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MSBooster: improving peptide identification
rates using deep learning-based features

Kevin L. Yang 1, Fengchao Yu 2 , Guo Ci Teo 2, Kai Li1, Vadim Demichev3,4,
Markus Ralser 3,5,6 & Alexey I. Nesvizhskii 1,2

Peptide identification in liquid chromatography-tandem mass spectrometry
(LC-MS/MS) experiments relies on computational algorithms for matching
acquired MS/MS spectra against sequences of candidate peptides using
database search tools, such as MSFragger. Here, we present a new tool,
MSBooster, for rescoring peptide-to-spectrum matches using additional fea-
tures incorporating deep learning-based predictions of peptide properties,
such as LC retention time, ion mobility, and MS/MS spectra. We demonstrate
the utility of MSBooster, in tandem with MSFragger and Percolator, in several
different workflows, including nonspecific searches (immunopeptidomics),
direct identification of peptides from data independent acquisition data,
single-cell proteomics, and data generated on an ion mobility separation-
enabled timsTOF MS platform. MSBooster is fast, robust, and fully integrated
into the widely used FragPipe computational platform.

Liquidchromatography–tandemmass spectrometry (LC–MS/MS) is an
established, widely used high-throughput method for elucidating the
proteome1. In the typical LC–MS/MS proteomic workflow, proteins are
extracted from the samples and digested into peptides, most com-
monly using trypsin, which cleaves after lysine and arginine residues.
For complex samples, if a high depth of protein identification is
required, the workflows are combined with fractionation or enrich-
ment techniques (e.g., to increase the detection of phosphorylated
peptides). The peptide preparations are then separated using LC
coupled online to a mass spectrometer, and the peptides eluting from
the LC column are ionized and transferred to the gas phase. Themass-
to-charge (m/z) values of all peptide ions fromall peptides eluting from
the LC column at a particular retention time (RT) are measured using
the first stage of MS, generating an MS1 spectrum. These spectra
contain the m/z values of all detectable ions and their intensities.
Optionally, ions can also be separated using ion mobility (IM). In the
second stage of MS analysis, selected (typically the most intense)
peptide ions are subjected to isolation and fragmentation to break the
peptide bonds; this approach is called data-dependent acquisition
(DDA)2. Alternatively, all peptide ions within a wider window of m/z

values or in a continuous quadrupole scan of a particular window size3

are selected for simultaneous fragmentation; this approach is called
data-independent acquisition (DIA)4. The resulting MS/MS or
MS2 spectra, whether generated in the DIA or DDAmode, containm/z
values, intensities, and sometimes IM values of all observed fragment
ions for the precursor peptides subjected to MS/MS.

The acquired MS/MS spectra, along with their RT, IM, and corre-
sponding precursor peptidemasses for DDA ormass windows for DIA,
are used to identify the sequences of the peptides that generated the
spectra5. This is typically done using the sequence database search
approach. Computational tools such as MSFragger6,7, SEQUEST8,
Andromeda9, MASCOT10, MetaMorpheus11, and Comet12 compare each
experimental MS/MS spectrum against a set of theoretical m/z values
of fragments calculated for each candidate peptide based on the
provided protein sequence database and assign a score for each
peptide-to-spectrum match (PSM). Not every top-scoring PSM is a
correct identification. Thesemismatchesmaybe a result of noise in the
spectra or true peptide sequences missing in the provided protein
sequence database5,13,14. To assist with downstream false discovery rate
(FDR) control, decoys are typically added,wheredecoys are shuffledor
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reversed versions of sequences from the “target”protein database5,15,16.
Search engines output a list of PSMs, which are used as input to
computational post-processing tools such as PeptideProphet5,17,18 and
Percolator19,20, which combine various search engine scores, such as
the hyperscore and expectation value, and other properties that are
useful for discrimination, such as the difference between the theore-
ticalmass of the peptide and themass derived from themeasuredm/z.
Thedifferences in thedistributions of scores for decoypeptides versus
those of target peptides are used as part of the modeling process to
determine the optimal combination of individual features, as well as to
calculate posterior probabilities of correct identification and estimate
FDR. These tools significantly boost the sensitivity of peptide and
protein identification at a fixed FDR compared with filtering the data
using individual scores reported by the search engine5.

Although tools such as PeptideProphet and Percolator are now a
part of many computational pipelines, including FragPipe, they do not
incorporate prior knowledge regarding peptide separation coordi-
nates (RT, IM) or fragment ion intensities. High-confidence PSMs from
previously published studies are stored in public repositories and can
be leveraged via spectral library searching21–26, in which known frag-
ment ion intensities help differentiate true from false PSMs. However,
relying on experimentally derived spectral libraries is often limiting, as
these libraries are inherently incomplete. For instance, protein
expression varies from biological condition to condition, cell type to
cell type, and genetic background to background, so libraries can be
incomplete even for organismswith large amounts of previousMS/MS
data available. Thus, approaches for predicting MS/MS spectra27 and
using predicted spectra from available protein sequence data to
improve the sensitivity of peptide identification in LC–MS/MS pro-
teomics have been explored28–30. The difference between the experi-
mental and predicted retention times is also known to provide
additional discriminating power31–34; RT differences have previously
been incorporated into Percolator and PeptideProphet modeling34,35.
However, the use of RT and MS/MS spectral predictions was initially
limited, in part because of the limitations of first-generation prediction
algorithms.

More recently, however, a wave of deep learning (DL) models has
been trained to predict the physicochemical properties of peptides
and MS/MS spectra36–41. By training on millions of available peptides,
these models can learn general rules to make accurate predictions for
new peptides, assuming they are not vastly different from those on
which the models were trained. The use of DL-based RT and spectral
predictions have been shown to be particularly useful for DIA data
analysis42–44, and for improving the identification rates in immuno-
peptidome studies concerned with the analysis of human leukocyte
antigen (HLA) binding peptides45–48. Unfortunately, current PSM
rescoring tools that take advantage of DL-based predictions may be
difficult for some users to adopt. For example, MaxQuant with Prosit
rescoring requires users to upload their database search results to a
web server. Rescoring may be performed locally if the users have GPU
access, which is not always the case. DeepRescore49 requires Docker
and Nextflow, whichmay be difficult for users with less computational
experience to install.

Here, we present the DL-based PSM rescoring tool MSBooster, a
new addition to the widely used FragPipe computational platform.
MSBooster provides a fully automated and integrated solution for the
use of DL predictions for improved peptide and protein identification.
It uses a DL model to predict the RT, IM, and MS/MS spectra of pep-
tides, followed by the generation of additional features for PSM
rescoring with Percolator19. No external prediction of spectral libraries
is required, bypassing concerns about uploading data to shared ser-
vers and data privacy.Wedemonstrate theflexibility ofMSBooster and
its performance in several different workflows, including HLA immu-
nopeptidome nonspecific searches, DIA quantitative proteomics,
single-cell proteomics, and data generated on an IM-enabled timsTOF

MS platform. We also explored the behavior of spectral and RT fea-
tures in the analysis of single-cell proteomics data and investigated the
potential benefits of using multiple correlated similarity metrics in
Percolator. Finally, we assess anddiscuss the utility of incorporating IM
predictions into PSM rescoring.

Results
MSBooster and FragPipe computational workflow
FragPipe (https://fragpipe.nesvilab.org/) is a comprehensive compu-
tational platform that automates all steps of proteomic analysis,
including peptide-spectrum matching with MSFragger6,50,51, PSM vali-
dation with PeptideProphet18 or Percolator19, protein inference with
ProteinProphet52, and FDR filtering (by default 1% FDR at the PSM, ion,
peptide, and protein levels) using Philosopher53. FragPipe supports the
generation of spectral libraries using EasyPQP (https://github.com/
grosenberger/easypqp) and the extraction of quantification from DIA
data (using DIA-NN42,43). DIA-Umpire54 is included in FragPipe as one of
the modules to generate pseudo-MS/MS spectra from the DIA data.
Alternatively, peptides can be identified directly from DIA data using
MSFragger-DIA55. FragPipe has an easy-to-use graphical user interface
(GUI) and includes a data visualization module (FragPipe-PDV), which
is an extension of a previously described PDV viewer56.

Within FragPipe, MSBooster is positioned between MSFragger
and Percolator (Fig. 1a) and is enabled by default in most FragPipe
analysis workflows (see the “Methods” section for details), where a
FragPipe workflow is the order in which software is to be executed,
along with optimized parameters for each tool. MSBooster’s role can
bedivided into the separate steps of peptide extraction fromPSM files,
input file formatting for a DL model, feature calculation using
observed and predicted peptide properties, and addition of the new
features to the PSM files (Fig. 1b). In a typical workflow, MSFragger
performs the database search and reports the list of PSMs and asso-
ciated search scores in a “pin” file. Without MSBooster, these pin files
are passed directly to Percolator. When MSBooster is enabled, it
extracts the set of peptides reported in the pin file and creates an input
file for a DL model, which in turn generates predictions of the physi-
cochemical properties of peptides, namely RT, IM, and/or MS/MS
spectra. Within FragPipe, we chose DIA-NN42,43 to predict these prop-
erties, as it is already included for DIA quantification.We also show the
compatibility of Prosit predictions with standalone MSBooster,
although this is not yet supported in FragPipe. Importantly, predic-
tions are performed only for the relatively small set of PSM candidate
peptides reported by MSFragger, rather than the whole in-silico
digested proteome. Thus, predictions canbe done for each dataset on-
the-fly, without the need for time-consuming full spectral library pre-
diction. MSBooster then generates features based on the agreement
between the experimental and predicted values and adds them to the
original pin files. Finally, it passes these extended pin files to Perco-
lator, which learns a linear support vector machine (SVM) to differ-
entiate true targets fromdecoys19. Percolator assigns anSVMscore and
then a posterior error probability to each PSM. DL-based predictions
are done for a limited number of peptide candidates: by default, either
for a single (top scoring) peptide perMS/MS spectrum (DDAdata), top
3 (narrow window GFP-DIA data), or top 5 (conventional DIA data)
whenusingMSFragger-DIA. Thus, inmost cases,MSBooster resulted in
only a minor increase in the overall computational run time (Supple-
mentary Fig. 1).

HLA peptide identification
Immunopeptidomics, that is, methods that identify and quantify
peptides that are presented as antigens by antigen-presenting cells, are
increasingly required in biomedicine but are associated with compu-
tational challenges. Human leukocyte antigen (HLA) peptidome data is
a promising candidate for DL-based rescoring owing to an expanded
nonenzymatic search space, resulting in a higher probability of a high-
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scoring false match. Because certain major histocompatibility com-
plexes (MHCs) preferentially bind certain peptide motifs, this repre-
sents a system in which we know what kinds of peptides should be
identified based on their sequences, allowing us to monitor whether
MSBooster correctly promotes true target PSMs. To demonstrate the
performance of MSBooster with MS/MS spectral and RT-based
rescoring on HLA peptides, three fractions of an A*02:01 monoallelic
cell line57 were processed using different combinations of features in
MSBooster. MS/MS data were acquired on an Orbitrap Exploris 480
(Thermo Fisher Scientific) with higher energy collisional dissociation
(HCD). Spectral and RT features increased the number of identified
peptides by 20.4% and 16.6%, respectively, at 1% FDR, whereas the
combination of the two feature types increased the number of iden-
tifications by 31.4% (Fig. 2a). Each addition of a newDL feature resulted
in a statistically significant increase in peptides (t-statistics and p-
values for each comparison are noted in Supplementary Data 1).

HLA peptide rescoring with DL features has previously been
explored by Wilhelm et al. 46. The authors showed an average increase
of 159% in peptide identification across 92monoallelic cell lines58 when
using MaxQuant coupled with Prosit rescoring (Supplementary
Fig. 3a).While thismaymake the 31.4% increasewithMSBooster on the
Klaeger et al. data seem minimal, this discrepancy may simply reflect
the moderate performance of MaxQuant in nonspecific searches, as
noted by Parker et al. 59, and its use of only the Andromeda score for
ranking PSMs before FDR filtering9. Even without DL-based rescoring,
MSFragger provides multiple discriminative scores (Supplementary
Fig. 2a). To provide a more accurate comparison, we rescored PSMs
using only the hyperscore––MSFragger’s database search score—as a
starting point (Supplementary Fig. 3b). Giving Percolator access to
only to the hyperscore, we reported an average of 2949 peptides.
Adding spectral and RT features to the hyperscore provided a 183.8%
increase in the number of identified peptides, a statistic more in line
with the 159% increase reported by Wilhelm et al.46. Importantly,

adding other features reported by MSFragger (Supplementary Fig. 2a)
also gives a 161.5% boost compared to using MSFragger’s hyperscore
alone, indicating the utility of non-DL features. Using all MSFragger
computed and all DL-based from MSBooster features together results
in a 243.7% boost compared with using the hyperscore alone.

We then specifically compared the performance between
MSFragger/MSBooster andMaxQuant/Prosit on the Klaeger et al. data.
MaxQuant initially reported 1569 peptides. After PSM rescoring with
Prosit, it reported 10,680 peptides, a 681% increase. This is compared
to the 10,138 peptides reported with MSBooster rescoring averaged
across 10 Percolator runs (Supplementary Fig. 3b). To see if Max-
Quant’s performance could be attributed to Prosit’s predictions, we
configured MSBooster to accept Prosit-predicted spectral libraries
(see the “Methods” section). Indeed, using Prosit in lieu of DIA-NN
allowed MSBooster to achieve 10,798 peptides on average, 118 more
than MaxQuant with Prosit (Supplementary Fig. 3b).

While most reported peptides passing 1% peptide-level FDR were
shared regardless of whether MSBooster was used (7016 peptides),
adding MSBooster resulted in 2656 more identified peptides while
only losing 262 (Fig. 2b). To verify that the added peptides were
credible, we identified their HLA sequencemotifs using GibbsCluster60

(Fig. 2c and Supplementary Fig. 3c). MHC binding in the A*02:01 cell
line relies on anchors at position 2 and the C-terminus, according to
the Immune Epitope Database61. The 262 peptides lost after rescoring,
when used as input in themotif analysis tool, produced two clusters in
GibbsCluster. The first cluster of 132 peptides followed the expected
motif, but the second cluster of 60 peptides was not enriched for the
expected amino acids at position 2 (Supplementary Fig. 3c). Therefore,
many of the peptides removed with the help of MSBooster were likely
false positives. In contrast, peptides gained withMSBooster generated
one cluster of 2533 peptides that faithfully followed the expected
sequence motif for the cell line (Fig. 2c). To further validate the new
peptides, we examined their binding affinities with A*02:01MHC using
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rescoring before filtering and reporting in Philosopher.
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predictions fromNetMHC62 (Fig. 2d).We found that 2143 (80.7%) of the
gained peptides and 5430 (77.4%) of the shared peptides were pre-
dicted as either strong or weak binders by NetMHC, while this per-
centage dropped to 41.3% (108 peptides) for the MSBooster-removed
original peptides. This further supports the idea that peptides gained
with DL-based rescoring in MSBooster are more reliable than those
that are removed.

An important featureofMSBooster is its ability to handle peptides
with post-translational modifications (PTMs) that are not predicted by
the DL spectral prediction model. In DIA-NN v1.8, cysteine carbami-
domethylation, methionine oxidation, N-terminal acetylation, phos-
phorylation, and ubiquitination are supported. A multitude of other
biologically relevant PTMs exist; for example, cysteinylation is an
important PTM to consider in immunopeptidomics, as it plays a role in
T cell recognition63. Rather than precluding the inclusion of other
PTMs in the search or rescoring steps, MSBooster obtains the pre-
dicted spectrum for the unmodified peptide and shifts them/z values
of the PTM-containing fragments while retaining their predicted
intensities. RT values are the same as those of their peptide counter-
parts, excluding the new PTMs (e.g., a jointly biotinylated and phos-
phorylated peptide will use the RT of the phosphorylated peptide). To
explore how fragment peak shifting affects the results, we examined
the distributions of spectral and RT feature scores for accepted PSMs
after Philosopher filtering (Supplementary Fig. 4a-b). Each group of
PSMs contained only the PTM listed (i.e., the PSMs in the carbamido-
methylated C group were matched to peptides that only contained
that PTM, and no oxidized M). As expected, unmodified, carbamido-
methylated C, and oxidized M PSMs had high spectral similarities and
low RT differences, since DIA-NN included them in the training set.
Interestingly, although acetylated N-terminal peptides were in the
training set, their spectral similarity score distributions were lower
than those of the other peptides. Cysteinylation had a similar

distribution of PTMs on which DIA-NN was trained. This could mean
that cysteinylation does not have amajor impact on fragment intensity
or that cysteinylated PSMs with lower scores were excluded after FDR
filtering. PSMs with pyro-glutamation events from Q had the worst
distribution of the PTMs considered. The RT shift in pyro-Glu peptides
is expected and has been previously recapitulated64. While most PTMs
showed an increase in peptides containing those modifications (Sup-
plementary Fig. 4c), the exception is pyro-glutamation from Q, where
reported peptides dropped from 105 to 25. This decrease is mainly
driven by the increased RT difference, as no unique peptides are
reported after only rescoring with the RT feature while rescoring with
only spectral similarity results in only 32 lost peptides and 9 gained
peptides. This is in stark contrast to the 82 lost and 2 gained peptides
after using theMSBooster default of spectral and RT feature rescoring.
Overall, our analysis shows that while MSBooster will not exclude any
PTM-containing peptide, those PTMs not yet supported by the DL
prediction module that drastically affect the peptides’ physicochem-
ical properties will be heavily penalized.

Neoantigen discovery
The discovery of patient-specific neoantigens, such as those derived
from genomic alterations in cancer cells, potentially represents a step
up in difficulty in data analysis. For example, such clinical samples can
include up to six MHC alleles instead of the one MHC allele from the
monoallelic cell line in57. We testedMSBooster on a tissue sample from
a patient withmetastaticmalignant melanoma (Mel15)65. This data was
acquired on a Q Exactive instrument (Thermo Fisher Scientific, Bre-
men) with HCD fragmentation. Considering just canonical peptides
from the UniProt database, MSBooster increased peptide identifica-
tions from 34,648 to 41,236, a 19.0% boost (Fig. 3a, Supplementary
Data 2). Importantly, when considering just noncanonical peptides
with variants derived from exome sequencing65, peptide

d
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Fig. 2 | HLA rescoring. a Swarmplot of the number of HLA peptides reported at 1%
FDRusing theMSFragger pin files (original), files with the spectral similarity feature
added (spectra), retention time similarity feature (RT), or both types of features
(spectra+RT). Each dot represents the number reported for each of the 10 Perco-
lator runs. Black lines show the average number of peptides reported across 10
Percolator runs. b Venn diagram of HLA peptides between lengths 7 and 12 when

using either original MSFragger features or additional deep learning features.
c GibbsCluster-generatedmotif assigned to the MSBooster-specific peptide subset
from (b). The A*02:01 motif was collected from the Immune Epitope Database.
d Percent of peptides from each subset of b that are predicted by NetMHC 4.0 to
bind the A*02:01 serotype. Strength of the ligand binding decreases from “high” to
“weak” to “nonbinder”. Source data are provided as a Source Data file.
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identifications increased from 14 to 18 (Fig. 3b, Supplementary Data 2).
The newly reported neoantigens are credible for multiple reasons.
First, three of the peptides (RTYSLSSALR, SLSSALRPSTSR, and
SYVTTSTRTYSLSSALRPSTSRS) contain the same single amino acid
variant VIMG41S as six other neoantigens already reported without
MSBooster. Furthermore, the 14 original neoantigens had an average
MS2 similarity of 0.94 and an average delta RT of 4.1, compared to
the 4 new neoantigens with 0.92 average MS2 similarity and 1.4 aver-
age delta RT. We also compared our identified neoantigens to those
reported in prior analyses of the same data49,65 (Fig. 3c). Consistent
with prior work, we only considered length 8–12 peptides here. Both
we and DeepRescore49 rejected two peptides reported in the original
Bassani-Sternberg study65—ASWVVPIDIK, which MSFragger did not
report, and GRTGAGKSFL (MS2 similarity: 0.81, delta RT: 8.77), which
did not pass 1% FDR. Similarly, DeepRescore suggested two peptides
that MSBooster did not—DVFPEGTRVGL, which MSFragger did not
report, and RLFLGLAIK (MS2 similarity: 0.74, delta RT: 4.12), which did
not pass 1% FDR (Supplementary Data 2). MSBooster reported one
unique peptide in the allowed length range, SLSSALRPSTSR. The best
spectral similarity across all PSMs of this peptide was 0.9872, and the
lowest delta RT was 0.7127 iRT (Fig. 3d). Its predicted binding affinity
to one of Mel15’s alleles A*03:01 was 1468.73 nM, designating it as a
weak binder (Fig. 3e).

Previous studies have verified neoantigens by synthesizing them
and comparing spectra from the original and synthetic datasets.
Comparison of the experimental and predicted spectra functions as a
similar quality control measure. To enable researchers to manually
verify PSMs, we have incorporated PDV56 in FragPipe (creating
FragPipe-PDV viewer) for visualization of experimental spectra. In

addition, we have added support for loading spectral predictions from
MSBooster to FragPipe-PDV, enabling the generation ofmirror plots to
compare experimental and predicted spectra. For the peptide
SLSSALRPSTSR, there is high concordance between the spectra,
especially with the strong y102+ ion (Fig. 3d).Manual comparisonof the
spectra further corroborates thatneoantigens proposedbyMSBooster
are likely true peptides.

Direct identification from DIA data
DIAoffers the benefit ofmonitoring all precursors (within the specified
mass range, e.g. 400–1200Da) and their fragments across retention
time, thereby avoiding the stochasticity of DDA which can only pro-
duce MS/MS scans for a limited number of precursors. We extended
MSBooster to rescoring peptide identifications from DIA data. In
FragPipe, peptide identification from DIA data can be performed in
two ways: (1) with MSFragger-DIA, which identifies peptides from DIA
MS/MS scans by direct database searching; and (2) by first processing
the DIAMS files using DIA-Umpire54 to extract pseudo-MS/MS spectra,
followed by searching with MSFragger as regular DDA data. We tested
both approaches on a dataset of sixmelanoma cell lines66. MS/MS data
were acquired on an Orbitrap Fusion Lumos Tribrid (Thermo Fisher
Scientific) mass spectrometer with HCD fragmentation. Using
MSFragger-DIA, MSBooster features increased peptide and protein
identifications by 16.6% and 8.9%, respectively (Fig. 4a, b, Supple-
mentaryData 1). Using the DIA-Umpire-basedworkflow, the number of
peptide and protein identifications increased by 16.6% and 9.0%,
respectively (Supplementary Fig. 5, Supplementary Data 1).

The benefit of rescoring MSFragger-DIA results with MSBooster
applies not only to the top-scoring PSMs but also to lower-ranking

MSBoosteroriginal original MSBooster
439

(1.1%)
7027

(16.9%)
34209

(82.1%)
0

(0.0%)
4

(22.2%)
14

(77.8%)

MSBoosterDeepRescore SBoMSMcorcore

Bassani-Sternberg
2

2 1

6

4

0 0

MS2 sim: 0.9872
deltaRT: 0.7127 iRT

binding affinity: 1468.73 nM

a b c e

d

ex
pe

rim
en

ta
l

pr
ed

ic
te

d
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excluded from visualization. e NetMHCpan 4.1 binding affinities of peptides pre-
dicted tobind A*03:01. The newly detected peptide SLSSALRPSTSR is shown in red.
Source data are provided as a Source Data file.
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PSMs. By default, MSFragger-DIA reports up to 5 PSMs per MS/MS
scan. While the initial MSFragger rankings were based on hyperscore,
other features provided orthogonal information (Supplementary
Fig. 2b) and helped rescue true PSMs with lower hyperscores. With
MSBooster, while the total number of PSMs passing the 1% FDR
increases across all ranks, a higher proportion of accepted PSMs are
from ranks 3 and below, while the relative proportion from ranks 1 and
2 decreases (Fig. 4c, d). MSBooster effectively rescues those lower-
ranking PSMs that display characteristics that indicate higher con-
fidence in a true positive PSM.

Single-cell proteomics
Single-cell proteomics provides a view of the proteomes of individual
cells. The lower level ofmaturity of technological platforms, alongwith
the increased stochasticity of peptide identification due to cell-to-cell
variability, make single-cell proteomics another promising area for DL-
based PSM rescoring. We tested MSBooster on single-cell data from
the nanoPOTS platform67 generated using an Orbitrap Fusion Lumos
Tribrid instrument with HCD fragmentation. Briefly, we analyzed the
data obtained from 1, 3, 10, or 50 cells. Single-cell MS/MS spectra differ
from bulk-cell spectra in terms of the number of fragments matched
and the degree of fragment ion intensity suppression68. When looking
at the scores of top target PSMs with an increasing number of cells
from 1 to 50, we found a trend (Fig. 5a) that withmore cells there was a
gradual increase in the median spectral similarity among confidently
identified target PSMs (i.e., PSMs with expectation values “e-values”
lower than the lowest decoy PSM e-value, see the “Methods” section).
As a reference, bulk secretome data obtained from An et al.69, also
generated on an Orbitrap Fusion Lumos instrument, demonstrated a
higher median spectral similarity score. With respect to RT values,
therewas a decrease in themedianRTdifference between 1 and 3 cells,
due to an insufficient number of PSMs for optimal RT calibration in
MSBooster with one cell only (Fig. 5b). However, the median RT dif-
ference did not decrease past 3 cells, because the RT difference should
not change once there are sufficient PSMs for RT calibration. The bulk
cell RT score distribution was excluded from the comparison because
the RT score depends on the individual LC set up. Despite the
increasing concordance between experimental and predicted values

with increasing numbers of cells, we did not notice a monotonic
relationship between the cell number and MSBooster performance
(Fig. 5c, d). The single-cell (1-cell) experiment gained 4.7% and 2.8%
peptide and proteins, respectively, with spectral and RT rescoring
(Supplementary Data 1). The few-cell data (3, 10, and 50 cells) gained
up to 10.6% peptides (in the 50-cell dataset) and 10.6% proteins (in the
3-cell dataset). The RT feature outperformed the spectral feature in
many instances.

Because single-cell proteomics methods are being rapidly devel-
oped and modified, we tested another dataset produced on a Q
Exactive MS with Orbitrap mass analyzer with a different sample pro-
cessing protocol (DISCO)45 and HCD fragmentation to see whether
MSBooster performance was consistent between different single-cell
protocols. Data from 1 and 5 cells were available. While we see similar
trends of increasing median spectral similarity and decreasing median
RT difference with an increasing number of cells, the median spectral
similarity is already above 0.95 for single cells in these data (Fig. 5e, f).
In comparison, even 50 cells in the nanoPOTS data had a median
spectral similarity below 0.95 (Fig. 5a). We also noted significant dif-
ferences in the decoy PSMs’ spectral similarity distributions (median of
0.49 vs. 0.31, nanoPOTS vs. DISCO) and differing numbers of PSMs
reported per replicate (mean of 2924 vs. 19,878, nanoPOTS vs. DISCO).
We can see the effect of the higher similarity in the DISCO dataset
reflected in thenumberof peptide andprotein identifications achieved
with rescoring (Fig. 5g, h, Supplementary Data 1). In this dataset, the
spectral similarity feature always outperformed the RT feature. The
DISCO dataset experienced greater gains in peptide and protein
identifications compared to the nanoPOTS dataset at the single-cell
level, possibly in part due to the greater spectral similarity between the
DISCO experimental spectra and predicted spectra.

timsTOF PASEF data with ion mobility separation
Next, we evaluated theperformanceofMSBooster ondata fromaHeLa
tryptic digest standard analyzed using parallel accumulation–serial
fragmentation (PASEF) on a timsTOF Pro (Bruker) mass
spectrometer70, which couples trapped ion mobility spectrometry
(TIMS) to a time-of-flight (TOF) detector. Precursors were fragmented
with collision-induced dissociation (CID), with the amount of collision

c d

a b

+

Fig. 4 | MelanomaDIA rescoringwithMSFragger-DIA. a and b Swarmplots of the
number of peptides (a) or proteins (b) reported at 1% FDR. c and d The proportion
of PSMs (c) or total number of PSMs (d) from each of the five ranks reported. The

darker, diagonally dashed bars represent results after spectral and RT rescoring,
while the lighter, solid bars represent the results without using deep learning fea-
tures. Source data are provided as a Source Data file.
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energy as a function of ion mobility. Using both spectral and RT fea-
tures, we achieved 3.9% and 2.7% increases in peptide and protein
identification, respectively (Fig. 6a, b, Supplementary Data 1). While
this seems to be a minor increase, it highlights that FragPipe’s default
workflow for conventional tryptic searches performswell evenwithout
DL-based rescoring. In this case, giving Percolator only the hyperscore
feature can recovermostpeptides andproteinswithout the help of the
other features reported by MSFragger and MSBooster (Fig. 6a, b).

Ion mobility (IM) is an additional method for separating pre-
cursors prior to MS/MS sequencing. As such, DL models have been
extended to predict ion mobility or related collisional cross-section
values38,43 for peptide ions. Toassess theutility of predicted IM for PSM
rescoring, we ran MSBooster with IM features analogous to its RT
features (see Supplementary Note 1). We observed a negligible
increase in the number of identified peptides and proteins, below 0.5%

(Fig. 6a, b, Supplementary Data 1), with the addition of the IM score.
The weakness of the IM features may be explained by the high
dependence of the IM on the precursor mass and charge. Because
decoy PSMs still have the same charge and similar mass as the
unknown true target precursor, predictions of their inverse ion
mobility (1/K0) values are still highly correlated with the experimental
value (Fig. 6c, d; Supplementary Fig. 6). There is not as much of a
spread for IM as for RT prediction (Fig. 6e, f). Overall, while the target
PSMs showed a slightly different distribution of IM feature scores from
the decoy PSMs (Supplementary Fig. 7e), it was not sufficient to war-
rant their use in MSBooster.

Multiple correlated features
Because MSBooster can calculate several variants of spectral, RT,
and IM features, we evaluated whether there was value in using
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+
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Fig. 5 | Single-cell rescoring. a–d Results for nanoPOTS data fromWilliams et al.67.
a, b Ridge plots showing the distribution of the spectral (a) and RT (b) feature
scores of confident target PSMs for different numbers of cells. The red line indi-
cates the median value. The bulk cell sample is from PXD026436, produced on an
Orbitrap Fusion Lumos69. The RT feature was log normalized for better

visualization. c and d Swarmplots of the number of reported peptides (c) and
proteins (d) when using different features for Percolator rescoring. e–h are the
same as (a–d), but for the DISCO data from Lamanna et al.45. Source data are
provided as a Source Data file.
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multiple correlated features for PSM rescoring (Supplementary
Fig. 8; all tested features are described in the Supplementary
Note). This idea was spurred by the finding that even correlated
features may not be truly redundant and may work well to provide
better separation between classes71. For all datasets, we annotated
Percolator input files with either single features (“spectra + RT”
and “spectra + RT + IM”) or all available features listed in the Sup-
plementary Note (“multiple spectra + RT” and “multiple spectra +
RT + IM”). In most analyses, the use of multiple correlated features
resulted in a minor (<1%) increase in identification numbers.
Occasionally, the numbers decreased by an equally small amount

(Supplementary Fig. 8). To investigate this further, we returned to
the HLA immunopeptidome dataset. With the use of multiple
correlated features, compared to using only a single feature for
each feature type (as in Fig. 2), 165 peptides were lost, and 184
were gained. Both groups of lost and gained HLA peptides had
comparable binding rates (123/165 lost were binders vs. 134/184
gained were binders; χ2(1, N = 349) = 0.1325, p = 0.716876, chi-
square test) and similar sequence motifs (Supplementary Fig. 9).
However, because it is difficult to rule out all scenarios where using
correlated features may be beneficial, we provide an option for
FragPipe users to enable their use.

a b

Confident target PSMs                Decoy PSMsdc

Fig. 6 | timsTOF HeLa rescoring. a and b Swarmplot of peptides (a) and proteins
(b) reported at 1% FDR. c–f Scatter density plots showing the relationships between
DIA-NN predicted and experimental IM (c, d) and RT (e, f) values in seconds for

peptides with charges 2 and above. Confident target PSMs are shown in c and
e, decoy PSMs in (d and f). The brighter colors correspond to higher densities of
PSMs. Source data are provided as a Source Data file.
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Discussion
MSBooster is a new addition to the FragPipe computational platform
that provides a boost in the number of identified PSM, peptides, and
proteins by generating deep learning-based features for PSM rescoring
with Percolator. It automatically runs a DL model to acquire predic-
tions for RT, IM, and MS/MS spectra, and generates features based on
these predictions to expand the list of scores for each PSM that are
useful for discriminating between true and false matches. Further-
more, a notable benefit of MSBooster is that the whole peptide library
does not need to be predicted; only high-scoring candidates identified
byMSFragger are evaluated usingMSBooster, saving a large amount of
time, especially for nonspecific searches. Importantly, MSBooster is
fully incorporated into FragPipe: a single checkbox enables deep
learning prediction and the addition of new features for Percolator
rescoring, allowing even inexperienced users to immediately see
improved peptide and protein identifications.

We evaluated the improvements provided by MSBooster in var-
ious experimental workflows available in FragPipe. We observed
robust gains across applications, especially in analyses exhibiting a
large search space, such as HLA immunopeptidomics, or multiple
peptide candidates per MS/MS scan, such as direct identification from
DIA data searches. We found that MSBooster has similar performance
toDeepRescore49 when rescoring a patient-specificmelanoma dataset,
while also proposing unique neoantigens. MSBooster in FragPipe also
outperforms MaxQuant rescoring when both have access to a Prosit-
predicted library. Several factors may contribute to MSBooster per-
formance, including MS2 spectral quality, the deviation between the
experimental data acquisition parameters and those of the training
data for the prediction models, and the number of PSMs available for
rescoring. We present general guidelines for what level of gains are
expected frommultiple popular applications of MSBooster, but an in-
depth analysis of how each of these characteristics of the data is out-
side of the scope of this study.

Interestingly, we observed only a marginal impact of adding IM
features when analyzing standard HeLa tryptic digest timsTOF PASEF
data. However, this does notmean that IM features will not be useful in
other scenarios. IM may improve the resolution of peptidoforms with
isobaricmodifications (e.g., in glycopeptide identificationworkflows72)
or assist with PTM site localization73,74. The minimal strength of IM
features observed in this work may also be due to insufficient predic-
tion accuracy, suboptimal feature curation in MSBooster, or the lim-
itations of a linear SVM model in Percolator. Thus, more flexible
models75 for PSM rescoring could be investigated. In addition, we
compared our IM feature to using only raw 1/K0 and charge values for
rescoring and found that the latter had better performance. We pre-
sent the results in Supplementary Note 2 and Supplementary
Figs. 10, 11.

Future work will focus on making MSBooster more flexible. First,
as FragPipe and its constituent tools evolve, MSBooster can adapt too.
For example, tools such as ionbot and CHIMERYS can report multiple
PSMs per spectrum, potentially allowing consideration of more can-
didate sequences or co-fragmenting peptides76,77. MSFragger could be
optimized for identification of co-fragmenting precursors present in
DDA data, and MSBooster could be adapted to rescore multiple pep-
tides reported for chimeric spectra, in a similar fashion to rescoring
multiple ranks in DIA data.

Second, we plan to extend MSBooster’s flexibility via the avail-
ability of a standalone command line version to be incorporated into
various pipelines outside of FragPipe. This would be applicable for
users interested in de novo sequencing78–80 or using MSBooster in
conjunction with other PSM rescoring tools besides Percolator75,81.
Also, as these interests arise, MSBooster can be adapted to work with
PSM table formats besides Percolator pin files, such as pepXML files.

Third, we can extendMSBooster with respect to which prediction
model is used. We have already shown Prosit to be compatible with

standalone MSBooster in our HLA example, and we plan to include an
option in future FragPipe releases for users to easily leverage Prosit
predictions. Another example is PredFull82, a full spectrum prediction
model that predicts intensities for every m/z bin, rather than predict-
ing specific ion types such as y- and b-ions. Therefore, it may be able to
report internal fragment ion intensities, which could provide more
rescoring information for HLA peptides lacking the basic C-terminal
residues—common to tryptic peptides—that help to create a strong
y-ion series. Other scenarios where non-y/b ions are relevant include
rescoring ETD MS/MS spectra, or spectra produced by peptides with
PTMs that incur neutral losses. Support for diverse prediction models
within MSBooster will be particularly useful for studying PTMs, where
models such as pDeep241, MS2PIP36, and DeepLC83 are expected to
perform better than simply shifting fragment ions or using the same
RT for both modified and unmodified peptides. The need for models
supporting diverse PTMs is evident from the penalty incurred against
peptides with pyro-glutamation from Q (Supplementary Fig. 4). The
increased use of labeled quantification with tandem mass tags (TMT)
has also allowed DL models to be trained for this purpose. Finally,
transfer learning and fine-tuning implemented in pDeep339 and
AlphaPeptDeep40may help to createmodels better suited for different
scenarios. For example, while single and bulk cell spectra appear
similar on a timsTOF Pro instrument84, they appear different enough
on an Orbitrap instrument that one may consider a model tuned for
single cells68. Different fragmentation mechanisms, mass spectro-
meters, and collision energy settings also impact MS/MS spectra.
These factors are not currently considered by DIA-NN peptide pre-
diction, but they can have noticeable effects on spectra. We expect
that MSBooster’s incorporation in FragPipe will allow for ease of cus-
tomization of which prediction model it is coupled with.

Methods
MSBooster workflow
Workflows with and without MSBooster are depicted in Fig. 1. In DDA
experiments, MS/MS spectra are searched using MSFragger. For pep-
tide identification from DIA data, either full MS/MS spectra are sear-
ched using MSFragger-DIA, or DIA-Umpire extracted pseudo-MS/MS
spectra are searched using MSFragger as conventional DDA files.
MSFragger produces pepXML and pin files, and the latter is used as
input into MSBooster. The pepXML files are not used by MSBooster
but are necessary for converting the Percolator output files into
pepXML files for subsequent protein inference analysis using Pro-
teinProphet. To obtain a list of peptides for DL model prediction,
MSBooster iterates through all pin files to obtain all target and decoy
peptides matched to at least one PSM. Peptides with the same
sequence but different PTMs and/or charges are treated as different
peptides. This list is then passed to a DL model to obtain a prediction
file. This strategy is significantly faster than predicting the entire in-
silicodigestedproteome, as onlypeptides reported aspotential hits by
MSFragger (top-ranking peptides per spectrum) are submitted for
prediction. Peptides with PTM(s) not supported by the DL model rely
on predictions for the peptide without the unsupported PTM(s).
MSBooster adds a shift in fragment m/z to accommodate the new
PTMs, but the fragment intensities remain the same.

The core of MSBooster is the feature calculation step. First, the
predictions from the DL model are loaded. Then pairs of mzML (or
MGF) and pin files are sequentially loaded for processing and DL-
extendedPSM feature table generation. ForDIA data, becausemultiple
peptides may contribute to a single MS/MS scan, the experimental
spectra are revised after each PSM has its features calculated. Bor-
rowing from MSFragger-DIA, the highest intensity experimental MS/
MS peakwithin the fragment error tolerance of the reported predicted
fragment is removed from the experimental spectrum. The predicted
spectra of lower-ranking PSM peptides can no longer have their frag-
ments matched to these removed peaks because using the same MS/
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MS peaks for multiple PSMs from the same scan can lead to spurious
hits. Once all PSMs from a single-pin file are loaded, RT and IM cali-
brations are performed. In the final step, MSBooster iterates through
the pin file row by row and calculates and adds the desired features.
This process is repeated until all pin files have DL features calculated
and added.Multiple featureswere tested and are discussed below. The
list of all available features is described in Supplementary Note 1.

Determination of the best features
Several metrics exist for calculating the similarities between experi-
mental and predicted spectra. Although cosine similarity is commonly
used, several features were tested to determine which metrics could
provide the greatest gains in the identification numbers (Supplemen-
tary Fig. 12). Percolator is non-deterministic because of the random
splitting of PSMs for training and testing, which can be controlled with
a random seed. Thus, Percolator was run ten times for each feature,
and the number of peptides reported after Philosopher filtering was
counted. For spectral similarity features, the greatest boosts were
consistently obtainedwith “unweighted spectral entropy”85. For the RT
features, “delta RT loess” tended to do the best. Interestingly, “delta RT
loess normalized” performed better when there were a small number
of cells in the nanoPOTS data67 (Supplementary Fig. 12e–h). We tested
a linear regression feature for RT calibration, “delta RT linear”, on the
HLA and 50 cell datasets (Supplementary Fig. 12a). While it performed
similarly to “delta RT loess normalized” on the HLA dataset, we found
that it may be performed sub-optimally for the 50-cell data, where
there exists a non-linear relationship between the experimental and
predicted RT scales (Supplementary Fig. 13). For the IM features, the
“IM probability uniform prior” feature performed the best. The dis-
tributions of each score for all PSMs, targets and decoys, in the dif-
ferent datasets are shown in Supplementary Fig. 7.

MSFragger search and FDR control
Database searches were performed using MSFragger v3.4 in FragPipe
v17.2 with Philosopher v4.1.1. For neoantigen detection, MSFragger
v3.7, FragPipe v19.2, andPhilosopher v5.0.0wereused for visualization
of spectrawith FragPipe-PDVviewer56. All searches used aUniProt fasta
from March 18, 2022, except for the neoantigen search, which used a
fastawith both canonical andMel15-specificprotein sequences derived
from exome sequencing; this fasta was the same used by Li et al.49 and
generated by NeoFlow86. The workflows used for each dataset are as
follows: HLA immunopeptidome57 (nonspecific-HLA-C57 workflow);
melanoma neoantigen65 (nonspecific-HLA with carbamidomethylated
cysteine added as a variable modification); melanoma DIA data66 with
MSFragger-DIA (DIA_SpecLib_Quant) and with DIA-Umpire (DIA_DIA-
Umpire_SpecLib_Quant); HeLa timsTOF70, single-cell proteomics with
nanoPOTS67 or DISCO45, and secretome69 (Default). All workflows
included oxidation of methionine and N-terminal acetylation as vari-
able modifications. The workflows besides Default also included pyro-
glutamation from glutamine and glutamic acid. The HLAworkflowhad
carbamidomethylated cysteine as a fixed modification with the mass
difference between cysteinylation and carbamidomethylation
(61.98Da) as a variable modification; the neoantigen workflow inclu-
ded both carbamidomethylation and cysteinylation as variable mod-
ifications. A maximum of three variable modifications was allowed.
Peptide length was set to 7–25 for nonspecific workflows and 7–50 for
all others. Allworkflows used 20ppm forprecursor and fragment error
tolerance, with mass calibration and parameter optimization enabled.
MSBooster, Percolator, ProteinProphet, and Philosopher were
enabled. The HLA workflow was revised to add “—mods M:15.9949” to
the Philosopherfilter to performgroup-specific FDR estimation87 using
the following three categories: unmodified peptides, peptides with
oxidized M only, and peptides with any other modification. The
nanoPOTS data were analyzed in separate experiments based on the
number of cells (1, 3, 10, or 50). Peptide and protein identifications

reported are at 1% FDR unless otherwise noted. We attempted to cal-
culate FDR specifically for nonreference targets/decoys in our neoan-
tigen dataset as suggested by Nesvizhskii et al.88; however, too few
nonreference decoys were reported to accurately calculate a group-
specific FDR. Therefore, the numbers reported are those nonreference
target peptides in the original peptide.tsv files.

MaxQuant search and FDR control
MaxQuant v2.1.0.09 was used to search the HLA immunopeptidome
data57. Search tolerance was 20ppm. For the MaxQuant only search,
oxidation of methionine, n-terminal acetylation, pyroglutamation of
glutamine and glutamic acid, and cysteinylation minus carbamido-
methylation of cysteine were specified as variable modifications. Car-
bamidomethylation of cysteine was specified as a fixed modification.
FDRat all levelswas set to0.01. For theMaxQuant search tobeused for
Prosit rescoring because the only PTMs supported by the base non-
TMT Prosit model are carbamidomethylation of cysteine and oxida-
tion ofmethionine, the former is set as the only fixedmodification, the
latter as the only variablemodification. All FDR levels were set to 1, as is
required for Prosit rescoring.

MaxQuant analysis of Sarkizova et al.
Results of the analysis of 92 monoallelic HLA Class I cell lines with
MaxQuant performed by Wilhelm et al.46 were downloaded. For each
allele, the number of peptides with non-NA scores was counted and
compared before and after Prosit rescoring. The average across all cell
lines was calculated. Results are shown in Supplementary Fig. 3a.

Deep learning predictions
DIA-NN v1.842,43 was used to predict RT, IM, and MS/MS spectra
because of its speed and ease of execution within FragPipe. DIA-NN
reports the top 12 most intense singly and doubly charged b- and
y-ions. Predictions weremade for each unique combination of peptide
sequence, modifications, and charge. DIA-NN v1.8 supports the pre-
dictions for peptides with carbamidomethylated cysteine, oxidized
methionine, N-terminal acetylation, phosphorylation, and ubiquitina-
tion. For other PTMs such as pyro-glutamation, DIA-NN did not adjust
MS/MS fragment peak intensities, but MSBooster shifted the peaks to
the appropriate m/z values. The RTs and IM values for peptides with
unsupported PTMs remained the same as for counterparts without
the PTM.

Prosit46 was used for rescoring of HLA immunopeptidome data57,
both with MaxQuant and MSBooster. When running with MaxQuant
output, the “rescoring” pipeline at https://www.proteomicsdb.org/
prosit/ wasused. Themsms.txt fromtheMaxQuantwith FDR= 1 search
was used as input, along with the individual RAW files. The size of the
unique set of peptides with q-values < 0.01 are shown in Supplemen-
tary Fig. 3b. When used in combination with MSBooster, a command
line version of MSBooster was used to extract peptides from the pin
files, analogous to how it is done inFragPipewithDIA-NN. Thepeptides
are formatted into an input file for the “spectral library” pipeline at
https://www.proteomicsdb.org/prosit/. For both MaxQuant and
MSBooster, the “Prosit_2020_intensity_hcd” and “Prosit_2019_irt”
models are used for MS/MS spectral and RT predictions, respectively.
The resultant “msp” file from Prosit is read by MSBooster, and spectra
for peptides with PTMs besides carbamidomethylated cysteine and
oxidized methionine are generated via m/z shifting, analogous to how
it is done when used in conjunction with DIA-NN.

Spectral similarity calculation
To calculate the spectral similarity, the highest intensity fragment ions
within the m/z error tolerance of the predicted fragment ions are
obtained. Therefore, similarity calculations are performed using vec-
tors of the same length. If no peak is detected in the experimental
spectrum within the m/z error tolerance of the predicted peak, the
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experimental vector is assigned a 0 at that position. Predicted and
matched fragment ions from the experimental MS/MS spectra were
normalized before similarity calculation (see Supplementary Note 1).

Retention time and ion mobility calibration
Local regression (LOESS) is used to calibrate the experimental to the
predicted RT and IM values, followed by monotonic regression. A
different ion mobility model is trained for each charge. The resultant
model maps each experimental RT to a value on the predicted RT
scale; a calibrated RT value is the experimental RT mapped to the
predicted scale. To train the regression models, a subset of PSMs
(5000, by default) with expectation values below a preset threshold
(10e−3.5) is used. This threshold was chosen from the observation that
of the various datasets MSBooster was tested on, no decoys were
detected below that expectation value. If between 50 and 5000 PSMs
have sufficiently low expectation values, that number of PSMs is used.
If fewer than 50 target PSMs with sufficiently low expectation values
are available, linear regression is performed instead. For bothDDA and
DIA, only rank 1 PSM is considered for the regression. The bandwidth
by default is set to 0.05 for RT and 0.1 for IM. To calculate the differ-
encebetween the predicted and experimental RT, the experimental RT
is first calibrated to the predicted scale using the regression model,
followed by calculating the difference between the calibrated RT for
that MS/MS scan and the predicted RT for that peptide. The same is
performed for the IM.

Kernel density estimation of predicted retention time and ion
mobility distributions
The following discussion uses RT, but the same applies to IM.
Empirical distributions of predicted RT/IM values were generated
using statistical machine intelligence and learning engine
(Smile) implementation of kernel density estimation (KDE) with a
Gaussian kernel (https://haifengl.github.io/api/java/smile/stat/
distribution/KernelDensity.html). The bandwidth of the kernel is
estimated by Silverman’s rule of thumb, as implemented by Smile.
Briefly, the algorithm works by replacing each point in the dis-
tribution with a Gaussian curve of equal amplitude, then summing
all the individual curves into one total distribution that is a
smoothed version of the empirical distribution. The empirical
range is divided into equally sized bins (widths of 1 min for RT,
0.01 1/K0 units for IM, by default). For each PSM, its predicted RT
is placed into a bin with all predicted RTs of PSMs from the same
experimentally observed RT minute. The number of times its RT
value is added to the bin is weighted by its expectation value; that
is, a higher-confidence PSM with a low expectation value will have
its predicted RT added to the bin more times than a lower-
confidence PSM with a high expectation value. After all predicted
RTs are placed in their respective bins, KDE is used to generate
empirical distributions. These distributions can be used to esti-
mate the probability of having a PSM with a predicted RT value
given its experimental RT and are not subject to the monotonic
constraint of the LOESS model. For example, to get the “RT
probability” value for a peptide scanned in the 60th minute, the
KDE distribution from the 60th-minute bin, D, is queried. If the
peptide has a predicted RT RP, then the reported value for this
feature is the KDE estimated probability (PE) of having predicted
RT RP from the 60th-minute bin’s probability distribution, D. The
same procedure is applied to the IM to generate distributions of
the predicted IM, separating the PSMs by charge state. The fea-
tures from MSBooster that use these probabilities also add a
uniform prior distribution to the KDE-generated distribution. This
uniform prior helps to dampen the effects of bins with fewer
entries. For example, if an experimental RT bin contains a single
PSM, not using a uniform prior would result in an artificially high
probability for that PSM. The uniform prior is decided by sorting

the RT bins in ascending order by the number of PSMs contained
in each. A bin is chosen based on a preset percentile (10th per-
centile, by default). The number of PSMs U at the RT bin at this
specific percentile is chosen. The uniform prior probability PU is
distributed equally across the predicted RT range. If a PSM with
empirical probability PE is placed in a bin that contains E PSMs,
the value of the “RT probability uniform prior” feature is descri-
bed by Eq. (1):

PU*U
U + E

+
PE*E
U + E

ð1Þ

HLA motif analysis
Swarmplots and Venn diagrams were generated with no filtering of
peptides based on length. Before using peptides in GibbsCluster 2.0
(https://services.healthtech.dtu.dk/ service.php?GibbsCluster-2.0)60

or the NetMHC software (https://services.healthtech.dtu.dk/ servi-
ce.php?NetMHC-4.0; https://services.healthtech.dtu.dk/services/
NetMHCpan-4.1/)62, they were filtered to be between lengths 7 and
12 for Klaeger et al.57, or between lengths 8 and 12 for Bassani-
Sternberg et al.65. Position weight matrices were generated using
GibbsCluster. The binding affinity of the peptides to the A*02:01
MHC was determined using NetMHC 4.0 using the default settings.
Similarly, the binding affinity of peptides from Bassani-Sternberg
et al.65 to A*03:01 was determined using NetMHCpan 4.1, which
accommodates peptides longer than length 11, such as our detected
neoantigen.

Statistical analysis and figure generation
Figures were generated in Jupyter Notebooks using Python 3.7.6,
Anaconda 2020.02, Conda 4.8.2, Joypy 0.2.6, Jupyterlab 1.2.6, Mat-
plotlib 3.1.3, Matplotlib-venn 0.11.7, Numpy 1.18.1, Pandas 1.3.0, and
Seaborn 0.10.0. The scatter density plots for Fig. 6 and Supplementary
Fig. 6 require a separate Anaconda environment with Python 3.8.3.
Statistical tests such as t-tests were all two-sided and performed with
SciPy 1.4.1.

Hardware
FragPipe was run and timed using Java 16.0.1. A command-line version
ofMSBooster was run on aWindows desktopwith 12 logical CPU cores
(Intel(R) Core™ i7-8700 CPU @ 3.20GHz) and 32GB of memory. This
was essential for automating the testing with different MSBooster
features.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
MS/MS datasets used in this study can be found at the Proteo-
meXchange Consortium and the PRIDE partner repository89 or at
the MassIVE repository with the following accession codes: HeLa
timsTOF DDA PXD01001270, HLA peptidome MSV00008774357

[https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=a1638beae5d
04267a99f92c550c60b34], melanoma neoantigen PXD00489465,
melanoma DIA PXD02299266, single cell nanoPOTS
MSV00008523067 [https://massive.ucsd.edu/ProteoSAFe/dataset.
jsp?task=3013fc11dc4e4b6dae49a244d92854a7], single cell DISCO
PXD01995845 and secretome PXD02643669. All MSFragger-
produced pepXML, MSBooster-annotated pin, and fasta files are
available at https://doi.org/10.5281/zenodo.8034585 and https://
doi.org/10.5281/zenodo.7843558. Data used to generate the main
and supplementary figures are provided in the Source Data file.
MHC allele binding motifs were acquired at the Immune Epitope
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Database (https://www.iedb.org/). Source data are provided with
this paper.

Code availability
MSBooster code is available freely and as open source at https://
github.com/Nesvilab/MSBooster.
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