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Representations in human primary visual
cortex drift over time

Zvi N. Roth 1 & Elisha P. Merriam 1

Primary sensory regions are believed to instantiate stable neural representa-
tions, yet a number of recent rodent studies suggest instead that representa-
tions drift over time. To test whether sensory representations are stable in
human visual cortex, we analyzed a large longitudinal dataset of fMRI
responses to images of natural scenes. We fit the fMRI responses using an
image-computable encoding model and tested how well the model general-
ized across sessions.We found systematic changes inmodel fits that exhibited
cumulative drift over many months. Convergent analyses pinpoint changes in
neural responsivity as the source of the drift, while population-level repre-
sentational dissimilarities between visual stimuli were unchanged. These
observations suggest that downstream cortical areas may read-out a stable
representation, even as representations within V1 exhibit drift.

A guiding principle in sensory neuroscience is that neural repre-
sentations of sensory information are stable, that a given stimulus will
reliably evoke a particular pattern of neural activity. This assumption is
so deeply ingrained in contemporary neuroscience that it has become
implicit in many theories of neural coding. Similarly, a number of
prominent theoretical frameworks assume that sensory signals are
initially encoded via stable computations, which then allow down-
stream brain areas to decode those representations, perform addi-
tional transformations, reach a decision, and ultimately generate a
motor output.

But recent electrophysiology studies have found that neural
representations of natural stimuli inmouse visual cortex arenot stable,
and instead change, or drift, at timescales ranging from minutes to
weeks1–4. The discovery of this phenomenon, termed ‘representational
drift’, was made possible by technology that enabled large-scale
chronic recordings of populations of neurons in rodent cortex over
extended periods of time. An obvious barrier to addressing similar
questions in primates is the dearth of comparable long-term record-
ings in primate visual cortex (but see5–7). Hence, it is not known whe-
ther representational drift occurs inhuman visual cortex, since upuntil
now, no dataset has afforded the requisite longitudinalmeasurements.

Uncovering the mechanism of representational drift can guide in
identifying principles underlying neural coding. Models of neural
coding invariably assume that certain aspects of neural responses are
critical for representing informationwhile other aspects are redundant
or irrelevant. For example, according to the labeled-line framework,

the identity of the neurons most active within a given population is
critical for reliably representing a stimulus, while the patternof activity
of other neurons in the population is not relevant for the neural
representation. Conversely, if information is represented by an
ensemble code, only the mean activity may be important, while the
activity of individual neurons is of little or no consequence for
downstream brain regions. Finally, according to models of population
coding, neural representations are embedded in the pattern of activity
across a population of neurons, while the absolute firing rate, both of
individual neurons and themean across the population, is not relevant.
Each of these theories makes distinct predictions regarding the
aspects of neural responses that must remain fixed and the aspects
that may change (or drift) over time while still maintaining a sensory
representation. Identifying the features of neural tuning that change
versus those that remain stable, therefore, may ultimately reveal the
most basic principles of neural coding.

Results
We analyzed fMRI BOLD activity collected while subjects viewed a
large database of naturalistic scenes in many scanning sessions over
the course of a year8. To enable comparison of representations across
sessions, we used an encoding model to estimate tuning properties
within V1 during each individual session (Fig. 1A). We then tested
whether tuning changed over time. If representations are stable, the
model fit on data from one session should be equally good at pre-
dicting responses from any other session. But we found, on the
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contrary, that the model’s goodness-of-fit, measured by cross-
validated R2 (cvR2), dropped with the number of sessions intervening
between train and test sessions (Fig. 1C, D). Model generalization
across adjacent pairs of sessions, on the other hand, did not change
across the experiment, indicating that signal-to-noise ratio (SNR) was
stable, and that thedrift thatweobservedwas not simply the result of a

change in measurement reliability (Fig. 1E) or due to changes between
the first and second sessions (Fig. S1). These analyses suggest that the
representational drift was due to progressive changes in a neural
process that continued throughout the year-long experiment.

Drift was evident in the data using cvR2 as a measure of cross-
session generalizability (Fig. 1C), but surprisingly, not when using

Article https://doi.org/10.1038/s41467-023-40144-w

Nature Communications |         (2023) 14:4422 2



correlation (Fig. 1F). The divergence between cvR2 and correlation
measures suggests that the drift is due to changes in either the mean
and/or variance of response amplitudes, since cvR2 is sensitive to both
the mean and variance, whereas correlation is not. To test whether
drift is caused by changes in the mean and/or variance, we equalized
either the mean or the variance of each voxel’s response amplitudes
within each session and then recomputed the cross-session goodness-
of-fit matrices. Whereas equalizing the variance had a minimal impact

on drift (Fig. 2A), removing the mean response amplitude significantly
attenuated representational drift (Fig. 2B)We also found that response
amplitudes exhibited dependencies across sessions, evident in posi-
tive autocorrelations across several sessions (Fig. S2). These observa-
tions indicate that response amplitudes of individual fMRI voxels
gradually accumulated changes across sessions and were not simply
fluctuating around a fixed mean, as would be expected from random
noise. Our observations are consistent with primate studies at much

Fig. 1 | Changes in cross-session generalization indicate representational drift.
A Model-fitting pipeline for a single fMRI voxel timeseries measurement. Input
consisted of images viewed by a particular subject in a particular session. Filter
outputs were sampled by the pRF. The model assigns weights for each orientation
and spatial frequency filter by multiple linear regression, using model outputs to
predict response amplitudes. Example images shown here were created by the
authors for illustration only and were not used in the study. B Themodel is trained
independently on each session, and then tested on each other session.CGoodness-
of-fit matrix, quantified by cross-validated R2 (cvR2), testing how well the model
trained on each session predicted responses in all other sessions. Different diag-
onals of the matrix correspond to different numbers of intervening sessions
between training and testing. Goodness-of-fit matrices were computed for each
subject as the median of all V1 voxels, and averaged across subjects.
D Representations drift across sessions when quantified by cvR2. Left, Schematic
illustrating representational drift (solid line, cvR2 decreases systematically with
number of intervening sessions), and representational stability (dotted line, cvR2

remains constant). Middle, Mean cvR2 as function of number of intervening ses-
sions between train and test sessions. Colored lines, individual subjects; black line,

mean across subjects. Predictive power of models decreases with number of
intervening sessions, indicating representational drift (r = −0.17, p <0.001). Drift
was significant (p <0.05) for all 8 individual subjects. Right, Black vertical line,
empirical correlation between goodness-of-fit and number of intervening sessions.
Gray histogram, null distribution of correlation values computed by randomizing
the order of sessions 1000 times. Correlation was computed using all off-diagonal
matrix values for each subject, and averaged across subjects. E Signal-to-noise ratio
does not consistently decrease (or increase) across sessions. Left, Diagonals of the
goodness-of-fit matrix corresponding to training and testing on adjacent sessions.
Middle, Performance of model trained and tested on adjacent sessions, as function
of earlier session of the two. Model performance does not systematically decrease
across sessions (r = −0.11, p =0.086). Right, Black vertical line, empirical correlation
between adjacent-session performance and number of intervening sessions. Gray
histogram, null distribution of correlation values. F Same as B, quantifying
goodness-of-fit with Pearson’s correlation instead of cvR2 values.With thismeasure
predictive power does not decrease with time (r =0.04, p =0.774). Source data are
provided as a Source Data file.
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Fig. 2 | Normalizing response amplitude, but not variance, removes drift.
A Cross-session generalization after normalizing each session’s variance. Left,
goodness-of-fitmatrix after normalizing each voxel’s response variancewithin each
session. Center, Mean cvR2 as function of number of intervening sessions between
train and test sessions. Model predictive power decreases with time, indicating
representational drift (r = −0.25, p <0.001). Gray lines, individual subjects; thick
black line, mean across subjects. Right, Black vertical line, empirical correlation
between goodness-of-fit and number of intervening sessions. Gray histogram, null

distribution of correlation values. B Cross-session generalization after subtracting
each session’s mean response amplitude (i.e. mean beta). Left, goodness-of-fit
matrix after subtracting each voxel’s mean response within each session. Center,
Mean cvR2 as function of number of intervening sessions between train and test
sessions. After subtracting each voxel’s mean, predictive power of V1 models no
longer decrease with time (r = −0.02, p =0.287). Source data are provided as a
Source Data file.
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shorter timescales9,10, and suggest that drift in human V1 is primarily
due to inter-session changes in mean response amplitude.

What changes in the fMRI response tuning resulted in the gradual
changes in mean response amplitude? Several properties of tuning
functions could potentially change with time, resulting in a change in
BOLD fMRI responses (Fig. S3), including changes in baseline, gain,
tuning width, and stimulus preference. However, simulations suggest
that only an additive baseline shift would affect the mean response
amplitude without a concomitant change in the variance of responses,
consistent with the representational drift thatwe observed. Consistent
with this scenario, we found that the baseline coefficient exhibited
positive autocorrelations (Fig. S4), indicating cumulative changes
across sessions, and suggesting that the drift reflects systematic shifts
in the baseline.

Drift of stimulus representations locally within individual neurons
could potentially create a conundrum for the brain since it implies
unreliable information coding. But activity in downstream brain areas
may depend on a read-out mechanism that takes into account the
entire population of responses across V1. Such a mechanism would be
advantageous because it would be robust to changes in individual
neurons.We therefore asked: does the population representation drift
as well? One possibility is that all of V1 undergoes a uniform additive
change, and as a result, representations across populations of
responses in V1 maintain a fixed spatial profile over time, up to an
additive shift. If this is the case, similarity between representations at
different time points should remain roughly constant. However, cross-
correlations between voxels indicate that, on the contrary, inter-
session changes were not uniform across V1; While some voxels
exhibited changes that were positively correlated with one another,
other voxels were anticorrelated (Fig. 3E), suggesting that distinct
subregions of cortex undergo different changes in mean response
amplitude. If the changes are spatially heterogeneous, then as drift
accumulates across sessions, population responses should become
increasingly different from the original pattern. To test this, we esti-
mated population responses to a range of stimuli, using the encoding
model weights estimated from each session (see Methods: Simulating
population responses). We examined how single images are repre-
sented by the entire V1 population by measuring the correlation
between representations in different sessions (Fig. 3A). If all of V1
experiences the same baseline shift, then these shifts should not cause
a decrease in inter-session correlations, since correlation is not sensi-
tive to additive changes. We observed a decreasing similarity between
population representations as the number of intervening sessions
increased (Fig. 3B–D). This result implies that population-level repre-
sentations gradually drifted across sessions.

If population representations of stimuli drift over time, how does
the visual system maintain a stable perception of the world? We
hypothesized that while responses to individual stimuli undergo
changes, their representations remain stable relative to other stimuli.
To test this possibility, we constructed a representational dissimilarity
matrix (RDM) for each session, reflecting the dissimilarity between
population responses to a range of images (Fig. 3F). We found that
despite ongoing changes in single image representations, correlations
between RDMs did not diminish over time (Fig. 3G–I), indicating that
the RDM remained stable across sessions. This suggests that, while the
representation itself is dynamic, the position of representations in
stimulus space (i.e., relative to other stimuli) remains constant. Such
stimulus-space stability could enable downstream cortical areas to
read out an accurate perceptual representation in the face of drifting
patterns of activity within V1.

Discussion
Wefit a computationalmodel of V1 to a large longitudinal fMRI dataset,
and measured cross-session model generalization using cvR2 and
correlation. We found that cvR2 decreases with increasing intervals

between training and testing, while correlation does not, indicating
that individual voxel response amplitudes gradually change across
sessions. These changes are not uniform across V1, and result in pro-
gressively changing population responses. Relative similarities
between population responses tomultiple stimuli, however, remained
stable throughout the study. Together, these findings provide evi-
dence of representational drift in human primary visual cortex, and
suggest a mechanism by which the visual system may overcome such
changes.

What factors could underly changes in mean response amplitude
in the absence of any overt training protocol? The small number of
repeats and long periods of time between them make it unlikely
that repetition effects such as fMRI adaptation or repetition
suppression7,11–13 were the root cause of the representational drift that
we observed. It is also unlikely that changes in neurovascular coupling
caused the drift, both because hemodynamic response functions
(HRFs) have been shown to be stable over months14, and because a
change in the HRF would likely result in a multiplicative change in
response gain, instead of an additive change in the baseline, as we
report here. We consider three plausible mechanisms for the drift
observed in our analysis. First, it is possible that drift is associatedwith
changes in the neural responses caused by perceptual learning or
mnemonic processes15. Subjects were performing a memory task that
may have engaged neural circuits that exhibited priming. Although
priming is most clearly evident in ventral visual cortical areas16, prim-
ing effects may have resulted in feedback that altered responses in
early visual cortex as well. Second, it is plausible that drift reflects
changes in arousal. Performing a periodic task evokes widespread
activity across visual cortex that is time-locked to the task17–21, and this
task-related activity is modulated by arousal19,22. As participants
underwent repeated fMRI scanning week after week over many
months, they may have habituated to the scanning environment, and
their arousal may have gradually decreased over the course of the
experiment. A systematic change in arousal may have resulted in
additive changes in the amplitude of the task-related response23, which
could have resulted in drift. Indeed, changes in arousal could have
beenmagnified by exogenous factors such as seasonality or changes in
light exposure that in turn influence factors such as circadian
rhythms24,25. Finally, a third possibility is that representational drift
derives from stochastic changes in the neural responses. Random
processesmay lead to changes in neural population activity that occur
at a range of timescales andmay be cumulative innature. In contrast to
the first two explanations, under this scenario, the mean response
amplitude was modulated by noisy, stochastic neural processes not
directly related to the task or stimulus, but nonetheless resulting in
changes to the neural responses to the stimuli. Longitudinal studies
with concurrent physiological measures, such as pupil size and heart
rate, may help to identify the different factors that may contribute to
drift and differentiate between these three possibilities.

A number of previous studies have described representational
drift in animalmodels. Here, we provide evidence for representational
drift in human visual cortex. Aside from the species difference, our
approach differs from previous studies in animals in several important
aspects. First, previous studies typically presented the same series of
stimuli (e.g. video frames) repeatedlywithin and across sessions2,3. This
experimental design introduces a concern that the measurement of
representational drift could be conflated by repetition effects (repre-
sentation suppression or adaptation)7. In contrast to previous studies,
herewe analyze responses to a distinct set of stimuli presented in each
session. While each of the 10,000 images was presented up to 3 times
across the 30+ sessions of the entire experiment, the low frequency of
repeats and the large number of images likely minimized repetition
effects11,12,26. Second, because the NSD did not consist of responses to
multiple repetitions of the same stimulus, we developed an analysis
that differed from the analysis typically used in previous studies of
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representational drift. Previous studies computed the correlation
between responses to the same stimuli across sessions2,3. But because
different images were presented in each NSD session, in order to
compare responses to different stimuli we instead used an image-
computablemodel that was based on amodel that we and others have
previously used to estimate the tuning characteristics of fMRI

measurements in V1. Thus, instead of comparing responses across
sessions, we compared model weights across sessions. We then used
the estimated tuning to simulate responses to the stimuli presented in
the other scanning sessions. This approach enabled us to estimate
responses to stimuli presented in different sessions, while minimizing
repetition effects. One potential downside of our approach is that the
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actual tuning will necessarily differ from the estimated tuning using
themodel becauseany noise in themeasurementwill interferewith the
estimation procedure. But such inaccuracies should not accumulate
across sessions. So, while error in the model fits will introduce noise,
the use of the model cannot itself be the cause of drift. Third, while
previous studies have measured representational drift using correla-
tions, here we compared and contrasted correlation analysis with
cross-validated R2 in order to pinpoint the source of representational
drift. Multiple analyses or statistical measures often converge to
similar results, providing corroborating evidence27,28. On the other
hand, slightly different analyses can probe different aspects of a
phenomenon, shedding light on the underlying neural mechanism29.
Whenmeasuringmodel goodness-of-fit with cvR2, we found drift; but
whenmeasuredwith correlation, we did not. These twomeasures are
sensitive to different aspects of the model prediction: while cvR2 is
sensitive to tuning shape, tuning gain and tuning baseline, Pearson’s
correlation is insensitive to changes in gain and baseline. Taking this
difference into account we conducted additional analyses to pin-
point the drift as changes in the mean response amplitude. Thus, the
twomeasures yielded complementary results, each providing unique
information regarding the stability of neural tuning. We therefore
believe that despite the differences, we are indeed measuring
representational drift, as characterized previously in mouse visual
cortex.

A recent study in mouse visual cortex reported changes in mean
firing rates across sessions2, consistent with our findings here. How-
ever, in contrast to our study, changes in tuning were observed, which
seems to support a growing body of evidence on tuning changes
during representational drift in rodent1,3. It is possible that the differ-
ence between our findings and these observations in rodents is related
to a difference in the spatial scale of themeasurement. Each fMRI voxel
reflects the pooled activity of hundreds of thousands of neurons30.
Changes that occur independently within each neuron are likely to
cancel out in an fMRI measurement. On the other hand, population
measurements will effectively amplify changes in neural activity that
are correlated across nearby neurons31,32. It is possible that tuning
changes occur independently for individual neurons, canceling out at
the population level, as measured with fMRI33. But changes in mean
response amplitude, on the other hand, may occur at a broader spatial
extent, resulting in changes that are correlated across neighboring
neurons, and resulting in a significant modulation in the voxel’s mean
response amplitude.

Previous studies in mouse visual cortex have demonstrated that
representational drift tends to occur along dimensions that are not
informative for downstream regions2,4. Similarly, we found that
representations in human V1 change along dimensions that do not
impact representational dissimilarity matrices. Suchmatrices quantify
the relative representation between stimuli, which has been suggested
to underlie behavior34,35. Stable relationships between individual per-
cepts may enable downstream regions to guide consistent and stable
behavior, despite changes that occur in upstream representations36.

Further studies modeling representations throughout the visual hier-
archy may help determine whether representational drift has a direct
behavioral correlate.

During each trial of the NSD experiment, subjects fixated the
center of a gray screen for 1 s, followed by the presentation of a single
image for 3 s. While subjects were instructed to fixate during this 3 s
stimulus presentation, it is likely that some subjects performed eye
movements to scan the images. Yet our analysis pipeline assumed that
subjects maintained central fixation, and that population receptive
fields (RFs) sampled from a fixed location within the image. If subjects
were to shift gaze and fixate on a region that is not the center of the
image, the visual stimulation to each voxel would differ from the
assumed location of the pRF in the image, and this would have the
effect of adding noise to the model fits. It is possible that eye move-
ment patterns change progressively across sessions, which would
change the region in the image stimulating each voxel, and could in
principle result in progressive changes in cross-session generalizability
(i.e., drift). Eye tracking data included in the NSD dataset are insuffi-
cient to analyze either eye movements or pupil size in relation to drift.
Concurrent high-quality eye trackingwould be necessary to determine
whether changes in eye movements are related to representational
drift in visual cortex, as reported in mice37. The lack of eye tracking
data alsomeans that we cannot use pupil sizemeasurement as a proxy
for arousal. Recently a number of methods have been proposed for
extracting arousal signals directly from fMRI data38,39. As these meth-
ods become more robust, it may be interesting to use a data-driven
estimate of arousal to test whether changes in arousal correspond to
representational drift.

We fit a model of spectral tuning (i.e., spatial frequency and
orientation tuning), but assumed that spatial tuning (i.e., the pRF size,
shape, and location) remains constant. However, it is possible that
spatial tuning also changes over time. Since we have only a single
independent measurement of the pRF, we assumed that the pRF
remains stable, and asked whether spatial frequency and orientation
tuning changed over time. If the pRF center or size were to change, we
would expect that the spectral model goodness-of-fit tested on adja-
cent sessions would also change. But we found no evidence for chan-
ges in the spectralmodel goodness-of-fit. Since in the current studywe
have only a single measurement of the pRF, we cannot distinguish
between changes in spatial and spectral tuning. An approach mea-
suring both spatial and spectral tuning across sessions may be able to
pinpoint which tuning aspects change over time.

The discovery of representational drift potentially challenges
fundamental theories of neural coding, the simplest of which is the
labeled line code. Here, we found that both stimulus tuning and gain
are stable, while only response baseline changed over time. This type
of change is consistent with the classical view of visual cortex activity
as a labeled line code40,41, but may pose a challenge for magnitude
coding theories42,43. As noted above (‘Spatial scale of representational
drift’), however, this finding may depend on measurement granularity
and spatial resolution. We further found that population responses to

Fig. 3 | Top, Population responses drift across sessions. A Schematic illustration
of analysis pipeline. Population responses to 100 images were simulated using the
model weights estimated from each session. For each image, correlations were
computed between all sessions, yielding a correlation matrix. These matrices were
then averaged across all 100 images. B Empirical population response correlation
matrix. C Correlation drops as function of number of intervening sessions,
reflecting representational drift of population responses (r = −0.18, p <0.001).
D Null distribution of correlation values. Black vertical line, empirical correlation
between population response correlations and number of intervening sessions.
Gray histogram, null distribution of correlation values computed by randomizing
order of sessions 1000 times. Bottom, representational dissimilarity matrices are
stable across sessions. E Cross-correlation of voxels’ mean response amplitude
across sessions. Each colored line is the distribution of cross-correlations for V1

voxels from a single subject. Some correlations are positive while others are
negative, indicating that voxels are not undergoing a uniform change in mean
response amplitude across the entire V1. F Schematic illustration of analysis pipe-
line. Simulated population responses to different imageswere correlatedwith each
other, yielding a dissimilarity matrix for each individual session. Next, correlations
were computed between each possible pair of dissimilarity matrices. G Empirical
correlationmatrix.HCorrelationbetweendissimilaritymatrices does not dropwith
increasing number of intervening sessions, indicating stability across sessions
(r = −0.01, p =0.339). I Null distribution of correlation values. Black vertical line,
empirical correlation between dissimilarity matrix correlations and number of
intervening sessions. Gray histogram, null distribution of correlation values com-
puted by randomizing the order of sessions 1000 times. Source data are provided
as a Source Data file.
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single images change over time, but relative similarities between
population responses remain stable, lending support to relational
coding theories44,45. Further investigation of representational drift and
other forms of tuning changes are needed to advance our under-
standing of the neural code.

Methods
Natural scenes dataset
The Natural Scenes Dataset (NSD; http://naturalscenesdataset.org)8

contains measurements of fMRI responses from 8 participants
who each viewed 9,000–10,000 distinct color natural scenes
(22,000–30,000 trials) over the course of 30–40 scan sessions.
Scanning was conducted at 7 T using whole-brain gradient-echo EPI
at 1.8-mm resolution and 1.6-s repetition time. Images were taken
from the Microsoft Common Objects in Context (COCO) database46,
square cropped, and presented at a size of 8.4° x 8.4°. A special
set of 1,000 images were shared across subjects; the remaining
images were mutually exclusive across subjects. Images were pre-
sented for 3 s with 1-s gaps in between images. Subjects fixated
centrally and performed a long-term continuous recognition task
on the images. The fMRI data were pre-processed by performing
one temporal interpolation (to correct for slice time differences) and
one spatial interpolation (to correct for head motion). A general
linear model was then used to estimate single-trial beta weights.
Cortical surface reconstructions were generated using FreeSurfer,
and both volume- and surface-based versions of the beta weights
were created.

In this study, we used the 1.8-mm volume preparation of the NSD
data and version 3of theNSD single-trial betas in percent signal change
units (betas_fithrf_GLMdenoise_RR). Repeating the analyses using ver-
sion 2 of the betas yielded similar results as those presented here. The
results in this study are based on data from all NSD scan sessions, from
all 8 subjects who participated in the NSD study. Since some subjects
participated only in 30 sessions, we used the first 30 sessions for all
subjects.

Stimuli
NSD imageswere originally 425 × 425 pixels, andwere then upsampled
for display purposes to 714 × 714 pixels. We reproduced this upsam-
pling in our stimulus preparation, and padded the images with a gray
border on all four sides (mimicking the scanner display environment),
resulting in a final image dimension of 1024 × 1024 pixels. A semi-
transparent red fixation point was added at the center to simulate the
actual stimulation experienced by the subjects during the experiment.
Images were converted to grayscale by averaging across the 3 color
channels. To speed up subsequent computations, the images were
then downsampled to 512 × 512 pixels.

Steerable pyramid
The image-computable model, based on the steerable pyramid,
simulates each neuron in V1with a receptive field that is tuned for both
spatial frequency and orientation, and then allows for variable
weighting of these model neurons. It is possible to create steerable
pyramid models with a wide range of parameters, each instantiating
different hypotheses regarding the tuning properties of individual
neurons. We used a steerable pyramid with 8 orientations, 7 spatial
frequency levels, and a spatial frequency bandwidth of 1 octave,
resulting in tuning profiles that resemble those of individual V1
neurons47. In addition to oriented filters, we included 2 filters for the
lowest and highest spatial frequencies, yielding a total of 58 filters. In
contrast to energy models we used in previous studies32,48, here we
took the square root of the filter outputs, which resulted in slightly
better model fits. Using only the 56 oriented filters and squaring the
outputs yielded similar results, indicating that our findings are robust
to model specifics.

pRF modeling
pRF estimates are included in the NSD8. Briefly, pRFs were estimated
based on a single session (6 runs, 300 s each) of a pRF mapping
experiment. Stimuli consisted of slowly moving apertures (bars, wed-
ges, and rings) filled with a dynamic colorful texture, that appeared
within a circular region of 8.4 deg diameter. Subjects performed a
color change detection task at fixation. pRFs were estimated using the
Compressive Spatial Summation (CSS) model49.

Regions of interest
Regions of interest V1, V2, V3, hV4 were defined in the NSD dataset
based on the pRF maps. In this study we analyzed all 4 regions but
focused on V1 where orientation selectivity has been studied most
extensively. Results are presented for V1 only, including all voxels with
pRF R2 >0.

pRF sampling
The output of each filter in the steerable pyramidwas sampled by each
voxel’s pRF by multiplying the 2D pRF with the filter output. The pRF
was modeled as a 2D isotropic (circular) Gaussian, using the ‘size’
parameter as the Gaussian’s standard deviation. (Note that the ‘size’
parameter, as estimated as part of NSD, reflects the response of the
modeled pRF to point stimuli and takes into account the exponent
used in theCSSmodel.) Forfilter k of image j (Fj,k), the sampledoutput
for voxel iwith a pRF centered at xi,yi

� �
and standard deviation of σi, is

computed as dot product between the pRF and the filter:

f j,ki =
X
x,y

Fj,k
x,y � e

� xi�xð Þ2 + yi�yð Þ2
2σi

2 ð1Þ

The model had 58 sampled outputs per image, for each voxel.

Normalizing variance and mean response
To remove changes in the mean response amplitude across sessions,
we subtracted themean beta fromeach session. To remove changes in
variability across sessions, we first subtracted the mean, then z-scored
the session, and then added back the original mean. This resulted in a
STD of 1, while keeping the mean unchanged. To remove changes in
the V1 mean response, we subtracted the V1 mean response in each
session from all voxels.

Multiple regression
Wemodeled the responses of voxel i, yi, as a linear combination of the
sampled filter outputs and a constant term plus noise:

yi = f i � βi + εi ð2Þ

Here f i is a matrix consisting of voxel i’s sampled outputs for all
filters of all images and a constant term (images x filters+1). βi is a
vector of beta weights (filters+1 ×1), and εi is a set of residuals
(images x 1).

Beta weights were estimated using ordinary least-squares:

β̂i = ðf iTf iÞ
�1
f i

Tyi
ð3Þ

Note that each voxel not only had different beta weights but also
different predictors due to the incorporation of each voxel’s unique
pRF, thus distinguishing this regression from a general linear model
analysis of the voxel responses.

Goodness-of-fit measures
To assess model goodness-of-fit, we performed cross-validation.
After estimating model parameters on session j, the regression
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prediction was calculated as:

eyipred = f i � eβi ð4Þ

where f i is constructed for session k, and eβi are the betas weights
estimated using session j. The residual of this prediction is given by

eyiresid =yi � eyi
pred =yi � f i � eβi ð5Þ

Cross-validated R2 is then computed as

cvR2
i = 1�

SS eyi
resid

� �
SS yi � �yi

� � ð6Þ

where �yi is the mean response across images, and SS denotes the sum
of squares.

When performing a regression analysis, R2 values by definition are
within the rangeof0 and 1. In that context, a negativeR2would indicate
that something is wrong with the calculation. However, here we are
using cross-validatedR2 (cvR2),which is not constrained to the range of
0 and 1. For cvR2, the difference between positive and negative values
is quantitative, not qualitative. For example, predicting themeanof the
test data, would result in cvR2 = 0. This may seem like a low value, but
actually may indicate a model with good predictive power. This is
because the mean is not provided to the model, but rather, is accu-
rately predicted in the left-out data. Importantly, a negative cvR2 value
does not indicate something wrong with the model or the calculation.
Rather, it indicates relatively low prediction accuracy, which could be
due to limited training data. Critically, what is important for the cur-
rent study is the change in cvR2, rather than the absolute value, since
decreasing values indicate that something about the predictive power
of the model is changing with time.

In addition to cvR2, goodness-of-fit was quantified by Pearson’s
correlation between the prediction and the measured responses.

Note that R2 is sensitive to changes in baseline and gain, while
correlation is not. In otherwords, if the prediction is a scaled version of
the recorded responses (eyi

pred =Ayi;A≠ 1;A>0), or if they differ in the
baseline value (eyipred =yi +B;B≠0), the R2 value will be <1, while
Pearson’s correlation will equal 1.

Each entry in the goodness-of-fit matrix for a single subject con-
sisted of the median across all V1 voxels.

To visualize howgoodness-of-fitmeasures depend on the number
of intervening sessions between training and testing, we computed the
mean across all goodness-of-fit matrix entries that correspond to the
same interval. This corresponds to averaging matrix diagonals, where
thedistance from themain diagonal reflects the number of intervening
sessions.

The number of sessions each subject was scanned ranged from 30
to 40. The goodness-of-fit matrix used all subjects’ first 30 sessions, so
that results could be averaged across all subjects. Similarly, goodness-
of-fit as function of intervening sessions was computed for all intervals
up to a maximum of 29 intervening sessions.

To measure the correspondence between goodness-of-fit mea-
sures and number of intervening sessions, we computed the correla-
tionbetweengoodness-of-fit andnumberof intervening sessions.Note
that the samples used for the correlation are not independent. Each
datapoint used in the correlation is the goodness-of-fit of a model
trained on session i and tested on session j. All combinations of i and j
are included in the correlation analysis. Therefore, 29 datapoints use
the same session for training, and 29 datapoints use the same session
for testing. For this reason, we used a permutation procedure to test
for statistical significance instead of a t-test which assumes indepen-
dence between samples.

Permutation test of significance
To determine whether the drift was statistically significant we used a
permutation test. First, we quantified the amount of drift as Pearson’s
correlation between goodness-of-fit and number of intervening ses-
sions for each entry in the goodness-of-fit matrix for each individual
subject, and then averaged the correlation across subjects. Next, we
determined whether the correlation is significantly lower than zero.
Standard parametric and nonparametric tests are inappropriate in this
case, since values for different numbers of intervening sessions are not
independent. Instead, we generated a null distribution using a per-
mutation test. We permuted the order of sessions in the goodness-of-
fit matrix 1000 times (using the same permutation for all subjects) and
recomputed the resulting correlation coefficient for eachpermutation.
The p-value was computed as the proportion of permutations that
yielded a correlation coefficient not greater than the empirical corre-
lation. Note that permuting the session order is expected to cause the
autocorrelation (e.g. of mean voxel response amplitudes) to be nega-
tive, on average. This is because for short timeseries the autocorrela-
tion is negatively biased50.

Tuning change simulation
To understand how changing a voxel’s tuning curve affects the mean
and STD of the voxel’s responses, we simulated a simple 1D gaussian
tuning curve with 4 parameters:

R xð Þ= Affiffiffiffiffiffiffiffiffiffiffi
2πσ2

p e

� x�x0ð Þ2
2σ2

+C ð7Þ

The baseline is C, gain is determined by A, tuning width is deter-
mined by σ, and the preferred stimulus is x0. For different values of
each parameter we computed the mean and standard deviation of the
tuning curve to understand how both values are impacted by the
tuning curve parameters.

Simulating population responses
Since each image was presented a total of 3 times across all sessions,
we could not systematically compare population responses across
sessions. Instead, we used themodel fits from each session to simulate
responses to 100 randomly selected images. For each image we cre-
ated a correlation matrix, consisting of correlations between the
simulated population responses of each session and those of all other
sessions. Next, we computed the mean of all 100 single-image matri-
ces, yielding a single matrix per subject. From this single matrix we
averaged all entries corresponding to each interval.

Dissimilarity matrices (RDMs)
To test whether relative similarity between population responses to
images is stable, we constructed a representational similarity matrix
(RDM) using the simulated population responses for each session.
Each RDM consisted of distances between all pairs of simulated
population responses within a single session, computed as 1� r,
where r is Pearson’s correlation coefficient. We then computed the
Spearman correlation between pairs of RDMs, using the matrix
values that are above the main diagonal (i.e. the upper triangle of
the matrix).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The NSD dataset is freely available at http://naturalscenesdataset.org.
Images used forNSDwere taken from the CommonObjects in Context
database (https://cocodataset.org). Source data are provided with
this paper.
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Code availability
Code for analyzing the data and generating the figures is available at:
https://github.com/elimerriam/repDriftNSD51.
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