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Genetic variation in the immunoglobulin
heavy chain locus shapes the human
antibody repertoire

Oscar L. Rodriguez1, Yana Safonova 2, Catherine A. Silver1, Kaitlyn Shields1,
William S. Gibson1, Justin T. Kos 1, David Tieri1, Hanzhong Ke 3,4,
Katherine J. L. Jackson 5, Scott D. Boyd 6, Melissa L. Smith 1 ,
Wayne A. Marasco 3,4 & Corey T. Watson 1

Variation in the antibody response has been linked to differential outcomes in
disease, and suboptimal vaccine and therapeutic responsiveness, the determi-
nants of which have not been fully elucidated. Counteringmodels that presume
antibodies are generated largely by stochastic processes, we demonstrate that
polymorphisms within the immunoglobulin heavy chain locus (IGH) impact the
naive and antigen-experienced antibody repertoire, indicating that genetics
predisposes individuals to mount qualitatively and quantitatively different
antibody responses.Wepair recently developed long-read genomic sequencing
methods with antibody repertoire profiling to comprehensively resolve IGH
genetic variation, including novel structural variants, single nucleotide variants,
and genes and alleles. We show that IGH germline variants determine the pre-
sence and frequency of antibody genes in the expressed repertoire, including
those enriched in functional elements linked to V(D)J recombination, and
overlapping disease-associated variants. These results illuminate the power of
leveraging IGH genetics to better understand the regulation, function, and
dynamics of the antibody response in disease.

Antibodies (Abs) are critical to the function of the adaptive immune
systemandhave evolved to be one of themost diverse protein families
in the human body, providing essential protection against foreign
pathogens. The circulating Ab repertoire is composed of hundreds of
millions of unique Abs1,2, and the composition of the repertoire varies
considerably between individuals1–3, potentially explaining the varied
Ab responses observed in a variety of disease contexts, including
infection4–8, autoimmunity9–12, and cancer13–15. The initial formation of
the Ab repertoire is mediated by complex molecular processes, and
can be influenced by factors such as prior vaccination and infection,
health status, sex, age, and genetics16–21. Delineating the mechanisms

that drive variation in the functional Ab response is critical not only to
understanding B cell-mediated immunity in disease, but also ulti-
mately informing the design of improved vaccines and therapies22,23.
With respect to genetic factors, the impact of variants in the immu-
noglobulin heavy (IGH) and light chain loci on the antibody response
has not been determined.

The human IGH locus is located immediately adjacent to the tel-
omereof chromosome 14, andharbors 129 variable (V), 27 diversity (D)
and 9 joining (J) genes that are utilized during V(D)J recombination to
produce the heavy chain of an Ab24. The IGH locus is now understood
to be among themost polymorphic and complex regions of the human
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genome3,25–29. Akin to the extensive genetic diversity observed in the
human leukocyte antigen (HLA) locus, >680 IGH alleles have been
cataloged solely from limited surveys30. In addition, IGH is highly
enriched for large structural variants (SVs), including insertions,
deletions, and duplications of functional genes, many of which show
considerable variability between human populations25,29. This
extensive haplotype diversity and locus structural complexity has
made IGH haplotype characterization challenging using standard
high-throughput approaches, and as a result it has been largely
ignored by genome-wide studies25,28,31. This has hindered our ability
to assess the contribution of IGH polymorphism in disease pheno-
types, and more fundamentally, our ability to conduct functional/
molecular studies. We currently understand little about the genetic
factors, and thus the associated molecular mechanisms, that dictate
the regulation of the human Ab response. In fact, much of what we
understand about the specific genomic factors involved in Ab
repertoire development and variability comes from inbred animal
models32–35, even though such questions would have greater rele-
vance to health if addressed in outbred human populations22. These
limitations continue to impede our understanding of the contribu-
tion of IGH polymorphism to disease risk, infection and response to
vaccines and therapeutics22,31,36,37.

Several lines of evidence now support the importance of IGH
genetic variation in humanB cell-mediated immune responses. Studies
in monozygotic (MZ) twins have shown that many Ab repertoire fea-
tures are correlated within twin pairs in both naïve and antigen-
experienced B cell subsets, indicating strong heritable factors under-
lying repertoire variability20,21,38. Other studies have demonstrated that
specific SVs and IG coding and regulatory element polymorphisms
contribute to inter-individual variability in expressed human Ab
repertoires23,39–42. These observations, alongside biases in IG gene
usage in various disease contexts, underscore potential connections
between the germline and Ab function39,41,43,44. Importantly, in many
cases, key functional amino acids identified in disease-associated and
antigen-specific Abs are encoded by polymorphic positions with vari-
able allele frequencies among populations23,41. These observations
indicate that IGH variants could offer direct translational opportu-
nities, with the ability to subset the population according to IG geno-
types formore tailored healthcaredecisions22. However, investigations
of the direct functional effects of human IGH germline variation con-
ducted to date have been limited to only a small fraction of IGH var-
iants known39–42.

Here, to identify IGH polymorphisms that affect variation in the
expressed Ab repertoire, we perform long-read sequencing to com-
prehensively genotype IGH and combine these data with adaptive
immune receptor repertoire sequencing (AIRR-seq) in 154 healthy
individuals. From these data, we detect an extensive number of single
nucleotide variants (SNVs), small insertion-deletions (indels) and SVs
across IGH, including novel IGH genes and alleles, and SVs collec-
tively spanning >500 Kb. Using the AIRR-seq data to profile the
expressed IgM and IgG repertoire, we directly test for effects of IGH
variants on IGHV, IGHD and IGHJ gene usage frequencies. We show
that the usage of genes in the IgM and IgG repertoires is associated
with IGH germline polymorphism. Strikingly, for a subset of genes,
IGH variants alone explain a large fraction of usage variation across
individuals and are strongly linked to IGH coding region changes.
Finally, we show that IGH gene usage variants are enriched in reg-
ulatory elements involved in V(D)J recombination and overlap SNVs
previously associated to human phenotypes, offering insight into the
underlying mechanisms linking germline variants to gene usage, and
highlighting potential pathways from disease risk variant to pheno-
type. Our results clearly demonstrate that genetics plays a critical
role in shaping an individual’s Ab repertoire, which will be necessary
to understand further in the context of human disease prevention
and Ab-mediated immunity.

Results
Paired IGH targeted long-read and antibody repertoire
sequencing
In this study, we compiled a dataset consisting of newly generated
germline IGH locus long-read sequencing data and newly/previously18

generated AIRR-seq datasets in 154 healthy individuals (Supplemen-
tary Data 1). To our knowledge, this dataset represents the most
comprehensive collection of matched full-locus IGH germline geno-
types and expressed Ab repertoires. Samples in the cohort ranged in
age from 17 to 78 years and included individuals who self-reported as
White (n = 81), South Asian (n = 20), Black or African American (n = 19),
Hispanic or Latino (n = 19), East Asian (n = 11), Native Hawaiianor Other
Pacific Islander (n = 1), American Indian or Alaska Native (n = 1), or
unknown (n = 2).

Using our previously published method28, we performed probe-
based targeted capture and long-read single-molecule, real-time
(SMRT) sequencing (Supplementary Table 1 and Supplementary
Fig. 1a, b) of the IGHV, IGHD, and IGHJ gene regions (collectively
referred to as IGH), spanning roughly ~1.1Mb from IGHJ6 to the telo-
meric end of chromosome 14 (excluding the telomere). DNA used for
each sample was isolated from either peripheral blood mononuclear
cells (PBMCs) or polymorphonuclear leukocytes (PMNs). PBMCs are
composed of 70–90% lymphocytes, with B cells making up only 5–10%
of the total number of lymphocytes. As a result, we would not expect
DNA derived from individual B cell lineages to make significant con-
tributions to the IGH assemblies. Themean coverage across IGH for all
individuals ranged from 2× to 331× (mean = 76×) with a mean read
length ranging from 3.5 to 8.9Kbp (mean= 6.4 Kbp; Supplementary
Fig. 1c, d). Similar to our previously published work28, HiFi reads were
aligned to a custom linear IGH reference inclusive of previously
resolved insertions and used to generate local haplotype resolved
assemblies. The mean total number of assembled bases per individual
was 2.3Mb (range =0.8–3.3Mb), close to the expected diploid size of
IGH (~2.2Mb); the number and lengths of assembly contigs varied
between Pacific Biosciences platforms (Supplementary Fig. 1e–g).
These assemblies were then used to curate IGH gene/allele and variant
genotype datasets (see below). In contrast to observationsmade using
lymphoblastoid cell lines28,45, no V(D)J rearrangements were observed
in the assemblies, demonstrating that sequencing reads from recom-
bined B cell-derived DNA did not contribute to the assembly process.

AIRR-seq is a powerful technique for analyzing the diversity and
composition of expressed adaptive immune receptors. Within a given
B cell during development, a single IGHV, IGHD and IGHJ gene are
somatically rearranged at the genome level. These recombined IGHV,
IGHD, and IGHJ segments are transcribed and spliced together with a
constant (IGHC) gene, which determines the receptor isotype (e.g.,
IgM or IgG). AIRR-seq molecular protocols allow for the selective
sequencing of VDJ receptors through the amplification of cDNA (or
rearranged genomic DNA) using primers targeting specific IGHC, IGHJ
and/or IGHV genes. In the cohort studied here, AIRR-seq data was
generated using two different 5’ rapid amplification of complementary
DNA ends (5’ RACE) protocols on total RNA isolated from PBMCs
collected from 107 individuals. For the remaining 47 individuals,
previously generated PBMC derived AIRR-seq data for IgM and IgG
was utilized18. A standardized workflow was developed to process
datasets generated using different protocols and sequencingmethods
(Methods). Similar sequences with the exact junction length, IGHV and
IGHJ allele were grouped into clones (“Methods”). After processing,
a mean of 9,038 B cell clones per repertoire was identified (Supple-
mentary Fig. 2a, b). The frequencies of IGHV, IGHD and IGHJ genes
among B cell clones were calculated (i.e., gene usage after collapsing
sequences by clone) for each individual. Together, these datasets
allowed us to resolve large SVs and other genetic variants, and perform
genetic association analysis with gene usage variation observed in the
expressed Ab repertoire.
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Identification of large breakpoint resolved structural variants
A major goal of this study was to generate a high-confidence set of
genetic variants and gene alleles in IGH in order to perform down-
stream genetic association analysis. Previous reports have demon-
strated that SVs are common in IGH, resulting in large insertions,
deletions, duplications and complex events25,27–29,46. The presence of
unresolved SVs can impact the accuracy of variant detection and
genotyping. Thus, a key first step in the creation of genotype call sets
was to breakpoint resolve and genotype SVs (Fig. 1a–c and Supple-
mentary Fig. 3), which allowed us to account for SVs in determining
homozygous, heterozygous, and hemizygous genotypes (Supple-
mentary Fig. 4) across all surveyed variants in the locus.

We utilized our previously published tool, IGenotyper, to gen-
erate haplotype-resolved assemblies. We then used these contigs in
conjunction with haplotype-specific HiFi reads to create a manually
curated genotype call set for large SVs (>9 Kbp; Fig. 1b) within 8

regions of IGH, excluding genotypes in samples that were not sup-
ported by haplotype-specific HiFi reads. The eight resolved SV regions
(Fig. 1a), 3 of which had overlapping coordinates, were characterized
as deletions (n = 3), a complex SV (n = 1), a duplication (n = 1), and
multi-allelic SVs (mSV; n = 3). Similar to other genetic variant types
(e.g., SNVs), an SV allele is defined as an alternative sequence/haplo-
type relative to the reference. All 8 large SVs altered gene copy num-
ber. Four of these regions represented SV hotspots with >2 alleles
(Supplementary Data 2), defined by variation in gene copy number.
The three mSVs contained 3, 5, and 12 alleles and the duplication
contained 3 alleles (Fig. 1a, c). In addition to the SV alleles described in
Watson et al.25,14 new SV alleles were breakpoint resolved, many of
which were supported by previous AIRR-seq analysis26,27,47. Detailed
descriptions of these SVs are provided in the Supplementary Material.

The SV allele frequencies ranged from 0.01 to 0.73 (Fig. 1c). On
average across our cohort, relative to the reference assembly used in

Fig. 1 | IGH genetic variation identified by long-read sequencing in a cohort of
154 individuals. a Map of the IGH locus with annotation tracks shown in the fol-
lowing order (top to bottom): joining (IGHJ), diversity (IGHD) and variable (IGHV)
genes, structural variants (SV) and SV alleles. The numbers assigned to each SV
serve as a unique identifier, distinguishingone SV fromanother. These numbers are
consistently referenced throughout the figures to identify each SV. b The sizes for
each SV allele. All SVs have at least 1 allele greater than 9 Kbp (black dotted line, y
axis). c The frequency of alleles for each SV. The allele frequencies for mSV/(6) is
not shown. dDiploid gene copy number of genes in an individual carryingmultiple
homozygous and hemizygous deletions; deleted genes are indicated (red boxes;

n = 36). e Boxplots showing the number of genes deleted for every individual in the
cohort grouped by self-reported ethnicity; whiskers and boxes represent the
minimum, themaximum, themedian, and the first and third quartiles, with outliers
plotted as points. f Number of characterized SNVs with a minor allele frequency
≥0.05 (common) and <0.05 (rare). g Number of common SNVs identified in the
study cohort present/absent in dbSNP. A large proportion (54%) of common SNVs
identified here using long-read sequencing were missing, defined as rare (6%), or
had no allele frequency data in dbSNP (48%).h The total count of indels (2–49bps)
and SVs identified (≥50bps). SV structural variant, IGHV IGH variable, IGHD IGH
diversity, IGHJ IGH joining, mSV multi-allelic structural variant, DEL deletion.
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our analysis, we found that each individual carried 5.5 large SVs,
resulting in homozygous loss of 6.7 genes (range = 0–17), 26.11 gene
alleles (range = 14–48; Fig. 1d), and deleted diploid bases summing to
257 Kbp (range = 49–493 Kbp). The observed number of genes and
bases deleted within individuals varied by self-reported ethnicity
(Fig. 1e). In total, 33 out of 54 IGHV and 6 out of 26 IGHD genes were
deleted in 1 or more of the SVs identified in at least one indivi-
dual (Fig. 1a).

Long-read sequencing identifies SNVs, indels, and smaller SVs
within IGH
SNVs and indels are difficult to characterize within segmental dupli-
cations and SVs. Here, we used haplotype-resolved assemblies tomore
accurately detect and genotype SNVs. In total, we identified 20,510
SNVs in one or more individuals, of which 7980 (39%) were common,
defined by a minor allele frequency (MAF) ≥0.05 (Fig. 1f). While the
majority (97%) of all non-redundant SNVs were in non-coding regions,
472, 103, and 40 SNVs were within exons, introns, and recombination
signal sequences (RSS), respectively. Interestingly, SNVs within these
genomic features were non-uniformly distributed across IGHV genes
(Supplementary Fig. 5). For example, while the mean number of SNVs
in IGHV gene RSS was 0.68, several genes, including IGHV3-21 and
IGHV3-66 had 7 and 5 SNVs in their RSS, respectively. Similarly, the
mean number of SNVs across IGHV introns was 1.7, but IGHV3-23,
IGHV4-39 and IGHV7-81 had 9, 8, and 8 intronic SNVs, respectively.

Based on earlier reports of elevated numbers of SNVs in the IGH
locus25, we hypothesized that many of the SNVs identified in this
cohort would be novel. Indeed, a total of 4625 (23%) SNVs were not
cataloged in dbSNP (release 153), including 1513 (19%) common SNVs
(Fig. 1g). Of the total SNVs not in dbSNP, 2393 (59%) were within SVs.
Even though a largeportion of commonSNVswere in dbSNP,we found
that 3126 (48%) of the common SNVs had no allele frequency data and
418 (6%) were labeled as rare variants (Fig. 1g). Thus, in total, 63%
(5057) of common SNVs identified in our cohort were either missing
from dbSNP or are lacking accurate genotype information.

The incomplete and inaccurate genotype frequency information
available in dbSNP for IGH is likely in part caused by the prevalence of
large SVs in the region, which have hindered the analysis of standard
high-throughput genotyping approaches. This is supported directly in
our data, as 3406 (43%) of the common SNVs we identified reside
within SVs. Here, since SNVswere detected by aligning both haplotype
assemblies to the reference, SNVs overlapping heterozygous deletions
were simultaneously detected and genotyped as hemizygous (Sup-
plementary Fig. 4). Hemizygous SNVs are often genotyped as homo-
zygous when using short-read and/or microarray data and are
excluded from studies due to a departure fromMendelian inheritance
and Hardy-Weinberg equilibrium48. For 2136 (27%) common SNVs, we
observed that the frequency of hemizygous individuals was greater
than individuals with both chromosomes present (Supplementary
Fig. 4c). Critically, analysis of SNVs within the complex SVs we identi-
fied was possible due to long-read assemblies, highlighting the added
utility of long-read data in IGH beyond assembly and SV detection.

In addition to SNVs and large SVs, we identified indels (2–49 bp)
and small non-coding SVs (50bp–9 Kbp) using haplotype-resolved
assemblies and validated these using mapped HiFi reads (Fig. 1h). In
total, 966 indels and 71 small SVs were detected, including expansions
and contractions of tandem repeats, mobile element insertions and
complex events. We additionally observed highly polymorphic indels
and SVs (Supplementary Fig. 6). For example, a tandem repeat with a
motif length of 86 bp 5Kbp upstreamof IGHV3-20 contained 7 tandem
repeat alleles ranging in motif copies from 3 to 9 (Supplementary
Fig. 6a). Another example includes a complex SV between IGHV1-2 and
IGHV1-3 with three SV alleles containing multiple copies of a tandem
repeat with low sequence matches between motif copies (Supple-
mentary Fig. 6b). An alignment between the 3 SV alleles contains

multiple mismatches including base differences, insertions, and
deletions.

Identification of novel IGH gene alleles using long-read
sequencing
Analysis of AIRR-seq data critically relies on the assignment of AIRR-
seq reads to specific IGHV, IGHD, and IGHJ gene alleles using existing
germline databases. Accurate assignments of reads to gene alleles is
used for analyzing a variety of Ab repertoire features, including gene
usage and somatic hypermutation. In order to obtain amore complete
allele database, we used haplotype-resolved assemblies to annotate
additional undocumented novel alleles, defined as alleles absent from
the ImMunoGeneTics Information System (IMGT; imgt.org) germline
database. In total, we identified 125 IGHV and 5 IGHD high-confidence
putative novel alleles (Supplementary Fig. 7), conservatively defined as
alleles with exactmatches to 10 ormore HiFi reads, or identified in two
or more individuals (Supplementary Data 3). Of these 125 IGHV alleles,
72 (58%) were found in at least 2 individuals; 23 (18%) and 9 (7%) were
found in at least 5 and 10 individuals, respectively; the remaining 53
alleles were found in only one sample, but were supported by ≥10 HiFi
reads. Of the 5 novel IGHD alleles, 4 were found in at least 2 individuals
and 3 were found in 14 or more individuals. In total, the discovery of
125 and 5 novel IGHV and IGHD alleles represents a 37 and 11% increase
in the number of IMGT-documented IGHV and IGHD F/ORF alleles,
respectively.

Gene usage in the expressed antibody repertoire is strongly
associated with common IGH variants
Across the genome, genetic variation has consistently been associated
with molecular phenotypes such as gene expression and splicing49.
Performing such analysis on repetitive and SV dense loci such as IGH
has been limited by the use of short-read or microarray derived var-
iants. Here, to determine if the long-read sequencing derived genetic
variants described above impact the expressed Ab repertoire, we used
a quantitative trait locus (QTL) framework (seeMaterials andMethods)
to test if gene usage in the naive (IgM) and antigen-experienced (IgG)
repertoire was associated with variant genotypes. The clonal gene
usage for 50, 25, and 6 IGHV, IGHD and IGHJ genes, respectively, was
tested against all common genetic variants (7042 SNVs, 223 indels, 32
SVs) including SV alleles at 6 of the 8 large (>9 Kbp) SV regions (Fig. 2,
Supplementary Fig. 8). In total, across the IgM and IgG repertoires, a
collective set of 4380unique variants (4310 SNVs, 58 indels and 12 SVs)
were statistically associated (after Bonferroni multiple-testing correc-
tion, P < 9.2e−6) with gene usage changes in 40 (80%), 20 (80%), and 4
(66%) unique IGHV, IGHD and IGHJ genes (Table 1), with themajority of
associations overlapping between IgM and IgG subsets (Supplemen-
tary Fig. 8). Summary data for each gene analyzed in our dataset is
provided in Supplementary Data 4 for IgM and IgG. This includes:
(1) the number of gene usageQTL (guQTL) variants identified that pass
multiple-testing correction; (2) the −log10 P value of the lead guQTL,
defined as the variant with the lowest P value; (3) lead guQTL variant
type (SNV, indel, SV); (4) the variance explained by the lead guQTL;
and (5) the mean fold change in usage between the reference and
alternate genotypes. Given the gene usage correlation and high guQTL
overlap between IgM and IgG (Supplementary Fig. 9), and the fact that
gene usage is a product of V(D)J recombination, we focus on the IgM
repertoire in the following results sections.

Given the extent of SVs that alter gene copy number within IGH,
we expected to observe effects of large SVs on gene usage. Within the
IgM repertoire, therewere 5 IGHDgenes and 6 IGHVgenes that resided
within SV regions, and for which the lead guQTL variant was the SV
itself or a variant in high LD with the SV (r >0.9; Fig. 2b). These SV
associations explained between ~20% and >77% of the variation in IgM
usage observed for associated genes (Fig. 2b). As an example, we
highlight the association between IGHV3-64D usage and a complex SV
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(P = 1.46e−42; Fig. 2b), which alters the genomic copy number of 4
functional IGHV genes (IGHV3-64D, IGHV5-10-1, IGHV1-8, and IGHV3-9)
from0 to 2 diploid copies (Fig. 1a). The impacton gene usage of this SV
was as expected, following an additivemodel in which individuals with
zero copies of a given gene had the lowest mean usage (in this case
0%), whereas individuals with 2 diploid copies of a given gene had the
highest mean usage, and heterozygotes showed intermediate usage.
Other large deletions followed a similar pattern. The deletion spanning
the genes IGHD2-8 to IGHD3-3 was associated with the usage of six
IGHD genes (Fig. 3a), five of which reside within the deletion (IGHD2-8,
IGHD1-7, IGHD6-6, IGHD4-11/4-4, and IGHD3-3; Fig. 3a); these results
were consistent with those noted previously42. Due to low frequency,
the largest mSV alleles (Supplementary Fig. 3a and Fig. 1a), which
resulted in deletion of 16 IGHV genes were not tested; however, we
observed empirically that the 7 individuals carrying either one of these
large deletions had decreased usage across 15 out of the 16 genes
(Supplementary Fig. 10). In addition to SVs that resulted in gene

deletions, we also noted an association with the duplication char-
acterized for the IGHV3-23/D genes, at which we tested for effects of
copy number genotypes between 2 to 4 diploid copies. Again, this
effect was consistent with an additive contribution of gene copy
number, with mean usage increasing incrementally from 7.4% in indi-
viduals with 2 copies, to ~13% in individuals with 4 copies (Fig. 3b);
individuals carrying the rare 3-copyhaplotype (Supplementary Figs. 3d
and 11) were excluded from this analysis.

We additionally identified 3 IGHD genes (IGHD6-13, IGHD3-9 and
IGHD3-10) and 2 IGHV genes (IGHV1-2 and IGHV4-4) that were
associated with SVs or a variant in high linkage disequilibrium
(LD, r2 > 0.9) with a SV, although the copy number of these genes was
not directly altered (Supplementary Data 4). The deletion spanning
the IGHD genes mentioned above was the lead variant associated
with IGHD3-10 usage, even though the gene is ~3 Kbp away from the
deletion. Contrary to genes residing within the deletion, the mean
usage of IGHD3-10 increased from 10 to 19% in individuals with the
deletion on both haplotypes (Supplementary Fig. 12), suggesting that
the deletion modulated the usage of these genes through cis-reg-
ulatory mechanisms50,51. Interestingly, usage of the gene IGHV1-69-2,
which resides within a deletion SV, was associated with a secondary
SV, located ~322 Kb away. However, given the low usage of IGHV1-69-
2, deeper repertoire sequencing will likely be needed to tease out the
effect of both SVs.

We next focused on the 42 genes (IGHJ, n = 2; IGHD, n = 12; IGHV,
n = 28) for which the lead guQTL was not an SV. The lead guQTLs
associatedwith 40of thesegeneswere SNVs, and the remaining 2were

Table 1 | Number of variants and genes identified by guQTL
analysis (ANOVA and linear regression; P < 9.2e−6)

Repertoire # of variants # of genes

SNVs Indels SVs IGHJ IGHD IGHV

IgM 3967 50 8 2 (33%) 20 (80%) 37 (74%)

IgG 3675 36 11 3 (50%) 14 (56%) 33 (66%)

IgM+ IgG 4310 58 12 4 (66%) 20 (80%) 40 (80%)

Fig. 2 | IGH variants impact gene usage in the IgM repertoire. Per gene (x axis, all
panels) statistics from guQTL analysis (ANOVA and linear regression) in the IgM
repertoire, including: a the number of associated variants (P < 9e−6 threshold after
Bonferroni correction); b the (i) −log10(P value) of the lead guQTL, (ii) adjusted R2

for variance in gene usage explained by the lead guQTL and (iii) the variant type for
the lead guQTL; and c the fold change in gene usage between genotypes at the lead
guQTL. Summary statistics are provided in Supplementary Data 4.
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indels; although we identified the presence of smaller SVs and tandem
repeats in our dataset, none of these were found to be lead variants in
our analysis. For 38 of the genes, we identified between 2 and 900
guQTLs (Fig. 2a), reflecting local haplotype structure. In some cases,
an SNV or indel was the lead guQTL for genes residing within SVs
indicating that multiple variant types need to be taken into account
to fullymodel the genetic effects on usage (see below). Similar to SVs,
lead guQTLs that were SNVs or indels explained a significant fraction
of usage variation, in some cases up to 69% (range, R2 = 0.003–0.69;
mean = 0.29), exhibiting large usage differences between genotype
groups (Fig. 2b). The lead guQTLs for all 42 genes resided within
non-coding regions. The median genomic distance between inter-
genic guQTLs and their associated genes was 5.1 Kbp (min = 13 bp,
max = 1.1Mbp).

The SNV-driven guQTL in this dataset with the lowest P value was
for IGHV3-66 (P value = 2.86e−37; Fig. 3c–e). In total, there were 776
SNVs associated with the usage of IGHV3-66 (Fig. 3c). These included
10 lead SNVs in perfect LD (r2 = 1), spanning a region of 11.6Kbp
surrounding the gene, which explained ~69% of variation in usage,
representing amean fold-change in usage of 11.2-fold between the two
homozygous genotypes (Fig. 3d, e).

Conditional analysis identifies multiple variants associated with
the usage of single genes
Previous eQTL studies have demonstrated that multiple independent
variants can influence gene expression49. Here, we hypothesized that
the usage of individual genes could be affected by multiple variants,
such as multiple SNVs, or a combination of variant types. To test this,
we performed a conditional analysis by running an additional guQTL
test in individuals homozygous for either the reference or alternate
allele for the lead guQTL variant of all genes. Out of the 59 genes
statistically associated (P < 9.2e–6; Table 1) with gene usage in the IgM
repertoire, 55 genes were tested for additional associations. The 4
genes not tested had fewer than 50 individuals with homozygous
reference or alternate allele genotypes. From this analysis, we
identified 14 genes with significant secondary/conditional guQTLs
(Supplementary Data 5). For 12 of these 14 genes, the lead guQTL and

secondary guQTL were 2 SNVs, and for the remaining 2 genes, this
analysis revealed combined effects of an SV (lead guQTL) and SNV
(secondary guQTL). Themean genomic distance between the lead and
secondary guQTL variants was 36.2 Kbp (range = 1.7−161.4 Kbp). Here,
we present IGHV1-2 (Fig. 4) and IGHV3-66 (Supplementary Fig. 13) as
examples of genes associated with 2 independent variants. Data for all
genes is provided in Supplementary Data 5.

For IGHV1-2, the lead guQTL was an SV ~31 Kb away from IGHV1-2
(Fig. 4a), which involved the deletion of IGHV7-4-1. Individuals homo-
zygous for the deletion used IGHV1-2 at a 2.8-fold higher rate than
individuals homozygous for the reference allele (Fig. 4b). Conditioning
on individuals without the deletion, identified 35 SNVs additionally
associated with the usage of IGHV1-2 (Fig. 4c). Of these individuals,
heterozygotes for the secondary lead conditional guQTL used IGHV1-2
(Fig. 4d) at a level (mean usage = 3.8%) similar to those with a deletion
in both haplotypes (mean usage = 4.2%). Sequencing data from het-
erozygotes at the lead conditional guQTL were inspected manually to
confirm that IGHV7-4-1 deletions were not present in these individuals.

For IGHV3-66, the lead guQTL was an SNV. Individuals homo-
zygous for the reference and alternate allele had a mean usage of 0.19
and 2.14%, respectively (Supplementary Fig. 13a). By conditioning on
this variant, considering only individuals homozygous for the refer-
ence allele, a total of 438 additional SNVs were significantly associated
with IGHV3-66 usage (Supplementary Fig. 13b). At the SNV with the
lowest P value from this analysis, only reference allele homozygotes
and heterozygotes were observed. In heterozygotes, the mean usage
was 0.006% compared to 0.0003% in homozygotes, with many indi-
viduals in the homozygote group exhibiting 0% usage (Supplementary
Fig. 13c). Thus, based on this conditional guQTL analysis, variation in
IGHV3-66 usage can be further explained even in individuals with
relatively low usage.

Gene by guQTL network analysis reveals that the usage of
multiple genes is associated with overlapping sets of variants
In addition to discovering multiple variants associated with the usage
of a single gene, our guQTL association analyses also identified
single variants associated with the usage of multiple genes. This was

Fig. 3 | Associations of IGH SVs and SNVswith gene usage in the IgM repertoire.
a Gene usage for genes within the IGHD gene region deletion (see Fig. 1a, b).
Individuals homozygous for the deletion (“DEL/DEL”) use those genes at lower
frequencies than the rest of the cohort. b Gene usage for IGHV3-23/-23D in indivi-
duals partitioned by gene copy number (see Fig. 1a, b). Individuals carrying more
gene copies use these genes athigher frequencies. cSNVs associatedwith the usage
of IGHV3-66 using linear regression. The Manhattan plot shows the −log10(P value)
for all SNVs in the IGH locus tested for IGHV3-66; there are 10 lead SNVs/guQTLs
with the same P value (P value = 4.8e−38). Dark red SNVs are those SNVs that passed

Bonferroni correction (P value < 9e−6). d IGHV3-66 usage in individuals partitioned
by genotypes at 1 of the 10 lead guQTLs. eGenomic localization (hg38; GRCh38) of
lead guQTLs (top track) relative to IGHV3-66, as well as cCRE and TF locations
(middle and bottom tracks). Genomic map was made using the UCSC Genome
Browser (https://genome.ucsc.edu/). Boxplots display the median, 25th percentile,
75th percentile, and whiskers that extend up to 1.5 times the inter-quartile range
(IQR) from the respective percentiles. Data points outside the whiskers are also
plotted. DUP duplication.
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intriguing as V(D)J recombination studies in animal models have
demonstrated the coordinated selection of genes through the same
regulatory elements32,52.. In mice, IG V genes reside in topologically
associating domains (TADs) and disruption of regulatory elements
within the IG loci has been shown to cause altered gene usage within
thesedomains53–55. Given this, we further assessed coordinated genetic
signals involving sets of multiple variants and genes. We found that
2,607 (66%) guQTL variants were associated (P < 9.2e−6) with >1 gene
(Fig. 5a).We reasoned that this could havemultiple underlying causes:
(1) the SNV is tagging an SV overlapping multiple genes; (2) the SNV is
taggingmultiple causative regulatory SNVs; (3) the SNV is overlapping
a regulatory element controlling multiple genes; or (4) a combination
of any of the prior explanations.

To determine the set of guQTL genes with the same set of guQTL
variants, we created a network with genes as nodes and edges con-
necting genes associated with the same guQTL SNVs (Supplementary
Fig. 14). The weight of the edges corresponded to the number of
guQTL SNVs connecting two genes. A total of 23 cliques (subgraphs in
which all genes are connected) were identified with edge weights >2
(i.e., more than 2 SNVs connecting 2 genes; Supplementary Fig. 15).
These 23 cliques included a total of 16 IGHD and 29 IGHV genes, with
the number of genes per clique ranging from 2 to 9. Out of the 23
cliques, 10 were primarily composed of genes within SVs.

We also identified cliques made up primarily of genes outside of
SVs (Fig. 5b). For example, the SNV shown in Fig. 5cwas associatedwith
the usage of 7 genes, IGHV4-31, IGHV3-53, IGHV4-59, IGHV4-61, IGHV3-
64, IGHV3-66 and IGHV1-69/-69D; this variant was located ~120 Kbp
away from the nearest SV, and exhibited low LDwith the SV (r2 = 0.09).
Interestingly, gene usage patterns associatedwith this SNVwere either
negatively or positively correlated depending on the gene (Fig. 5d).
Individuals homozygous for the reference allele had higher usage of

IGHV4-31, IGHV3-53, IGHV4-61 and IGHV1-69/-69D and lower usage for
the remaining genes. In summary, we show that the usage of specific
sets of genes in the repertoire are associated with the same sets of
variants, indicating the potential for complex and coordinated reg-
ulatory mechanisms.

Variants associated with gene usage variation are enriched in
regulatory regions involved in V(D)J recombination
Large-scale studies using expression, epigenomic and disease or trait-
associated variant datasets have identified non-coding variants in
regulatory elements linked to their phenotypes of interest49,56–58. Spe-
cific to V(D)J recombination, recombination signal sequences (RSS) are
sequence motifs in IG and T cell receptor non-coding regions used by
RAG1/RAG2 proteins to direct double-strand DNA breaks and initiate
somatic recombination59. Additionally, CCCTF-binding factor (CTCF)
and cohesin binding has been shown to regulate locus contraction and
recombination in IGH60–62. We therefore hypothesized that variants
might modulate gene usage through regulatory elements such as
CTCF-binding sites. To test this, we tested for the enrichment of guQTL
SNVs within ENCODE Registry candidate cis-Regulatory Elements
(cCREs) (Fig. 6a). The cCRES were split into 9 classifications: (1) CTCF-
only andCTCF-bound, (2) proximal enhancer-like andCTCF-bound, (3)
proximal enhancer-like, (4) DNase andH3K4me3, (5) promoter-like, (6)
distal enhancer-like, (7) distal enhancer-like and CTCF-bound, (8)
DNase, H3K4me3, and CTCF-bound, and (9) promoter-like and CTCF-
bound. Using a one-sided Fisher exact test, we determined that guQTL
SNVs were significantly enriched within CTCF-only and CTCF-bound
(Fishers exact, P = 3.8e−04) and distal enhancer-like and CTCF-bound
(P = 0.014). An enrichment in cCREs marked by DNAse and H3K4me3
was also observed, but was not statistically significant (Fishers exact,
P =0.08). A total of 23 out of 3573 guQTL SNVs tested were within

Fig. 4 | Example of additional variants associated with gene usage after con-
ditioning on lead guQTL. a Map showing positions of the lead and conditional
guQTLs for IGHV1-2 (bottom tracks). b IGHV1-2 usage in individuals partitioned by
SV genotype; individuals homozygous for the IGHV7-4-1 deletion have greater
IGHV1-2 usage on average. c Manhattan plot showing the statistical significance of
all SNVs tested for secondary effects on IGHV1-2 gene usage using linear regression

(red indicates Bonferroni corrected significant SNVs), after conditioning on geno-
type at the IGHV7-4-1 SV. d IGHV1-2 usage among individuals of the “REF/REF”
IGHV7-4-1 SV genotype (b), partitioned by genotype at the secondary guQTL (c).
Boxplots display the median, 25th percentile, 75th percentile, and whiskers that
extendup to 1.5 times the inter-quartile range (IQR) from the respective percentiles.
Data points outside the whiskers are also plotted.
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CTCF-only and CTCF-bound cCRE compared to 2 out of 2419 common
non-guQTL SNVs. These 23 SNVs were significantly associated with 3
IGHD genes and 19 IGHV genes and resided within 12 distinct cCREs.
Interestingly, 4 SNVs within a CTCF-only and CTCF-bound cCRE
(ENCODEAccession: EH38E1747546; chr14:106695880–106696139
(hg38)) were found between IGHV3-66 and IGHV1-69 and associated
with usage of IGHV3-53, IGHV4-59, IGHV3-66, IGHV3-64 and IGHV1-69/-
69D, included in the clique noted above (Fig. 5c, d). Within the DNAse
and H3K4me3 cCREs, there were 10 SNVs associated with gene usage
for eight and two IGHD and IGHV genes, respectively. H3K4me3 is
critical for V(D)J recombination via interaction with RAG2; disruption
of the binding between RAG2 and H3K4me3 has been shown in vivo to
reduce V(D)J recombination63.

We additionally compared the enrichment of guQTLs in specific
transcription factor binding sites (TFBS) using the ENCODE3 Tran-
scription Factor ChIP-seq binding site dataset (Fig. 6b). A total of 365

TFBS with high normalized ChIP-seq signals were tested. Again, an
enrichment of guQTLs in the CTCF binding sites was observed (Fishers
exact, P =0.004). Significant enrichments were observed for eight
additional TFBSs (P < 0.05), including EED; the disruption of Eed in
mice has been shown to affect IGHV gene usage54. The fact that SNVs
are enriched in sites associated with V(D)J recombination rather than
transcription (e.g. promoters and enhancers) provides strong initial
support that the guQTLs identified here impact gene usage via effects
on V(D)J recombination.

IGH gene alleles are linked to guQTLs
IGH germline coding variants can directly alter Ab function by mod-
ifying antigen binding23,64,65, and previous studies have demonstrated
that specific coding alleles are utilized at different frequencies within
the repertoire23,41. To assess this more comprehensively in our dataset,
we tested for associations between IGH gene alleles and all lead

Fig. 5 | guQTL network analysis reveals coordinated genetic effects on gene
usage patterns. a Bar plot showing the number of SNVs (guQTLs) significantly
associated (linear regression; P value < 9e−6) with varying numbers of genes
(n = 1–10); this includes a large number of SNVs that were associated with >1 gene
(see Fig. 2). b Examples of cliques identified from a comprehensive network of
genes and guQTLs (see also Supplementary Figs. 14 and 15), demarcating groups
of genes associated with overlapping sets of guQTLs. For each clique, genes are
shown as nodes, connected by edges displaying the number of shared guQTLs.
c Manhattan plot showing statistically significant SNVs (linear regression;

P value < 9e−6) associated with the usage of 7 genes; each point is colored by the
gene it is associated with. The position of an SNV (rs8008062) associated with all 7
genes is indicated by the dashed line. d Boxplots show usage variation for each
gene partitioned by genotypes at this SNV. The number of individuals with A/A, A/G
andG/Ggenotypes is 61, 69, and 24, respectively. Boxplots display themedian, 25th
percentile, 75th percentile, and whiskers that extend up to 1.5 times the inter-
quartile range (IQR) from the respective percentiles. Data points outside the
whiskers are also plotted.
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guQTLs (Fig. 7).We found that allele frequencydistributions at 21 IGHV
genes were different based on lead guQTL genotype (Fisher exact test,
P <0.05; Supplementary Data 6). The top three genes that exhibited
coding allele genotype biases (based on P value) between guQTL var-
iant genotype groups were IGHV3-64 (P = 6.9e−57; Fig. 7a), IGHV3-53
(P = 4.4e−54; Fig. 7c), and IGHV3-66 (P = 5.0e−49; Fig. 7c). In the case of
IGHV3-66, out of the 62 individuals who were homozygous for the
reference allele at the lead IGHV3-66 guQTL, 35 (52%) and 15 (23%) were
homozygous and heterozygous, respectively, for the IGHV3-66*03
allele. In contrast, IGHV3-66*03 was not observed in any of the indivi-
duals homozygous for the alternate allele at this guQTL, whichwere all
homozygous for IGHV3-66*01. These results show a direct genetic link
between gene usage and coding variation, indicating that both should
be considered in future studies investigating germline effects on Ab
function.

Variants linked to disease and other traits overlap guQTLs
Biased gene usage has consistently been observed in autoimmune and
infectious diseases37,66. We have argued that one possible explanation
for these biases is that they aremediated through genetic variants that
influence Ab antigen specificity and/or gene usage22. Integrating
genome-wide association studies (GWAS) and eQTL datasets has been
an effective method for assessing the potential links between genetic
variation, function and disease pathology48,67,68. Here, we assessed
whether IgM and IgG guQTL SNVs were also identified by GWAS
(Fig. 8a). In total, across IGH (chr14:105,860,000-107,043,718,

GRCh38) there were 41 SNVs associated with 17 traits/diseases repor-
ted in the NHGRI GWAS catalog (P < 4e−6). In total, 22 SNVs from 10
independent GWAS performed on 8 diseases/traits overlapped guQTL
SNVs64,69–77. These included SNVs associated with rheumatic heart
disease (RHD) and Kawasaki disease (KD). In both diseases, SNVs were
significantly associated with the usage of genes previously implicated
by GWAS (IGHV4-61 for RHD and IGHV3-66 for KD)64,69. In the case of
RHD, the risk variant identified in IGH is the strongest genetic asso-
ciation identified to date for this disease64, and has implicated IGHV4-
61*02 in increased risk. Interestingly, only individuals with the GWAS-
guQTL SNV reference allele carried IGHV4-61*02, and these individuals
had significantly lower IGHV4-61usage in IgMand IgG. In bothRHDand
KD, the usage of additional genes were also associated with the same
guQTL SNV. For KD, the SNVs detected in the GWAS were also asso-
ciated with IGHV1-69/-69D, IGHV3-64 and IGHV4-61 usage (Fig. 8b).
Similar to using expression data to prioritize genes affected by SNVs
identified from GWAS, here we show that guQTL-GWAS SNVs are
associated with the usage of multiple genes in the Ab repertoire.
Additional diseases/traits associated with SNVs identified by both
GWAS and our guQTL analysis included the proportion of morpholo-
gically activated microglia in the midfrontal cortex, and estradiol
levels, which were associated with the usage of IGHV1-69/-69D and
IGHV2-70D, and IGHV1-8, IGHV3-64D, IGHV3-9 and IGHV5-10-1 usage,
respectively (Fig. 8c). In both examples, the GWAS SNVs and guQTLs
were in strong LDwith SVs spanning these respective sets of candidate
genes (r =0.51 and r =0.98) suggesting that the observed effects could
at least in part be SV mediated.

Repertoire-wide gene usage profiles are more highly correlated
in individuals carrying shared IGH genotypes
Previous studies in monozygotic twins have shown that gene usage
frequencies in genetically identical individuals are more highly corre-
lated than in unrelated individuals20,21. We reasoned that such effects
could also be observed at the population level by assessing correla-
tions in individuals sharing greater versus fewer IGH guQTL
SNV alleles. To assess this, we used allele sharing distance78,79 (ASD) to
group individuals with similar genotypes across IGH and compare the
IgM gene usage correlation between groups. Two ASD-based group-
ings were performed using either (1) the lead guQTLper gene (Fig. 9a),
or (2) all guQTLs (Fig. 9b). We tested the latter case as we noted above
that multiple variants could influence a single gene, and it has been
shown that accounting for a greater number of common variants
associated with a given phenotype can explain more variation in that
phenotype80. Repertoire-wide gene usage correlations between sam-
ples were calculated using the Pearson’s Correlation coefficient. Using
only the lead guQTL variants for each gene, individuals with the most
overlapping guQTL genotypes (low ASD) had a higher mean IgM gene
usage correlation than those in the group with the highest ASD scores
(0.958 vs. 0.943; KS test P value < 3.8e−15). The same pattern was
observed when using all statistically significant (P < 9.2e−6; Table 1)
IgM guQTL variants (0.956 vs. 0.943; KS test P =0.008). These results
indicated that genetic backgroundmakes a contribution to the overall
gene usage composition of the repertoire, and expand on previous
observationsmade in twin studies20,21, by demonstrating that heritable
components of the heavy chain repertoire can be directly linked to
germline variants in the IGH locus.

Discussion
In this study, we show conclusively that IGH genetic polymorphisms
influence the composition of the Ab repertoire through impacts on
gene usage frequencies. Resolution of complex IGH genetic variants
using long-read sequencing identified associations between these
variants and gene usage within the IgM and antigen-stimulated (IgG)
repertoire. Variants were found to affect the Ab repertoire via (1) SVs
that alter IGH gene copy number, including deletions that completely

Fig. 6 | Enrichment of guQTL variants in regulatory elements and transcription
factor binding sites involved in V(D)J recombination. a, b Bar plots showing the
fraction of guQTL SNVs (P value < 9e−6) that overlapped (a) ENCODE candidate cis-
regulatory elements, and (b) ENCODE3 TFBS, compared to the overlap observed
for the non-guQTL set of variants used in the guQTL analysis. Regulatory elements
and TFBS for which statistically significant enrichments were observed are indi-
cated by asterisks: One-side Fisher’s Exact Test; *P value < 0.05; **P value < 0.005;
***P value < 0.0005; ****P value < 0.00005.
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remove genes from the repertoire, as well as through (2) SNVs and
indels, including those overlapping regulatory elements and tran-
scription factor binding sites linked to V(D)J recombination. The
strength of these associations was substantial, in some cases explain-
ing >70% of variance in usage of particular genes. Building on past
observations from twin studies20,21, we found that repertoire-wide gene
usage patterns were more similar in individuals sharing a greater
number of genotypes across IGH. Together, these findings (1) advance
our basic understanding of repertoire development, illuminating
regions of IGH involved in gene regulation, and (2) more broadly
represent a paradigm shift towards amodel in which the Ab repertoire
is formed by both deterministic and stochastic processes. This shift

has critical implications for delineating the function of Abs in disease,
with great potential to inform the design and administration of ther-
apeutics and vaccines.

SVs are a hallmark of the IGH locus25–27,47,81, which was clearly
supported by our analysis. We breakpoint resolved 23 SV haplotypes/
alleles within 8 different SV loci spanning 542 Kbp of IGH; this included
14 novel SV alleles, and collectively resulted in copynumber changes in
6 IGHD genes and 33 IGHV genes, representing 22 and 61% of all IGHD
and IGHV genes in IGH, respectively. Critically, our ability to resolve
SVs allowed us to more comprehensively detect and genotype SNVs
and indels. In total, we identified 20,510 unique SNVs and 966 indels,
7980 and 223 of which were common. A significant fraction of these

Fig. 7 | Association between IGHV coding region alleles and lead guQTL gen-
otypes. a–c For each IGHV gene, the distribution of coding region allele-level
genotypes among individuals partitioned by genotype at the lead guQTL for that
gene was assessed (Fisher’s exact test). For the three genes with the lowest P values
from this analysis (a; IGHV3-64, b; IGHV3-53 and c; IGHV3-66), IgM gene usage

(boxplots) and the distributions (stacked bar plots) of the respective coding allele
genotypes across individuals partitioned by guQTL genotype are provided. Box-
plots display themedian, 25th percentile, 75th percentile, and whiskers that extend
up to 1.5 times the inter-quartile range (IQR) from the respective percentiles. Data
points outside the whiskers are also plotted.
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overlapped SVs (n = 3406), which we accurately genotyped as hemi-
zygous. Additional novelty was discovered through the annotation of
IGH genes, revealing 130 undocumented alleles not currently curated
in the germline gene database IMGT82. Together, these data hint at the
extent of variation that we have yet to describe in this complex locus,
and bolster previous concerns that past genetic studies have over-
looked IGH variants28,31,45. A major outcome of this study is that these
data can start to be used to augment existing resources and databases
that aim to provide improved reference data for the IG loci30,83.

By combininggenetic variantswith geneusage information across
IGHV, IGHD and IGHJ genes derived fromAIRR-seq data, we performed
the first gene usage QTL analysis, assessing associations between 7297
common variants and 81 genes to identify polymorphisms explaining
gene usage in the expressed IgM and IgG repertoire. These analyses
revealed that half (52%) of common variants were associatedwith gene
usage variation (based on statistical support after multiple-testing
correction), impacting 59 (73%) genes in the IgM repertoire, with
similar results in the IgG repertoire. This indicated that patterns in IgG
are likely highly influenced by the gene usage composition initially
established in IgM, as noted previously20,21. It is important to note that
we chose to use a stringent P value threshold (Bonferroni; P < 9.2e−6)
to assess statistical support for the associations identified in this
cohort. This should not be taken to mean that genes and variants not
passing this threshold are biologically insignificant, but simply that
larger sample sizes will be required to more fully characterize the

impact of IGH variants on the expressed repertoire. Further to this
point, conditional analysis found that for 14 out of the 59 guQTL-
associated genes in IgM, additional variance in gene usage could be
explained by secondary polymorphisms, indicating that for at least a
subset of IGH genes, interactions and additive effects across multiple
variants will ultimately need to be resolved. However, it is critical that
the collective effects of polymorphisms across the repertoire were
clear when we compared repertoires between individuals based on
genetic similarity. As expected20,21, we found that usage patterns were
more highly correlated in individuals sharing IGH genotypes. This
indicated that overlapping signatures in the repertoires of different
individuals may be possible to identify and characterize with greater
resolution at the population level by simply taking into account IGH
genetic data22.

The guQTLs discoveredhereprovide fundamental insights into the
potential functionalmechanisms underlying the development of the Ab
repertoire in humans. First, the associationbetweenSVs andgeneusage
variation offer a straightforward model for how germline variants
impact the repertoire. Specifically, our results indicated that SVs change
the copy number of genes, directly modifying their usage frequency in
an additive fashion, likely by influencing the probability that the SV-
associated genes are selected by V(D)J recombination based on the
number of chromosomes on which they are present. This pattern was
observed for the majority of genes associated with SVs in our dataset
and has been noted previously40,42. Interestingly, there were also genes

Fig. 8 | SNVs associated with diseases and other clinical traits are also asso-
ciated with gene usage variation. a Map of IGH (GRCh38) showing the positions
of SNVs identified by genome-wide association studies (GWAS); positions of F/ORF
genes are also provided. For each GWAS SNV found to overlap a guQTL (IgM and
IgG) from our dataset, the table provides information on the trait, SNV identifier,
and genes forwhich usagewas associatedwith theGWAS/guQTLSNV.b, cBoxplots
showing gene usage variation for all genes associated with two GWAS SNVs for (b)

Kawasaki disease and (c) estradiol levels. The number of individuals with C/C, C/T,
and T/T genotypes for rs10129255 is 67, 67, and 20, respectively. For rs34019140,
the numbers are 23, 79, and 52 for A/A, A/G, and G/G genotypes, respectively.
Boxplots display the median, 25th percentile, 75th percentile, and whiskers that
extendup to 1.5 times the inter-quartile range (IQR) from the respective percentiles.
Data points outside the whiskers are also plotted.
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for which usage was impacted by neighboring SVs, even though the
copy number of these genes was not directly altered, suggesting more
complex mechanisms42. Beyond the effects of SVs, we found a sig-
nificant numberof SNVs associatedwith geneusage, all ofwhichwere in
intergenic regions; again, this highlights the importance of our
approach for capturing all IGH variant types, beyond just coding poly-
morphisms. Network analysis connecting genes with overlapping
guQTL variants identified sets of genes whose usage patterns were
coordinated. In many cases these genes were co-localized to specific
regions of IGH, spanning 10s to 100s of Kbp. As with patterns observed
for SVs, these signatures were illustrative of more complex regulatory
mechanisms in the IGH locus. The regional effects observed appear
consistent with studies of V(D)J recombination inmodel organisms. For
example, the mouse IG loci partition into distinct regions, marked by
specific regulatory marks, including TFBS and histone modification
signatures, many of which, alongside RSS variation, have been asso-
ciated with intra-gene V(D)J recombination frequency differences32,84,85.
The mouse IG loci are also characterized by 3-dimensional structure,
TADs and sub-TADs that are associated with complex interactions

between gene promoters and enhancers that coordinate V(D)J recom-
bination in pre-B cells35,53,86–88. In contrast tomouse, functional genomic
elements dictating V(D)J recombination in the human IGH locus have
not been characterized in depth; nonetheless, our intersection of
guQTLs with publicly available annotation sets revealed enrichments in
cis-regulatory elements and TFBS involved in V(D)J recombination in
animalmodels. This includedCTCFand EEDTFBS, aswell as IGH regions
marked by H3K4me354,61–63. While fine mapping and functional valida-
tion of guQTLs is needed, this result provides initial evidence that the
variants we identified likely influence the frequency at which IGH genes
are selected during V(D)J recombination.

There is growing interest in developing predictivemodels for V(D)
J recombination and repertoire diversity89,90, and applying Ab reper-
toire profiling as a diagnostic tool for disease and clinical phenotypes
of high public health relevance91,92. However, current models do not
explicitly account for genetic factors, and the effects of this on model
performance are not known89,90. Our results indicate that future work
in this area should explore ways to integrate genetic data; this will
likely be critical for better understanding commonalities and differ-
ences in repertoire signatures (e.g., public clonotypes1,2), ultimately
leading to improved metrics for immune response monitoring and
prediction modeling.

Here, we demonstrate that our data already provide an opportu-
nity to more fully explore the potential roles of IGH polymorphism in
Ab-mediated diseases. First, the direct overlap of GWAS SNVs and
guQTLs indicate the potential for effects of GWAS variants to be
mediated through genetic effects on Ab gene usage. Second, our
results can directly inform our understanding of vaccine responsive-
ness, particularly as this pertains to efforts centered around the elici-
tation of targeted antibodies. Our analysis revealed that IGHV coding
variation was in many cases linked to guQTLs, supporting previous
reports indicating that usage patterns can coincide with amino acid
differences23,41,93, including those that are important for Ab–antigen
interactions in infectious disease responses23,41. It is important to note
that in many cases, allelic variants vary considerably between human
populations23,41, indicating that both population-level diversity and the
role of germline variants in shaping the baseline B cell repertoire will
need to be considered in interpreting vaccine response data22,94.

While the dataset we have analyzed here represents the most
comprehensive survey to date, it is likely that increasing the sample
size will uncover additional genetic contributions to gene usage. Rarer
and complex IGHvariantswill need tobebetter accounted for in future
work, specifically those excluded from our analysis due to low fre-
quency and genotyping coverage. In addition, as cohorts increase in
size, additional insight will come from the consideration of other
variables such as genetic ancestry, positive/negative selection, age, B
cell subset and tissue95–97. Finally, the models utilized here could be
extended to assess the contribution of IGH polymorphisms to other
repertoire signatures, including N/P addition and CDR3 features,
which also are influenced by heritable factors20,21,38,90.

Collectively, our analyses provide a comprehensive picture of IGH
polymorphism and Ab repertoire variation. These findings have the
potential to reshape the way we conduct, analyze and interpret AIRR-
seq data, and use these data to profile the Ab response in disease. As
noted previously, the results provided here further illuminate the need
for improving efforts to more fully explore the extent of IGH poly-
morphism in the human population, as a means to resolve the role of
germline variation in Ab function and disease.

Methods
Ethics statement
This study complies with all relevant ethical regulations. The study and
protocol were reviewed and approved by the Dana-Farber Cancer
Institute (DFCI), Stanford University and University of Louisville Insti-
tutional ReviewBoards (IRBs). Informed consent for study participation

Fig. 9 | Individuals sharing a greater number of guQTL genotypes have more
correlated repertoire-wide IgMgeneusage profiles. a,b Pairwise intra-individual
correlations (Pearson) of IgM usage for all genes, as well as allele sharing distance
(ASD) for IGH SNV genotypes (lead guQTLs; all guQTLs) were calculated across
individuals in the cohort. Violin plots showpairwise intra-individual repertoire-wide
IgM gene usage correlations partitioned by ASD, calculated using either only lead
guQTLs for all genes (a) or all guQTLs (b) for all genes (Bonferroni corrected).
Boxplots display the median, 25th percentile, 75th percentile, and whiskers that
extendup to 1.5 times the inter-quartile range (IQR) from the respective percentiles.
Data points outside the whiskers are also plotted.
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and collection of blood samples was obtained with research volunteers
signing a consent form approved by the DFCI IRB.

Long-read library preparation and sequencing
Genomic DNA was extracted from PBMC or PMN procured from
Stanford University, Harvard University or STEMCELL Technologies
(Vancouver, Canada); donor informed consent was obtained when
necessary, following relevant ethical guidelines, and study protocols
were approved by respective IRBs. Genomic DNA was processed using
our published targeted long-read sequencing protocol28. Briefly, high
molecular weight DNA (0.5–2μg) was sheared using g-tubes (Covaris)
and size selected using the 0.75% DF 3–10 Kbp Marker S1-Improved
Recovery cassette definition on the Blue Pippin (Sage Science); library
size ranges provided in Supplementary Fig. 1. The DNA was End
Repaired and A-tailed using the standard KAPA library protocol
(Roche). Barcodes were added to samples sequenced in multiplex
pools and universal primers were ligated to all samples. PCR amplifi-
cation was performed for 8–9 cycles using high-fidelity polymerase
(LA-Taq or PrimeSTAR GXL, Takara) at an annealing temperature of
60 °C. Small fragments and excess reagents were removed using 0.7X
AMPure PB beads (Pacific Biosciences). Libraries were hybridized to
IGH-specific oligonucleotide probes (Roche; see reference28) and
recovered using streptavidin beads (Life Technologies) prior to
another round of PCR amplification for 16–18 cycles using either LA-
Taq or PrimeSTAR GXL (Takara) at an annealing temperature of 60 °C.

Enriched IGH libraries were prepared for sequencing using the
SMRTbell Express Template Preparation Kit 2.0 (Pacific Biosciences).
DNA was treated with Damage Repair and End Repair mix to repair
nickedDNA, followedby the additionof anA-tail andoverhang ligation
with SMRTbell adapters. These libraries were treated with a nuclease
cocktail to remove unligated input material and cleaned with 0.45X
AMPure PB beads (Pacific Biosciences). The resulting libraries were
prepared for sequencing according to the manufacturer’s protocol
and sequenced as single libraries per SMRTcell with P6/C4 chemistry
and 6 h movies on the RSII system, or as multiplexed libraries
sequenced on the Sequel (3.0 chemistry; 20 h movies) or Sequel II/IIe
system (2.0 chemistry; 30 h movies).

Generated targeted capture libraries had an average insert length
of 6 Kbp, and were sequenced using the Pacific Bioscience (PacBio)
RSII (n = 40), Sequel (n = 40), or Sequel IIe (n = 74) systems (Supple-
mentary Table 1). This strategy confers two main advantages: (1) the
sequencing polymerase passes over amplicons multiple times, allow-
ing for the generation of highly accurate (high-fidelity, HiFi) reads
(Supplementary Fig. 1a, b); and (2), for Sequel/IIe libraries, multiple
samples are barcoded and sequenced in a single sequencing run. Cri-
tically, the high HiFi read quality overcomes historical concerns of
error rates in long-read sequencing data (Supplementary Table 1), and
error-correction steps performed during the assembly process
increases the read base-level accuracy98,99. Previously, we have shown
that assemblies produced from the older RSII platform have high base-
level accuracy28.

For a single sample, we prepared libraries for adaptive nanopore
sequencing using the Ligation Sequencing Kit (Oxford Nanopore
Technologies, ONT) and the NEBNext Companion Module for ONT
Ligation Sequencing (New England Biolabs). 3 μg gDNA was used as
input for these libraries. Entire purified libraries (5–50 fmol, per
manufacturer’s recommendation) were loaded onto R9.4.1 flow cells
on theMinIONMk1C instrument (ONT). The experimental runwas set
up with no multiplexing, turning on enrich.fast5, and using human
nanopore enrichment. Additionally, fast (or high accuracy) base
calling was employed for a 72-h run. In addition to IGH, multiple
genomic loci were targeted for sequencing in order to provide the
minimumnumber of bases (17Mb) required for adaptive sequencing.
The IGH sequence targeted was from the custom reference used in
this study (below).

IgG and IgM antibody repertoire sequencing
For newly generated expressed Ab repertoire sequencing datasets, two
distinct protocols were implemented for respective sets of samples.
Total RNA was extracted from PBMCs using either the RNeasy Mini kit
(Qiagen) or PureLink RNA Mini Kit (Ambion). AIRR-seq libraries were
then generated using either a 5’RACE approach, or IGHV gene primer-
based method. For IgG and IgM 5’RACE AIRR-seq, libraries were gener-
atedusing the SMARTerHumanBCRProfilingKit (TakaraBio), following
the manufacturer’s instructions. Individually indexed IgG and IgM
libraries were assessed using the Agilent 2100 Bioanalyzer High Sensi-
tivity DNA Assay Kit (Agilent) and the Qubit 3.0 Fluorometer dsDNA
High Sensitivity Assay Kit (Life Technologies). Libraries were pooled to
10nM and sequenced on the Illumina MiSeq platform using the 300bp
paired-end readswith the600-cycleMiSeqReagentKit v3 (Illumina). For
the IGHV primer-based method, cDNA was first generated from 1μg
RNA using the Superscript RT III kit (Invitrogen) with Oligo-dT primer.
AIRR-seq amplicons were generated from generated cDNA using a pool
of IGHVprimers (SupplementaryData 7) and oneof two reverse primers
targeting either IgM or IgG (Supplementary Data 7). Primers were
pooled equimolar (0.1μM/each), with 0.125μl Taq polymerase (NEB)
and 100ng cDNA in 25μl total volume. Cycling conditions were as fol-
lows: 94 °C denaturation for 3min, 94 °C 1min, 50 °C 1min, 72 °C 1min
for 4 cycles, 94 °C 1min, 55 °C 1min, 72 °C 1min for 4 cycles, 94 °C 1min,
63 °C 1min, 72 °C 1min for 8cycles, 72 °C5min, holdat 10 °C.Additional
PCRcycleswere conductedusing a second set of primerswith extension
sequences, at a final concentration of 0.2μM/each, with the following
cycling conditions: 94 °C 1min, 63 °C 1min, 72 °C 1min for 20 cycles,
72 °C for 5min, hold at 10 °C. PCR amplicons were purified from 1%
agarose gels (Zymo Research). Sequencing adapters and barcodes were
added to purified PCR products using the KAPA HiFi HotStart kit and
NEBNext 96 index kit, followed by and additional size selection and
purification from 1% agarose gels (Zymo Research). Resultant barcoded
libraries were quantified and pooled equimolar and sequenced on the
Illumina MiSeq platform using the 300bp paired-end reads with the
600-cycle MiSeq Reagent Kit v3 (Illumina).

Additional AIRR-seq datasets were downloaded from SRA for
Nielsen et al.18.

Custom linear IGH reference
A custom linear reference for IGH was used that includes previously
resolved insertion sequences25 absent in GRCh38. This reference was
previously used and vetted to generate high confidence variant call
sets28. The reference was built from GRCh38 (chr14:105860
500–107043718). Partial sequences from GRCh38 were removed and
additional insertion sequences were added from previously char-
acterized SVs25. Specifically, sequence between chr14:106254581–
106276923 (GRCh38) was swapped for a 10.8 Kbp duplication con-
taining the IGHV3-23D gene from fosmids ABC9-43993300H10 and
ABC9-43849600N9. Sequence between chr14:106317171-106363211
(GRCh38) and chr14:106403456–106424795 (GRCh38) was swapped
for a 77.6 Kbp duplication haplotype containing IGHV genes IGHV3-30,
IGHV4-30-2, IGHV3-30-3, IGHV4-30-4, IGHV3-30-5, IGHV4-31 and IGHV3-
33 from fosmid clones ABC11-47150400I4, ABC11-47354200D2 and
ABC11-49598600E10; and a 75.8 Kbp insertion containing IGHV genes
IGHV3-38 IGHV4-38-2, IGHV3-43D, IGHV3-38-3, IGHV1-38-4 and IGHV4-39
from fosmid clonesABC10-44084700I10, ABC10-44145400L1 andWI2-
1707G1, respectively. A 37.7 Kbp complex SVwith IGHV3-9 and IGHV1-8
genes derived from GRCh37 (chr14:106531320-106569343) was
appended to the end of the reference separated by 5 Kbp of gap
sequence (“N”). This reference sequence is available on github (https://
github.com/oscarlr/IGenotyper).

IGH locus assembly and variant detection
All targeted long-read datasets were processed using IGenotyper with
default parameters28. IGenotyper uses BLASR100,WhatsHap101,MsPAC102,
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and Canu98 to align reads, call and phase SNVs, phase reads, and
assemble phase reads, respectively. Using the assemblies, IGenotyper
uses the MsPAC multiple sequencing alignment and Hidden Markov
model module to identify SNVs, indels and SVs. SVs not directly
resolved were genotyped using HiFi read coverage and soft-clipped
sequences in the assembly and in HiFi reads, and manually resolved
using BLAST and custompython scripts. SVs that could not be resolved
using HiFi reads or assemblies were not genotyped and were not
included in downstream analyses. All SV genotypes were visually
inspected using Integrated Genome Viewer (IGV) screenshots gener-
ated from an IGV batch script.

Characterizing novel alleles and expanding the IGH allele
database
Novel alleles for IGHV, IGHDand IGHJ genes supportedby 10HiFi reads
(exact matches) or found in 2 ormore individuals were extracted from
the assemblies of each sample. Novel alleles were defined as those not
found in the IMGT database (release 202130-2). Allele sequences that
aligned to IMGT alleles with 100% identity were also characterized as
novel, if the putative novel allele was annotated from a gene in the
assembly that was different from the gene assignment in the IMGT
database. The non-redundant set of novel alleles was appended to the
IMGT database for IgM/IgG repertoire sequencing analyses conducted
in this study. ABLASTdatabasewas created usingmakeblastdb version
2.11.0+. Gapped sequences for the novel alleles were generated using
the IMGT/V-QUEST server103.

Processing AIRR-sequencing data
Paired-end sequences (“R1” and “R2”) were processed using the pRE-
STO toolkit104. All R1 and R2 reads were trimmed to Q = 20, and reads
<125 bp were excluded using the functions “FilterSeq.py trimqual” and
“FilterSeq length,” respectively. Constant region (IgM and IgG) primers
were identified with an error rate of 0.2 and corresponding isotypes
were recorded in the fastq headers using “MaskPrimers align.”

For sequencing datasets without unique molecular identifiers
(UMIs), R1 and R2 reads were assembled using “AssemblePairs align”
and resulting merged sequences <400bp were removed using “Fil-
terSeq length.” Identical sequences were collapsed and read duplicate
counts (“Dupcounts”) were recorded. For sequencing datasets with
UMIs, the 12 base UMI, located directly after the constant region pri-
mer, was extracted using “MaskPrimers extract.” Sequences assigned
to identical UMIs were grouped and aligned using “ClusterSets” and
“AlignSets muscle,” and then consensus sequences were generated for
each unique UMI set using “BuildConsensus.” Identical sequences with
different UMIs were collapsed and read duplicate counts (“Dup-
counts”) were recorded. Collapsed consensus sequences represented
by <2 reads were discarded.

Processed AIRR-seq fastq files were split by isotype using the
“SplitSeq.py group” function from Immcantation104. Samples with
<100 reads per isotypewere removed. Following the application of this
filter, the mean number of merged consensus sequences per reper-
toire ranged from465 to 109,250 (mean=26,036), with lengths ranging
from 318 to 510 bp. Fastq files were aligned to the expanded database,
including IMGT and novel alleles identified in our cohort, using
“AssignGenes.py igblast” to generate Change-O105,106

files. Productive
readswere specifically selected using the “ParseDb.py split” command.
Assignments to genes found to be deleted from both chromosomes in
genomic datasets for a given sample were removed from the Change-
O. Reads assigned tomultiple alleles were re-assigned to a single allele
if the genomic data revealed that only one of the alleles was present.
Clones were detected using the modified Change-Os with the “shazam
distToNearest” command and “model=ham,” normalize=“len” para-
meters, “shazam findThreshold” (parameters: method=“gmm,” mod-
el=“gamma-gamma”), and “DefineClones.py (parameters: –act set
–model ham –norm len –mode allele)” commands. IgM and IgG

repertoires with fewer than 200 clones identified were excluded from
downstream analysis.

Calculating gene usage among defined clones
Am × n clone countmatrixCwas created, wherem are the genes and n
are the samples. Each value in C represented the number of clones
counted for a given gene in a given sample. Due to sequence similarity,
duplicated genes were summed into a single entity. The counts of the
following genes were combined:
1. IGHV3-23 and IGHV3−23D
2. IGHV3-30, IGHV3-30-3, IGHV3-30-5, and IGHV3-33
3. IGHV1-69 and IGHV1-69D
4. IGHD4-4 and IGHD4-11

Cwasbatch corrected (3 batches) usingComBat-seq107 to produce
an adjusted count matrix C' to account for differences between the
three AIRR-seq datasets used. The fractions of clones per gene or gene
set (m) was calculated from C' across each sample (n).

The following set of F/ORF genes were removed or not analyzed:
1. IGHD5-5: In all cases where IGHD5-5 was identified through

IgBLAST, the AIRR-seq reads were assigned to IGHD5-5*01 and
IGHD5-18*01, or IGHD5-5*01, IGH5-18*01 and additional alleles. The
genes IGHD5-5 and IGHD5-18 were not combined because there
were AIRR-seq reads aligned solely to IGHD5-18.

2. IGHV3-16: No AIRR-seq reads were assigned to IGHV3-16.

Selecting common variants for gene usage QTL analysis
SNVs with a HWE value less than 0.000001 were filtered using
bcftools108. SNVs found in less than 5 individuals were removed if they
did not have HiFi read support. The SNVs passing these stringent
quality control thresholds were used to impute missing genotypes
using Beagle109 (v228Jun21.220). The resulting SNVs were again filtered
if they contained a HWE value less 0.000001. Common SNVs were
selected if they were genotyped in at least 40 individuals and had a
MAF equal to or greater than 0.05. The same criteria were applied to
SNVs selected for conditional analysis.

Indels and SVs, excluding large SVs (>9 Kbp), were split into two
categories based on whether they overlapped tandem repeat regions.
Tandemrepeat regionson the customreferenceweredeterminedusing
Tandem Repeats Finder110 with parameters (match = 2, mismatch = 7,
delta = 7, PM=80, PI = 10, Minscore = 10, MaxPeriod = 2000). Events
overlapping tandem repeats were genotyped again in all the samples
using the dynamic programming algorithm from PacMonSTR111. Events
weremerged using a custompython script (https://github.com/oscarlr-
TRs/PacMonSTR-merge). Tandem repeat events with an alignment
score between themotif and the copies in the assemblies lower than0.9
were removed. Tandem repeat alleles were defined by a difference of a
single motif copy. Tandem repeat events with an allele occurring at a
frequency greater than 0.05 was considered common. An expansion or
contraction greater than 50bps relative to the reference was con-
sidered a tandem repeat SV. Indels and SVs from IGenotyper outside of
tandem repeats across all samples were merged. Manual inspection
showed high concordance between event sizes and sequence content.
In cases where a discordance was observed between event sizes, the
max size was selected. Samples were genotyped as homozygous
reference for indels and SVs if no event was detected and both haplo-
typeswere assembled over the event. Indels and SVswith aMAFgreater
than 0.05 were selected.

All SVs were genotyped using IGenotyper andmanually inspected
using IGV. SVs with a MAF less than 0.05 were not included in the
guQTL analysis (Supplementary Data 2).

Gene usage QTL analysis
Genotypes at SNVs, complex SVs andmSVs were tested for association
with usage using ANOVA and linear regression. Association tests for all
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other variant types, indels, non-complex SVs and large SVs (excluding
mSVs) were conducted using linear regression. Both models included
age and AIRR-seq sequencing platform as covariates (n = 3). A linear
regression was used to extract additional metrics (e.g., beta coeffi-
cients and R2 values). Associations were corrected for multiple testing
using Bonferroni on a per-gene level. Variants with an LD of 1 (r2) were
treated as a single variant during correction, representing only a single
association test. Conditional analysis was performed in the same
manner using all variant typeswith the samefilters applied to the initial
call sets.

Network analysis of variants associated with multiple genes
Variant and gene pairs for variants significantly associated with more
than 1 gene in the IgM repertoire were selected. A graph using the
networkx python library (networkx.org) was created with genes as
nodes and edges connecting genes/nodes if the same variant was
associated with both genes. An edge weight was given for each time
nodes were connected. The graph was pruned such that the edge
weights were greater than 2. Cliques were identified using the find_-
cliques function.

Regulatory analysis
ENCODE cCREs were downloaded from the UCSC Genome Browser
under group “Regulation,” track “ENCODE cCREs,” and table “encode
CccreCombined.” ENCODE transcription factor binding site data were
also downloaded from the UCSC Genome Browser under group
“Regulation,” track “TF Clusters,” and table “encRegTfbsClustered.”
SNVs associated with gene usage were overlapped with both tracks
and an enrichment in both tracks over all SNVs overlapping each track
was calculated using a one-sided Fisher Exact Test.

GWAS analysis
Variants identified by GWAS with an association P value lower than 4e
−6were downloaded from the NHGRI-EBI GWAS catalog (https://www.
ebi.ac.uk/gwas/api/search/downloads/full). Significant variants from
this study were intersected with GWAS variants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The IGH locus long-read sequencing data and AIRR-seq datasets gen-
erated in this study have been deposited in the BioProject repository
PRJNA555323, under accession numbers SRX19355477–SRX19354801
(IGH locus) and SRX19355879–SRX19536764 (AIRR-seq). Previously
published AIRR-seq datasets are available in the Sequence Read
Archive (SRA) under accession numbers SRS3786791–SRS3786902.
Metadata and summary statistics for this study are provided in Sup-
plementary Data 1–7.

Code availability
Code used to resolve additional SVs can be found on GitHub: https://
github.com/oscarlr/bioinformatics#merging-contigs112. Tandem repeat
genotyping andprocessing code, PacMonSTR andPacMonTSTR-merge,
can be found here: https://github.com/oscarlr-TRs/PacMonSTR113,
https://github.com/oscarlr-TRs/PacMonSTR-merge114.
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