTD. We thus identified significant co-occurrent cell
type groups that were present within the same spot, as revealed by
the cell type colocalization network (Supplementary Fig. 14a). For
example, Olfactory epithelium and Olfactory sensory neurons were

Fig. 4 | 3D alignment to reveal body axes and spinal cord patterning. aHeatmap
plot showing the smoothed spatial expression pattern of Hox family genes along
the A–P axis with spots from hindbrain and spinal cord regions ordered by pseudo-
axis within each section. b Pseudo-time trajectory plot showing pseudo-space
patterning of spots from hindbrain and spinal cord region across sections of whole
mouse embryos, colored by section numbers (top) and pseudo-time (bottom).
c Spatial expression of selected Hox family genes and newly identified A–P axis
related genes inhindbrain and spinal cord from sections along anterior to posterior
(top), and heatmap showing the expression pattern of corresponding genes
ordered along sections from anterior to posterior (bottom). d Spatial plot showing

theD–M–V activity scores for respective neuronal progenitors andneuronal cells in
the spinal cord of sections 5 and6. e Spatial expression of selectedD–V axis-related
genes in sections 5 and 6. f. RNAScope multiplex in situ hybridizations of D–V
patterning genes in the spinal cord, and representative images fromhybridizations
on sections 5 and 6 (n = 3). Scale bars, 100μm. g Spatial visualization of radial axis
patterning genes in the spinal cord region. h RNAScope multiplex in situ hybridi-
zations of radial axis patterning genes in the spinal cord, and representative images
from hybridizations on serial sections from anterior to posterior (ns5,6,7 = 3,
ns3,8,9 = 2). Scale bars, 100μm. Source data are provided as a Source Data file.
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Fig. 5 | Spatial mapping of cell populations across all the tissue sections.
a Deconvolution analysis inferred the weights of 46 cell populations in all spots of
embryo tissue. The dot plot showing cell type composition within each spatial
domain. Color bar indicates the averaged cell-type weights in each spatial domain.
Dot size represents the relative abundance of cell types in each spatial domain.
b Spatial distribution of organ/tissue specific cells including epithelium,

intermediate mesoderm, pre-epidermal keratinocytes, cardiomyocytes and hepa-
tocytes. c The workflow of STcomm analysis pipeline which combined the spatial
cellular colocalization and L–R co-expression from spatial transcriptomic data with
cell–cell communication inferred from sc-RNA seq data (see the “Methods” sec-
tion). Source data are provided as a Source Data file.
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co-localized in craniofacial primordium at the front region of section
4 (Fig. 6a). Similarly, pre-epidermal keratinocytes and epidermis
significantly co-existed and were primarily distributed in D15-skin,
which agrees with the expected localization of these cell types
(Supplementary Fig. 14a). Moreover, hepatocytes, definitive ery-
throid lineage, megakaryocytes and liver endothelium formed a

colocalization network, revealing the cellular composition within the
liver microenvironment. Of note, we observed spatial proximity
between neuron progenitor cells and inhibitory interneurons, hind-
brain, Di-mesencephalan inhibitory neurons, Di-mesencephalan
excitatory neurons, as well as excitatory and inhibitory neurons.
Neural crest -PNS neurons and neural crest-PNS glia, which were
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abundant in D13-ganglion domain (Fig. 5a), exhibited significant
interactions with each other (Supplementary Fig. 14a).

Next, we performed Fisher’s exact test59 on binarized co-localized
cell type pairs and co-expressed L–R pairs at spot level to identify
significantly co-expressed L–R pairs for spatially co-localized cell
types. We further calculated significant communication between L–R
pairs within co-localized cell type pairs using reference single-cell
transcriptomic data. At last, we retained spatially confident commu-
nications based on the above significance of Fisher’s exact test (Fig. 5c
and see the “Methods” section). Leveraging the spatial information,
STcomm characterized confident cell-cell interaction within the tissue
organization (Fig. 5c and Supplementary Data 10). Specifically,
according to the identified spatial co-occurrence cell types, we
examined the L–R interactions between olfactory epithelium and
olfactory sensory neurons, which showed a high-frequency interac-
tion. We identified 53 L–R pairs from olfactory sensory neurons to
olfactory epithelium and 69 L–R pairs from olfactory epithelium to
olfactory sensory neurons (Fig. 6a). Notably, in terms of secreted sig-
nalingmolecules, the Sema3 family,Wnt and Bmp originating from the
olfactory epithelium, exhibited a high communication probability
towards olfactory sensory neurons (Fig. 6b), consistent with their
reported role in regulating axon outgrowth and navigation of olfactory
sensory neuron60–64. Visualization ofWnt4 and Fzd3 expression on the
tissues showed a high level of co-expression in the spots where
olfactory epithelium and olfactory sensory neurons co-localized
(Fig. 6c). Regarding cell–cell contact-mediated L–R interactions
between these cell-type pairs, the Efna-Epha family and Notch signal-
ing were identified to have a strong communication probability, indi-
cating their important role in regulating the development of olfactory
epithelium cells65 (Fig. 6d).

E13.5 embryogenesis is hallmarkedby rapid neurogenesis.Wenext
focused on exploring the specific interactions among neuronal cells
that contribute to this intricate composition (Supplementary Fig. 14a,
b). We identified a set of L–R pairs with significant probability of
communicating with each other among these co-localized neuron-
related cells (Fig. 6e). Specifically, we discovered 23 L–R pairs origi-
nating from neuron progenitors and 24 L–R pairs originating from the
inhibitory interneurons, which exhibited significant communication
probability with each other (Fig. 6f). Among them, the Nrxn3–Nlgn1
showed a prevailing communication probability between neuron pro-
genitors and inhibitory interneurons (Fig. 6e, g and Supplementary
Fig. 14c). Toprovide an example,we took thebrain-containing section 2
(S2) and found that the spatial co-occurrence of the neuron progenitor
cells and inhibitory interneurons aligned well with the spatial co-
expression pattern of theNrxn3–Nlgn1 L–R pairs on the tissues (Fig. 6h,
i). Similar results were observed in section 1 (Supplementary Fig. 14d).
Furthermore, we validated the spatial proximity of Nrxn3–Nlgn1
expression in brain tissue sections using single-molecule fluorescent in
situ hybridization66 (Fig. 6j and Supplementary Fig. 14e), although the

potential function of the Nrxn3–Nlgn1 interaction in mediating the
interaction between neuron progenitor cells and inhibitory inter-
neurons awaits further exploration. Taken together, by integrating
single-cell transcriptome data, our spatial atlas efficiently decodes the
spatial proximity and cell–cell communications with STcomm.

Discussion
Knowledge of organogenesis is crucial for research in regenerative
medicine, as the regulatory programs involved in organogenesis are
commonly employed to generate cells and tissues both in vivo and
in vitro67. The spatial architecture of the developing embryo, with its
different cell types and anatomical organization is essential for
understanding normal development, homeostasis and pathophysiol-
ogy. While our understanding of embryo organogenesis has been
rapidly accelerating, driven particularly by revolutionary single-cell
transcriptomics, a key limitation of the single-cell molecular profiling
methods is that they operate on disaggregated cells or nuclei so that
important spatial information is missing. The emergence of spatial
transcriptomic technology has enabled the assessment of cells in their
native tissue context, facilitating the identification of location-defined
cell types and the understanding of intercellular communications in
establishing the body architecture68,69.

While 2D spatial transcriptomics from the represented embryonic
tissue slices has provided important insights into the molecular orga-
nization of cell types, the 3D spatially resolved transcriptomic analysis
of multiple aligned sections within tissues offers a dynamic angle to
dissect spatially defined cell populations, tissue architecture, inter-
cellular interactions along the embryonic axes, including A–P, D–V and
L–R. Although not in a highly continuous manner, our spatial atlas,
spanning from the head to the tail of mouse embryo organogenesis,
covers a wide range of tissue types. Integrated with repeated sampling
of additional intercalated sections, the majority of cell types and sub-
regions remains unchanged. Therefore, our spatial atlas allows the
essential construction of a framework at thewhole embryo-level based
on 3D spatial coordinates. This represented embryo-level spatial atlas
provides an entry to reveal the spatial gene expression profiles that
determine the intricate cellular structure of the E13.5 mouse embryo.
We also uncovered critical transcriptional regulators for organ and
sub-organ development. Importantly, this spatial profiling has enabled
the identification of new genes involved in body axis patterning along
the anterior–posterior and dorsal–ventral axes, greatly expanding our
insights into body patterning during embryogenesis. Leveraging the
spatial information, we also delineated the confident L–R interactions
between colocalized cell types across the embryo using STcomm.

It should be mentioned that the present study does not encom-
pass a complete 3D reconstruction of an E13.5 embryo, as it would
necessitate the examination of a substantially greater number of sec-
tions. Moreover, the spatial resolution of this atlas is still not at single-
cell level. Therefore, specific cell types or micro-structure of organs

Fig. 6 | Cell–cell communicationnetwork of spatial proximity brain-related cell
types in mouse embryo organogenesis. a Schematic showing the number of
significant L–R pair interactions between olfactory sensory neurons and olfactory
epithelium cells by STcomm analysis (top). The bottom panel showing the spatial
mapping (color intensity) and colocalization of olfactory sensory neurons and
olfactory epithelium cells according to deconvoluted weights in section 4 (S4).
b Dot plot showing significant L–R pairs between olfactory sensory neurons and
olfactory epithelium cells via secreted signaling (left) and cell-cell contact (right)
with p <0.05. The dot color represents communication probability and the size
indicates p-values which are computed from one-sided permutation test by Cell-
chat. c The spatial distribution of expression of L–R pairs of Wnt4 and Fzd3, and
their co-expression in S4. The inlet shows the co-expression level ofWnt4 and Fzd3
in co-localized region of olfactory sensory neurons and olfactory epithelium. d The
spatial distribution of expression of L–R pairs of Efna5 and Epha4, and their co-
expression in S4. e Dot plot showing significant L–R pairs communication among

spatial proximity brain-related cell types calculated by STcomm. The dot color and
size indicate communication probability and p-values which are computed from
the one-sided permutation test by Cellchat. f Schematic showing the number of
significant L–R interactions between neuron progenitor cells and inhibitory inter-
neurons. g Circos plots representing significant interaction of L–R pairs of Nrxn3
and Nlgn1 among spatial proximity brain-related cell types. h Spatial plots showing
the spatial distribution (color intensity) and colocalization with spots of neuron
progenitor cells and inhibitory interneurons according to deconvoluted weights in
section 2 (S2). i Spatial distribution of expression and co-expression of L–R Nrxn3
and Nlgn1 in S2. j Nrxn3 and Nlgn1 spatial expression pattern examined by RNA-
scope in brain tissue sections matched to S2 in (i) (n = 4). White dashed box
showing the staining of Nrxn3 and Nlgn1 in spatial proximity cells. Blue, DAPI;
green, Nrxn3; red, Nlgn1; yellow, co-location of Nrxn3 and Nlgn1. Source data are
provided as a Source Data file.
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may be hidden at the current resolution. However, our study provided
a high-quality resource for dissecting mouse organogenesis develop-
ment and for developing new bioinformatics pipelines that transition
from 2D to 3D analysis70. We have built an expandable web portal
serving as a spatial transcriptomic resource for further deciphering
mouse organogenesis (http://most.ccla.ac.cn). We envision a compil-
ing of more developmental stages with spatial transcriptomics on a
large number of consecutive tissue sections or even within the intact
tissues to generate a 4D atlas that will greatly deepen our under-
standing of mammalian embryogenesis and expedite the directed
generation of various organs in vitro.

Methods
Embryo collection and spatial transcriptome preparation
All animal procedures conducted in this study were approved by the
Institutional Animal Care and Use Committee of Guangzhou Institutes
of Biomedicine and Health (GIBH), Guangdong. Wild-type embryos at
embryonic day 13.5 (E13.5) were collected from C57BL/6JGpt and
Gpt:ICR mice aged between 10–12 weeks, that purchased from China
GemPharmatech, and embryos images were taken for recording and
confirmation of developmental staging.

Collected embryos of C57BL/6JGpt mice were embedded in a
tissue-freezing medium (Leica Microsystems, cat. no. 020108926) and
stored at −80 °C. The whole embryo tissue was serially cryo-sectioned
(Leica CM3050 S) along the craniocaudal axis at 10μm, and about
1000 sections were harvested. Considering the morphology and uni-
form sampling, we collected 10 sections from the reference embryo
indicated as E1, the position of these 10 sectionswere 96, 189, 269, 361,
449, 541, 634, 732, 824 and 917 which were named as S1–S10, respec-
tively. For repeat embryo 2 which was indicated as E2, two sections
from the head part with similar morphology to S1 and S2 in E1 were
selected. For embryo 3 which was indicated as E3, four sections were
collected from the body part which was sampled about 50 sections
away fromS6 to S9of E1, denoting as female (F) 6.5, F7.5, F8.5, and F9.5.
These sections were then used for spatial transcriptomic analysis by
modified 10x Genomics Visium platform. Briefly, the Visium Spatial
Tissue Optimization Kit was used to optimize the permeabilization
condition. The ideal embryo tissue permeabilization condition was set
to 6min. Selected sections were stained with 1% cresyl violet solution
and imaged using a Zeiss Axio Observer 7 microscope under a 10-lens
magnification, then processed for spatial transcriptomics using Visium
Spatial Gene Expression Kit (10x Genomics) according to the manu-
facturer’s instructions.

The resulting cDNA was synthesized, amplificated and then pur-
ified using AMpure X beads. The cDNA library was assessed by Qubit
4.0 Fluorometer and Qsep100 Bio-Fragment Analyzer (Bioptic). The
cDNA libraries were sequenced on IlluminaNovaseq 6000 systemwith
paired-end 150bp reads, aiming for 100k raw reads per spot.

Sex identification of embryos. For E1 and E2, sex was blindly selected
and was determined by the expression of Xist and Ddx3y from the
expression profile after the spatial transcriptome process (Supple-
mentary Fig. 3c, d). To cover both sexes, we collected embryos and
determined the sex by examining the expression of SRY and IL3 gene
with PCR before the process of spatial transcriptome, and a female
embryo was selected as E3.

Whole-mount in situ hybridization (WISH)
Total RNA was prepared using GEO-seq extraction method71 from the
whole embryos of E13.5 and was further used as a template for pre-
paring probes. Embryos of Gpt:ICR mice were successively fixed,
dehydrated and rehydrate in accordance with Yoshihiro Komatsu
et al.72. The whole-mount embryo was washed with PBS and bleach in
6% hydrogen peroxide for 1 h at room temperature, and incubated
with 10μg/ml proteinase K in PBS for 30min at room temperature,

then washed by PBS. For pre-hybridization, embryos were placed into
the hybridization buffer (5× SSC pH 4.5, 50% formamide, 50μg/ml
yeast RNA, 50μg/ml Heparin, and 1% SDS) for 1 h at 70 °C. After pre-
hybridization, embryoswere hybridizedwith 500 ng/mlRNAprobes in
a hybridization buffer at 70 °C overnight. Then, embryos were suc-
cessively washed with pre-hybridization buffer and 1:1 pre-
hybridization buffer and 1× TBST buffer (50ml: 0.4 g NaCl, 0.01 g
KCl, 1.25ml 1M Tris–HCl pH 7.5, 0.55 g Tween-20) for 30min at 70 °C.
After blocking with 1x TBST containing 0.5% BSA, embryos were
incubated with 1× TBST containing 0.5% BSA and 0.1% anti-DIG anti-
body conjugated to alkalinephosphatase (Sigma-Aldrich 11093274910,
1:2000) at 4 °C overnight, andwashed five times with 1× TBST for 1 h at
room temperature, followed by washing twice with NTMT (100mM
Tris pH 9.5, 50mM MgCl2, 100mM NaCl, 0.1% Tween-20) for 10min.
Finally, embryos were incubated with BCIP/NBT Kit (Cwbio, CW0051S)
for staining. The resultant stained slides were imaged with an OLYM-
PUS SZX16 microscope.

Single molecular fluorescence in situ hybridization (smFISH)
Fresh embryo was embedded in a tissue freezing medium (Leica) and
stored at −80 °C. For validation experiments, RNAscope Multiplex
Fluorescent Reagent Kit v2 and PinpoRNATM double-channel Fluor-
escent Reagent Kit (Pinpo PIF2000) were used on fresh frozen embryo
sections 10-μm thick from E13.5 C57BL6J mice in cryostat at −18 °C
(Leica CM3050 S), with Nlgn1 probes(Akoya biosciences 533511) and
Opal 570 Reagent Pack (Akoya Biosciences ASOP570), Nrxn3 probe-
s(Akoya biosciences 505431) Bcl11a probe (Pinpo 140251-B1), Celf2
(Pinpo 140071-B2), Otp (Pinpo 184201-B1), Barhl1 (Pinpo 544221-B2),
Esrrg (Pinpo263811-B1),Nefl (Pinpo 180391-B2),Hopx (Pinpo743181-B1),
Ttyh1 (Pinpo 577761-B2), Nsg1 (Pinpo 181961-B1), Calm2 (Pinpo 123141-
B2) andOpal520 Reagent Pack (Akoya biosciences ASOP520), Negative
Control Probe (Akoya biosciences 320871, Pinpo P0005), and Positive
Control Probe (Akoya biosciences 320881, Pinpo P0002) following the
kit instructions. Images were acquired at 20× on an OLYMPUS VS200
microscope.

Spatial RNA-seq data processing
Generation of spatial expression matrices. Quality control and
adapter trimming on Raw reads were implemented with fastp-0.21.073.
Clean reads were mapped to the mouse reference genome and gene
annotations (mm10-3.0.0) using Space Ranger v.1.0.0 (10x Genomics).
To obtain only tissue-associated barcodes, spots were manually
aligned to the tissue image with the Loupe Browser v.4.0.0 (10x
Genomics). Count matrices were extracted by loading the output
directory of Space Ranger into Seurat74,75 (v3.2 and v.4.0.5).

Data preprocessing. The expression datasets were filtered with cut-
offs at a minimum of 1000 detected genes and a maximum of 10%
mitochondrial counts per spot for 10 sections of E1 and E3, except for
section 6.5 (F6.5) of E3 which showed relatively lower detected genes
(Supplementary Fig. 3), and a minimum of 500 detected genes were
applied for F6.5 section. Because of the high quality of our spatial RNA-
seq data, only less than 25 spots for each section were filtered. For E1,
all spot transcriptomes across 10 sections were merged together. The
merged UMI counts were normalized by LogNormalize method with a
default scale factor of 10,000 and scaled by the ScaleData function in
Seuratwith regressing out of sections andnumber of genes and counts
per spot specified by the vars.to.regress argument.

Variable feature selection. For variable gene selection, we considered
using both high variable genes (HVGs) and spatial variable genes
(SVGs) by the following steps. First, we identified 2000 HVGs by vst
method from FindVariableFeatures function in Seurat75. Second, spa-
tial variable genes were selected by two SVG identification methods.
One is implemented through binSpect function in Giotto (R package,
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v1.2), a standard general-purpose toolbox for spatial transcriptomic
data analysis, which includes a rich set of algorithms for characterizing
tissue composition, spatial expression patterns, and cellular neigh-
borhood and interactions76. The other is, implemented via Spatially-
VariableFeatures function with Trendsceek method in Seurat77. Thus,
Spatial variable genes were obtained by intersecting of genes identi-
fied by these two methods for each section. We then retrieved
both HVGs and SVGs genes as the variable genes for each section. At
last, all variable genes in each section were combined together as
the final variable gene list after filtering out mitochondrial and
hemoglobin genes.

Dimension reduction, clustering and marker gene identification.
Dimensionality reductionwasperformedwith PCA and then the top 50
PCs were used to create a shared nearest neighbors (SNN) graph and
analyzed by Louvain clustering with a resolution of 1.2. UMAP project
and visualization in 2D space were also applied to the above SNN
graph14,78. Differentially expressed marker genes for each cluster were
identified by a two-sided Wilcoxon rank sum test using FindMarkers
and FindAllMarkers functions.

Gene Ontology enrichment and spatial domain annotation. We
applied Metascape (http://metascape.org)79, and clusterProfiler (R
package, version 3.14.3)80 to performGene Ontology (GO) enrichment
analysis for each group of DEGs and regulon groups. In order to
determine the identities of spatial domains and sub-domains, we
carefully applied several complementary approaches: (1) we examined
the expression of signature genes and enriched GO terms. For most
biological systems, there is a scientific consensus on the genes
expressed by particular cell types and the annotation based on this
works well in a lot of practices; (2) we also double-checked the spot
identities basedon thedeconvolution analysis fromsingle-cell data; (3)
we verified themolecular spatial structures with the spatial anatomical
structure of the collected image data by referencing annotation of the
Emouse Atlas (https://www.emouseatlas.org).

Data preprocess and spatial domain annotation of female embryo
E3. To explore the batch effect of ST data from E1 and E3, we merged
all spot transcriptomes from the 10 sections of E1 and 4 sections of E3
together, and themergedUMIcountmatrixwas normalized and scaled
following the same process in the Data preprocessing part. Since
minimumbatch effects were identified, we annotated themajor spatial
domain of 4 section dataset of E3 by label transferring using the
modules of FindTransferAnchors andTranferData in Seurat referenced
by the ST dataset of E1 (Supplementary Fig. 3e–g). For the subcluster
annotation of the D5-Visceral organ with smooth muscle, after
extracting the spots from this major spatial domain of both datasets,
the label transfer process was again performed to annotate the sub-
domain of visceral organs in the E3 dataset.

Integrative analysis of MOSTA and reference data. E13.5 S1 data of
MOSTA was obtained from https://db.cngb.org/stomics/mosta. The
data integration of the MOSTA dataset and the reference E1 dataset
wasperformedusing FindIntegrationAnchors and IntegrateData. Label
transfer was also applied to annotate the MOSTA dataset with Find-
TransferAnchors and TranferData modules in Seurat.

Sub-regional identification and annotation for heart domain. We
extracted spots from the D19-heart domain, and processed the UMI
counts following the process in the Data preprocessing part. The
variable genes were defined as the combination of 500 HVGs with ‘vst’
method and the top 100 marker genes of 6 cell types of the heart
during development including cardiomyocytes of atrial and ven-
tricular, epicardial, fibroblasts and endothelial cells of vascular and
endocardial retrieved fromFeng et al.43. Dimensionality reductionwith

PCA and clustering by Louvain with a resolution of 1.1 were performed.
All downstream steps followed the Spatial RNA-seq data processing
pipeline.

Spatial expression pattern analysis of congenital heart disease
(CHD) genes. To examine the spatial expression pattern of CHD-
genes, we first retrieved the curated known CHD genes from Feng
et al.43 and then detected and clustered the spatially correlated genes
using detectSpatialCorGenes and clusterSpatialCorGenes function in
Giotto v1.2. The average spatial expression of clusters was calculated
and visualized. We searched genes from literatures that are associated
with CHDs or the CHD-associated risk factor knowledgebase (http://
www.sysbio.org.cn/CHDRFKB/) for certain spatial patterns43.

Identification of common or sex-specific Gonad marker genes. To
detect the sex-specific or common genes during gonad development
after sex determination, we collected sections from both female and
male embryos covering the region of visceral organs. We calculated
the gonad marker genes by DEG analysis with the Wilcoxon rank sum
test using FindMarkers function for male and female datasets,
respectively. We also identified the sex differential genes in Gonad by
performing DEG analysis in the spot transcriptomes of gonads from
both sexes. We thus defined the common gonad marker genes as the
intersection of gonad marker genes in males and females.

TF and Regulon analysis
To infer transcription factors and the gene regulatory network (reg-
ulon) in our spatial transcriptomedata, we applied SCENIC (Single-Cell
rEgulator Network Inference and Clustering) pipeline with pySCENIC
(v0.10.3), a lightning-fast python implementation18.

The procedure contains three main steps: (1) co-expression mod-
ules between TFs and the candidate target genes were first identified
base on the correlation of normalized gene expression across all sam-
ple spots by GRNBoost2 with default parameter settings. Genes
expressed in less than 10 spotswere filtered. (2) co-expressionmodules
were then furtherprunedbykeepingonlydirect targets of TFsbasedon
motif discovery by RcisTarget. Thus, modules composed of TF and TF
direct target genes were defined as a regulon. (3) The Regulon Activity
Score (RAS) for each spot was calculated through the area under the
recovery curve by AUCell and the regulon activity for each spatial
domainwas computed as themean activity of the corresponding spots.

Calculation of regulon-specific score (RSS) in spatial domains
We calculate the spatial domain specificity score of a regulon as
described in Suo et al.19. Briefly, theRAS in all spotswas normalized as a
probability distribution and the indicator vector of a spot belongs to a
specific spatial domain or not was also normalized as a probability
distribution. Next, the Jensen–Shannon divergence (JSD) was com-
putedbetween these twoprobability distributions. Finally, the RSSwas
calculated by converting the JSD to a similarity score. The selected
regulons with top RSS for each spatial domain indicated their specifi-
city and essentialness in the corresponding spatial domain.

Regulon module analysis
To examine the co-regulation of TFs, we performed regulon mod-
ule analysis as described previously19 which involves two steps. First,
we calculate the connection specificity index (CSI) for each pair of
regulons following the instruction in29, which is a context-dependent
metric used for identifying specific associating partners. Next, regulon
modules were identified by clustering the regulons with hierarchical
clustering based on the Euclidean distance of the CSI matrix.

To study the relationship among different regulons, we also build
the regulon co-activation network based on the CSI matrix with a
threshold of 0.85 to filter weakly connected regulons and visualized
the network by Cytoscape (v3.9.1)81. The mean regulon activity scores
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of each module were calculated by averaging the RAS of all regulon
members that belong to this module across all spots. The top corre-
lated spatial domain for each module was identified based on the
spatial distribution of mean regulon activity scores.

Spatial pattern of spinal cord analysis
To systematically explore the spatial patterning from the
anterior–posterior (A–P) axis, we conducted thepseudo-spaceanalysis
in the spots from the spatial domain of the hindbrain and spinal cord.
All Hox genes expressed in the dataset were used for reconstructing
thepseudo-axis byMonocle 2 (v2.18.0)82. The expressionof typical A–P
patternedHox geneswas smoothed in extracted spotswhichwere first
ordered along the sections from anterior to posterior and then
ordered by predicted pseudo-space within each section.

To identify A–P-related genes besides Hox genes, we applied the
following steps: (1) identified significant differential genes among the
A–P slices by differentialGeneTest function in Monocle 2 with the
pseudo-time formula. (2) to select specific A–P patterning genes, we
then calculated the Pearson correlation between the expression of the
above-identified differential genes and different consecutive combi-
natorial patterns of A–P sections. It included a total of 35 consecutive
combinations from S2 to S10. The union of genes with the top
20 PCC for each combinatorial pattern was selected as strong
AP-related genes.

To examine the spatial patterning alongdorsal–ventral (D–V) axis,
we retrieved a list of marker genes that were used to identify D–V
domains of neuronal progenitors and neuron clusters from Delile
et al.45. As our 10× Visium spatial transcriptomics are not in single-cell
resolution, we separated the predefined dorsal ventral marker genes
into Dorsal (D),media (M) and ventral (V) domain-related gene sets for
both the inner progenitors and the outer neuron regions. In brief, for
neuronal regions, D marker gene sets were defined by combinatorial
markers of dl1–dl6, Mmarked by V0–V2b and Vmarked byMn and V3.
Similarly, for neuron progenitor regions, D marker gene sets include
combinatorial markers of RP and dp1–dp6, M includes markers of
p0–p2, V includes pMN, p3 and FP maker genes. Then, the activity
score of each region-related gene set was calculated by AUCell
(v1.8.0)18. For visualization, the activity scores were scaled and scores
lower than the binary assignment score were set to 0 in the outer
neuron region. In the progenitor region, the z-score lower than 2.5
were set to 0.

To identify D–V-related genes, we divided the spinal cord region
into dorsal, middle and ventral domains according to the D, M, V
region-related activity score. Differential expression analysis was
conducted among these three regions by FindallMarkers Function in
Seurat. Significant DEGs with adjusted p-value < 0.05 were considered
as D–V-related genes. For neuronal progenitor genes identification, we
calculated differential expressed genes by comparing D17-ependyma
andD16-medulla oblongata and spinal cordon sections fromS4 to S10
based on the union of the marker genes of D16 and D17.

Regulon analysis for spinal cord patterning
To identify the regulons with potential A–P patterning, we calculated
the correlation of RAS and the predicted pseudo-space ordering in
the spots of the spinal cord. The A–P-related regulons were defined
as with absolute PCC higher than 1.5 × SD PCCs and maximum RAS
greater than 0.2. For D–V-related regulons, we performeddifferential
analysis on RAS of D, M, V parts by Wilcoxon test implemented by
FindMarkers Function in Seurat and retained regulons with max-
imum RAS > 0.2.

Signaling pathway activity analysis in spatial tran-
scriptomic data
Signaling activity scores were computed using the AddModuleScore
function from Seurat based on the literature-curated critical

development-related signaling signatures, including BMP, Wnt, Nodal,
Fgf, Hedgehog, Hippo and Notch signaling pathway genes. Briefly, the
score of each spot was computed as the average expression of each
signaling signature subtracted by the aggregated expression of ran-
dom control gene sets83.

Cell cycle phase activity scores were calculated for all spots by
CellCycleScoring function from Seurat function with mouse cell cycle-
related genes retrieved from Giladi et al.84.

Spatial deconvolution of single-cell types
To spatially map cell types of mouse organogenesis, we used the
single-cell dataset of Trajectories Of Mammalian Embryogenesis
(TOME, downloaded from http://tome.gs.washington.edu/) at the
E13.5 stage as reference1, and performed deconvolution for each sec-
tion by the robust cell-type decomposition (RCTD, v1.0.4), which is a
supervised learning method to accurately decompose the spatial
transcriptomic mixtures for each pixels by using a scRNA-seq refer-
ence containing cell-type classifications58. Before running the RCTD,
we excluded Hemoglobin and Mitochondrial genes from both single-
cell and our spatial transcriptomedatasets. Themethodofmulti-mode
was selected to perform deconvolution analysis on our spatial data
with default parameters, except for CELL_MIN_INSTANCE = 25, UMI_-
max = 2e + 08. We extracted the cell-type deconvolution weights of
each spot for downstream analysis and visualization.

For cell type deconvolution of the heart domain, we downloaded
the scRNA-seq dataset of the heart from GSE193346 and extracted the
data at the E13.5 stage, and performed deconvolution as the above
process.

Cell type co-localization and cell–cell communication analysis
To study cell-type interactions in the spatial microenvironment,
we develop an analysis workflow named STcomm (Fig. 5c). It
combined the spatial cellular colocalization of single cells and
ligand-receptor co-expression from spatial transcriptomic data
and cell–cell communication based on the expression of
ligand–receptor pairs in the single-cell transcriptome. STcomm
has the following steps:
(1) we performed deconvolution analysis with RCTD to generate the

distribution of different cell types in each spot. Spatial-wide cell-
type colocalization network was created base on the PCC of cell-
type weights. The co-localization cell type pairs were obtained
with PCC>0.06 and adjusted p-value < 0.0585. These satisfied cell-
type connections were visualized by Cytoscape81.

(2) we extracted the expression of each pair of LRs in the ST dataset
and calculated the spatial co-expression level of LR pairs as
RLR = L(exp)*R(exp). The ligand–receptor information was
extracted from the CellChatDB.mouse database86.

(3) for each spatially co-localized cell type pair, we binarized it
based on the confident Boolean value of cell-type weights
generated in RCTD and only reserved co-localized cell type
pairs identified in step (1). Meanwhile, we also binarized the co-
expressed LR pairs accordingly to evaluate whether RLR > 0.
Finally, we built the 2 × 2 contingency table based on binarized
cell type co-localization and LR co-expression information and
performed Fisher’s exact test followed by Benjamini–Hochberg
correction to statistically identify spatially enriched co-
expressed LR pairs in the co-localized cell type pairs with
adjusted p-value < 0.05.

(4) we ran cell–cell communication by CellChat (v1.4.0) with the
default parameters on the scRNA-seq dataset (of E13.5 TOME) to
get the probability and significance of spatially co-localized cell-
type communications on all L–R pairs. Only these L–R commu-
nication results which were identified as spatially enriched co-
expressed L–R pairs within co-localized cell type pairs were finally
retained.
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Web service and 3D illustration
The Mouse Organogenesis Spatial Transcriptomic dataset can be
interactively explored at our website (http://most.ccla.ac.cn/), which
was constructed to navigate the spatial atlas of all 10 sections from
E13.5 embryo using Shiny (v1.7.4) in R. This web service provided four
parts for data exploring, to explore the spatial domains of all sections
based on molecular signatures in the 2D and 3D format and 3D
embryonic model by the ‘Spatial Domain Explorer’, to search for the
spatially resolved gene expression by the ‘Spatial Transcriptomics
Explorer’ in 2D and 3D space, to identify the spatial regulon modules
on each section by the ‘Regulation’ in 2D and 3D space, to retrieve the
spatial pattern of co-expressed genes by the ‘Gene Pattern Explorer’.
To illustrate the molecular characteristic and spatial domains of E13.5
embryo in a three-dimensional whole embryo scale, we retrieved the
images of TS22 corresponding to the stage of E13.5 from eMouse atlas
(www.emouseatlas.org), and then registered our 10-section images
manually with the matched images in TS22 using Adobe Photoshop,
and stacked all these images together by ImageJ (v1.53c).

Statistics and reproducibility
Appropriate statistical tests are performed for each analysis and spe-
cified in the respective figure legend. AllWISH/RNAScope experiments
were repeated on at least three independent biological replicates
unless indicated otherwise and representative images were presented
in themanuscript. No statistical methodwas used to predetermine the
sample size. The experiments were not randomized or blinded. The
investigators were not blinded to allocation during experiments and
outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mouse organogenesis spatial transcriptomic data and corre-
sponding section images generated in this study have been deposited
in the GEO database under accession code GSE237308 and the NODE
(The National Omics Data Encyclopedia) database under accession
code OEP003721 and can be explored at the web portal (http://most.
ccla.ac.cn). The MOSTA data at stage E13.5 used in this study are
available in the CNGB database under accession code CNP0001543
and the processed data are available at https://db.cngb.org/stomics/
mosta. The single cell dataset of heart for deconvolution analysis used
in this study is available in the GEO under accession code GSE193346,
and TOME data used in this study are available under accession code
GSE186068. Source data are provided with this paper.

Code availability
Source code for STcomm is available on github at https://github.com/
gpenglab/STcomm and Zendo at https://doi.org/10.5281/zenodo.
7988217.
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