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Probing the symmetry breaking of a
light–matter system by an ancillary qubit

Shuai-Peng Wang 1,2, Alessandro Ridolfo3, Tiefu Li 4,5 ,
Salvatore Savasta6 , Franco Nori 7,8,9, Y. Nakamura 9,10 & J. Q. You 2

Hybrid quantum systems in the ultrastrong, and evenmore in the deep-strong,
coupling regimes can exhibit exotic physical phenomena and promise new
applications in quantum technologies. In these nonperturbative regimes, a
qubit–resonator system has an entangled quantum vacuum with a nonzero
average photon number in the resonator, where the photons are virtual and
cannot be directly detected. The vacuum field, however, is able to induce the
symmetry breaking of a dispersively coupled probe qubit. We experimentally
observe the parity symmetry breaking of an ancillary Xmon artificial atom
induced by the field of a lumped-element superconducting resonator deep-
strongly coupled with a flux qubit. This result opens a way to experimentally
explore the novel quantum-vacuum effects emerging in the deep-strong
coupling regime.

Superconductingquantumcircuitsbasedon Josephson junctions (JJs)1–8

have developed rapidly in recent years and demonstrated a quantum
advantage, over classical counterparts, in information processing9,10.
Now they are considered to be one of the most promising
experimentally-realizable systems for quantum computing11–13. Also, the
experimental advancements in superconducting qubit–resonator sys-
tems have stimulated theoretical and experimental research on quan-
tumoptics in themicrowave regime14,15. As a solid-state version of cavity
quantum electrodynamics (QED)16,17, circuit QED18–20 has greater flex-
ibility and tunability, and it can achieve ultrastrong and even deep-
strong light–matter couplings to individual qubits21–27, owing to the
large dipole moment of the superconducting qubit (i.e., artificial atom)
and the smallmode volumeof the resonator.When thequbit–resonator
coupling approaches the nonperturbative ultrastrong regime, novel
quantum-optics phenomena occur28–33, including puzzling modifica-
tions of the quantum vacuum of the system34–40.

In the nonperturbative ultrastrong-coupling regime, the
qubit–resonator system can be described by a quantum Rabi model. It
is particularly interesting to harness controllable physical parameters
to tune the quantum vacuum of the system, since it becomes a novel
entangled ground state ∣Gi rather than the trivial product ground state
of the Jaynes–Cummings model. In such an exotic quantum vacuum,
while the average photon number in the resonator is nonzero, i.e.,
〈G∣a†a∣G〉 ≠0, where a†(a) is the creation (annihilation) operator of the
resonator mode, the ground-state photons are actually virtual (tightly
bound to the artificial atom41) and cannot be directly detected. Theo-
retically, it was proposed to employ non-adiabatic modulations37,
sudden turn-off of the qubit–resonator interaction38, or a spontaneous
decay mechanism of multi-level systems39 to convert these virtual
photons into real ones (similar to the dynamical Casimir effect42,43), so
as to generate radiation out of the resonator. However, these are still
experimentally challenging.
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In the standard model of particle physics, the W± and Z weak
gauge bosons obtain mass via the Higgs mechanism, in which the
electroweak gauge symmetry SU(2) × U(1) is broken due to the
interaction with a symmetry-broken vacuum field (the Higgs field)
displaying a nonzero vacuum expectation value. In our experiment,
we observe the parity symmetry breaking of a probe super-
conducting circuit (Xmon) dispersively coupled to a qubit–resonator
system in the deep-strong coupling regime. This effect, although
rather different (in our case, the broken symmetry is discrete and it is
not spontaneous), shares some interesting analogies with the Higgs
mechanism. At the optimal point, both the flux qubit and the
qubit–resonator system have a well-defined parity symmetry44. In
this parity-symmetry case, the quantum-vacuumexpectation value of
the resonator field is zero, 〈G∣(a + a†)∣G〉 = 0, where ∣Gi is the
qubit–resonator ground state. With the external flux tuned away
from the optimal point, parity-symmetry breaking is induced in the
flux qubit and, in the presence of a very strong qubit–resonator
coupling, it also significantly affects the resonator vacuum, giving
rise to 〈G∣(a + a†)∣G〉 ≠035. In our experiment, the achieved
qubit–resonator system is in the deep-strong coupling regime, so the
quantum-vacuum state is very different and, when away from the
optimal point, this can produce a sizable nonzero value of
〈G∣(a + a†)∣G〉 as well as observable symmetry breaking effects.
Indeed, as demonstrated in our experiment, the qubit–resonator
system is able to break the parity selection rule of the Xmon dis-
persively coupled to the resonator, thus enabling forbidden transi-
tions. We should emphasize that the similarity between the Higgs
mechanism and our observation only comes from two key features:
(i) the symmetry-broken vacuum has a nonzero expectation value
and (ii) the field with a nonzero expectation value can induce sym-
metry breaking in another quantum system, in the absence of real
excitations of the field. Of course, a system composed of just two
qubits and a lumped-element resonator cannot fully reproduce the
far more complex Higgs model.

Results
Deep-strongly coupled qubit–resonator circuit
The system is composed of a five-junction flux qubit deep-strongly
coupled to a superconducting lumped-element resonator via a com-
mon Josephson junction (JJ) (Fig. 1). In addition, we use an Xmon as a
quantum detector, which is capacitively coupled to the lumped-
element resonator on the left and to a coplanar-waveguide resonator
on the right. The whole device is placed in a dilution refrigerator
cooled down to a temperature of ~30mK.

Similar to the three-junction flux qubit2, the five-junction flux
qubit has both clockwise and counterclockwise persistent-current
states. Away from the optimal pointΦext = ðn+ 1

2ÞΦ0, whereΦext is the
external flux threading the loop of the flux qubit, Φ0 = h/2e is the
superconducting flux quantum, and n is an integer, these two
persistent-current states have an energy difference ε = 2IpδΦext,
depending on the maximum persistent current Ip and the flux bias
δΦext � Φext � ðn + 1

2ÞΦ0. Also, there is a barrier between these two
persistent-current states, which removes their degeneracy at the
optimal point by opening an energy gap Δ. In the basis of eigenstates,
the Hamiltonian of the flux qubit can be written as (setting ℏ = 1)

Hq =ωqσz/2, where ωq =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 + ε2

p
is the transition frequency of the

qubit and σz is a Pauli operator. The quantum two-level system is a
good model for the flux qubit because of its relatively large
anharmonicity.

Compared to the coplanar-waveguide resonator, the lumped-
element resonator has the advantage of only a single resonator
mode24: Hr =ωra†a, where ωr is the resonance frequency of the reso-
nator mode. This ωr is V-shaped versus δΦext around the optimal
point24 because the inductance across the qubit loop, as part of the

total inductance of the lumped-element resonator, depends approxi-
mately linearly on ∣δΦext∣. The large JJ shared by the flux qubit and the
lumped-element resonator acts as an effective inductance to produce
an interactionbetween them,Hint = g½cosθ σz � sinθ σx �ðay +aÞ, where
tan θ=Δ=ε, and g =MIpIr is the coupling strength, withM ≈ Lc being the
mutual inductance and Ir =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωr=2ðL0 + LcÞ

p
the vacuum fluctuation

current along the center conductor of the lumped-element resonator,
where Lc is the inductance of the large JJ and L0 is the geometry
inductance.When the qubit–resonator coupling is in the ultrastrongor
deep-strong regime, one cannot apply the rotating-wave approxima-
tion (RWA) toHint, and the Hamiltonian of the qubit–resonator system
is written as

Hs =
1
2
ωqσz +ωra

ya+ g½cosθ σz � sin θσx �ðay +aÞ , ð1Þ

i.e., the generalized quantum Rabi model15.
We can extract the parameters in Hs by fitting the reflection

spectra of the qubit–resonator system, as measured by applying a

a

b

c

Flux qubit

Xmon"Fishbone" finger capacitor

100 μm

10 μm

Probe in Probe  outDrive in

Flux qubit + LC resonator Xmon CPW resonator

Fig. 1 | Device. a Optical image of the device. The lumped-element resonator is
composed of two identical large “fishbone” interdigitated capacitors and a center
conductor in between. The flux qubit consists of three identical larger JJs and a
smaller JJ reduced by a factor of 0.42 in area. To enhance the coupling between
the flux qubit and the lumped-element resonator, an even larger JJ (with its area
doubled) is added to the qubit loop and shared with the center conductor.
Extending to the left (right) is another section of 50Ω coplanar-waveguide which
couples to the input signal line (the Xmon qubit). b Zoom-in optical image of the
area denoted by the green rectangular box in a. c Circuit diagram of the device
(cf. Supplementary Fig. 1).
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probe tone to the system. Around ωp/2π = 4.8 GHz (near the bare fre-
quency of the lumped-element resonator) and 5.6GHz, clear transi-
tions are observed; of which the corresponding frequencies are found
to be consistent with the transition frequencies from the ground state
∣Gi � ∣0is to the first- and second-excited states, ∣1is and ∣2is of the
qubit–resonator system, respectively, i.e., ω01 and ω02 (see the solid
fitting curves in Fig. 2c, b). Around ωp/2π = 11.9 GHz, we observe the
transition from the ground state ∣Gi to the third-excited state ∣3is
(Fig. 2a), with the solid fitting curves corresponding to ω03. Moreover,
similar to those in ref. 26, additional transitions are observed in Fig. 2a,
which are attributed to the sideband transitions (the dashed curves in
Fig. 2a) involving the Xmon levels as well, see Supplementary
Information.

Near 5.6 and 11.9GHz, the transmission background of the probe
tone changes abruptly, forming two band edges (see Supplementary
Fig. 2). The qubit–resonator system coupled to the band edges in
Fig. 2a and b is analogous to the case of an atom coupled to a band
edge in a photonic crystal waveguide45,46. The abrupt changes in the
transmission background originate from the wire bonding and filters.
Near the band edge, a photon emitted by the atom (in our case, it is the
qubit–resonator system) is Bragg reflected and reabsorbed, resulting
in the emergence of spectrally resolvable polariton states (similar to
the vacuum Rabi splitting), which will disappear away from the band
edge45.

By fitting the transition frequencies ω01, ω02, and ω03 with
experimental results in Fig. 2, we can derive the parameters of the
generalized Rabi model in Eq. (1), which are Ip = 245 nA and Δ/
2π = 15.0 GHz for the flux qubit, ωr/2π = 4.82GHz for the lumped-

element resonator, and g/2π = 4.55GHz for the qubit–resonator cou-
pling. Here the obtained resonance frequency ωr/2π = 4.82GHz is the
value when the external flux bias is at the optimal point δΦext = 0. In
our qubit–resonator system, we achieve g/ωr ≈0.944, indicating that it
indeed reaches the deep-strong coupling regime g/ωr ~ 1.

When δΦext = 0 (θ =π/2), the deep-strongly coupled system in
Eq. (1) reduces to the standardquantumRabimodel. Instead of a trivial
(product) ground state ∣g,0

�
in the Jaynes–Cummings model, it has a

quantum vacuum (i.e., the entangled ground state) ∣Gi, with
〈G∣a†a∣G〉 ≠0. This standard Rabi model has a well-defined parity
symmetry, characterized by σze

iπaya, which ensures that the ground
state is a superposition of all states with an even number of
excitations28. For this quantum vacuum, 〈G∣(a + a†)∣G〉=0. When
δΦext ≠0, Hs in Eq. (1) has an extra longitudinal coupling term pro-
portional to σz. It breaks the parity symmetry of the model, and hence
both even and odd numbers of excitations are allowed in the new
ground state35 as well as in the excited states of the coupled system.
Now, both 〈G∣a†a∣G〉 ≠0 and 〈G∣(a + a†)∣G〉 ≠0.

Detection of the induced symmetry breaking
Below we harness an Xmon7 to detect the symmetry breaking of the
lumped-element resonator. The Xmon is both largely detuned and
weakly coupled to it via a small capacitor (cf. Fig. 1a). In such a dis-
persive regime, the effect of the Xmon on the qubit–resonator system
is greatly reduced. The Xmon can be modeled by the Hamiltonian
HX =4Ecn

2 � EJ cosφ, where Ec is the single-electron charging energy
of the JJ, EJ is the Josephson coupling energy, n = −i∂/∂φ, and φ is the
phase drop across the JJ. In the Xmon, the metallic cross and the
ground metal provide the JJ with a large shunt capacitor to reduce its
sensitivity to the charge noise5,6.

The Xmon’s parameters can be determined with the dispersive
readout technique by coupling the Xmon to a coplanar-waveguide
resonator (see Fig. 1c and Supplementary Fig. 1). The resonance fre-
quency of this waveguide resonator is measured to be ωCPW/
2π = 3.554GHz and the coupling strength between the waveguide
resonator and the Xmon qubit is gX/2π = 28MHz. Then, we obtain the
transition frequency ωX/2π = 5.181 GHz of the Xmon qubit and its
anharmonicity A/2π = −0.16 GHz. With these parameters as well as the
relations ωX =

ffiffiffiffiffiffiffiffiffiffiffiffi
8EcEJ

p � Ec and A = − Ec, we have Ec/2π =0.16GHz and
EJ/2π = 20.97 GHz. Because the lumped-element resonator couples to
the Xmon, it induces an offset charge to the Josephson junction,
leading HX to ~HX =4Ecðn� nRÞ2 � EJ cosφ, where nR = i

g 0

8Ec
ða� ayÞ,

and g 0≈gX (by a symmetric design) is the coupling strength between
the lumped-element resonator and the Xmon qubit.

The total Hamiltonian of the deep-strongly coupled
qubit–resonator system plus the Xmon can be expressed as
Htot =Hs + ~HX . Owing to the large transition frequency between the
ground and first-excited states, the deep-strongly coupled
qubit–resonator system nearly stays in the ground state ∣Gi at the
temperature of ~30mK.

Note that in the dispersive regime, where the Xmon–resonator
coupling rate is much lower than the corresponding detuning, the
energy transitions of the Xmon are almost unaffected by the interac-
tion (i.e., flux bias-insensitive) and can be easily identified with stan-
dard spectroscopic techniques. We also observe that, neglecting the
interaction between the resonator and the flux qubit, or considering a
flux qubit at the optimal point, the Xmon–resonator system displays
parity symmetry. On the contrary, when the qubit is brought out of the
optimal point, the very strong qubit–resonator coupling strength can
induce a symmetry breaking of the Xmon, even for moderate
Xmon–resonator coupling strengths (see Supplementary
Information).

In Fig. 3a, b, we show the single- and two-photon transitions
between the lowest two levels of the Xmon using two-tone spectro-
scopy. Here the resonance frequency of the single-photon transition
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Fig. 2 | Reflection spectra. Reflection spectra of the deep-strongly coupled
qubit–resonator systemversus the externalfluxbiasδΦext and theprobe frequency
ωp aroundΦext = ð3+ 1

2ÞΦ0 (which is amore stableflux bias point thanΦext =
1
2Φ0 in

our system). The solid blue curves in a–c are the fitted transition frequencies
between the ground state to the third-, second- andfirst-excited states of the qubit–
resonator system, respectively (i.e., ω03, ω02, and ω01). In a, the additional transi-
tions indicated by the dashed red curves correspond to sideband transitions
(assisted by the Xmon levels) in the system. Source data are provided as a Source
Data file.
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corresponds to the transition frequencyωX of the Xmon qubit, and the
resonance frequency of the two-photon transition is 1

2ωX . In our chip,
1
2ωX is designed to be well separated from both ω01 and 1

2ω02 of the
deep-strongly coupled qubit–resonator system to avoid any unwanted
transitions. The drive power (−65 dBm) applied at the local drive port
for exciting the two-photon transition is much stronger than that for
the single-photon transition (−120dBm). In Fig. 3b, the signal of the
two-photon transition is found to disappear at the optimal point
δΦext = 0, evidencing that the well-defined parity symmetry of the
standard Rabi model preserves the parity selection rule of the Xmon.
When deviating from the optimal point, the parity-symmetry breaking
in Hs, in addition to producing a nonzero vacuum expectation value
v = 〈G∣(a + a†)∣G〉 ≠0, is able to break the parity symmetry of the Xmon
artificial atom, without however inducing any δΦext dependent Lamb
shift. Figure 3b shows that even a very small deviation from the parity
symmetry point of the systemHamiltonian, which canbe quantified by
the adimensional parameter cotθ= ε=Δ ’ 10�2, is able to activate two-
photon transitions in the Xmon, in agreement with the theoretical
calculations in Fig. 3d.

These results can be described by adopting a simplifiedmodel for
the Xmon using only its four lowest energy levels. Considering the
large detunings (≳20GHz), the effects from higher levels are negli-
gible.With the Xmonnowapproximated as a four-level system (qudit),
the total Hamiltonian of the qubit–resonator system plus the Xmon
can be written as

Htot =Hs +H
ð4Þ
X � g 0ða� ayÞðb� byÞ, ð2Þ

where b=
P3

n=0

ffiffiffiffiffiffiffiffiffiffi
n+ 1

p
∣ni n+ 1h ∣ is the annihilation operator for the

Xmon, and Hð4Þ
X =

P3
n=0 εn∣ni nh ∣ is the bare Xmon energy (HX), pro-

jected into the reduced four-dimensional Hilbert space.We can evaluate
the single- and two-photon absorptions under the coherent drive of the
Xmon by studying its effective polarization 〈P(ωd)〉=Tr[− i(b− b†)ρ(ωd)],
with ρ being the density operator of the system. The latter can be
calculated using the master equation approach in the dressed picture47

(see Supplementary Information). The simulated results are shown in
Fig. 3c, d, which are in good agreement with the experimental
observations. This demonstrates the symmetry breaking of a quantum
system which is coupled to the vacuum of another quantum system
displaying symmetry breaking. Note that the deep-strongly coupled
qubit–resonator system nearly stays in the ground state ∣Gi at a
temperature of ~30mK, and in the present case of dispersive coupling
with a largely detuned Xmon. Moreover, no real excitations of this
system are coherently generated by the coherent drive at ωd≃ωX/2. We
also point out that here the symmetry breaking is not spontaneous but
due to the parity symmetry breaking of Hs in Eq. (2), induced by the
presence of a flux offset applied to the flux qubit. However, the
adimensional parameter ε/Δ, quantifying the degree of symmetry
breaking induced by the flux offset on the flux qubit, is very small (ε/
Δ≃ 10−2) at δΦext =0.1 mΦ0, when the Xmon two-photon transitions
start to be observed (see Fig. 3b), and it does not affect the transition
frequency of the Xmon. According to the additional calculations shown
in Supplementary Fig. 6, the two-photon signals of the Xmon disappear
if the effective coupling g/ωr between the flux qubit and the LC
resonator is reduced to 0.6. This provides evidence that the observed
induced symmetry breaking of the Xmon is a unique feature in the near
deep-strong coupling regime.

We observe that the interaction-induced symmetry-breaking
mechanism detected here is more complex with respect to the Higgs
mechanism and to that described in ref. 35. In these two cases, the
effect is directly induced by the vacuum expectation value of the field.
For example, for w = 〈G∣(a − a†)∣G〉 ≠0, the Xmon–resonator interac-
tion in Eq. (2) could be approximated as ∼ � g 0wðb� byÞ. It can be
shown that this termdirectly determines the symmetry breaking of the
probe qubit in ref. 35. However, in the present case, it turns out that
w =0, since the inductive coupling between the resonator and the flux
qubit determinesw = 0 and v ≠0. Nonetheless, a full quantum analysis
(see Supplementary Information) shows that in such a case (w = 0) as
well, theXmoncanundergo symmetrybreaking,when interactingwith
a field with no real excitations and displaying symmetry breaking.
Using a probe qubit which is inductively coupled to the resonator
would give rise to a symmetry-breaking mechanism directly deter-
mined by the nonzero vacuum expectation value v = 〈G∣(a + a†)∣G〉 ≠0.
In the present case, the symmetry breaking of the qubit–resonator
system determines a nonzero matrix element entering the Xmon two-
photon transition rate; thus enabling two-photon transitions in the
Xmon. Considering the eigenstates of the total Hamiltonian Htot, the
two-photon transition rate is proportional to the product ∣Y0,1Y1,2∣,
where Yi,j = 〈Ei∣ − i(b − b†)∣Ej〉, with ∣Ej

E
eigenvectors of Htot sorted from

the lower to the higher corresponding energy levels. Thus, with ∣E0

�
being the ground state of thewhole interacting system,we identify ∣E1

�
as the first-excited level of Hs (slightly dressed by the interaction with
the Xmon) and ∣E2

�
the corresponding first excited dressed level of

Hð4Þ
X . It turns out that Y0,1 as well as Y0,2 are nonzero and almost con-

stant in the interval of flux offset reported here, while Y1,2 is very well
approximated by a linear function of δΦext (see Supplementary Fig. 4)
and it is zero for δΦext = 0, due to the parity symmetry. This explains
the onset of the parity-symmetry breaking felt by the Xmon.

Discussion
One interesting future possibility is that the current experimental
method could be used to characterize the spontaneous vacuum sym-
metry breaking in the Dickemodel (i.e., equilibrium superradiant phase
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Fig. 3 | Excitation spectra. Excitation spectra of the Xmon qubit versus the
external flux bias δΦext and the drive frequency ωd around Φext = ð3 + 1

2ÞΦ0. The
frequency of the probe tone is fixed at 3.554GHz, in resonancewith the λ/2modeof
the coplanar-waveguide resonator. a and b show the experimental results, corre-
sponding to the single- and two-photon transitions of the Xmon qubit with fre-
quencies ωX and 1

2ωX , respectively. c and d show the simulated results. The
theoretical calculations display the changes in the amplitude of the Xmon polar-
ization ∣〈P(ωd)〉∣. Loss rates for the flux qubit, lumped-element resonator, andXmon
are chosen tobe γ(q)/2π = γ(a)/2π = γ(b)/2π = 2MHz, for simplicity and tobeconsistent
with the observed linewidth in a. e, f Cross sections along the excitation spectra in
a (b) and c (d) whenωd/2π = 5.181GHz (2.5905GHz). Source data are provided as a
Source Data file.
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transition) when more flux qubits are integrated into the lumped-
element resonator and operated at the optimal point simultaneously. If
an equilibrium superradiant phase transition occurs, the small gap in
the two-photon spectra of the Xmon in Fig. 3b will disappear. This
means that two-photon transitions could be observed even for ε/Δ≃0.
Note that in the present case, with a resonator interacting very strongly
with only one flux qubit, we observe these parity-forbidden transitions
for values ε/Δ≪ 1 (specifically ε/Δ ≳0.01). We also point out that, con-
sidering a setup with the capacitively coupled Xmon replaced by a
galvanically coupled artificial atom (e.g., afluxqubit), themeasured rate
of parity-forbidden one- or two-photon transitions, would provide a
direct measurement of the vacuum field expectation value
〈G∣(a +a†)∣G〉, with a rate proportional to its square modulus35.

In conclusion, we have experimentally probed the symmetry
breaking of a lumped-element resonator, by observing the activation of
two-photon transitions in a probe artificial atom (Xmon). The latter is
dispersively coupled to the resonator and probed in the absence of any
real coherent excitation of the resonator field; which however, displays a
nonzero vacuum expectation value, as confirmed by theoretical calcu-
lations. The violation of the Xmon parity selection rule comes from
virtual paths enabled by its interaction with an electromagnetic reso-
nator whose parity symmetry is significantly broken by the deep-strong
light–matter interaction with a flux qubit. The experimental results are
in very good agreement with our theoretical analysis. The proposed
setting offers a novel way to explore quantum-vacuum effects emerging
in the light–matter ultrastrong and deep-strong coupling regimes and
can be used as a tool to explore the coherence properties of quantum
vacua in these exotic hybrid quantum systems48–50, and the occurrence
of superradiant phase transitions in Dicke-like systems36.

Methods
The experimental setup is shown in Supplementary Fig. 1. The super-
conducting lumped-element and coplanar-waveguide resonators are
fabricated by patterning a niobium thin film of thickness 50nm
deposited on a 10 × 3mm2 silicon chip via electron beam lithography.
The flux qubit is also fabricated on the silicon substrate in the middle
of the center conductor of the lumped-element resonator by using
both electron beam lithography and double-angle evaporation of
aluminum. An external magnetic field generated by a magnetic coil
surrounding the device is applied to tune the magnetic flux threading
through the qubit loop. The Josephson junction in the Xmon is con-
nected to the cross-shaped capacitor at one end and fabricated using
separate steps of electron beam lithography and double-angle eva-
poration. Reflection spectra of the deep-strongly coupled
qubit–resonator system at the frequency ωp of the probe tone are
measured with a vector network analyser (VNA). Another microwave
signal at frequency ωd is further applied at the local drive port of the
Xmon for two-tone spectroscopymeasurements. The input signals are
attenuated and filtered at various temperature stages before finally
reaching the sample. Also, two isolators and a low-pass filter (LPF) are
used to protect the sample from the amplifier’s noise.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request. Source data are
provided with this paper.

Code availability
The code that supports the findings of this study are available from the
corresponding authors upon reasonable request.
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