
Article https://doi.org/10.1038/s41467-023-40148-6

Cellular state landscape and herpes simplex
virus type 1 infection progression are
connected

Maija K. Pietilä 1 , Jana J. Bachmann 1, Janne Ravantti 2, Lucas Pelkmans3 &
Cornel Fraefel 1

Prediction, prevention and treatment of virus infections require under-
standing of cell-to-cell variability that leads to heterogenous disease out-
comes, but the source of this heterogeneity has yet to be clarified. To study the
multimodal response of single human cells to herpes simplex virus type 1
(HSV-1) infection, we mapped high-dimensional viral and cellular state spaces
throughout the infection using multiplexed imaging and quantitative single-
cellmeasurements of viral and cellularmRNAs andproteins. Herewe show that
the high-dimensional cellular state scape can predict heterogenous infections,
and cells move through the cellular state landscape according to infection
progression. Spatial information reveals that infection changes the cellular
state of both infected cells and of their neighbors. Themultiplexed imaging of
HSV-1-induced cellular modifications links infection progression to changes in
signaling responses, transcriptional activity, and processing bodies. Our data
show that multiplexed quantification of responses at the single-cell level,
across thousands of cells helps predict infections and identify new targets for
antivirals.

Single-cell heterogeneity in virus infections involves diverse cellular
responses to infections as well as variable infection progressions,
which together determine disease outcomes. For example in several
life-threatening viral infections immune responses of single cells cor-
relate with disease progression1–4.

Importantly, the source of cell-to-cell variability in virus infections
remains unclear. Genetic diversity in virus populations only partially
explains variation in influenza virus infections5. Kinetics of poliovirus
infections suggest that cellular and viral factors determine hetero-
geneity at different infection stages6. It is also known that cell cycle,
size, and neighborhood affect cell-to-cell variation in infections7,8.
Thus, single-cell studies indicate that infection heterogeneity is a result
of a combined action of viral, cellular, and environmental factors.

We explored the possibility that the infection heterogeneity is
connected to how the virus is able to alter the cellular state consisting
of the physicochemical status and neighborhood of individual cells. As

a model virus, we used herpes simplex virus type 1 (HSV-1) that is a
highly prevalent human pathogen9. During a lytic infection, the viral
nucleocapsid enters the cytoplasm and is transported to the nuclear
pores where the double-stranded DNA genome is released into the
nucleus, transcribed, and replicated. Based on the sequential expres-
sion, the >80 known HSV-1 genes are classified into immediate-early,
early, and late10. Primary infection of epithelial cells starts a lytic
replication cycle of HSV-1 and is followed by life-long latency in per-
ipheral neurons and periodic reactivation. HSV-1 infections are often
asymptomatic, but re-entry to a productive replication cycle after
reactivation can result in blisters or sores, typically in oral, perioral and
ocular sites. Infections of the central nervous systemmay result in viral
meningitis or encephalitis. In immunocompromised individuals, HSV-1
infections can have high morbidity and mortality11,12.

Single-cell RNA sequencing (scRNA-seq) has revealed high cell-to-
cell variability in herpesvirus transcript abundance13–15, which has been
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linked to antiviral responses and activation of developmental
programs13,15. High expression of genes regulated by nuclear factor
erythroid 2-related factor 2 (NRF2) limits HSV-1 infection15. Most
interferon-stimulated genes (ISGs) are also upregulated in cells with
lowHSV-1 transcript abundance. However, interferon (IFN) response is
activated only in a rare, abortively infected subpopulation. In cellswith
high HSV-1 transcript abundance, most cellular genes upregulated are
involved in developmental processes, including targets of the WNT/β-
catenin pathway13.

It remains, however, unclear how to predict HSV-1 infection pro-
gression. Addressingmultimodal responses of cells to infection and of
viruses to host defense requires multiplexed, spatially resolved quan-
tification of single-cell features at the subcellular, cellular, and multi-
cellular levels that cannot be achieved by scRNA-seq. To maintain
spatial information and to measure active protein levels, imaging
approaches are required. In this work, we therefore combine single-
moleculeRNAfluorescence in situ hybridization (smFISH) and iterative
indirect immunofluorescence imaging (4i)16 to uncover heterogeneity
in the lytic HSV-1 infection. We use multiplexed high-throughput
imaging to analyze hundreds of thousands of individual cells to
describe the cellular state landscape inHSV-1-infection and show that it
correlates with the infection variability. We find that HSV-1 infection
activates phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular
signal-regulated kinase 1/2 (ERK1/2) signaling in different subpopula-
tions of cells. Moreover, phosphorylation of RNA polymerase II (RNAP
II) is dependent on the infection stage. We also detect loss of proces-
sing bodies (PBs) as infection progresses, indicating that they have an
antiviral role. Collectively, these four elements are among the cellular
factors that correlate with the infection heterogeneity.

Results
Both HSV-1 mRNA and protein abundance vary between sin-
gle cells
To investigate if single-cell heterogeneity is affected by infection time
or virus load, we infected HeLa cells with HSV-1 and then quantified
cytoplasmicUL29 and UL19 transcripts using high-throughput smFISH
(Fig. 1a, b). UL29 encodes infected cell protein 8 (ICP8), a single-
stranded DNA-binding protein essential for virus replication and
expressed with early kinetics. UL19 encodes the major capsid protein
ICP5, expressed with late kinetics17. Synchronized infection resulted in
high cell-to-cell variability of both transcripts that was independent of
the virus load and present throughout the infection (Fig. 1c and Sup-
plementary 1a). In agreement with their expression kinetics, UL29
transcript counts were higher at each time point and multiplicity of
infection (MOI) compared to UL19 (Fig. 1a–c).

The coefficient of variation of HSV-1 UL29 and UL19 decreased
with increasing mean transcript count as has been shown for cellular
transcripts, but remained higher compared to that of cellular tran-
scripts (Supplementary Fig. 1b)18. Furthermore, variation in the HSV-1
transcript abundance showed significantly lower correlation with a
phenotypic state of cells quantified by DNA and protein content,
morphology, neighborhood, and cell-cycle phase of single cells when
compared to the cellular genes (Supplementary Fig. 1c), suggesting
that HSV-1 gene expression has additional sources of variation.

To extend the analysis of infection heterogeneity frommRNAs to
proteins and to obtain more information about the cellular state and
how it correlates with the infection, we applied multiplexed immu-
nofluorescence imaging to mock and HSV-1-infected HeLa cells at
1.5–12 hpi (smFISH + 4i experiment; Supplementary Fig. 2a). After the
2-plex viral mRNA smFISH, cells were subjected to 36-plex 4i using six
antibodies against viral markers, 28 antibodies against cellular mar-
kers, a nucleic acid stain, and a total protein stain (Supplementary
Fig. 2b). Cellular markers included transcription, signaling, subcellular
compartment, cytoskeleton, cell cycle, and antiviral response stains,
and we quantified 3136 subcellular, cellular, and multicellular features

by extracting the intensity and texture of the 30 stainings as well as the
neighborhood, morphology, and cell-cycle features for each cell
(Supplementary Fig. 2c). These single-cell phenotypes form a high-
dimensional cellular state space.

Multiplexing allowed observation of several HSV-1 proteins in the
same cells, and images revealed highly heterogenous viral protein
abundance between single cells (Fig. 1d). Viral markers included
immediate-early proteins ICP0, ICP4, and ICP27, early protein ICP8,
and late proteins ICP5 and VP16, from which 750 viral single-cell fea-
tures were extracted (Supplementary Fig. 2d). Cells from the
smFISH+ 4i experiment were classified infected if they contained at
least one incoming virus particle at 1.5 hpi or if they expressed one of
the immediate early proteins at 3–12 hpi (Supplementary Fig. 3a–c).
Thus, infected cells detected at 1.5 hpi represent the total population
of cells with virus attachment or entry while at the later time points
only such cells were detected as infected, which had viral gene
expression. In addition, uninfected cells were further classified based
on their neighborhood: uninfected cells without or with immediate
infected neighbors (Supplementary Fig. 3d). Cell counts in different
subpopulations at different time points are summarized in Supple-
mentary Fig. 3e. All cell classifications were done using automated
computer vision and computational analyses as described inMethods.

Most infections (~80%) originated from a single virus particle,
thereby minimizing variation from the number of infecting viruses
although not completely excluding it (Supplementary Fig. 3a, b). By 12
hpi a similar fraction of cells was infected as at 1.5 hpi (~30%) (Sup-
plementary Fig. 3c), indicating that most infections were successful.
Quantification of HSV-1 protein abundances, however, revealed high
cell-to-cell variation (Supplementary Fig. 3f), as was observed for the
viral transcripts. Although a synchronized infection protocol was used,
different onset times of infection in single cells most likely contribute
to the observed heterogeneity in the HSV-1 gene expression.

Next, binomial logistic regression was used on the multivariate
dataset to test if single-cell features can predict whether a cell is
infected (Fig. 1e).We first used predictive power score (pps) to identify
those single-cell features that correlate with uninfected/infected cell
type and then used these features as predictors in binomial regression.
We identified texture features of seven markers, DEAD (Asp-Glu-Ala-
Asp) box helicase 6 (DDX6), phospho-cyclin dependent kinase 9 (p-
CDK9), RNAP II phospho-Ser2, RNAP II phospho-Ser5, NRF2, speckled
protein 100 kDa (SP100), and total protein staining, that alone detec-
ted infection with good prediction accuracy, indicating that infection
changed the subcellular distribution of these markers. Furthermore,
when all cellular features in the multivariate dataset were combined,
even higher prediction accuracy was achieved and the accuracy
increased towards the end, highlighting the virus-induced multimodal
change of cells. At early times of infection, nevertheless, the multi-
plexed cellular information could not resolve the infection status,
indicating that with respect to the selected markers there was no
preexisting cellular state preferred by the virus.

HSV-1 heterogeneity is independent of cell cycle and size
ScRNA-seq previously connected HSV-1 transcript abundance to the
cell cycle in human fibroblasts, but results were conflicting13,15. To
evaluate the contribution of the cell cycle to HSV-1 infection hetero-
geneity, we first quantified proliferating cell nuclear antigen (PCNA) in
two epithelial cell lines (HeLa andA549) and in fibroblasts (BJ). PCNA is
a processivity factor of eukaryotic DNA polymerase delta that is
responsible for the synthesis of the lagging strand and is degraded
from heterotetramer to heterotrimer to allow cell-cycle progression
into the S phase19,20. We observed co-localization of PCNA with ICP8-
positive viral replication compartments (RCs) (Fig. 2a), as previously
described21. However, single-cell distributions revealed that HSV-1
infection reduced the mean nuclear intensity of PCNA at late time
points in HeLa cells (Fig. 2b and Supplementary 4a) that might reflect
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HSV-1-induced changes in the cell cycle. HSV-1 infection resulted in the
reduced nuclear PCNA signal also in fibroblasts but not in the other
epithelial cell line, A549 (Supplementary Fig. 4a).

Next, we compared abundance of G1-, S-, and G2-cells throughout
the infection in HeLa cells (Fig. 2c and Supplementary Fig. 1b, c).
Infection initiated in all three cell-cycle phases although G1-cells were
less likely infected than S- or G2-phase cells, most likely reflecting the
cell size and increased cell area for entry. Infection also progressed in
all three cell-cycle phases but by 12 hpi the infected cells contained less
S-cells and more G1- and G2-cells than the uninfected ones, in agree-
ment with the HSV-1-induced cell cycle arrests at G1/S and G2/M
transitions22–24. In A549 cells, HSV-1-infection also reduced the fraction
of S-phase cells and increased the fraction of G2-cells (Supplementary
Fig. 4d), but the decrease in the S-phase cells was less significant
compared to HeLa cells, most likely explaining why no significant
decrease in the PCNA intensity was observed in A549 cells. In

fibroblasts the infection-induced changes in the cell-cycle phases also
reflected those of HeLa cells (Supplementary Fig. 4e).

Although HSV-1 affected the cell cycle, throughout the infection
there was significant overlap in the UL29 and UL19 transcript abun-
dance and ICP27 and ICP4 intensity betweenG1-, S-, and G2-phase cells
(Fig. 2d and Supplementary Fig. 5a, b). Besides, cell size showed no
correlation with HSV-1 gene expression (Fig. 2e and Supplementary
Fig. 5c, d), indicating that HSV-1 gene expression has no scaling with
the cell size as has been observed for cellular transcription25.

High-dimensional cellular state space explains heterogenous
infection
Pairwise Pearson and Spearman correlation analyses showed only low
or moderate relationship between cellular and viral features in HeLa
cells (Supplementary Fig. 6). However, 18 different cellular markers
correlated with HSV-1 gene expression, implying that the high-
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Fig. 1 | Multiplexed imaging captures heterogenous HSV-1 gene expression
between single cells. a, b HeLa cells were infected with HSV-1 multiplicity of
infection (MOI) 0.3 and stained for UL29 (magenta) and UL19 (cyan) transcripts
using smFISH at 1.5–12 hpi. Panel a, cells at 9 hpi. Nuclei were stained with DAPI
(yellow). Nucleus and cell outlines are indicated in orange and white, respectively.
Scale bar, 25μm. c Single-cell transcript counts ofUL29 andUL19 atMOI 0.3 at 3–12
hpi (left) or atMOIs 0.9-0.06 at 6 hpi (right) in HSV-1-infected HeLa cells. Data were
acquired from two independent experiments, and boxplots summarize transcript
counts observed in individual replicate wells (left, n = 4 and right, n = 5). Cell counts
are indicated in plots per transcript. Boxplots are as follows: median count of cell
population (central mark), 25th percentile (Q1; lower hinge), 75th percentile (Q3;

upper hinge), smallest observation greater than or equal to Q1–1.5*interquartile
range (lower whisker), and largest observation less than or equal to
Q3+ 1.5*interquartile range (upper whisker). Boxplot width is proportional to the
square-roots of the number of cells in each group.d Subcellular distributionof viral
4i markers in HeLa cells at 12 hpi. For eachmarker, a zoom-in image of an example
cell is shown next to the composite image (dashed-line). Nucleus and cell outlines
as in a. Scale bar, 10μm in single-channel images and 25 μm in composite.
e Binomial logistic regression to predict whether a cell is infected. For each time
point a binomial logistic regression model was trained on cellular features
extracted from the smFISH+ 4i experiment andused in prediction. Accuracy shown
represents mean of four predictions. See also Supplementary Figs. 1–3.
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dimensional cellular state space might be able to explain the infection
variation.

To better understand multimodal responses of cells to virus
infection and the connection to infection heterogeneity, we visualized
the high-dimensional cellular state space formed by 3136 single-cell
features quantified from the smFISH + 4i experiment as a two-
dimensional landscape by embedding the position of single cells
within this space in uniform manifold approximation and projection
(UMAP)26. Cellular features used in UMAPs were first normalized to
exclude changes that take place in cells not due to virus infection (see
Methods), allowing us to focus on changes in the cellular state during

infection. In addition, all viral features were excluded from this cellular
state landscape.

Cells from all time points and all subpopulations, including
infected cells, their uninfected neighbors, uninfected cells without
immediate infected neighbors, and mock cells, distributed across the
landscape, except for a separate cluster formed by the infected cells at
6–12 hpi (Fig. 3a and Supplementary Movie 1). The texture features
DDX6, p-CDK9, RNAP II phospho-Ser2, RNAP II phospho-Ser5, NRF2,
SP100, and total protein staining, which could predict uninfected/
infected cell fate (Fig. 1e), formeddistinctpatterns on this cellular state
landscape (Supplementary Fig. 7a). Furthermore, some of the
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translation. a PCNA, ICP27, and ICP8 staining of HSV-1-infectedHeLa cells at 12 hpi.
Arrowheads, ICP27 expressing cells. Arrow, an infected cell containing viral RCs
with co-localized PCNA. Nucleus and cell outlines as in Fig. 1a. Scale bar, 25μm.
b Mean nuclear intensity of PCNA in uninfected or infected HeLa cells from the
smFISH+ 4i experiment. Data are from four individual replicatewells per timepoint
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nuninf. = 25,851 and ninf = 9914 cells). PCNA distributions were compared using
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***p <0.001, ****p <0.0001, ns not significant. Boxplots definitions as in Fig. 1c.
Points, outliers. c Cell-cycle phase of uninfected or infected HeLa cells from the
smFISH+ 4i experiment. Data are from three or four individual replicate wells per
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ninf = 2744; 6 hpi, nuninf. = 22,558 andninf = 7537; 9 hpi,nuninf. = 21,920andninf = 7155;
12 hpi, nuninf. = 25,851 and ninf = 9914 cells). Statistical comparison is shown in
Supplementary Fig. 4b.d Single-cellUL29 andUL19 transcript counts and ICP27 and
ICP4 mean intensities in infected G1, S, and G2-phase HeLa cells. UL29 and UL19
transcript counts per cell were normalized by dividing the counts by the cell size
and multiplying by 1000. 0.1–99.9th percentiles of marker intensities are shown in
the density plots. Data are from three or four individual replicate wells per time
point from the smFISH + 4i experiment. Inset: cell counts per time point. e Single-
cellUL29 andUL19 transcript counts and ICP27 and ICP4 sum intensities versus cell
size (UL29, n = 20,225; UL19, n = 9045; ICP27 and ICP4, n = 29,577 cells). Data are
from four individual replicate wells per time point from the smFISH + 4i experi-
ment. Inset: R2 of robust linear regressionmodels fit to the single-cell data per time
point. See also Supplementary Figs. 4 and 5.
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uninfected cells with infected neighbors enriched in a region of the
main cluster at 9 and 12 hpi (Fig. 3a), indicating that besides infected
cells, their neighbors experienced HSV-1-induced changes in the cel-
lular state.

Clustering of cells per subpopulation revealed a drastic difference
between the uninfected and infected cells (Fig. 3b–d and Supple-
mentary Movies 2 and 3). Uninfected cells, which had infected neigh-
bors, formed a separate cluster at 9 and 12 hpi (arrowhead in Fig. 3c).
However, only the infected cells had a time-related pattern on the
cellular state landscape, revealing how cells traveled in the high-
dimensional cellular state space as infection progressed. This illus-
trates the multivariate effect the virus infection has on the single-cell

landscape of cellular states. When the viral features extracted from the
same cells (Supplementary Fig. 2d) were used to visualize an infection-
state landscape, the cell movement through the landscape started
earlier and adopted a different shape (Fig. 3e and Supplementary
Movie 3). We also observed that at late time points some of the
infected cells appeared in the early stages of both landscapes, indi-
cating that they were from a secondary infection (Supplementary
Movie 3). Interestingly, the HSV-1 infection-state landscape resembles
that of another herpesvirus, human cytomegalovirus, constructed
from the single-cell viral transcriptome27.

Cell cycle, morphology, and cell crowding features distributed in
gradients across the cellular state landscape of the infected cells but
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(hpi). f UMAP of infected HeLa cells (the same cells as in d), colored by cell cycle,
size, or local density, or by PML-body presence. Upper panels, UMAP using the
same cellular features as in a. Lower panels, UMAP using the same viral features as
in e. g Heatmaps of explained variance. A PC-reduced space of the simple pheno-
typic state (360 single-cell features) or high-dimensional cellular state space (3,136
single-cell features) was used in MLR to predict viral gene expression in infected
HeLa cells. Gray, less than 250 cells expressing the corresponding viral marker.
hUMAP of infected cells (cellular features) colored bymeasured orMLR-predicted
levels ofUL29,UL19, ICP27, or ICP4 in single cells. Scale bar: lower limit is <0.5th and
upper limit is >99.5th percentile of the values. See also Supplementary Figs. 6 and 7
and Movies 1–3.
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differed from the time pattern. On the infection-state landscape, they
showed no specific patterns (Fig. 3f). HSV-1 is known to induce ICP0-
dependent degradation of promyelocytic leukemia (PML) nuclear
bodies early in the infection28, and PMLbodieswerepresent only at the
early stage of both landscapes (Fig. 3f).

To assess if themultiplexed phenotypes of single cells can explain
the observed cell-to-cell variability in HSV-1 infection, we used the
high-dimensional cellular state space to predictHSV-1 gene expression
in single cells. Performance ofmultiple linear regression (MLR)models
was quantified by R2 that represents the square of correlation between
the predicted and measured values. MLR models explained at least
60% of variance in UL29, UL19, ICP27, ICP4, and ICP8 expression
(Fig. 3g, h), indicating that HSV-1 infection progression correlated with
the cellular state landscape. Furthermore, a simple phenotypic state
describing DNA and protein content, morphology, neighborhood, and
cell cycle of single cells explained much less of the variation in HSV-1
gene expression (Fig. 3g), although these features achieved high
explained variance for transcript abundance of cellular genes (Sup-
plementary Fig. 1c).

As expected, linear regression models trained on single features
were not able to explain variation in the HSV-1 gene expression, even
when the top Pearson correlators, phospho-Akt (p-Akt), DDX6, host
cell factor C1 (HCFC1), RNAP II, and RNAP II p-Ser5 (RNAP II S5P), were
used as predictors (Supplementary Fig. 7b). However, a combination
of these five markers was able to predict, not as much as the high-
dimensional cellular state space, but a significant fraction of the var-
iation inHSV-1 infection (Supplementary Fig. 7c). The significance of p-
Akt, DDX6, HCFC1, RNAP II, and RNAP II S5P in HSV-1 infection het-
erogeneity is evenmore emphasized by a low prediction power of five
randomly chosen cellular markers (Supplementary Fig. 7d).

Thus, only by multiplexed quantification of cellular responses to
infection and virus-induced changes in the same cells and across
thousands of cells canwe detect the link between the cellular state and
infection heterogeneity. However, although high prediction accuracy
uncovers correlation between the multidimensional cellular state
space and virus infection variability, it does not reveal the direction of
underlying causality. Consequently, the cellular state can define the
infection state or vice versa.

MCUs identify subpopulations among HSV-1-infected cells
To further determine which markers are linked to the infection pro-
gression, we measured single-pixel intensities from immuno-
fluorescence images. These can be used to derive detailed maps of
subcellular organization by clustering pixels with similar marker-
intensity profiles intomultiplexed cell units (MCUs)16. First, all pixels of
a cell and their intensities per marker are extracted resulting in mul-
tiplexed pixel profiles. Then, pixels are clustered using these profiles
and self-organizing maps (SOMs) resulting in SOM nodes, which are
further clustered using Leiden algorithm into MCUs.

In total, 44 MCUs were constructed from the pixel profiles of
uninfected and infectedHeLacells, and they formed twomain clusters,
one enriched for cytoplasmic and the other for nuclear markers
(Fig. 4a). Next, we compared howmuch cell area eachMCUoccupies in
different cell subpopulations (uninfected cells without infected
neighbors, uninfected cells with infected neighbors and infected cells),
and this revealed HSV-1-induced subcellular re-organization starting at
6 hpi (Fig. 4b).

To further analyze which MCU changes correlated with infection
progression, we compared MCU abundance between different cell
subpopulations at the 12-h time point (Fig. 4c, d). Compared to unin-
fected cells, infected cells were enriched for MCUs containing p-Akt
and depleted for MCUs containing PCNA, interferon regulatory factor
3 (IRF3), phospho-ERK1/2 (p-ERK), DDX6, and catenin β 1 (CTNNB1)
(Fig. 4c). The same was observed when infected cells with high ICP27-

expression levels were compared to infected cells with low ICP27
expression (Fig. 4d).

MCUs also enabled us to further study the heterogeneity between
infected cells. Clustering of single cells using their MCU abundances
identified 13 subpopulations enriched for different MCUs (Fig. 4e). We
selected six subpopulations representing high (1 and 13), intermediate
(5 and 8), and low (4 and 12) viral gene expression for further analysis.
Besides their subcellular organization (Fig. 4f), cells in these sub-
populations differed in their morphology (Fig. 4g).

Cells in subpopulations 1 and 13 were enriched for p-Akt-
containing MCUs 20 and 25, respectively (Fig. 4e). Cells in sub-
population 13 were smaller and rounder, had higher viral gene
expression, and were thus later in infection cycle than those in sub-
population 1 (Fig. 4e, g). Lower levels of ICP0, which is important in the
shutdownof host defense29,might explainwhy cells in subpopulation 1
did not progress as fast as cells in subpopulation 13. Cells in sub-
populations 5 and 8 had relatively high levels of only immediate-early
proteins ICP27 and ICP4 and were larger than cells in subpopulations 1
and 13 (Fig. 4e, g), indicating that theywere in the early infection stages
and originated from a secondary infection.

Subpopulation 4 cells had the highest abundance of cytoplasmic
MCU 5 and nuclear MCU 43, in which CTNNB1 and PCNA, respectively,
were enriched (Fig. 4e). HSV-1 has been shown to recruit bothmarkers
to the viral RCs13,21. Thus, the data indicates that HSV-1 failed to hijack
these factors to support infection in these cells with low viral gene
expression. DDX6-containingMCUs 1 and 3were themost abundant in
subpopulations 12 and 4, respectively. In addition, cells in sub-
population 12 had the highest abundance of MCUs 28 and 41, in which
p-ERK and IRF3 were enriched (Fig. 4e). IRF3, p-ERK, and DDX6 all play
a role in innate immunity30,31, and thus our multiplexed data suggest a
connection between the host defense and low-viral load in these cells.

HSV-1 activates signaling in various cell subpopulations
Multiplexed protein maps of the cellular state (Fig. 4) revealed that
activation of Akt and ERK pathways is linked to the HSV-1 infection
progression. Importantly, such changes in the activity cannot be
observed by scRNA-seq approaches. HSV-1 induced phosphorylation
of both Akt and ERK at the late time points inHeLa cells but indifferent
cell subpopulations (Fig. 5a, b and Supplementary Fig. 8a–c). p-Akt
intensity increased in the infected cells, while p-ERK intensity often
increased the most in the uninfected cells next to the infected ones.
Interestingly, on the cellular state landscape, elevated p-Akt and p-ERK
mean intensities concentrated in the area where infected cells and
uninfected neighbors separated (Fig. 5c).

HSV-1 has been reported to either activate or suppress ERK
signaling32–34. Our single-cell data give more insights into the role of
ERK in HSV-1 infection as we observed a strong phenotype in the
bystander cells. The higher the levels of viral proteins in the infected
HeLa cells, the higher was the mean intensity of p-ERK in the unin-
fected neighbors (Supplementary Fig. 9a). We therefore asked if this
p-ERK increase was induced by IFN signaling to protect the bystander
cells, as p-ERK is required in the type I IFN signaling against viruses35,36.
Notably, the nuclear level of phospho-signal transducer and activator
of transcription 1 (p-STAT1) was not increased in the neighbors of the
HSV-1-infected cells, nor did Janus kinase (Jak) inhibitor block the
observed p-ERK increase, indicating that IFN-induced, Jak1-dependent
signaling was not responsible for the ERK activation (Supplementary
Fig. 9b, c). Besides, the mean nuclear intensities of IRF3, IRF7, and
nuclear factor kappa B (NF-κB), major effectors in pattern recognition
receptor (PRR) signaling37, were not increased in the neighbors (Sup-
plementary Fig. 9d). This also excludes these pathways unless the virus
blocked the nuclear transport of these factors after ERK activation. A
transcription factor known to restrict HSV-1 infection, NRF215, was also
unaffected in the neighbors (Supplementary Fig. 9d).
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Fig. 4 | Multiplexed protein maps link cellular changes to infection hetero-
geneity. a Heatmap of 4i marker intensities in 44 MCUs from infected and unin-
fected HeLa cells at 1.5–12 hpi (n = 5500 cells per time point; ntotal = 27,500 cells).
Order of markers and MCUs was calculated by applying hierarchical clustering to
the distance matrix created by Euclidean distance measure. b Stacked bar plots
summarize abundance of MCUs in three cell subpopulations (1, uninfected cells
without infected neighbors; 2, uninfected cells with infected neighbors; 3, infected
cells).Markers enriched in the selectedMCUs are indicated. Dashedyellow lines: 1/3
and 2/3 abundance. cUMAPofMCUs colored by their abundance in infected versus
uninfected cells at 12 hpi.MCUswere clustered using their spatial interactions from
27,500 infected and uninfected cells (1.5–12 hpi). Markers dominant in the selected
MCUs are indicated. Size of eachMCUwas normalized to the largest MCU.dUMAP
ofMCUs colored by their abundance in high versus low-ICP27 expressing cells at 12
hpi. MCUswere clustered using their spatial interactions from 1520 infected cells at

12 hpi. MCU size on UMAP as in c. Low-expressing cells: mean intensity of ICP27
<35th percentile. High-expressing cells: mean intensity of ICP27 >65th percentile.
e Infected HeLa cells at 12 hpi (n = 1520) were clustered to 13 subpopulations using
abundance of eachMCU ineach cell and Leiden algorithm. Left heatmap:median of
MCU abundance in a subpopulation. Right heatmap: median of viral feature in a
subpopulation.Mediansof subpopulationswere standardized and thennormalized
between 0 and 1. Order of objects was calculated using distance matrix created by
Euclidean distance measure and hierarchical clustering. For HSV-1 proteins, sum
intensities are shown. For UL29 and UL19, spot counts are shown. f Spatial pro-
jections of MCUs onto example cells of selected subpopulations. Cells are not
drawn to the scale. g Cell morphology features of single cells in selected sub-
populations. n = cells per subpopulation. Boxplots definitions as in Fig. 1c. Outliers
are indicated by points.
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To study if the ERK activation protects the neighbors from
infection, we treated HeLa cells with an upstream mitogen-activated
protein kinase (MAPK)/ERK kinase (MEK) inhibitor (MEKi) that blocks
ERK phosphorylation38. Interestingly, the number of ICP27-expressing
cells did not increase from 12 to 18 hpi in the MEKi-treated samples
(Fig. 5d), implying that secondary infections were inhibited. We also
observed strong ERK activation in the infected cells at 18 hpi (Sup-
plementary Fig. 10a, b). While the uninfected neighbors displayed a
diffused cytoplasmic p-ERK signal, in the infected cells p-ERK intensity
was either perinuclear or at the plasma membrane (Supplementary
Fig. 10b). As newly assembled HSV-1 virions bud through the endo-
plasmic reticulum/Golgi and plasma membrane39, our data indicates
that HSV-1 activates ERK in the late infection stages to promote virion
egress.

Mock-infected A549 cells displayed high p-ERK levels that could
be decreased by serum starvation (Supplementary Fig. 11a). However,
no neighborhood activation of ERK after HSV-1 infection could be
observed, but this may be masked out by the high endogenous p-ERK
levels (Supplementary Fig. 11b). Yet, HSV-1 either decreased or
increased p-ERK mean intensity in the infected cells, both in serum-
starved and non-starved conditions (Supplementary Fig. 11b, c). As
observed in HeLa cells, p-ERK intensity was perinuclear in the infected
A549 cells (Supplementary Fig. 11c).Mock-infected fibroblasts also had
high endogenous p-ERK levels that were reduced by serum starvation

(Supplementary Fig. 11d–f). Similar toHeLa andA549cells, the infected
fibroblasts displayed aggregated p-ERK signal that was perinuclear or
at the plasma membrane (Supplementary Fig. 11g). Thus, in all three
cell lines HSV-1 infection activated ERK that resulted in different sub-
cellular distribution of p-ERK compared to the uninfected cells.

Besides HeLa cells, HSV-1 infection increased p-Akt levels in the
infected A549 and BJ cells (Supplementary Fig. 12). Akt phosphoryla-
tion in HSV-1-infected cells has been proposed to enhance translation
by activating mechanistic target of rapamycin complex 1 (mTORC1)
and to protect cells from apoptosis before these functions of Akt are
overtaken by Us3 kinase, a late HSV-1 protein40–43. Thus, we first com-
pared mean intensities of p-Akt and cleaved caspase 3, a hallmark of
apoptotic cells44. Cleaved caspase 3 mean intensity increased only in
the infected cells with low p-Akt levels (Fig. 6a). To further explore the
role of Akt, we treated cells with a PI3K inhibitor, LY294002. Inhibitor
treatment reducedHSV-1-induced phosphorylation of both Akt Ser473
and Thr308 as well as expression of HSV-1 early and late proteins
(Fig. 6b and Supplementary 13a), suggesting that Akt activation was
also required in the HSV-1 translation. mTORC1 activation by Akt leads
to phosphorylation of eukaryotic translation initiation factor 4E
(eIF4E)-binding protein (4E-BP) and release from eIF4E and subse-
quently translation initiation45. Phosphorylated 4E-BP is then
degraded46. HSV-1 infection reduced the 4E-BP mean intensity, but the
LY294002-treatment restored 4E-BP levels in the infected cells closer
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to those observed in the mock cells (Fig. 6c and Supplementary 13b),
indicating that Akt phosphorylation is required in the infected cells to
inactivate 4E-BP but that HSV-1 has additionalmeans to enhance 4E-BP
degradation and thus translation, most likely by Us3 kinase41. Besides
affecting translation, the LY294002-treatment increased the fraction
of apoptotic cells significantly among the infected cells (Fig. 6d, e and
Supplementary 13c, d), confirming the role of Akt in the inhibition of
HSV-1-induced apoptosis.

HSV-1 induces loss of processing bodies
HSV-1 modifies multiple liquid-phase separated compartments of the
host cells, including nuclear compartments such as splicing speckles,
nucleoli, and PML bodies47–49. Here, we observed that HSV-1 infection
also changed cytoplasmic liquid-phase separated compartments. RNA
helicase DDX6 is a component of processing bodies (PBs) that are
ribonucleoprotein granules and most likely function in translational
repression and/or mRNA decay50. Besides RNA metabolism, PBs play
an important role in innate immunity31,51,52. MCU analysis implied that
DDX6 has an antiviral role in HSV-1 infection (Fig. 4), and we observed
that themean intensity ofDDX6decreased inHSV-1-infectedHeLa cells
at the late stages of infection (Fig. 7a and Supplementary Fig. 14a).

At 12 hpi and MOI 0.3, HSV-1-infected HeLa and A549 cells typi-
cally had few enlarged PBs or no PBs (Fig. 7b). As a control we first
quantified nuclear PML bodies that disappeared from the infected
HeLa cells by 3 hpi (Fig. 7c). Segmentation and quantification of PBs in
HeLa cells revealed that their number decreased as infection pro-
gressed, and at the same time their mean area increased (Fig. 7c and
Supplementary 14b), indicating that PBs fused before they dis-
appeared. At 12 hpi, 19.4% of the infected HeLa cells had no PBs while
only 5.7% of the uninfected cells (mean of two independent experi-
ments)were lacking PBs.DDX6mean intensity andPB countdecreased
the most in the G1- and G2-phase HeLa cells (Fig. 7d). In addition, the
higher the ICP27 levels were, the lower the PB count was in HeLa cells
(Fig. 7e), and the pattern of DDX6 texture followed the infection pro-
gression on the cellular state landscape (Fig. 7f), both supporting the
hypothesis that infection resulted in the loss of PBs.

Quantification of PBs in A549 cells revealed the same as in HeLa
cells (Fig. 7g). However, the mean intensity of DDX6 decreased only in

some HSV-1-infected A549 cells while in some it increased (Supple-
mentary Fig. 14c). A further DDX6-phenotype was observed and was
dominant when cells were infected with MOI 1: DDX6 formed a peri-
nuclear aggregate explaining the increased DDX6 mean intensity
(Supplementary Fig. 14d). This phenotype was also observed in HeLa
cells infected with MOI 1 but was not as common as in A549 cells
(Supplementary Fig. 14e). In human fibroblasts this perinuclear
aggregate was readily detectible already at MOI 0.3 (Supplementary
Fig. 14f). Thus, in all three cell lines HSV-1 infection drastically changed
PBs and localization ofDDX6 and thiswas dependent on the virus load.
HSV-1-induced PB formation has previously been reported in HeLa
cells53, but it was not observed here (Fig. 7c).

RNAP II S5P levels fluctuate in infected cells
HSV-1 uses cellular RNAP II and its regulatory factors for
transcription54, and our correlation analyses between HSV-1 gene
expression and cellular factors pointed out total RNAP II, RNAP II S5P
and HCFC1 (Supplementary Figs. 6 and 7). Phosphorylation of the
carboxy-terminal domain (CTD) of the largest subunit of RNAP II, B1,
regulates and coordinates activity of the polymerase. CTD is com-
posed of tandem heptad repeats, and phosphorylation of Ser5 posi-
tions is a hallmark of initiation. After the promoter-proximal pausing,
transition of RNAP II from initiation to elongation requires phos-
phorylation of Ser2 positions (RNAP II S2P)55. It is known that HSV-1
infection eventually results in the depletion of phosphorylation at Ser2
positions56–59.

The multiplexing approach allowed us to spatially quantify total
RNAP II, RNAP II S5P and S2P, and HCFC1, a transcriptional coregulator
essential for HSV-1 immediate-early gene expression60, in the same
cells. To our surprise, we observed reduction of phosphorylation at
both Ser5 and Ser2 positions in HeLa cells as infection progressed
(Fig. 8a). Mean nuclear intensity of RNAP II S5P and S2P decreased
starting at 6 and 9 hpi, respectively, indicating that HSV-1 inhibited
initiation and subsequently elongation. The nuclear levels of HCFC1
also decreased at late time points in the infected cells. Reduction of
phosphorylation at Ser5 and Ser2 positions was verified in HeLa and
A549 cells at 12 hpi (Supplementary Fig. 15a, b). However, in human
fibroblasts nodecreaseofRNAP II S5PandS2Pnuclearmean intensities
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lapped estimated area of two distributions is indicated as a mean percentage from

twobiologically independent experiments (n = 3wells per experiment).Data froma
biological replicate are shown in Supplementary Fig. 13b. d Apoptotic cells inmock
or HSV-1-infected HeLa cells (MOI 0.3) treated with DMSO or LY294002. Cleaved
caspase 3 and ICP27weredetectedby immunofluorescence imaging at 12 hpi.Mock
cells (nDMSO= 32,328 and nLY294002 = 24,073 cells) and ICP27-expressing cells from
HSV-1-infection (nDMSO = 13,376 and nLY294002 = 10,513 cells). Data are from one
experiment and represent mean ± standard deviation among three replicate wells
(Supplementary Fig. 13c shows data from a biologically independent experiment).
Percentage of apoptotic cells was compared between the treatments by one-sided
unpaired two-sample t-test. e Mean intensity of cleaved caspase 3 as a function of
ICP27 in the LY294002-treated, ICP27-expressing HeLa cells (nnon-apoptotic = 8713
and napoptotic = 1800 cells). Data are from the same experiment as in d. In b and d:
*p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. 0.1–99.9th percentiles of marker
intensities are shown in the density plots. See also Supplementary Fig. 13.
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was observed when infected cells were compared to uninfected ones
(Supplementary Fig. 15c).

Although transcriptional marker intensities decreased in the
infected HeLa cells, total RNAP II, RNAP II S5P, andHCFC1 enriched in
the viral RCs positive for HSV-1 ICP8 (Fig. 8b). To compare phos-
phorylation status of RNAP II at different infection stages (Fig. 8c), we
first classified infected cells to RC-containing cells (class V) and those
without RCs, and the later cells were then clustered to four classes
(classes I–IV) based on their expression of HSV-1 immediate early

proteins ICP4 and ICP27 as those were the most abundantly expres-
sed HSV-1 proteins studied here and their expression increased until
12 hpi (Supplementary Fig. 3f). Thus, classes I–V represent infected
cells from early to late stages (Fig. 8d). RNAP II S5P intensity
decreased when infection progressed but then again increased when
cells reached the latest stages (Fig. 8c, e). RNAP II S2P and HCFC1
amounts consistently decreased as the infection progressed (Fig. 8c,
e), revealing different requirements for RNAP II S5P, RNAP II S2P, and
HCFC1 at different infection stages. HSV-1-induced changes in the
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Fig. 7 | HSV-1 infection results in enlargement and then disappearance of
processing bodies. a Distributions of DDX6 intensity in uninfected and HSV-1-
infected HeLa cells from four individual replicate wells in the smFISH+ 4i experi-
ment. 0.1–99.9th percentiles of marker intensities are shown in the density plots.
Inset: cell counts per time point. bDDX6 and ICP27 staining of HSV-1-infected HeLa
(left) or A549 (right) cells at 12 hpi. Arrowhead, ICP27-expressing cell without PBs.
Arrows, ICP27-expressing cell with two enlarged PBs. Nucleus and cell outlines as in
Fig. 1a. Scale bar, 25 μm. c Boxplots summarize single-cell PML-body and PB counts
as well as PB sum and mean area in single uninfected and infected HeLa cells from
the smFISH+ 4i experiment (n = 4 replicate wells). Distributions were compared
using pairwise two-sided KS test. Boxplots definitions as in Fig. 1c. Outliers are
omitted for clarity.dDDX6 intensity, PB count, and PB area in single uninfectedand
infected HeLa cells at 12 hpi, per cell-cycle phase, from the smFISH + 4i experiment

(n = 4 replicatewells). PB countwas normalized by cell area andmultiplied by 1000.
Boxplots definitions as in Fig. 1c. Outliers are omitted for clarity. e PB count as a
function of ICP27 intensity in single uninfected and infectedHeLa cells. Cells with a
PB count >40 are not shown. fUMAPof infectedHeLa cells (as in Fig. 3d) colored by
normalized Haralick sum variance (Kernel size: 2) texture of DDX6 in cytoplasm.
Scale bar: lower limit is <0.5th and upper limit is >99.5th percentile of the values.
g Boxplots summarize single-cell PB count, sum and mean area in uninfected and
infectedA549 cells at 12 hpi. Distributions were compared using pairwise two-sided
KS test. Data are from two independent experiments (n = 2-3wells per experiment).
n = 9878 uninfected and n = 2858 infected cells. Boxplots definitions as in Fig. 1c.
Outliers are omitted for clarity. In c and g: *p <0.05, **p <0.01, ***p <0.001,
****p <0.0001, ns not significant. See also Supplementary Fig. 14.
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transcriptional markers were also visible on the cellular state land-
scape (Fig. 8f, g).

We next compared mean nuclear intensities of RNAP II S5P and
S2P in HeLa, A549 and BJ cells between cells expressing ICP8, an early
protein, with and without RCs (Supplementary Fig. 15d–f). In all three
cell lines, RC-containing cells had higher RNAP II S5P and lower RNAP II
S2P intensities than those without RCs, supporting a conclusion that
RNAP II phosphorylation status is dependent on the infection stage. As

inHeLa cells, RNAP II S5P, but not S2P, enriched in the viral RCs inA549
and BJ cells (Supplementary Fig. 15g, h).

Discussion
Using HSV-1 as a model we show that virus infection changes the cel-
lular state landscape and at the same time, the high-dimensional cel-
lular state space can predict infection heterogeneity (Fig. 3).
Consequently, multimodal responses of cells to infection and of
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Fig. 8 | Multiplexing reveals that RNAP II phosphorylation fluctuates during
HSV-1 infection. a Distributions of mean nuclear intensities of total RNAP II, RNAP
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and upper limit is >99.5th percentile of the values. See also Supplementary Fig. 15.
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viruses to host are an important source of information to predict
infection variability and eventually disease outcomes.

Multiplexed cellular protein maps (Fig. 4) allowed us to classify
infected cells into three main categories: 1) cells with low HSV-1
expression from abortive infections, 2) cells with intermediate HSV-1
expression from secondary infections, and 3) cells with high HSV-1
expression from successful primary infections. Cytoplasmic p-ERK,
CTNNB1, andDDX6 aswell as nuclear IRF3 andPCNAarekey identifiers
of low-expressing cells. High viral gene expression is achieved in cells
that activate Akt, and we show that HSV-1 requires p-Akt to enhance
translation of its proteins as well as to block infection-induced apop-
tosis (Fig. 6 and Supplementary 13). Suppression of ERK activation is
important for infection to progress, but the final steps of the infection
cycle seem to activate ERK signaling (Fig. 5 and Supplementary Figs. 10
and 11). Controversially, of these cellular factors scRNA-seq could only
capture activation of the WNT/β-catenin pathway in cells with high
HSV-1 transcript abundance13.

Importance of spatially resolved single-cell information is further
strengthened by our finding that among HeLa cells HSV-1 infection
activates ERK in the neighboring cells (Fig. 5). ERK phosphorylation
was independent on Jak1-mediated IFN signaling and did not result in
activation of PRR transcription factors (Supplementary Fig. 9), indi-
cating that instead of innate immunity, p-ERK rather regulates cell
survival, proliferation, or apoptosis of the neighbors by other means.

Besides signaling responses, this study uncovers the role of PBs in
HSV-1 infection and suggests that infection progression depends on
degradation or aggregation of DDX6 and loss of PBs (Figs. 4 and 7 and
Supplementary 14). During lytic infection, Kaposi’s sarcoma-associated
herpesvirus (KSHV) disrupts PBs to promote its replication, and it has
been shown that expression of KSHV ORF57 or its HSV-1 homolog,
ICP27, induces PB loss61. This agrees with our finding that among the
HSV-1 markers studied here, the PB count shows the highest correla-
tion with ICP27 (Supplementary Fig. 6). Enterovirus 71, an RNA virus,
encodes a protease that degrades DDX6 to suppress antiviral signaling
mediated by retinoic acid-inducible gene I (RIG-I)31. As RIG-I can also
sense RNA species produced during HSV-1 infection62,63, our observa-
tions suggest that HSV-1 degrades DDX6 to evade host immune
responses.

Using multiplexed immunofluorescence imaging, we also identi-
fied another cellular factor, RNAP II, that explains HSV-1 single-cell
heterogeneity together with p-Akt, DDX6, and HCFC1 (Supplementary
Fig. 7). Specifically, we discover that RNAP II concentration is stable in
the infected cells, but its phosphorylation status fluctuates and
depends on cell subpopulation (Fig. 8 and Supplementary 15). Pre-
viously it has been reported that HSV-1 induces loss of RNAP II S2P56.
However, in our time-course, multiplexed quantification of RNAP II
activity in HeLa cells, we observe that the infection results in the
reduction of both RNAP II S5P and S2P, but then RNAP II S5P recovers
(Fig. 8). The reduction of both phosphoforms was also observed in
another epithelial cell line, A549, but not in fibroblasts (Supplementary
Fig. 15). However, in all three cell lines the initiation active form of
RNAP, S5P, enriched in the HSV-1 RCs, but the elongation active form,
S2P, wasdepleted. TheseHSV-1-induced changes in theRNAP II activity
must reflect both the shutdown of cellular transcription64,65 and reg-
ulation of viral transcription. It has been suggested that HSV-1 tran-
scription is not subjected to the promoter-proximal pausing relieved
by S2P56. However, as both RNAP S5P and S2P are known to bind to the
HSV-1 genome and inhibition of Ser2 phosphorylation impairs viral
transcription66,67, our data suggest that this is true only when viral
genes are transcribed within the HSV-1 RCs (Fig. 8 and Supplemen-
tary 15). RNAP II is recruited to the HSV-1 RCs through nonspecific
binding of RNAP II to the viral DNA68, and thus there may be no syn-
chronized action of RNAP II enabledby the promoter proximal pausing
and consequently no need for S2P.

The observed fluctuations in RNAP II phosphorylation could also
be partially explained by a model of cellular mRNA concentration
homeostasis. Negative feedback from mRNA concentration on the
RNAP II activity is proposed to prevent transition from pausing to
elongation, and this would result in a greater loss of S2P than S5P25.
Interestingly, inhibition of transcription in HSV-1-infected cells by
actinomycin D prevents the loss of S2P69.

Collectively, multidimensional spatial readouts of cellular phe-
notypes are a necessity to understand heterogenous responses in
infections. Although the multiplexed immunofluorescence imaging is
limited in the number of markers compared to scRNA-seq and the
choice of markers has an impact on conclusions, our approach allows
spatial quantification of tens of features per marker as well as cap-
turing cell morphology and neighborhood features, increasing the
dimensionality. Importantly, we identifiedmultiple cellular factors that
explain single-cell variation in human herpesvirus infection and that
have not been identified in scRNA-seq approaches. Further studies are
required to reveal the direction of causality between the cellular fac-
tors and viral gene expression. However, the multiplexed imaging
enables quantification of active host and virus responses and could
enhance for example screening of targets for antivirals.

Methods
Cell lines and viruses
HeLa Kyoto cells (cervical cancer, human, female) are a single-cell
clone and have been authenticated by karyotyping (Supplementary
Data 1)70. HeLa, A549 (lung cancer, human, male) and BJ (normal
foreskin fibroblasts, human, male) cells (Supplementary Data 1) were
cultured in low-glucose Dulbecco’s Modified Eagle’s Medium (DMEM),
supplemented with 10% (v/v) fetal bovine serum (FBS). Vero (kidney
tissue, African Green Monkey) was maintained in low-glucose DMEM
supplemented with 10% FBS, penicillin (100 units/mL), streptomycin
(100μg/mL), and amphotericin B (250 ng/mL). All cell lines were
grown at 37 °C and 5% CO2. Wild-type herpes simplex virus 1 (HSV-1)
strain Fwas propagated in Verocells (SupplementaryData 1). Details of
cell culture media are indicated in Supplementary Data 1.

HSV-1 purification
HSV-1 stocks were produced in Vero cells as previously described71

with some modifications. Briefly, 4 × 106 cells were seeded in 150-cm2

culture flasks and grown overnight at 37 °C and 5%CO2. Next day, cells
were infectedwithHSV-1 (MOI 0.1) by incubatingwith a virus inoculum
in serum-free DMEM for 30min at 4 °C and 60min at 37 °C. Unbound
virus was removed, and cells were incubated in DMEM supplemented
with 2% (v/v) FBS at 37 °C and 5% CO2 until complete cytopathic effect
was observed (at ~48 hpi). Cells were collected into the medium by
scraping and sonicated twice for 30 s in a water bath with a 10-s
incubation on ice in between. Sonication cycles were followed by three
freezing-and-thawing cycles (liquid nitrogen and 37 °C-water bath) and
by two sonication cycles as above. Cell debris was removed by cen-
trifugation (Thermo Scientific Multifuge X3R, 2000 × g, 5min, 4 °C),
and virus suspensionwas purified through a 30% (w/v) sucrose cushion
in TNE buffer (10mM Tris-HCl pH 8.0, 100mM NaCl, 1mM EDTA pH
8.0) by ultracentrifugation (AH629, 140,000 × g, 2 h, 4 °C). The virus
pellet was resuspended in TNE buffer and sonicated three times for
10 s in a water bath with a 10-s incubation on ice in between. The
purified virus was stored in aliquots at −80 °C.

The purified HSV-1 was titrated in HeLa, A549 and BJ cells using
immunofluorescence imaging and an antibody detecting ICP27 (Sup-
plementary Data 1).

Synchronized virus infection
For single-molecule RNA fluorescence in situ hybridization (smFISH)
and immunofluorescence imaging 3500 HeLa, 4000 A549 or 2500 BJ
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cells were seeded per well in uncoated Greiner μClear plastic-bottom
96-well plates (SupplementaryData 1). HeLa cells were grown for ~48 h
and A549 and BJ cells for ~72 h at 37 °C and 5% CO2 to reach ~80%
confluency. Cells were then incubated for 20min at 4 °C, washed three
timeswith cold serum-freeDMEM, and infectedwith thepurifiedHSV-1
diluted in serum-free DMEM using MOI 0.3, unless otherwise stated in
the figure legends. Before the virus was diluted, it was sonicated for
10 s in a water bath. To allow virus adsorption, cells were incubated
with the virus for 30min at 4 °C, and then unbound virus was removed
bywashing cells three times with warmDMEM supplementedwith 10%
(v/v) FBS. Cells were then incubated 60min at 37 °C to allow virus
internalization. Non-internalized virus was removed by washing cells
twice with acid buffer (40mMNa citrate, 135mMNaCl, 10mMKCl, pH
3.0) and incubating in the acid buffer for 1min. Cells were thenwashed
four times with warm DMEM supplemented with 10% (v/v) FBS and
subsequently grown at 37 °C before fixation and staining. For A549
cells, no acid wash was performed to prevent cell damage. If serum
starvation was performed, cells were incubated in DMEM supple-
mentedwith 0.2% (v/v) FBS for 12 h before infection, and after the virus
adsorption in serum-free DMEM, cells were incubated in DMEM sup-
plemented with 0.2% (v/v) FBS.

For Western blotting 30,000 HeLa cells were seeded per well in
uncoated TPP tissue culture 12-well plates. The infection protocol was
the same as above except, that cells were washed only once before
infection and twice after the 30min adsorption step and no acid wash
was performed. At 12 hpi, cells were washed twice with ice-cold PBS
and collected in 2× Laemmli sample buffer (4% (w/v) SDS, 10% (v/v) 2-
mercaptoethanol, 20% (v/v) glycerol, 0.1% (w/v) bromophenol blue,
100mM Tris-HCl pH 6.8) and incubated for 5min at 99 °C.

Chemical treatments
MEK inhibitor U0126 and PI3K inhibitor LY294002 (Supplementary
Data 1) were dissolved in DMSO at a concentration of 50mM and
added to cells at 1.5 hpi at a final concentration of 50 μM. JAK1
inhibitor (Supplementary Data 1) was dissolved in DMSO at a con-
centration of 10mM and used at 10 μM. Specifically, cells were pre-
treated with JAK1 inhibitor for 3 h before infection and then JAK1
inhibitor was added again at 1.5 hpi. Human Interferon-γ (hIFN-γ)
(Supplementary Data 1) was dissolved at a concentration of 0.1 mg/
mL in water supplemented with 0.1% (w/v) bovine serum albumin
(BSA) (Supplementary Data 1). Cells were treated with hIFN-γ
(100 ng/mL) for 30min before fixation.

Western blotting
Proteins were separated by sodium dodecyl sulfate–polyacrylamide
gel electrophoresis with 4% (w/v) acrylamide in the stacking gel and 10
or 12% (w/v) acrylamide in the separation gel. After electrophoresis,
proteins were transferred to nitrocellulose blotting membrane (Sup-
plementary Data 1), which was subsequently blocked with 5% (w/v)
milk in PBS for 1 h at RT and incubated with primary antibodies (Sup-
plementary Data 1) overnight at 4 °C. After the overnight incubation,
membranes were washed three times with 0.3% (v/v) Tween 20 (Sup-
plementary Data 1) in PBS and then incubated with secondary anti-
bodies (Supplementary Data 1) for 1 h at RT. Antibodies were diluted in
PBS supplemented with 2.5% (w/v) milk and 0.3% (v/v) Tween 20.
Membranes were washed three times with 0.3% (v/v) Tween 20 in PBS,
once with PBS, and subsequently scanned with Odyssey system (LI-
COR Biotechnology).

Protein band intensitieswere quantified using Fiji (Supplementary
Data 1) as the area under the curve of each band. All cellular and viral
markers were normalized by dividing their intensity by the corre-
sponding β-actin intensity. Fold change was calculated by comparing
normalized protein intensity in the DMSO- or LY294002-treated sam-
ples to the untreated samples. Western blot data were quantified from
three independent experiments.

smFISH
Cells were fixed with 4% (w/v) paraformaldehyde (Supplementary
Data 1) for 30min at RT. After fixation, cells were washed three times
with PBS, and free aldehyde groups were quenched with 0.1% (w/v)
NaBH4 in PBS for 10min atRT.Cells were thenwashed three timeswith
PBS and further quenchedwith 100mMglycine in PBS for 10min at RT
and washed three times with PBS. Next, cells were permeabilized with
0.2% (v/v) Triton X-100 (Supplementary Data 1) for 15min at RT fol-
lowed by five washes with PBS. smFISH was performed using ViewRNA
high-content screening assay and signal amplification kits (Supple-
mentary Data 1) as previously described70 and according to manu-
facturer’s instructions with some modifications. Specifically, protease
treatment was not performed, as smFISH was followed by immuno-
fluorescence or iterative indirect immunofluorescence imaging (4i).
After the permeabilization, cells were incubated with the gene-specific
probe sets (Type 1 and 6) for 3 h at 40 °C, washed three times with the
wash buffer, incubated with the PreAmp probes for 1 h at 40 °C,
washed as above, incubated with the Amp probes for 1 h at 40 °C,
washed as above, incubated with the Label probes for 1 h at 40 °C, and
washed as above. Nuclear DNA was stained using 4’,6-diamidino-2-
phenylindole, dihydrochloride (DAPI) (Supplementary Data 1) for
10min at RT at a final concentration of 0.4 µg/mL in PBS. Then, cells
were washed three times with PBS and stored in PBS with azide (Sup-
plementary Data 1). All aspiration and dispensing steps were per-
formed using EL406 BioTek washer-dispenser (Agilent), and the
aspiration was done to 30 μL.

After the imaging, smFISH was followed by immunofluorescence
or 4i, and thus the smFISH signal was removed using the elution buffer
(0.5ML-glycine, 3Murea, 3Mguanidinumchloride, 70mMTCEP-HCl,
pH 2.5) that originates from the 4i protocol16. Cells were first washed
three times with PBS and then incubated in the elution buffer for
30min at RT. Elution buffer was changed every 10min. Efficient
removal of the signal was verified by imaging. After this, cells were
washed four times with PBS and proceeded to the blocking step of the
immunofluorescence or 4i protocol.

Immunofluorescence
For immunofluorescence imaging, cells were fixed as described
above for smFISH and quenched with 500mM NH4Cl in PBS for
10min at RT. Permeabilization was done as for smFISH and was fol-
lowed by blocking in 3% (w/v) BSA in PBS for 1 h at RT. Cells were then
incubated with the primary antibodies for 2 h at RT followed by an
incubation with the secondary antibodies for 1 h at RT (Supplemen-
tary Data 1). Antibodies were diluted in 3% (w/v) BSA in PBS. Nuclear
DNA was stained with NucBlue Fixed Cell ReadyProbes Reagent
(DAPI) (Supplementary Data 1) in PBS (4 drops/mL) for 10min at RT,
and total protein was stained with Alexa Fluor 647 NHS Ester (suc-
cinimidyl ester) (Supplementary Data 1) for 10min at a final con-
centration of 0.2 µg/mL in 50mM carbonate-bicarbonate buffer (pH
9.2). Cells were washed three times with PBS between each step,
except that after the antibody incubations four washes were per-
formed. Samples were stored in PBS with azide. If cells were stained
with anti-p-STAT1 or anti-PCNA antibodies, a second permeabiliza-
tion step using 0.1% (w/v) SDS in PBS for 10min at RT was performed
after the Triton X-100 step.

4i was performed after the smFISH and was done as previously
described16 with some modifications. In every 4i cycle cells were (1)
blocked, (2) stained with primary and secondary antibodies as well as
with DAPI, (3) imaged, and then (4) the signal was eluted. (1) Cells were
washed four times with PBS and blocked in Intercept blocking buffer
(Supplementary Data 1) supplemented with 100mM NH4Cl, 150mM
Maleimide, and 5% (v/v) donkey serum (Supplementary Data 1) for 1 h
at RT. (2) Cells were washed three times with PBS and incubated with
the primary antibodies for 2 h at RT. Cells were thenwashed four times
with PBS and incubated with the secondary antibodies for 1 h at RT.
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Antibodies were diluted in Intercept blocking buffer supplemented
with 100mM NH4Cl. Cells were subsequently washed four times with
PBS, and nuclear DNA was stained as in smFISH. Then, cells were
washed four time with PBS and, (3) imaged after adding the imaging
buffer (700mM N-Acetyl-Cysteine, 200mM HEPES pH 7.4). (4) Anti-
bodieswere eluted using the elution buffer as described for smFISH. In
the last cycle cells were stained after the DAPI staining with the total
protein staining (succinimidyl ester) as described for
immunofluorescence above.

Microscopy
Samples from the smFISH and 4i experiments were imaged on an
automated spinning-disk confocal microscope (Yokogawa CellVoya-
ger 7000) using a 40×/NA0.95 air objective, four excitation lasers (405,
488, 568, and 647 nm), and two Neo sCMOS cameras (Andor). Per site
12 confocal Z-sliceswith a 1-μmz-spacingwere acquired, and all images
were maximum projected during acquisition.

For other experiments images were acquired on a confocal
microscope from Olympus (IXplore SpinSR10) with a Yokogawa spin-
ning disk using a 40×/NA0.95 air objective, two excitation lasers (405/
561 and 488/640 nm), and two ORCA-Fusion sCMOS cameras (Hama-
matsu), or on an automated spinning-disk confocal microscope from
Molecular Devices (ImageXpress Confocal HT.ai) using a 20×/NA0.95
or 40×/NA1.15 water objective, four excitation lasers (405, 470, 555,
and 638 nm), and a CMOS camera. Per site 10–18 confocal Z-slices with
a 1-μm z-spacing were acquired. On the ImageXpress device, images
were maximum projected during acquisition. For images acquired on
Olympus spinning disk microscope, maximum intensity projection
was computed using Olympus cellSens (Supplementary Data 1), and
two-channel images were split to one-channel images using Fiji. Ima-
ging on the Olympus spinning disk and ImageXpress was performed
with equipment maintained by the Center for Microscopy and Image
Analysis, University of Zurich.

Microscopy images shown in figures were created using napari
(Supplementary Data 1).

Segmentation and feature extraction
TissueMaps (SupplementaryData 1), an open-sourceproject for high-
throughput image analysis developed in the Pelkmans laboratory
(University of Zurich), was used for microscopy image preproces-
sing, object segmentation, and single-cell feature extraction. First,
microscopy images were corrected for illumination artifacts as pre-
viously described72. If images were acquired in multiple cycles, they
were aligned using DAPI, or DAPI and H2B signal, relative to the first
cycle as previously described16. Nuclei were then segmented by (1)
the Otsu thresholding of DAPI signal, (2) filling holes, (3) separating
clumps, and (4) removing small objects. Labeled nuclei were used as
seeds in the segmentation of cells. First, total protein signal from
succinimidyl-ester staining was smoothed using mean filter. Cell
outlines were then detected using the watershed transform of the
smoothed intensity and adaptive thresholding72. For BJ cells, only
nuclei were segmented.

For the smFISH experiment of HSV-1 and cellular transcripts and
smFISH+ 4i experiment, a pixel classifier was trained in Ilastik (Sup-
plementary Data 1) to aid in the separation of nuclei clumps. The
classifier usedCTNNB1 signal to detect cell outlines. The resultingpixel
probability maps were then uploaded in TissueMaps and smoothed
using bilateral filter. DAPI signal was smoothed using the same filter
and masked with the inverted cell outlines obtained from the pixel
classification. Nuclei were segmented as described above without the
clump-separation step. To capture thewholenucleus aftermasking the
DAPI signal with the cell outlines, the resulting objects were first
shrinked and then used as seeds to segment complete nuclei by pro-
pagation method and smoothed DAPI signal. Total protein and calre-
ticulin signals were smoothed using gaussian filter and then combined.

The resulting new intensity image was masked with the inverted cell
outlines obtained from the CTNNB1 pixel classification, and cells were
segmented using nuclei as seeds and the watershed transform of the
masked intensity images as above. To capture the whole cells, the
resulting objects were used as seeds and the segmentation was repe-
ated with the unmasked combination of total protein and calreticulin
signal. In the smFISH+ 4i experiment, α-tubulin signal was smoothed
by gaussian filter, and the unmasked combination of total protein,
calreticulin, and α-tubulin was used in this second segmentation step
of the cell. Cytoplasm was segmented by masking cell segmentation
with nucleus segmentation.

PML and P bodies were segmented using the Otsu thresholding of
SP100 or DDX6 signal, respectively, and by separating clumps and
removing small objects. For PML bodies objects outside the nucleus
were excluded. To segment splicing speckles and nucleoli, a pixel
classifier using SRSF2 or C23 signal, respectively, was trained in Ilastik,
the resulting probability density maps were smoothed in TissueMaps
using gaussian filter, manually thresholded, and then small objects as
well as objects outside the nucleus were excluded. The same approach
was followed to segment the viral RCs using ICP8 signal or the RCs
were segmented without the pixel classifier using the Otsu thresh-
olding of ICP8 signal and by removing small objects and objects out-
side the nucleus. Thus, in this study the segmented RCs represent
ICP8-positive late RCs as dot-like ICP8-positive structures (early RCs)
were not segmented.

TissueMaps was used to extract intensity, texture, and morphol-
ogy features from segmented cells, nuclei, cytoplasm, and cellular and
viral compartments. In addition, neighbor features were measured.

Computational detection of smFISH spots in TissueMaps was
performed as previously described72. Deblending was used to separate
adjacent spots. The same approach was used to detect virions in the
ICP5-stained cells.

Support-vector machines (SVMs) were used to classify cells in
TissueMaps and followed the same principles as CellClassifier73. First,
cells representing two different classes were manually selected, and
supervisedmachine learningmodelswere trained using these example
cells and a subset of single-cell features. Classification result was
visualized, new example cells were selected, and the process was
repeated until most cells were correctly classified. Further classifica-
tion was performed in R (Supplementary Data 1).

Data clean-up and normalization
Border cells, i.e. cells touching imageborders, andmissegmentedcells,
i.e. cells with unsegmented nucleus in the cytoplasm, were removed
from all datasets. Missegmented cells were classified in TissueMaps
using SVMs. TissueMaps also labeled border cells.

smFISH spots in the nucleus, cytoplasm, and cell area reflect the
spots that overlapped with the corresponding segmentations. How-
ever, it is important to note that the smFISHmethod used in this study
detects only cytoplasmic transcripts due to nuclear inaccessibility of
the branched-DNA probes70. Thus, the transcript count in the cell area
is used as a cytoplasmic transcript count. Point pattern of segmented
smFISH spots within a cell was measured in TissueMaps and mean of
relative distance to the cell border was used to divide cells to two
groups: (1) cell was considered as expressing the gene detected by
smFISH if distance was at least 0.01, or (2) cell was labeled as con-
taining smFISH spots from a neighbor due to missegmentation of the
cell border if the mean of relative distance was smaller than 0.01. Only
cells classified in group 1 and having at least 5 spots were included in
the analyses of UL29 and UL19 spot counts in Figs. 1 and 2 and
Supplementary 1.

The smFISH + 4i experiment contained five time points, two
mock-infected and four HSV-1-infected wells per time point, two
mRNAs, 34 antibodies, DAPI and succinimidyl ester stainings. Fur-
thermore, two additional mock wells per time point were stained with
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secondary but no primary antibodies. Single-cell mean intensity mea-
surements showed slight variation between replicates, most likely due
to technical variation of the automated liquid handling system, and
this was corrected by multiplying intensity and texture-feature values
by a well-specific correction factor. First, median value of a feature was
extracted per well, and then mean of the median values from all
replicate wells was calculated. Correction factor was obtained by
dividing the replicate mean value by the well median value. The same
correction was performed in the smFISH experiment of HSV-1 and
cellular transcripts for the intensity values.

Background was subtracted from the intensity values. For cellular
markers, background value was either (1) from well regions without
cells or (2) from cells stained with secondary but no primary anti-
bodies. The first approach was used for DAPI and succinimidyl ester
stainings and for antibody stainings when no multiplexing was per-
formed. The second approach was used for all cellular 4i markers. For
viral markers, background value was from mock cells stained with
corresponding antibodies.

In the smFISH + 4i experiment one plate represented one time
point and some plate-to-plate variation was detected in the feature
values. This variation mostly comes from the imaging buffer that
reduces signal intensity of some antibodies the longer they are in the
buffer, and imaging of all five plates typically took ~12–15 h. The
imaging sequence in all cycles was from 12-hpi plate to 1.5-hpi plate.
Thus, it was important to correct this plate-to-plate variation for the
analyses in which cells from multiple time points were combined.
First, outlier cells with extremely high intensity values were removed
by excluding cells that had a mean intensity higher than the 99.995th

percentile. All cellular features were then corrected for the plate-to-
plate variation by standardizing relative to the mock cells at each
time point: z-scoring by subtracting the mean and dividing by the
standard deviation derived from the corresponding mock cells. This
should also remove changes that were not HSV-1-induced. All cellular
features were further normalized relative to the uninfected cells
without the infected neighbors within the same plate by subtracting
their mean and dividing by their standard deviation within a time
point. This corrected for staining differences betweenwells. The viral
features were normalized by standardizing relative to all cells from
the HSV-1-infected wells.

In the smFISH experiment of HSV-1 and cellular transcripts the
cellular features were normalized by standardizing relative to
mock cells.

In the immunofluorescence experiments the cellular features
were normalized by first standardizing relative to mock cells and then
relative to the uninfected cells without the infected neighbors. For BJ
cells, the second normalization step was performed relative to all
uninfected cells. The viral features were normalized as described for
the smFISH+ 4i experiment.

Log2-transformed values shown in figures were not standardized.

Cell classification
Cell-cycle classification was performed as previously described16,74.
Cells were first classified as mitotic or non-mitotic using SVMs trained
on intensity and texture features of nuclear DAPI and morphology
features of nucleus and cell. S-phase cells were identified using SVMs
trained on intensity and texture features of nuclear DAPI and PCNA.
Subsequently mitotic and S-phase cells were excluded, and the
remaining cells were classified as G1 and G2 using K-means clustering
and total nuclear intensity of DAPI from the first imaging cycle.
K-means clustering was done in R using function kmeans (package
stats). Mitotic cells were removed from all datasets. If PCNA staining
was not performed, cells were classified into G1, G1/S, G1/S/G2, S/G2,
and G2 using the normalized total nuclear intensity of DAPI and 25th,
55th, 70th, 85th percentiles.

To classify apoptotic cells an SVM was trained using mean inten-
sity of cleaved caspase 3 signal and texture features of total protein
staining.

In the smFISH + 4i experiment cells were assigned infected using
two approaches depending on the time point: (1) at 1.5 hpi, a cell was
labeled infected if it contained at least one ICP5-positive spot, and (2)
at 3–12 hpi, a cell was classified infected if it expressed one or more of
ICP0, ICP4, or ICP27. In the immunofluorescence experiments cells
were classified as infected if they expressed ICP27. Cells expressing
ICP27 were classified using SVMs that were trained on mean and
minimum nuclear intensity of ICP27 signal. Cells expressing ICP0 were
identified using SVMs trained on mean and minimum intensity and
texture features of ICP0 signal. Cells expressing ICP4 were identified
using SVMs trained on mean and minimum nuclear intensity and
nuclear texture features of ICP4 signal. Cells expressing ICP8 were
identified using SVMs trained onmean andminimumnuclear intensity
of ICP8 signal.

Besides classifying cells to uninfected and infected, uninfected
cells were further divided into two subpopulations based on their
location in the cell population: (1) uninfected cells without infected
neighbors and (2) uninfected cells with infected neighbors. First, a
neighbor infection score was calculated by extracting all neighbors for
one cell determined in TissueMaps and then dividing the number of
infected neighbors by the number of all neighboring cells. If a cell was
uninfected and its neighbor infection score was larger than zero, the
cell was classified in subpopulation 2. Otherwise, uninfected cells were
classified in subpopulation 1. The classification was performed in R.

To classify infected cells to different infection stages, K-means
clustering of cells that contained no viral replication compartments
was performed using normalized mean intensity of ICP4 and ICP27.
Optimal number of clusters (k) was determined by computing total
within-cluster sum of square and plotting these values versus the
number of clusters. k = 4 resulted in the bend in the elbow (“elbow
method”) and was used in the clustering. K-means clustering was done
in R using function kmeans (package stats).

Statistics and reproducibility
smFISH experiment of HSV-1 and cellular transcripts was performed
using one biological replicate with five technical replicates, and
smFISH+ 4i experiment was performed using one biological replicate
with two (mock infection) or four (HSV-1 infection) technical repli-
cates. Immunofluorescence experiments were performed using 1-2
biological replicates with 1–3 technical replicates. Western blot
experiments were performed using 3 biological replicates. No statis-
tical method was used to predetermine sample size. Number of repli-
cates was chosen based on previous experiments carried out in our
laboratories16,25,75. In image-based experiments, cells at image borders,
missegmented cells and mitotic cells were removed from datasets. In
addition, cells with extremely high intensity values were removed by
excluding cells that had a mean intensity higher than the 99.995th

percentile.
Microscopy images from the smFISH + 4i experiment shown in

figures are representative images from four technical replicates.
Microscopy images from IF experiments shown in figures are repre-
sentative from at least two biological replicates.

Quantitative data analysis of the single-cell features extracted
from TissueMaps was performed in R.

Coefficient of variation (CV) of single-cell transcript counts was
calculated as the standard deviation of dataset divided by the mean of
dataset.

Statistical significance of the fold change in the Western blotting
was analyzed using one-way ANOVAwith Tukey’smultiple comparison
post-test, and tests were performed in R using functions aov and
TukeyHSD (from package stats).
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Overlap of two probability distributions was computed using R
function overlap (package overlapping). For statistical tests, normal
distribution of variables was tested using R function shapiro.test
(package stats) and equal variance using R function var.test (package
stats). Marker distributions were compared between cell subpopula-
tions using unpaired, two-sided Mann–Whitney U test (R function
wilcox.test from package stats) or pairwise two-sided
Kolmogorov–Smirnov (KS) test (R function ks.test from package
stats). For KS test, all subpopulations were first randomly subsampled
to 1000 cells, and then KS test was performed with these subsets. This
was repeated five times, and the mean p value of five tests is indicated
in the figures.

Statistical significance of the difference in the fraction of cells in
different cell-cycle phases was analyzed by unpaired two-sample t-test
and performed in R using function t.test (package stats) and “two.-
sided” as alternative hypothesis andWelch’s correction if there was no
equality of variances. In Fig. 2c, d, one well at 9 hpi was omitted from
the cell-cycle classification as the PCNA intensity was lower compared
to other wells resulting in an incomplete detection of S-phase cells.

Statistical significance of the difference in the percentage of
apoptotic cells was analyzed by unpaired two-sample t-test and per-
formed in R using function t.test (package stats) and “greater” as
alternative hypothesis and Welch’s correction if there was no equality
of variances.

Number of cells expressing ICP27 after DMSO or MEKi treatment
was normalized to combine data from two experiments. First, cell
counts per well were derived, and then the mean of these counts per
treatment and time point was calculated. Then, the mean from two
experiments was derived. A correction factor per experiment was
calculated by dividing themean from two experiments by the mean of
the corresponding experiment. All cell counts were thenmultiplied by
these correction factors. Statistical significance of the difference in the
percentage of ICP27-expressing cells was analyzed by unpaired two-
sample t-test and performed in R using function t.test (package stats)
and “two.sided” as alternative hypothesis.

Statistical information of the tests is reported in Supplemen-
tary Data 2.

Binomial logistic regression
In the smFISH + 4i experiment cells were classified infected based on
the presence of ICP5-positive spots (at 1.5 hpi) or on the expression of
HSV-1 immediate early proteins (at 3–12 hpi). Binomial logistic
regression with different combinations of single-cell features as inde-
pendent variableswas then used to predictwhether a cell is infected or
uninfected. Only cells exposed to HSV-1 were included in the analysis,
and all viral features were excluded from the predictors. At each time
point, equal numbers of uninfected andHSV-1-infectedHeLa cells were
randomly subsampled and combined (1.5 hpi, n = 17,330; 3 hpi,
n = 5488; 6 hpi, n = 15,074; 9 hpi, n = 18,764; and 12 hpi, n = 19,828)
resulting in a total cell count of ~80,000. For each time point a bino-
mial logistic regressionmodelwas trainedon three replicates andused
to predict in the fourth replicate whether a cell is infected. Predictions
were repeated for each replicate and mean of accuracy of four pre-
dictions is shown in Fig. 1e. All predictors were first normalized as
explained in ‘Data clean-up and normalization’, and regression analysis
was then performed using R function glm (package stats). Accuracy of
predictions was calculated as (true positive + true negative)/(true
positive + false positive + true negative + false negative). When all cel-
lular features from the smFISH + 4i experiment (3136 features) were
used as predictors, principal component analysis (PCA) was first per-
formed using R function prcomp (stats package) and principal com-
ponents (PCs) explaining 95% of variance in the dataset were used as
predictors. To select individual cellular features, which could predict
cell fate, predictive power score (pps) using R package ppsr and a
decision-tree regression model was determined between uninfected/

infected cell type and each of 3136 single-cell features extracted from
the smFISH+ 4i experiment. Seven single-cell features in Fig. 1e
represent correlators with pps ≥0.3. These were used as single inde-
pendent variables in the logistic regression and are the following
Haralick texture features: DDX6, difference entropy (Kernel size: 2) in
cell; p-CDK9, entropy (Kernel size: 10) in nucleus; RNAP II S2P, infor-
mationmeasures of correlation (Kernel size: 2) in nucleus; RNAP II S5P,
sum entropy (Kernel size: 2) in nucleus; total protein staining, corre-
lation (Kernel size: 10) in nucleus; NRF2, angular-second moment
(Kernel size: 2) in nucleus; and SP100, sum variance (Kernel size: 2) in
nucleus. In Cell size, cycle, context, the following single-cell features
were used as independent variables: cell cycle, cell size, position at a
cell-islet edge, local cell density, and fraction touching neighbors.

Pearson and Spearman correlation
Pairwise correlation of total intensities of viral markers (ICP0, ICP4,
ICP27, ICP8, ICP5, and VP16) and viral mRNA spot counts per cell (UL19
andUL29) with 3136 single-cell features extracted from the smFISH + 4i
experiment was calculated using Pearson correlation. Viral marker
intensities and cellular features were first normalized as explained in
‘Data clean-up and normalization’, and then the Pearson correlation
was computed using R function rcorr frompackageHmisc. The cellular
features that gave Pearson correlation coefficient (r) ≥0.3 or ≤−0.3
were selected (Supplementary Data 3), and the Spearman correlation
of viral features with these was computed using R function rcorr.

UMAP analysis of the smFISH+4i data
Normalized single-cell features were first divided into two categories
(Supplementary Fig. 2c, d): (1) cellular features (n = 3136) and (2) viral
features (n = 750). Cellular features included intensity and texture
features from28 cellularmarkers aswell as fromDAPI and total protein
staining,morphology features of cell, nucleus, and cytoplasm, count of
subcellular compartments (splicing speckles, nucleoli, PML bodies,
and PBs), neighborhood features, and cell-cycle information. Viral
features included intensity and texture features from eight viral mar-
kers, RC count, UL29 and UL19 spot counts, and neighbor infection
score. PCA was performed on both feature sets using R function
prcomp, and PCs explaining 95% of variance in each dataset were used
in UMAP analysis that was performed using R package umap with
parameters n_neighbors = 15 and min_dist = 0.05.

Movies of UMAPs were generated using R package gganimate.

Linear and multiple linear regression
In the smFISH+ 4i experiment, linear regression (LR) and multiple
linear regression (MLR)were performedwith viral gene expression as a
response variable and cellular features as predictors. Prediction was
performed in cells classified infected (see above ‘Cell classification’).
Both viral gene expression and cellular features were first normalized
as described in ‘Data clean-up and normalization’ except thatUL29 and
UL19 spot counts were not standardized.

In MLR, four combinations of predictors were used: (1) simple
phenotypic state composed of 360 single-cell features that included
intensity and texture features from DAPI and total protein stainings,
area andmorphology features of cell, nucleus, and cytoplasmaswell as
neighborhood and cell-cycle features, (2) 495 intensity and texture
features of top Pearson-correlator markers (p-Akt, DDX6, HCFC1,
RNAP II, and RNAP II S5P), (3) 495 intensity and texture features of five
randomly chosen cellular markers (EEA1, NRF2, p-ERK, CRT, and
GM130), and (4) high-dimensional cellular state space composed of
3136 single-cell features as described in the UMAP analysis. First, a
dimensionality reduction using PCA (R function prcomp) was per-
formed and then PCs explaining 95% of variance in each dataset were
used in the MLR analysis.

LR and MLR were performed per time point for 3–12 hpi and for
pooled time points combining cells from 1.5–12 hpi. Per time point,
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regression models were trained using three replicates (R function lm
from stats package) and prediction was performed on the fourth
replicate (R function predict from stats package). Per pooled time
points, LR and MLR models were trained on 15 replicates and predic-
tion was performed on five remaining replicates so that both training
and prediction data sets contained three or one replicate per time
point, respectively. Model performance was measured by R2 that
represents the square of correlation between the predicted and mea-
sured values (R function R2 from caret package). This was repeated for
each replicate, and R2 shown in Fig. 3g and Supplementary Fig. 7b–d is
a mean of four predictions.

In the smFISH experiment of HSV-1 and cellular transcripts, MLR
was used to predict viral or cellular gene expression using the simple
phenotypic state as a predictor. MLR was performed as described
above, except that 331 single-cell features describing the cell pheno-
typic state were used and total number of replicates was five. Each
replicate was first subsampled to 2500 cells to allow comparison of
viral and cellular transcription. R2 shown in Supplementary Fig. 1c is a
mean of five predictions.

To fit robust linear regression models to the single-cell data, R
function lmrob from robustbase package was used.

MCU analysis
In the smFISH+4i experiment 5500 cells per time point were randomly
selected from the HSV-1-infected wells, and construction of MCUs for
these 27,500 cells was performed as previously described16 with some
modifications. Multiplexed pixel profiles (MPPs) were extracted from
TissueMaps after the illumination correction, alignment, and segmen-
tation using Python scripts mpp.py and pixel_profiles.py (Supplemen-
tary Data 1). MPP contained the intensity values for 26 cellular markers,
DAPI, and total protein staining (Supplementary Fig. 2b). Calreticulin
and TGN46 were excluded due to the nuclear background. In order to
correct intensity differences between plates (i.e. time points, see above
‘Data clean-up and normalization’) MPPs were multiplied by a time-
point specific correction factor. First, uninfected cells without infected
neighbors were selected and median of the single-cell mean intensity
was calculated per time point. Correction factors were then derived by
dividing the average median of all time points by the median per time
point. MPP files contained ~900million pixels. Next step was clustering
ofMPPs using self-organizingmaps (SOMs). For this stepMPP files were
randomly subsampled to 200 cells per time point resulting in a total of
~36million pixels. These were used to train a SOMmodel that was then
applied to all pixels. SOM clustering was performed using Python script
combine_mpp_and_cluster.py (Supplementary Data 1). The final step
was to cluster SOMnodes toMCUs using R (igraph and leiden packages
and the Leiden clustering algorithm)with four nearest neighbors, which
resulted in the identification of 44 MCUs.

Marker intensities in MCUs were calculated by first z-scoring
intensities permarker andMCU (R function scale) and then calculating
mean intensity perMCU. To clustermarkers based on their intensity in
each MCU, a distance matrix was first computed using Euclidean dis-
tance matrix (R function dist from package stats) followed by hier-
archical clustering (R function seriate from package seriation). To
cluster MCUs based on their marker intensity profiles the same hier-
archical clustering was performed.

MCUabundance (i.e. fraction of pixels that belong to eachMCUof
total pixels in a cell) in each cell subpopulation per time point was
computed by grouping pixels from each cell subpopulation per time
point and dividing the number of pixels in each MCU by the total
number of pixels in that subpopulation. This is represented as a
stacked bar plot in Fig. 4b.

Pairwise spatial proximity scores (SPSs) between all MCUs were
calculated per cell as described previously16 using codes available at
https://doi.org/10.17632/ytvttnr2nn.1. For each MCU, neighboring
pixels assigned by 8-connectivity were grouped based on their MCU

identity and the number of neighboring pixels in eachMCU group was
divided by the total number of neighbors. To assess significance of the
SPSs in the original cells, we randomly permutated the original MCU
identities of pixels, not the coordinates, per cell and then recalculated
a randomized SPS. The permutations and calculations were repeated
1000 times per cell. The mean of these randomization controls was
then subtracted from the original SPS per MCU-interaction pair per
cell. Next, mean of the normalized SPS values was computed perMCU-
interaction pair per all cells, and MCUs were clustered using the mean
SPSs andUMAPanalysis thatwasperformedusingRpackageuwotwith
parameters n_neighbors = 4, metric = “manhattan”, spread= 1.8, and
min_dist = 0.1. In Fig. 4c mean SPS per MCU was computed using
27,500 cells (uninfected and infected cells from all time points) and in
Fig. 4d using 1520 cells (infected cells from 12 hpi). The size of MCUs
presented in UMAPs (Fig. 4c, d) was calculated by collecting pixels
from the corresponding cells, grouping them per MCU, and then
normalizing the number of pixels in each MCU to the largest MCU.
Coloring of MCUs in the UMAPs represents their abundance in the
indicated groups of cells. First, abundance ofMCUswas computed per
cell by dividing the number of pixels of eachMCU by the total number
of pixels in the corresponding cell, and then mean of the abundances
per indicated group of cells was calculated.

Infected cells at 12 hpi (1520 cells) were divided into subpopula-
tions using MCU abundance and Leiden clustering (R packages igraph
and leiden). Eight nearest neighbors resulted in the identification of
13 subpopulations. Euclidean distance matrix and hierarchical clus-
tering were performed in R using pheatmap package. For MCU abun-
dance andviral gene expressionpresented in Fig. 4e heatmaps,median
of each value within a subpopulation was first computed and then
features were z-scored using the mean and standard deviation of all
subpopulations (R function scale). Standardized values were thenmin-
max-normalized using R functions preProcess (package caret) and
predict (package stats).

Computational infrastructure
Image analysis was performed on the high-performance clusters (Sci-
enceCloud and ScienceCluster) provided by the Service and Support
for Science IT (S3IT) facility of University of Zurich. SPS calculations
were performed with the computational resources provided by the
ELIXIR node, hosted at the CSC–IT Center for Science, Finland.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper (Supplementary Data 1).
Western blot, single-cell, and single-pixel datasets generated during
the current study have been deposited at Mendeley, and the DOIs are
listed in SupplementaryData 1. Rawmicroscopy imagedatasets used in
this study contain also information not reported and will be shared
upon reasonable request. Any additional information required to
reanalyze the data reported in this paper is available upon request.

Code availability
All original code has been deposited atMendeley, and the DOI is listed
in Supplementary Data 1. Codes for image analysis performed using
TissueMAPS are found at https://github.com/pelkmanslab/
TissueMAPS. Python-based code for calculating population-context
features and multiplexed cell units (MCUs) was written on previous
MATLAB code16,25,76 and is available at https://github.com/scottberry/
popcon and https://github.com/scottberry/mcu, respectively (Sup-
plementary Data 1). R codes for the analyses of single-cell features and
single-pixel intensities were developed on a per-experiment and per-
figure basis and are available on request.
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