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Sequestration of histidine kinases by non-
cognate response regulators establishes a
threshold level of stimulation for bacterial
two-component signaling

Gaurav D. Sankhe1,6, Rubesh Raja 2,6, Devendra Pratap Singh3,6,
SnehaBheemireddy 4, SubinoyRana 5, P. J. Athira3, NarendraM.Dixit 1,2 &
Deepak Kumar Saini 1,3

Bacterial two-component systems (TCSs) consist of a sensor histidine kinase
(HK) that perceives a specific signal, and a cognate response regulator (RR)
that modulates the expression of target genes. Positive autoregulation
improves TCS sensitivity to stimuli, but may trigger disproportionately large
responses to weak signals, compromising bacterial fitness. Here, we combine
experiments and mathematical modelling to reveal a general design that
prevents such disproportionate responses: phosphorylated HKs (HK~Ps) can
be sequestered by non-cognate RRs. We study five TCSs of Mycobacterium
tuberculosis and find, for all of them, non-cognate RRs that showhigher affinity
than cognate RRs for HK~Ps. Indeed, in vitro assays show that HK~Ps pre-
ferentially bind higher affinity non-cognate RRs and get sequestered. Mathe-
matical modelling indicates that this sequestration would introduce a
‘threshold’ stimulus strength for eliciting responses, thereby preventing
responses to weak signals. Finally, we construct tunable expression systems in
Mycobacterium bovis BCG to show that higher affinity non-cognate RRs sup-
press responses in vivo.

Two-component signaling systems (TCSs) formtheprimary apparati in
bacteria for sensing and responding to extracellular cues1. Bacteria can
have a few tens to a few hundred distinct TCSs. Each TCS comprises a
sensor histidine kinase (HK), which is usually a transmembrane protein
with a variable sensory domain and conserved catalytic domains, and a
cognate cytosolic response regulator (RR) protein, which also contains
a conserved catalytic domain and a variable output domain1,2. Stimu-
lation by an extracellular cue through the sensory domain leads to HK
autophosphorylation, followed by phosphotransfer from the HK to its
cognate RR involving interaction between the conserved catalytic

domains of both the proteins. The phosphorylation alters the DNA or,
infrequently, RNA3,4 binding properties of the output domain of the
RR, resulting in transcriptional changes or regulation of downstream
genes and an adaptive response to the external stimulus1,2.

An important feature of the adaptive response, prevalent across
TCSs, is positive autoregulation:5 The phosphorylated RR upregulates
the expression of the corresponding HK and RR proteins. The
increased HK and RR levels can increase the sensitivity of the TCS to
the external stimulus and the magnitude of the adaptive response,
respectively6. When the external stimulus is strong and persistent,
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positive autoregulation confers an advantage on the bacteria by
expediting and amplifying the adaptive response. Indeed, positive
autoregulation is a widely recognized biological design for amplifying
responses, in addition to its effects on promoting step-like responses,
hysteresis, and memory7–10. When the stimulus is weak or fleeting,
however, positive autoregulation can be a disadvantage as it can lead
to themounting of a response that is disproportionately amplified and
sustained given the stimulus. An important question that follows is
how bacteria guard themselves against such disproportionate
responses despite the presence of positive autoregulation.

Recent studies have presented designs that could create the
requirement of a threshold level of stimulation before a response is
mounted. For instance, in some plant TCSs and, more recently, in the
TCS ArcAB of E. coli, multiple intermediate phosphotransfer events,
resulting in a phosphorelay, have been identified in the phospho-
transfer from HK to the cognate RR11,12. During the process, it is con-
ceivable that a decay of a short-lived stimulus would cause the
deactivation of HK and abort phosphotransfer. A minimum strength
and/or duration of stimulation is thus necessary to complete the signal
transduction event. Similarly, negative feedback could prevent the
autoregulatory loop from getting activated until a threshold level of
stimulation is realized13,14. Other designs include scaffolds and ligands
that bind HK and dampen its activity3,15,16, small molecules that allos-
terically increase the phosphatase activity of HKs leading to rapid
dephosphorylation of RRs following phosphotransfer17–19, and phos-
phate sinks that prematurely terminate signaling20. Indeed, some of
thesedesigns arebeingexploredas routes to actively tune thedetection
thresholds of TCSs18. The designs explain the emergence of thresholds
but imply that different designs exist in different settings for achieving
the same goal. Given the ubiquitous nature of TCSs, we reasoned that a
more widely prevalent motif for preventing disproportionate respon-
ses, both in strength and duration, may exist in bacterial systems.

Here, we identify a new design principle, involving the seques-
tration of autophosphorylated HKs by non-cognate RRs, that pre-
cludes an amplified response unless stimulation crosses a threshold
level. We reasoned that if a phosphorylated HK has a higher binding
affinity for a non-cognate RR than its cognate counterpart, then theHK
is likely to be sequestered by the non-cognate RR. Only if the external
stimulus leads to the accumulation of a sufficient amount of the
phosphorylated HKs will the sequestration be overcome and phos-
photransfer to the cognate RR occur. We unravel this design using
mycobacterial TCSs, which we studied under in vitro and in vivo
conditions, and using mathematical modeling. Our findings suggest
that the design may be a widely prevalent mechanism for regulating
TCS signaling.

Results
Sequestration would occur if phosphorylated HKs were to bind pre-
ferentially to non-cognate RRs, so that their ability to transfer phos-
phoryl groups to their cognate RR partners is compromised. TCSs of
M. tuberculosis have been shown in vitro to exhibit extensive crosstalk,
where phosphorylated HKs not only bind but also transfer phosphoryl
groups to non-cognate RRs21,22. They thus offered an excellent model
system for us to test our hypothesis.

The phosphorylatedHKMtrB has a higher affinity for some non-
cognate RRs than its cognate RR MtrA
We considered first the TCS MtrAB, which is among the most pro-
miscuous of the TCSs of M. tuberculosis21 and is known to exhibit
positive autoregulation23. We measured the binding affinities of the
phosphorylated, GFP-tagged HK MtrB, reported to be active in pre-
vious studies24, for its cognate RR MtrA and several non-cognate RRs,
using microscale thermophoresis (Methods). We found that the equi-
librium dissociation constant, KD, of the phosphorylated MtrB, deno-
ted MtrB~P, for MtrA was 444 ± 117 nM, whereas it was 83 ± 15 nM and

82 ± 12 nM, for the non-cognate RRs NarL and TcrX, respectively
(Fig. 1). Remarkably, MtrB~P thus had a higher affinity for NarL and
TcrX than for its cognate partner MtrA. For three other non-cognate
RRs, namely KdpE, PhoP, and TcrA, the affinities were 868 ± 100 nM,
3580 ± 121 nM, and 3071 ± 74 nM, respectively, all lower than for MtrA.
The order of affinities of MtrB~P for the different RRs tested was thus
NarL~TcrX>MtrA>KdpE>TcrA>PhoP.

In the unphosphorylated state, the binding affinities of MtrB were
consistently lower (Fig. S1). The KD of GFP-tagged MtrB for MtrA was
936 ± 113 nM, indicating an over 2-fold weaker binding than its phos-
phorylated analog. Although the affinities were lower, NarL continued
to display tighter binding to MtrB (KD = 402 ± 58nM) than MtrA.
However, the above rank ordering was not conserved in the unpho-
sphorylated state. For the other two non-cognate RRs we examined,
namely, TcrX and PhoP, the affinities were 21715 ± 5022 nM and
18087 ± 2736 nM, respectively, so the rank ordering was NarL>MtrA>
PhoP>TcrX (Fig. S1).

We recognized that our affinity measurements may be con-
founded by the presenceof species combinations other thanHK~P/RR,
namely, HK~P/RR~P, HK/RR~P, and HK/RR, in our reaction mixture. To
rule out these confounding effects, we repeated our experiments with
phosphor-defective RR mutants. Specifically, we generated the
mutants MtrAD56N and NarLD61N, both capable of binding MtrB~P but
incapable of accepting phosphoryl groups from it (see below). Thus,
two of the four species complexes, namely those involving RR~P,
would be eliminated from the reaction mixture. We found that the
affinities of MtrB~P for MtrA and the mutant MtrAD56N were similar;
KD = 444 ± 117 nMand371 ± 130nM, respectively (Fig. S2). Similarly, the
affinities of MtrB~P for NarL and the mutant NarLD61N were similar;
KD = 83 ± 15 nM and 78 ± 13 nM, respectively (Fig. S2). This implied that
thepresenceof RR~Pdidnot confoundour estimates.Of the remaining
two combinations, HK~P/RR and HK/RR, we inferred that our mea-
surements were dominated by HK~P/RR affinities as follows: We
independently measured the affinity of MtrB for MtrA and found it to
be about 2-fold lower than that of MtrB~P for MtrA (KD = 936 ± 113 nM
vs. 444 ± 117 nM; see Fig. S1) implying that HK~P/RR complexes would
outnumber HK/RR complexes. Further, the technique we used,
microscale thermophoresis, measures the change in the thermo-
phoretic movement of a fluorescently tagged species (change in
fluorescence intensities) as a function of the change in the con-
centrations of bound complexes (subjected to temperature
gradients)25. Given that the HK~P/RR combinations have the highest
affinities among the combinations and that the concentrations of the
HK~P/RR complexes are likely to be the highest, the measurements
would be dominated by HK~P/RR binding, whose concentrations are
likely to change the most when HK~P is titrated against RR at different
concentrations.Our affinitymeasurements are thus expected to reflect
HK~P/RR affinities. Finally, to ensure that the cognate and non-cognate
RRs did not differentially affect the levels of HK~P in the reaction mix,
which could confound inferences of affinity, wemeasured the levels of
MtrB~P when incubated with either MtrAD56N or NarLD61N over time-
scales similar to those in the thermophoresis assays. TheMtrB~P levels
were unaffected by the RRs (Fig. S3). We concluded therefore that the
various species combinations above did not affect our inferences of
the affinities.

To further establish our findings, we repeated our measurements
using two independent techniques. First, we used another solution
phase interaction analysis technique, isothermal titration calorimetry
(ITC), and found that the affinity of MtrB~P for NarL was nearly 3-fold
higher than for MtrA (Table S1 and Fig. S4). Second, we used Biolayer
interferometry (BLI), where biotinylated MtrB~P was immobilized on a
streptavidin-coated surface and titrated against MtrA or NarL. Again,
we found, remarkably, that MtrB~P had a 4.3-fold higher affinity for
NarL than MtrA (Fig. S5). The numerical values of the affinities are
expected to differ from those obtained with MST, given the different
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measurement modalities involved25. Yet, the similarity of the relative
magnitudes obtained from 3 different techniques validates our finding
that the affinity of HK~Ps for somenon-cognate RRs canbe higher than
for their cognate partners.

To elucidate plausible origins of the observed binding affinities,
we employedhomologymodeling of the kinase domain ofMtrBbound
to the receiver domain of MtrA or NarL and found that the MtrB:NarL
complex was stronger (interaction energy of −40kcal/mol) than the
MtrB:MtrA complex (−15 kcal/mol), the difference attributable to a
greater presence of ionic interactions in the MtrB:NarL interaction
interface (Note S1, Table S2 and S3, and Figs. S6 and S7). As a control,
we found that MtrB had hardly any interaction with the known non-
binder RR PdtaR (interaction energy of +5 kcal/mol). Molecular mod-
eling thus reinforces our finding and offers plausible insights into the
tighter binding of NarL than MtrA with MtrB.

We examined next whether this preferential binding of phos-
phorylated HKs to non-cognate RRs was also seen with other TCSs of
M. tuberculosis.

Preferential binding of phosphorylated HKs to non-cognate RRs
appears widely prevalent
Wemeasured the binding affinities of four other phosphorylated, GFP-
tagged (MtrB and PhoR) or histidine tag labeled (KdpD, DevS, and
PrrB) HKs of M. tuberculosis for their cognate as well as several non-
cognate RRs, the latter implicated previously to be involved in cross-
talk with the corresponding HKs21. Remarkably, we found that in every
case there was at least one non-cognate RR for which the HK had a
higher affinity than its cognate partner (Figs. 2, S8, and S9). The HK
PhoR had a higher affinity for the non-cognate RRs TcrX and DevR
(KD = 484 ± 82nM and 154 ± 28 nM, respectively) than its cognate
partner PhoP (KD = 1485 ± 203 nM) and another non-cognate RR
TcrA (KD = 1827 ± 163 nM); the HK KdpD had a higher affinity
(KD = 355 ± 44 nM) for NarL than its cognate partner KdpE
(KD = 4494 ± 853nM); the HK DevS had a higher affinity

(KD = 325 ± 48 nM) for NarL than its cognate partner DevR
(KD = 13234 ± 1663 nM); and the HK PrrB had a higher affinity
(KD = 1960 ± 251 nM) for the RR MprA than its cognate partner PrrA
(KD = 4308 ± 386 nM).

We thus found that in every one of the five TCSs ofM. tuberculosis
we examined, including MtrAB, the phosphorylated HKs had a higher
binding affinity for some non-cognate RR than their cognate partners.
The affinities were at least 2-fold higher (as with PrrAB) but could be
over 40-fold higher (aswithDevRS) for thenon-cognateRRs compared
to the cognate partners. A consequence would be that the phos-
phorylated HKs bind preferentially to the higher affinity non-cognate
RRs compared to their cognate partners. Thus, phosphorylated MtrB,
for instance, would bind preferentially to NarL and TcrX over its cog-
nate counterpart MtrA. Similarly, phosphorylated DevS would bind
NarL in preference over DevR. Because phosphotransfer to non-
cognate counterparts is typically inefficient26,27, this binding could
amount to the sequestration of theHKs from their cognateRRs and the
arrest of signal transduction through the cognate pathway. We
examined next the impact of this preferential binding order on phos-
photransfer and signal transduction. We focused on MtrAB.

Sequestration of MtrB by the non-cognate RR NarL inhibits
phosphotransfer to the cognate RR MtrA in vitro
We co-incubated the phosphorylated HK MtrB with its cognate RR,
MtrA, in the presence or absence of the higher affinity non-cognate RR
NarL taggedwithmRuby, termedNarL-mRuby.Wemeasured the levels
of phosphorylated MtrB, MtrB~P, and phosphorylated MtrA, MtrA~P,
as functions of time to assess the extent of phosphostransfer. The RRs
were both in 2-fold excess (100pmol each) of theHK (50 pmol), so that
phosphotransfer was not limited by the availability of RRs. We found
that as the MtrB~P levels decreased, MtrA~P levels rose (Fig. 3A, B). In
the presence of NarL, the latter rise was subdued. Whereas peak
MtrA~P levels reached 30% (a.u.) without NarL, they remained at a
significantly lower level of 20% with NarL (Fig. 3D, E; P = 0.011 using a

Fig. 1 | Binding affinities of phosphorylatedMtrB for cognate and non-cognate
RRs. Normalized fluorescence intensity obtained frommicroscale thermophoresis
(see “Methods” section) of 50nM of fluorescently tagged MtrB post autopho-
sphorylation, P~MtrB-GFP, as a function of the concentration of the titrant RR
(concentration range): A MtrA (0.45 nM to 15μM), B NarL (0.46 nM to 15μM),

C TcrX (0.61 nM to 10μM), D KdpE (3.1 nM to 50μM), E PhoP (0.76 nM to 25 μM),
and F TcrA (0.31 nM to 10μM). The resulting KD values are indicated. Curves are
best-fits and symbols are mean± S.E.M (n = 4 independent experiments for MtrB~P
with TcrX and n = 3 independent experiments for the remaining plots).
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one-tailed Student’s t test). In the absence of MtrA, the decline of
MtrB~P was far lower; whereas MtrB~P levels declined to ~20% of their
initial value in 20min in the presence of MtrA, they remained at ~60%
without MtrA (Fig. 3C, F), ruling out significant phosphotransfer from
MtrB~P to NarL. In another control, we replaced NarL-mRuby with the
RR PdtaR-RFP, which did not interact with MtrB, and found that peak
MtrA~P levels reached 30% (Fig. S10), similar to that in the absence of
non-cognate RR (P =0.37, using a one-tailed Student’s t test), ruling out
any non-specific effects of non-cognate RRs or their fluorescent tags
on the phosphotransfer reaction.

To further understand the observed kinetics, we examined MtrB
autophosphorylation in the absence of any RR, cognate or otherwise,
and found negligible decline in MtrB~P levels over time (Fig. S11),
suggesting that spontaneous dephosphorylation of MtrB~P, which is
expected to be weak28 (see Table S4), may not explain the decline in
MtrB~P levels seen above (Fig. 3C, F). This was also true when we
coincubated MtrB with the mutants MtrAD56N or NarLD61N, both incap-
able of receiving phosphoryl groups from HK~P (Fig. S11), indicating
that unphosphorylated RR did not interfere with the autopho-
sphorylation ofHK. Theminimal loss ofMtrB~P in the presence of NarL
alone (Fig. 3C, F) was thus likely due to weak phosphotransfer to NarL
and possible dephosphorylation of MtrB~P in the presence of NarL.
Importantly, the reduced MtrA~P levels in the presence of NarL were
thus a consequence of the ‘sequestration’ of MtrB~P by NarL.

A consequence of the sequestration would be the suppression of
signaling through the cognate pathway. It would imply that higher

levels of stimulation of the cognate pathway would be required to
trigger positive autoregulation and mount a significant cognate
response. To establish this concretely and to elucidate the design
principle underlying the sequestration by non-cognate RRs we
observed, we constructed a mathematical model.

Mathematical model of TCS signaling in the presence of non-
cognate RR
We developed a mathematical model of TCS signaling in vivo with
positive autoregulation and the presence of a non-cognate RR (Fig. 4;
“Methods” section). The model comprises the following events.

ðLigandbindingÞHKbasal + I"
klig
f

klig
d

HK ð1Þ

ðATPbindingÞHK +ATP "
kATP
f

kATP
f =KE

HK � ATP ð2Þ

ðAutophosphorylationÞHK � ATP�!
kp

HK * +ADP ð3Þ

ðCognate RRbindingHKÞHK +RRc "
kRR
f

kRR
f �KHK

D

HK � RRc ð4Þ

ðCognateRRbindingHK *ÞHK * +RRc "
kRR
f

kRR
f �KD

HK * � RRc ð5Þ

ðTransition complex formationÞHK * � RRc "
ktc
f

ktc
f �Ktc

HK � P � RRc ð6Þ

ðPhosphotransferÞHK � P � RRc "
kRR
p

kRR
dp

HK +RR*
c ð7Þ

ðPhosphatase activityÞHK � P � RRc �!
ktc
d HK +RRc + Pi

ð8Þ

ðCognate RR*bindingHKbasalÞHKbasal +RR
*
c �!

kRR
dp

HKbasal � P � RRc

ð9Þ

ðPhosphatase activityÞHKbasal � P � RRc �!
ktc
d HKbasal +RRc +Pi

ð10Þ

ðNoncognate RRbindingHKÞHK +RRnc "
kRR�nc
f

kRR�nc
f �KHK

D�nc

HK � RRnc ð11Þ

ðNoncognateRRbindingHK *ÞHK * +RRnc "
kRR�nc
f

kRR�nc
f �KD�nc

HK * � RRnc ð12Þ

ðTransition complex formationÞHK * � RRnc "
ktc
f

ktc
f �Ktc

HK � P � RRnc

ð13Þ

ðPhosphatase activityÞHK � P � RRnc �!
ktc�nc
d HK +RRnc +Pi

ð14Þ

Fig. 2 | Binding affinities of several HKs for their cognate and non-cognate RRs.
Affinities measured as in Fig. 1 for phosphorylated (A) PhoR, (B) KdpD, (C) DevS,
and (D) PrrB, for their respective cognate (gray) and some non-cognate (green) RRs
implicated in crosstalk with the HKs. The affinities as mean ± S.E.M. from at least
three repeats are indicated. Detailed measurements leading to the affinity esti-
mates are in Figs. S8 and S9, including for any non-cognate RRs with weaker affi-
nities than the cognate ones. The error bars represent mean ± S.E.M (n = 4
independent experiments for KdpD~PwithKdpEandDevS~PwithDevR interaction,
n = 3 independent experiments for remaining bar plots).

Article https://doi.org/10.1038/s41467-023-40095-2

Nature Communications |         (2023) 14:4483 4



ðDephosphorylationÞRR*
c �!

kRR
d RRc +Pi

ð15Þ

ðPromoter bindingÞ 2RR*
c +P "

kDNA
f

kDNA
d

ðRR*
cÞ2 � P ð16Þ

ðBasal transcriptionÞ P�!
kbtpn

P +m ð17Þ

ðEnhanced transcriptionÞ ðRR*
cÞ2 � P�!

ktpn ðRR*
cÞ2 � P +m ð18Þ

ðTranslationÞm�!ktln m+ λHKbasal +RRc
ð19Þ

Briefly, the model considers HK in a basal state, denoted
HKbasal, which is activated by an input or stimulus,I (Eq. 1), to yield
an activated HK, denoted HK. HK then binds ATP (Eq. 2) and gets
autophosphorylated (Eq. 3). HK can bind the cognate RR, denoted
RRc (Eq. 4). The phosphorylated HK, denoted HK*, can bind RRc

(Eq. 5) and form a transition complex, HK � P � RRc, poised for
phosphotransfer (Eq. 6). The complex either effects phospho-
transfer (Eq. 7), yielding phosphorylated RR, denoted RR*

c, or dis-
sociates with the loss of the phosphoryl group into inorganic
phosphate, Pi (Eq. 8). HKbasal can also bind RR*

c forming a transition
complex (Eq. 9) and exerting phosphatase activity (Eq. 10). We also
allow the transition between HKbasal and HK, encoded in Eq. (1), to
occur when HKbasal or HK are bound to other species. These events

in Eqs. (1–10) are consistent with the prevalent understanding of
HKs in TCSs29 where the basal state of the HK predominantly dis-
plays phosphatase activity, whereas ligand binding transforms it
into a state prone to autophosphorylation and phosphotransfer to
cognate RR.

We now consider events in the presence of a non-cognate RR. HK
can bind the non-cognate RR, denoted RRnc (Eq. 11). Importantly, HK*

canbindRRnc (Eq. 12) and forma transition complex (Eq. 13). Unlike the
complex above, the complex here is assumed not to be able to effect
phosphotransfer to RRnc, resulting in the sequestration ofHK* by RRnc.
Like the complex above, however, the transition complex may lead to
the dephosphorylation of HK* (Eq. 14).

Subsequent signal transduction is due to RR*
c. RR*

c can get
dephosphorylated spontaneously (Eq. 15) or dimerize and bind the
promoter region P (Eq. 16). The basal transcription of downstream
genes (Eq. 17) yielding mRNA, m, now happens at an enhanced rate
(Eq. 18). Translation of the mRNA results in the production of the HK
andRRc proteins (Eq. 19), closing the positive autoregulation loop, and
other response proteins.

We constructed rate expressions for the above events, which
resulted in a set of coupled ordinary differential equations (“Methods”
section). The parameters (rate constants) and their estimated values
are listed in Table S4. Most parameters were set to values known from
previous studies. We estimated the remaining parameters by fitting a
reduced version of the model to the in vitro data above. We describe
the latter fitting next.

Mathematical model fits in vitro data
We recognized that the in vitro system has fewer events than those
considered in the in vivo model above. In particular, the events post

Fig. 3 | Phosphotransfer kinetics from MtrB to MtrA with and without
sequestration in vitro. Time course assay of the phosphotransfer from the
phosphorylated HK MtrB~P to the cognate RR MtrA in the (A) absence or (B)
presence of the non-cognate RR NarL-mRuby. The concentrations used were
50pmol for MtrB and NarL and 100pmol for MtrA. C The same as (B) but in the
absence of MtrA. M represents marker and A represents autophosphorylation
control of MtrB~P. Top panels in A–C are autoradiograms and bottom panels are

the corresponding Coomassie Brilliant Blue (CBB) stained gels.D–F Densitometric
analysis of the time course assays in A–C, respectively, performed using auto-
radiograph band intensities normalized by the same band in the CBB stained gel.
The autophosphorylation control was used to normalize the intensities of the
individual bands. Blue symbols represent MtrB~P and red symbols MtrA~P. Lines
represent best-fits of our model (“Methods” section). The error bars represent
mean ± S.E.M (n = 3).
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phosphotransfer to RR, including gene expression and autoregulation,
do not occur in vitro.We therefore constructedmodels representative
of the in vitro system and performed formal model selection (“Meth-
ods” section, Note S2, Table S5, and Fig. S12). The resulting model
comprised Eqs. (2–8) and (11–15) above and offered good fits to data
including time-courses of MtrB~P and MtrA~P with and without NarL
and of MtrB~P levels in the control experiment without MtrA (“Meth-
ods” section; Fig. 3). The best-fit parameters estimated are in Table S4.
The parameters all had reliable confidence intervals. Further, the
estimated fraction of RR proteins that was active, 3.6% (CI: 2.5–4.7%;
see Table S4), was consistent with the small fraction (~3–15%) of active
TCS proteins in vitro observed in previous studies26,30. The fits reiter-
ated the observation that sequestration by non-cognate RRs can sup-
press the phosphorylation of the cognate RR. With all the parameters
thus identified, we applied the full model to examine how the
sequestration would influence signal transduction via the cognate TCS
pathway in vivo.

Sequestration by non-cognate RRs establishes a threshold for
cognate TCS signal transduction
We considered the input, I, to represent an environmental cue that
rises sharply and then declines exponentially: I = I0exp(-t/τ). Here, I0

represents the strength of the signal and τ a measure of its duration.
(We also considered square pulses, described below.) A large I0 and a
small τwould represent a strong but fleeting stimulus, whereas a small
I0 and a large τ would be a weak but lasting stimulus (Fig. 5A). We
solved our model for a wide range of values of I0 and τ. We quantified
the response, or output, as the fractional occupation of the promoter
region by the cognate RR (“Methods” section).

For a given signal, the output, O, in the absence of sequestration
(when no non-cognate RRs are present; i.e., when [RRnc] = 0) rose,
attained a maximum, Omax, and then declined to zero (Fig. 5B). (The
outputwould stayelevated in response to apersistent signal (τ→∞); our
focus here was on temporary and weak signals.) Increasing I0 or τ
increased the maximum response, indicating that stronger or more
sustained stimuli led to stronger responses. In the presence of
sequestration ([RRnc]>0), however, the rise in the output was delayed,
themaximumoutputwas suppressed, and the output vanished sooner
(Fig. 5B). In effect, sequestration by non-cognate RRs suppressed sig-
nal transduction through the cognate pathway.

We examined next how the maximum output, Omax, and the
cumulative output, Ototal, (area under the output-time curve) varied
with I0 and τ in the absence and presence of sequestration. We found
thatOmax exhibited a sigmoidal dependence on I0, remaining low until

Fig. 4 | Schematic of the mathematical model. The model considers an extra-
cellular stimulus triggering the autophosphorylation of HK and activating a TCS
pathway. The phosphorylated HK can transfer the phosphoryl group to its cognate
RR, which can bind DNA and trigger a response including the synthesis of the HK
and RR proteins, marking positive autoregulation. The phosphorylated HK could
bind non-cognate RRs (red) preferentially, when the latter have higher affinity for

the HK than its cognate RR, resulting in HK sequestration and the suppression of
cognate signaling. Only with a sufficiently strong stimulus does sufficient HK
autophosphorylation result leading to cognate RR binding despite sequestration
and themounting of a response through the cognate pathway. Equations (1–19) list
the reaction events in this model. The rate equations are in “Methods” section.
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a threshold level, Ithreshold, was crossed, rising sharply thereafter, and
then reaching a saturation level, Osat, where further increases in I0
triggered marginal increases in Omax (Fig. 5C). Such nonlinear, sig-
moidal responses are attributed to positive autoregulation7. With
sequestration, we found that the sigmoid shifted to the right, i.e., to
higher values of I0. Thus, in particular, Ithreshold increased, indicating
that a much larger level of stimulation was necessary for a significant
response to be mounted. The shift increased with the level of RRnc,
amounting to greater sequestration.

Conversely, for a given level of stimulation, I0, the maximum
response, Omax, exhibited an inverse sigmoidal dependence on RRnc

(Fig. 5D). As RRnc increased from zero, Omax decreased gently until a
critical RRnc was crossed. At this point, Omax decreased sharply and
reached minimal levels. The critical RRnc was the value for which I0
became comparable to the threshold stimulation level, Ithreshold. Any
RRnc above this would amount to sequestration being strong enough
that I0 would remain below Ithreshold, yielding a weak response. Thus,
sequestration prevents the mounting of a strong response to short-
lived stimuli.

A similar behavior was observed when I0 was kept constant and τ
was varied. As τ increased,Omax rose in a sigmoidalmanner, indicating
the existence of a threshold duration, τthreshold, belowwhich the output
was weak and above which the output rose sharply to saturation, Osat

(Fig. 5E). As the level of sequestration increased, i.e., as RRnc rose,
τthreshold increased, indicating that the stimulus had to last longer for a
significant response to be mounted (Fig. 5E). Again, for a given τ,Omax

exhibited an inverse sigmoidal dependence on RRnc, indicating the
existence of a critical RRnc at which τ became comparable to τthreshold
and above which τ was unable to elicit a significant response (Fig. 5F).

Heat maps comparing Omax as a function of I0 and τ with
([RRnc]>0) and without ([RRnc]=0) sequestration show that Omax was
suppressed by sequestration when I0, τ or both were small (Fig. 5G, H).
The same trend applied to Ototal (Fig. S13), indicating that the results
were robust to the choice of the output metric. We tested the
robustness also to the nature of the input signals. We performed cal-
culations using step inputs, instead of the exponentially decaying
signals above, and found again that a threshold stimulation level for a
significant response was introduced by sequestration (Fig. S14).

Fig. 5 | Model predictions of TCS signal transduction and the impact of
sequestration. A Representative inputs, I, indicating strong but short-lived (black)
and weak but extended (red) stimuli. B The corresponding outputs without (solid
lines) andwith (dashed lines) sequestration by a non-cognate RR.C The peak of the
response (Omax) as a function of the maximum input, I0, for different extents of
sequestration, determined by the ratios of the non-cognate RRs, RRnc, to the cog-
nate RR, RRc, indicated. D Omax as a function of the ratio RRnc/RRc for different I0.

EOmax as a function of the signal half-life, τ, for different values of RRnc/RRc. FOmax

as a function of RRnc/RRc for different values of τ. (τ is in minutes throughout.)
Heatmaps showing Omax as functions of I0 and τ in the (G) absence or (H) presence
of non-cognate RRs, indicating the threshold stimulation for response shifting to
higher I0 and τ with sequestration. Corresponding calculations for the total
response, Ototal, are in Fig. S13. Model predictions were obtained by solving
Eqs. (20–47) (“Methods” section) using parameter values listed in Table S4.
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Sequestration thus appeared as a design to prevent the mounting of a
strong response despite positive autoregulation when the stimulation
was weak or fleeting.

Next, we applied our model to elucidate the advantage of
sequestration over alternative designs. An obvious route to preventing
themounting of large responses is to reduce the phosphotransfer rate:
The lower is the phosphotransfer rate, the weaker would be the
response. We performed calculations in the absence of non-cognate
RRs but with lower rates of phosphotransfer. Indeed, both lower
phosphotransfer rates and non-cognate RRs gave rise to a threshold
stimulation level for a robust response (Fig. 6A, B). However, with the
lower phosphotransfer rate, theoverall responsewas suppressed, even
at high stimulation levels. With the non-cognate RRs, once the
thresholdwas crossed, the response rose swiftly to themaximum level,
allowing amorecareful tuningof the response. This happenedbecause
once the threshold was crossed, the cognate signaling pathway took
over due to autoregulation and dominated the response. With the
lower phosphotransfer rate, the cognate pathway was permanently
compromised.

Another route to preventing the mounting of large responses is
sequestration but without positive autoregulation: greater is the
extent of sequestration, greater would be the suppression of the
cognate response. We therefore performed calculations with seques-
tration in the absence of positive regulation. Now, sequestration had
an effect similar to that of lower phosphotransfer rates but stronger in
magnitude, attenuating the response substantially even at high sti-
mulation levels. (Fig. 6C). Thus, sequestration together with positive
autoregulation offers the necessary design to prevent responses to
weak or fleeting stimuli and mount robust responses to strong and
lasting stimuli. This advantage of sequestration with positive auto-
regulation may have led to its evolutionary selection, explaining its
prevalence in the TCSs we studied.

With this insight from mathematical modeling, together with
evidence from our in vitro experiments, we examined whether this
design was evident in vivo using our experimental models.

Non-cognate RR suppresses TCS signal transduction in vivo
Our in vitro experiments above demonstrated the sequestration of
MtrB~P by NarL. We examined the effect of this sequestration in vivo
using Mycobacterium bovis BCG, a bovine-pathogenic surrogate of M.
tuberculosis. The stimulus for the MtrAB system is unknown31. The
system is known to be active during cell proliferation and regulates the
expression of the downstream gene dnaA32. Because the stimulus is
unknown, tuning it to define the threshold stimulus for responses was
not possible. Our model predicted, however, that the extent of

sequestration worked as a surrogate for the stimulus level/duration:
increasing the extent of sequestration at a given stimulus level and
duration was equivalent to decreasing the stimulus level or duration in
the absence of sequestration (see Fig. 3C, E). Here, we therefore tested
our design by altering the sequestration level. The expression level of
NarL, a higher affinity non-cognate RR for MtrB, could be tuned,
enabling control of the level of sequestration.We increased the level of
NarL using the anhydrotetracycline (aTC) tunable expression system
(pTIC6)33 and measured the changes in the transcript level of the gene
dnaA as a function of NarL expression. We used two different levels of
aTC, 10 ng/μl and 50 ng/μl, which resulted in a dose-dependent
increase in NarL expression to ~2-fold and ~5.5-fold, respectively,
above vector control (p =0.005 and 0.001 using a one-tailed Student’s
t test) (Fig. 7A).We simultaneouslymeasured thednaA transcript levels
and found a significant decrease by ~25% and ~30%, respectively, in the
two cases (p =0.08 and 0.02 using a one-tailed Student’s t test)
(Fig. 7B). As a control,we tuned the expression of another non-cognate
RR KdpE shown to be a weak binder of phosphorylated MtrB in vitro.
While the same aTC level (50 ng/μl) triggered a significant increase in
kdpE expression, ~19-fold above vector control (p = 0.001, Fig. 7C), the
expression of dnaA remained unaffected (p = 0.42, Fig. 7D). The
reduction in dnaA levels due to upregulation of NarL was consistent
with our model predictions made using parameter values representa-
tive of the in vivo scenario (Fig. S15). This marked, dose-dependent
reduction in the level of dnaA due to the upregulation of the non-
cognate RR, NarL, thus indicates the presence of the sequestration
motif in vivo. Sequestration of phosphorylatedHKby non-cognate RRs
thus appears to be a design to prevent disproportionately amplified
responses to weak or short-lived stimuli.

Discussion
Our study reveals a new design principle underlying the regulation of
bacterial two-component signaling (TCS) systems. Positive auto-
regulation of TCSs, where a TCS upregulates its own proteins in
response to stimulation, is a widely prevalent feature that aids signal
amplification and the mounting of a strong and lasting response to
stimuli10. A downside of positive autoregulation, however, is that a
disproportionate response may be triggered to weak or fleeting sti-
muli, which may cost resources and hence reduce bacterial fitness.
How bacteria overcome this limitation has been puzzling. Here, we
unraveled a mechanism, sequestration of HKs by non-cognate RRs,
that offers an answer. We found with every one of the five myco-
bacterial TCSswe studied thatHKs bind to at least one non-cognate RR
more tightly than their cognate counterparts. The tighter-binding non-
cognate RR thus sequesters the HK until a strong enough stimulus

Fig. 6 | Advantage of sequestration over reduction in phospotransfer rate.
A The peak of the response (Omax) as a function of the maximum input, I0, for
different extents of sequestration, determined by the ratios of the non-cognate
RRs, RRnc, to the cognate RR, RRc, indicated.BOmax as a function of I0 for different
phosphotransfer rates indicated.COmax as a function of I0 for different ratios of the

non-cognate RRnc/RRc indicated, in the absence of positive autoregulation. Here,
we also set protein degradation rates to zero, to eliminate the threshold introduced
by the lack of proteins. Model predictions were obtained by solving Eqs. (20–47)
(“Methods” section) using parameter values listed in Table S4.
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results in sufficientHK autophosphorylation that a ‘leak’ to the cognate
RR ensues. Positive autoregulation then amplifies the HK and cognate
RR protein levels, allowing significant signaling through the cognate
pathway and the mounting of a proportionate response. We demon-
strated this design principle usingmathematicalmodeling as well as in
vitro and in vivo experiments on mycobacterial TCSs.

The costs and benefits of positive autoregulation have been
investigated extensively because of their importance to the regula-
tion and control of biological processes in diverse settings7,9,34–36.
Among the costs identified has been the delay in the response to a
stimulus arising from the need to build up a sufficient amount of the
entities involved before positive autoregulation can begin to amplify
them34–36. When the positive autoregulatory network is made more
sensitive, it allows a gain in speed, but could lead to excessive
amplification of the long-term response, resulting in a substantial
fitness cost. A coupled negative feedback loop has been proposed
recently as a way to ensure speed in the response without the
excessive long-term protein production35. The latter design seems
appropriate when stimuli are strong and lasting, with the sensitive
positive autoregulation ensuring speed and the coupled negative
feedbackpreventing uncontrolled amplification.When the stimulus is
weak or fleeting, however, for which a response may not be war-
ranted, let alone a speedy one, the sensitive positive autoregulation
may still initiate a response and amplify it, introducing a fitness cost.
In the context of bacterial TCSs, we showed here that sequestration of
HKs by non-cognate RRs introduces a threshold level of stimulation
for a response tobemounted andprevents suchunnecessarily speedy

and amplified responses. Thus, while the negative regulation controls
the response in the late stages, the sequestration we identified con-
trols it in the early stages of stimulation. Together, the two present a
more complete regulatory design of bacterial TCSs under positive
autoregulation.

We examined alternative, simpler designs that could potentially
help prevent disproportionate responses to weak signals but found
them wanting in comparison to sequestration. For instance, lowering
of the phosphotransfer rate, which could be achieved via mutations in
the relevantHK/RRdomains, does induce a threshold stimulus level for
a response, but results in a subdued response even when the stimulus
is strong, leaving the TCS compromised. Sequestration alone, i.e., in
the absence of positive autoregulation, also leads to a similar global
reduction in the cognate response and leaves the TCS compromised.
An implication is that TCSs not under positive autoregulation may not
favor sequestration for preventing responses to weak stimuli, which
future studies may test.

We distinguish sequestration from sinks, the latter also argued to
give rise to thresholds20,24. If non-cognate RR binding were to strip the
HK of its phosphoryl group, then the non-cognate RR would act as a
sink. It would become available for repeating the act with the next
phosphorylated HK, creating a perpetual drain, or a sink, for phos-
phoryl groups. It is apparent that a sink would place a much harsher
demand on the signal for eliciting a response because it would elim-
inate the possibility of signaling from any HK that it would bind.
Sequestration, on the other hand, is likely to exert gentler control. It
suppresses the signal temporarily and allows theHK to dissociate from

Fig. 7 | Effect ofHK sequestration on the cognate TCS response in vivo. Effect of
MtrB sequestration by two non-cognate RRs, a strong binder NarL and a weak
binder KdpE examined by monitoring expression changes for MtrA-specific target
dnaA in vivo. Overexpression of (A) narL inM. bovis BCG strain under tetracycline-
inducible promoter using 10ng/ml or 50ng/ml aTC at OD600 ~ 0.5 for 8 h and (B)
the corresponding expression level of dnaA. Analogous experiments with the

induction of (C) kdpE using 50ng/ml aTC at OD600 ~ 0.5 for 8 h and (D) the asso-
ciated dnaA expression. Gene expression was normalized to the expression levels
of 16 s rRNA, followed by the expression levels of the respective genes in the strain
carrying only the vector pTic6 (vector control). Data represent n ≥ 3 biologically
independent experiments. P values evaluated using one-tailed Student’s t test).
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the non-cognate RR with its phosphoryl group and retain its ability to
trigger signaling through the cognatepathway. The circumstances that
confer an evolutionary advantage upon sequestration over sinks
remain to be elucidated.

We also distinguish between the threshold introduced by positive
autoregulation alone from that due to sequestration. As mentioned
above, the need to build up sufficient amounts of HK and RR proteins
before positive autoregulation can begin to amplify them34–36 can
introduce a threshold stimulus; a stimulus level that leads toHKandRR
activation at rates lower than their degradation rates would preclude
the necessary build up. The resulting threshold is thus largely deter-
mined by intrinsic protein degradation rates andmay not be amenable
to tuning. Sequestration, in contrast, introduces a threshold based on
the levels/affinities of non-cognate RRs, which could be tuned. In a
recent study, crosstalk between TCSs has been argued to be evolu-
tionarily advantageous in programmed environments, where signals
arise in predefined sequences, allowing the crosstalk to prime bacteria
to upcoming signals37. In such programmed environments, one could
imagine sequestration as a handle to tune responses to sequential
signals: the signal stimulating a TCS may result in the upregulation of
its RRs that may in turn act as sequesters of TCSs responsive to all but
the subsequent signals, allowing a focusing of the bacterial response.
The extent of upregulation of the RRsmay tune the thresholds for the
other TCSs. Future studies may evaluate these possibilities, via both
modeling and experiments.

Mycobacterial TCSs have been found to engage in extensive
cross-talk, where HKs transfer phosphoryl groups to non-cognate
RRs21. A pre-requisite for this cross-talk is the binding of phosphory-
lated HKs with non-cognate RRs. The binding affinities of these inter-
actions, however, had not beenmeasured thus far. Here, we employed
the recently developed, facile, solution-based technique, microscale
thermophoresis38,39, to estimate the relative binding affinities of sev-
eral cognate and non-cognate HK-RR pairs from within the sets that
were shown to cross-talk in vitro. As we indicated above, we found for
every HK we examined that at least one, but often multiple, non-
cognate RRs existed that had higher affinity for the HK than the cog-
nate counterpart. This finding, together with the recognition that
phosphotransfer to non-cognate RRs is slow and inefficient compared
to cognate RRs27, provided the basis for sequestration as a regulatory
design principle that we unraveled.

We recognized that inferences from microscale thermophoresis
experiments could be confounded by phosphotransfer from HK ~ P to
RR. If such transfer were substantial, HK~P and RRmay not remain the
dominant species in the reaction mix. To address this concern, we
generated mutants of MtrA and NarL that were incapable of accepting
phosphoryl groups and repeated ourmeasurements. Furthermore, we
employed two additional, independent affinity measurement techni-
ques, isothermal titration calorimetry, and BLI. In all these cases, we
found the results to be consistent, with NarL exhibiting higher affinity
than MtrA for MtrB~P, giving us confidence in our findings. With the
other HK ~ P/RR pairs we studied (Fig. 2), we therefore relied on
microscale thermophoresis. Future studies may establish the robust-
ness of these latter measurements, by generating mutants or using
other assays.

Evidence of the generality of the design comes also from the
extent of conservation of the TCSs we studied across mycobacterial
species. A recent study examined this conservation across 11 myco-
bacterial species23. The study found that the TCS MtrAB is conserved
across all the 11 species. The NarLS system is conserved across 10 of
the 11 species. Thus, the sequestration of MtrB~P by NarL that we
examined here might bemanifested across 10mycobacterial species.
Among the other TCSs we studied, PrrAB is conserved across all the
11 species and so is its non-cognate RR MprA, identifying another
potential pan-mycobacterial applicability of our findings. The other
TCSs we studied were present in several, if not all, mycobacterial

species. Further, given the generality of the design, we expect it to
hold beyond mycobacteria.

The extent of regulation by this design would depend on the
relative binding affinities aswell as the expression levels of the cognate
and non-cognate RRs. In our in vivo studies, we demonstrated that
increasing the levels of the higher affinity non-cognate RR NarL
reduced the output of the TCSMtrAB. The sequestrationmotif may be
prevalent evenwith non-cognate RRs that have lower binding affinities
than the cognate ones if their expression levels are sufficiently high. In
effect, onemay view the collectionof all non-cognateRRs as the source
of sequestration. The abundance of RRs is typically greater than their
cognate HKs40–43. A typical bacterial system may contain many tens to
hundreds of distinct TCSs, thus providing a large pool of non-cognate
RRs for any HK44. Furthermore, we speculate that “orphan” RRs, for
which cognate HKs are unidentified31, may be functioning as
sequesters.

In settings where sequestration is due to non-cognate RRs that
bind more strongly to an HK than its cognate counterpart, targeting
the non-cognate RR-HK binding may be a potential intervention
strategy. It may compromise the ability of the bacterium to withhold
responses to frivolous stimuli, draining its resources and reducing its
viability. Further, the high affinity bindingbetween theHKand thenon-
cognate RR suggests the existence of specific binding regions, which
could be targeted by drugs or vaccines.

Finally, we recognize potential implications of our findings for
applications in synthetic biology. Both positive autoregulation and
sequestration have independently been recognized as important
motifs in synthetic biological constructs7,45. Positive autoregulationhas
been shown to introduce thresholds in the stimulus strength for eli-
citing responses and amplify cellular heterogeneity7,46. For instance,
positive autoregulation has been argued to drive cells infected by HIV
into latent or virus-producing states47. Sequestration is often viewed as
a motif for achieving negative feedback and control20,48. For instance,
in a recent computational study, non-cognate RRs, rather than the
classical cognate HK-RR pairs, placed downstream of the cognate
signaling pathway have been proposed as a negative feedback
mechanism to achieve control by increasing sequestration in propor-
tion to the stimulus strength and thus regulating the response48. Here,
by combining sequestrationwith positive autoregulation, we identify a
new (naturally occurring) motif that enables finer control of signal
transduction. The motif prevents responses to sub-threshold stimuli
and enables robust responses to stronger stimuli. Furthermore, the
threshold may be tuned by designing or choosing sequesters with the
right affinities and/or controlling their concentrations.

In summary, our study presents evidence of a new feature of TCS
signal regulation, where sequestration by non-cognate RRs ensures
that responses are mounted only after a threshold level of stimulation
is realized.

Methods
Mathematical model of TCS signaling with sequestration of HK
by non-cognate RR
Our model describes the signal transduction via TCS in the presence
of non-cognate RR (Eqs. 1–19). We wrote the following rate equations
to describe the dynamics of signal transduction following stimulation
by ligand, I. The equations build on earlier models of TCS
signaling21,49,50 and advance them by incorporating the role of non-
cognate RRs.
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ð32Þ

d½HKbasal � ATP�
dt

= � klig
f ½HKbasal � ATP�½I�+ klig

d ½HK � ATP�
� kdeg½HKbasal � ATP�

ð33Þ

d½HK *
basal �

dt
= � klig

f ½HK *
basal �½I�+ klig

d ½HK *� � kdeg½HK *
basal � ð34Þ

d½HKbasal � RRc�
dt

= � klig
f ½HKbasal � RRc�½I�+ klig

d ½HK � RRc�
� kdeg½HKbasal � RRc�

ð35Þ

d½HK *
basal � RRc�
dt

= � klig
f ½HK *

basal � RRc�½I�+ klig
d ½HK * � RRc�

� kdeg½HK *
basal � RRc�

ð36Þ

d½HKbasal � P � RRc�
dt

= � ktc
d ½HKbasal � P � RRc�+ kRR

dp½HKbasal �½RR*
c�

� klig
f ½HKbasal � P � RRc�½I�+ klig

d ½HK � P � RRc�
� kdeg½HKbasal � P � RRc�

ð37Þ

d½HKbasal � RRnc�
dt

= � klig
f ½HKbasal � RRnc�½I�+ klig

d ½HK � RRnc�
� kdeg½HKbasal � RRnc�

ð38Þ

d½HK *
basal � RRnc�
dt

= � klig
f ½HK *

basal � RRnc�½I�+ klig
d ½HK * � RRnc�

� kdeg½HK *
basal � RRnc�

ð39Þ

d½HKbasal � P � RRnc�
dt

= � ktc�nc
d ½HKbasal � P � RRnc�

� klig
f ½HKbasal � P � RRnc�½I�+ klig

d ½HK � P � RRnc�
� kdeg½HKbasal � P � RRnc�

ð40Þ

The equations were constructed by writing standard rate
expressions for the events in Eqs. (1–19). Thus, the concentration of
basal HK can change due to the following events: ligand binding and
unbinding, autoregulation, phosphatase activity, and degradation.
These form all the terms on the right-hand side of Eq. (20) above.
Similar expressionswere formulated for the other species (Eqs. 21–40).
Themeanings of the rate constants are in Table S4.We explain the non-
obvious terms here. Following HK* binding to RRc, the resulting com-
plex, HK * � RRc, is assumed to form the transition complex
HK � P � RRc, poised for phosphotransfer to RRc. A similar model,
where the phosphoryl group is transferred within the complex, has
been used earlier6. The transition complex, HK � P � RRc, can either
effect phosphotransfer yielding HK and RR*

c or dissociate, releasing
inorganicphosphate (Pi) and leavingbehindunphosphorylatedHK and
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RRc. This formalism is different from the classical phosphatase activity
found in other models21,49, which ignore the transition complex. We
considered the complex because of its importance to non-cognate RR
binding. The non-cognate RR, RRnc, could form the analogous transi-
tion complex,HK � P � RRnc, but the latter complex was assumed not
to be able to effect phosphotransfer. Because phosphatase activity is
generally slower than phosphotransfer, the latter complex becomes
relatively long-lived and acts as a sequester.

We note here that our formalism is consistent with the dimeriza-
tion of HK typically observed29. HK typically exists as symmetric
homodimers, which function primarily as phosphatases. Ligand bind-
ing renders themasymmetric and lets their primary function change to
autophosphorylation and phosphotransfer. Because of the separation
of functions, the symmetric and asymmetric HK dimers become ana-
logous to the basal and ligand-bound forms of HK in our model. The
rest of the signal transduction process follows the same steps as in our
model. The only change is that translation now produces HK mono-
mers, which then must dimerize. The latter step does not alter the
behavior of our model. Also, our model explicitly considers RR
dimerization. Thus, our model is consistent with the current under-
standing of HK and RR dimerization. We note further that variations in
these features – namely, the activities of basal and ligand-bound forms
ofHKor the relative concentrations of theirmonomeric anddimerized
states – do not influence our key conclusions. The effect of seques-
tration by non-cognate RRs, of interest here, is expected indepen-
dently of these variations.

The autoregulation leading to the expression of HK and RR pro-
teins was modeled using the pseudo-equilibrium approximation fol-
lowing earlier studies21,50. We let PT be the total concentration of
promoter binding sites present on the bacterial genome. If fb and ff
were the fractions of promoter sites in the bound and free states
respectively, then the equilibrium of the events in Eq. 16 would yield

kDNA
f f f PT RR*

c

h i2
= kDNA

d f bPT ð41Þ

If we let K = kDNA
d

kDNA
f

be the corresponding equilibrium dissociation
coefficient, and since f f + f b = 1, it followed that

f f =
1

1 + RR*
c½ �2

K

and f b =
1

1 + K
RR*

c½ �2
ð42Þ

The changeofmRNAconcentration canbewritten fromEqs. 14, 15
as

d½m�
dt

=kbtpn f f PT +ktpn f bPT � kmdeg½m� ð43Þ

Applying the pseudo-equilibrium approximation21,50 for mRNA
dynamics, i.e., dmdt ≈0, and using Eq. (42), we obtained

½m�= kbtpnPT

kmdeg

1 + ktpn
kbtpn

½RR*
c �
2

K

� �

1 + ½RR*
c�
2

K

ð44Þ

Translation of the mRNA molecules results in the production of
the two TCS proteins HKbasal and RRmolecules, with λ the ratio of the
two production rates21,50.

d½HKbasal �
dt

= λktrn½m� and d½RRc�
dt

= ktrn½m� ð45Þ

Substituting ktrnkbtpn
kmdeg

=β and
ktpn
kbtpn

=α, we obtained the synthesis rates
of HKbasal and RRc by translation as

d½HKbasal �
dt

= λβPT
1 +α ½RR*

c �
2

K

1 + ½RR*
c �
2

K

0
@

1
A and

d½RRc�
dt

=βPT
1 +α ½RR*

c�
2

K

1 + ½RR*
c �
2

K

0
@

1
A ð46Þ

which we used in Eqs. (20) and (24) above to describe autoregulation.
We defined the output, O, of the signal transduction events as the
fraction of bound promoter regions, fb, so that:

O=
RR*

c

h i2

K + RR*
c

h i2 ð47Þ

Data fitting and parameter estimation
The parameter values employed are listed in Table S4 along with their
sources. The dissociation constants between the cognate pairs MtrB
and MtrA, KD, and non-cognate pairs MtrB and NarL, KD�nc, were
estimated using microscale thermophoresis (Fig. 1). The autopho-
sphorylation of MtrB has been studied earlier and the equilibrium
constant, KE, and the phosphorylation rate, kp, estimated30. ϕHK , the
fraction of MtrB active was also estimated30. The natural depho-
sphorylation rate of RR*

c, kRR
d , has been estimated for PhoB28. We

assumed the same natural dephosphorylation rate for the other RRs.
The activation and deactivation rates for HKs, klig

f and klig
d , the forward

rates for HK binding to ATP, kATP
f , and of HK* binding to RRc and RRnc,

kRR
f and kRR�nc

f , respectively, as well as the total promoter concentra-
tion, PT, were chosen from an earlier study49. The equilibrium dis-
sociation constant for DNA binding, K, the transcription rate, α, the
translation rate, β, and the ratio of HK andRRproduced by translation,
λ, were from another previous study50.

The unknown parameters were the percentage activity of RRc,
ϕRR, the equilibrium dissociation constant of the transition complex,
Ktc, the phospho-transfer rate constant between MtrB and MtrA, kRR

p ,
the binding rate constant ofHK and RR*

c, k
RR
dp, the phosphatase activity

rate constant between MtrB and MtrA, ktc
d , and the phosphatase

activity rate constant betweenMtrB and NarL, ktc�nc
d . We assumed that

the phosphotransfer rate fromMtrB toNarLwasnegligible and set it to
zero. The forward rate of transition complex formation, ktc

f , was
assumed to be 100min−1, to represent fast dynamics typically asso-
ciated with transition complexes compared to other processes.

To estimate the unknown parameters, we simultaneously fit our
model to data from the three time course assays in Fig. 3. The termi-
nation of reactions resulted in denaturing of protein complexes.
Therefore, while measuring HK* after reaction termination, we
assumed that the complexes HK * � RRc and HK * � RRnc could dena-
ture to HK* so that the concentration which we measured at each time
point was the sum of HK*, HK * � RRc and HK * � RRnc species. All the
concentrations were normalized to the initial total active HK, ϕHK . We
recognized that several processes in the in vivo model, such as auto-
regulation, would not apply in vitro. We therefore used multiple
models (Note S2) with increasing levels of complexity to describe the
in vitro data (Fig. 3). We solved the models using the MULTISTART
function in MATLAB to do a global parameter search and used the
LSQCURVEFIT function in MATLAB for optimization. The model
equations were solved using ODE23 in MATLAB. We ensured that
repeated optimization yielded the same results. We compared the
different models using the Akaike information criterion (AICc) and
chose the best one (Table S5). The data constrained the model well,
yielding best-fit estimates with reliable confidence intervals. The
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resulting simplified model was

ðATPbindingÞHK +ATP "
kATP
f

kATP
f =KE

HK � ATP ð48Þ

ðAutophosphorylationÞHK � ATP�!
kp

HK * +ADP ð49Þ

ðCognate RRbindingHKÞHK +RRc "
kRR
f

kRR
f �KHK

D

HK � RRc ð50Þ

ðCognateRRbindingHK *ÞHK * +RRc "
kRR
f

kRR
f �KD

HK * � RRc ð51Þ

ðTransition complex formationÞHK * � RRc "
ktc
f

ktc
f �Ktc

HK � P � RRc ð52Þ

ðPhosphotransferÞHK � P � RRc "
kRR
p

kRR
dp

HK +RR*
c ð53Þ

ðPhosphatase activityÞHK � P � RRc �!
ktc
d HK +RRc +Pi

ð54Þ

ðNoncognateRRbindingHKÞHK +RRnc "
kRR�nc
f

kRR�nc
f �KHK

D�nc

HK � RRnc ð55Þ

ðNoncognateRRbindingHK *ÞHK * +RRnc "
kRR�nc
f

kRR�nc
f �KD�nc

HK * � RRnc ð56Þ

ðTransition complex formationÞHK * � RRnc "
ktcf

ktc
f �Ktc

HK � P � RRnc ð57Þ

ðPhosphatase activityÞHK � P � RRnc �!
ktc�nc
d HK +RRnc +Pi

ð58Þ

ðDephosphorylationÞRR*
c �!

kRR
d RRc +Pi

ð59Þ

We accordingly used a subset of the rate equations above,
restricting the equations to those associatedwith the simplifiedmodel,
and estimated the unknown parameters from the fits. We thus esti-
mated the six parameters:ϕRR,Ktc, k

RR
p , kRR

dp, k
tc
d , and ktc�nc

d . The best-fit
estimates and the associated confidence intervals are in Table S4.

Molecular modeling of HK:RR complexes
Sequence alignments of queries and templates were generated using
PSI-blast51. Structural models were generated using the homology-
based modeling tool MODELLER v9.1252. Side-chain conformations of
themodels with the highest DOPE score53 and best GA341 score54 were
refined using the SCRWL 4.0 library55 and the structures were energy
minimized using GROMACS(v5.1)56 with conjugate gradient as step
integrator to remove short-contacts, if any. FoldX(4.0) Repair PDB57

was also used to obtain a stable complex. Stereochemical quality of the
refined models was ensured using PROCHECK(v3)58 and MolProbity59.
Further analyses have been done using these models. Interface resi-
dues of HK:RR complexes were identified from the structural models
using the standard vanderWaals radii cut-offs, where any two residues

are considered to be interacting if the distancebetween any two atoms
in the residues is at most 0.5 Å greater than the summation of the
respective van der Waals radii60. The nature of the interactions
between the interacting residues was identified using the in-house
protein interaction calculator (PIC)61. Interface regions of complexes
were then visually scanned using PyMol.

Experimental methods
Materials. All themedia chemicals, biochemicals, andprotein reagents
were purchased from Sigma Merck (USA); antibiotics and DTT
(Dithiothreitol) from Goldbio (USA); protein markers were from
Thermo Fisher (USA), agarose-GSH resin and Ni+2-NTA resin were from
GE Healthcare (USA); and restriction enzymes from Thermo Fisher
(USA). Primers were synthesized from Bioserve (India) and γ32P ATP
( > 3500Ci/mmol) was purchased from BRIT-Jonaki (India).

Bacterial strains and plasmids. Protein overexpression was carried
out in E. coliOrigami and Origami B (Novagen Inc., USA). These strains
carrying the recombinant plasmids were propagated in LB containing
ampicillin (100μg/ml). The recombinant plasmids used for protein
overexpression have been reported previously21. In brief, for the HKs,
theplasmids containingonly the cytosolic catalytic domainswereused
and for RRs the entire coding gene was used. For all GFP (Green
Fluorescent Protein) tagged proteins, the GFP gene was cloned
downstream of cytosolic catalytic domain of the respective HK with a
linker region that encoded for the GSGGG spacer peptide, which
facilitated functional separation of the two proteins as reported
previously24.

Recombinant protein purification. For recombinant protein over-
expression and purification, E. coli strains carrying the recombinant
plasmid were grown at 37 °C, in 200ml of 2x YT broth until OD600 of
0.4−0.6, then IPTG (0.5mM) was added to the culture and incubated
further for 15–20h at 12–15 °C for protein overexpression. Cells were
harvested by centrifugation and stored until use at −80 °C. For protein
purification in soluble conditions, the protocol described previously
was followed24.

Autophosphorylation and phosphotransfer activity of GFP-tagged
HKs using PAGE/autoradiography. The functional validation of the
activity of GFP-tagged HKs was conducted as previously reported for
MtrB-GFP27. In brief, 5μMof the purifiedGFP-taggedHK, i.e., PhoR-GFP
was incubated in the kinase buffer (50mM Tris-HCl, pH 8.0, 50mM
KCl, 10mMMgCl2) containing 50μMATP and 1μCi of γ32P-labeled ATP
at 30 °C for 2 h (Fig. S8). Equimolar amount of the recombinant cog-
nate RR PhoP diluted in kinase buffer was added to allow phospho-
transfer for 5min. The reactionwas terminated by adding 1× SDS-PAGE
sample buffer. The samples were resolved on 12% v/v SDS-PAGE. After
electrophoresis, the gel was washed and exposed to phosphor screen
(Fujifilm Bas cassette2, Japan) for 4 h followed by imaging with
Typhoon 9210 phosphorimager (GE Healthcare, USA) and Azure Sap-
phire (Azure Biosystems, USA).

Determination of affinities of HK~P for RR using microscale ther-
mophoresis (MST). In all, 5μM of the purified GFP-tagged HK was
autophosphorylated asmentioned above using 50μMATP at 30 °C for
90min. The autophosphorylated HK~P (50 nM) was mixed with
increasing concentrations of titrant RRs (concentration range men-
tioned in figure legends), in the autophosphorylation buffer and kept
at 30 °C for 5min. The sample was then loaded into standard treated
capillaries and analyzed using a Monolith NT.115 (NanoTemper Tech-
nologies Germany). The blue laser was used for a duration of 35 s for
excitation (MST power = 60%, LED power 40%). For the interactions
involving fluorescently labeled recombinant proteins, the HKs were
autophosphorylated and then mixed with 50nM of Monolith NT
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His-tag labelling Kit Red Tris-NTA (L008; nanotemper Technologies
Germany) incubated at 30 °C for 30min to allow labeling of theHis-tag
with the red fluorescent dye NT-647 and the red laser was used for a
durationof 35 s for excitation (MSTpower = 60%, LEDpower90%). The
data were analyzed using MO Control software (NanoTemper Tech-
nologies Germany) to determine the KD for the interacting proteins.

Time course analysis of phosphotransfer assays. In the phospho-
transfer assays, 100 pmoles of the RRs diluted in kinase buffer were
added to the reaction containing 50pmoles of autophosphorylated
HK, followed by incubation at 30 °C for indicated time points. The
reaction was terminated after the incubation by adding 1x SDS-PAGE
gel loading buffer and resolved on a 15% SDS-PAGE gel. After electro-
phoresis, the gels are washed with deionized water and exposed on a
phosphorscreen (Fujifilm, Japan) followed by imaging with Typhoon
phosphorimager (GE Healthcare, USA). Semi-quantitative densito-
metric analysis of the autoradiogramswasdone using ImageJ software.

RNA extraction, reverse transcription, and quantitative gene
expression analysis
MycobacteriumbovisBCG cultures harboring either pTic6 vector alone
or containing the narL gene were grown in 10ml 7H9 medium sup-
plemented with 1xADC and 0.05% tween 80 till the mid-log phase.
Expression of NarL was induced with 10 and 50 ng/mL anhydrote-
tracyline (aTC) for 8 h. Total RNA was extracted using the RNeasyMini
Kit (Qiagen, USA) according to themanufacturer’s prescribed protocol
from the exponentially grown cultures. RNA yield was quantified using
the NanoDrop® ND-1000 UV-Vis Spectrophotometer (NanoDrop
Technologies, USA). DNAse digestion was performed with TURBO
DNA-free kit (invitrogen, Thermo Fisher Scientific) using manu-
facturer’s protocol. Approximately 500ng of DNAse digested purified
RNA was used to make cDNA using the iScript™ cDNA synthesis kit
(Bio-Rad, USA) using the manufacturer’s protocol. Quantitative real
time PCR (qRT-PCR) was performed with 10 µl of the cDNA reaction
using the PowerUp SYBR green (Appliedbiosystems, Thermo Fisher
Scientific) in the QIAquant 96 5plex(Qiagen, USA) according to the
manufacturer’s protocol.

Isothermal Titration calorimetry
Isothermal titration calorimetry (ITC) experiment was carried out in a
MicroCal VP-ITC calorimeter. Different protein solutions were pre-
pared in buffer (50mM Tris-HCl pH-8.0, 100mM NaCl, 25mM KCl,
10mMMgCl2), and MtrB solution was incubated for 30min with 1mM
ATP to prepareMtrB~P. The reference cell of the calorimeter was filled
with the same buffer (50mM Tris-HCl pH-8.0, 100mM NaCl, 25mM
KCl, 10mM MgCl2) solution. Then different protein solutions were
placed in the sample cell, and MtrB~P was titrated with the solution
present in the cell at 25 °C. Automated addition of 5μL titrant was
continued for 55 injections with a time interval of 120 s and stirring
speed was 307 rpm. The duration of each addition of titrant was 10 s,
and filter spacing between two injections was 2 s. The integrated data
were fitted by Origin 7.0 software.

Biolayer interferometry. BLI was performed in the Octet system
(Sartorius, USA) using 96-well black plates. Briefly, we labeled MtrB
with biotin and the biotinylated-MtrB was incubated for 30min with
1mM ATP to prepare MtrB~P. The biotinylated MtrB~P was then
immobilized on a streptavidin biosensor surface and titrated with
different concentrations of the RRs, either MtrA or NarL. The shift in
the interference pattern, reflective of thenumber of bound complexes,
was recorded during the binding and unbinding phases of the
experiment and the data was analyzed to obtain estimates of the
binding affinities ofMtrB~P for the RRs.GraphPadPrism8.4.2 was used
for BLI data representation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental data generated in this study are provided in the
Supplementary Information and Source Data file, and have been
deposited in the Zenodo database under accession code 115507
(https://doi.org/10.5281/zenodo.8132755) as a consolidated source file
and raw images files alongwith BLI data. Sourcedata are providedwith
this paper.

Code availability
The computer code used to implement mathematical modeling is
available on GitHub (https://github.com/rubeshr1991/tcs_project.git),
indexed at Zenodo database as https://doi.org/10.5281/zenodo.
8130204.
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