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CellSighter: a neural network to classify cells
in highly multiplexed images

Yael Amitay 1,2, Yuval Bussi 1,2, Ben Feinstein2, Shai Bagon 2, Idan Milo 1 &
Leeat Keren 1

Multiplexed imaging enables measurement of multiple proteins in situ,
offering an unprecedented opportunity to chart various cell types and states in
tissues. However, cell classification, the task of identifying the type of indivi-
dual cells, remains challenging, labor-intensive, and limiting to throughput.
Here, we present CellSighter, a deep-learning based pipeline to accelerate cell
classification in multiplexed images. Given a small training set of expert-
labeled images, CellSighter outputs the label probabilities for all cells in new
images. CellSighter achieves over 80% accuracy for major cell types across
imaging platforms, which approaches inter-observer concordance. Ablation
studies and simulations show that CellSighter is able to generalize its training
data and learn features of protein expression levels, as well as spatial features
such as subcellular expression patterns. CellSighter’s design reduces over-
fitting, and it can be trained with only thousands or even hundreds of labeled
examples. CellSighter also outputs a prediction confidence, allowing down-
stream experts control over the results. Altogether, CellSighter drastically
reduces hands-on time for cell classification in multiplexed images, while
improving accuracy and consistency across datasets.

The spatial organization of tissues facilitates healthy function and its
disruption contributes to disease1. Recently, a suite of multiplexed
imaging technologies has beendeveloped,whichenablemeasurement
of the expression of dozens of proteins in tissue specimens at single-
cell resolution while preserving tissue architecture2–14. These technol-
ogies open new avenues for large-scale molecular analysis of human
development, health and disease. However, while technologies have
developed rapidly, with datasets spanning thousands of images15,16,
data analysis presents a major limitation to throughput. Specifically,
cell classification, the task of identifying different cell types in the
tissue remains an inaccurate, slow and laborious process.

Analysis of multiplexed images has converged on a common
sequence of procedures (Fig. 1A). While technologies differ in imple-
mentation, from cyclic fluorescence to mass-spectrometry, they all
generate a stack of images, each depicting the expression of one
protein in the tissue. Initial processing corrects technology-specific
artifacts such as autofluorescence, noise, and image registration17–19.

Next, images undergo cell segmentation to identify individual cells in
the tissue. Recently, artificial intelligence (AI) algorithms, trained on
large manually-curated datasets, have automated this task, approach-
ing human-level performance20–22. Next, the expression of eachprotein
is quantified in each cell to create an expression matrix. This table
serves as input for cell classification, where the type and phenotype of
each cell is inferred from co-expressed proteins, in combination with
prior knowledge. For example, a cell expressing CD45 will be classified
as an immune cell. A cell that, in addition, expresses CD3 and CD8 is a
cytotoxic T cell, and if that cell also expresses PD-1, LAG-3, andTIM-3, it
is classified as an exhausted cytotoxic T cell23.

Cell classification methods typically involve manual gating or
clustering of the expression matrix using algorithms that were devel-
oped for isolated cells, such as cytometry or single cell RNA sequen-
cing (scRNAseq)8,13,19,24–30. However, deriving cell classifications from
multiplexed images has unique challenges over classifying cells in
suspension, due to biological and technical factors. For example,
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Fig. 1B (I) shows an example of a B cell and a T cell which were erro-
neously segmented as one cell. In the expression matrix, this cell will
appear as expressing both CD20 and CD3. Imaging artifacts alsomake
classification challenging17. Figure 1B (II) shows an example of a tumor
cell, with overlapping noise in CD4. In the expression matrix, this cell
will erroneously appear to express CD4.

Biological factors also contribute to the difficulty of cell classifi-
cation from images. In tissues, cells form densely-packed commu-
nities, as shown for the cytotoxic T cell closely interacting with T
helper cells in Fig. 1B (III). Moreover, cells extend projections to facil-
itate trans-cellular interactions31, as shown for the CD163+ macrophage
in Fig. 1B (IV). This close-network of cell bodies and projections results
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in spillover, whereby the protein signals from one cell overlap with the
pixels of nearby cells. Several works have proposed methods to deal
with spillover using compensation3,32, pixel analysis33 or neighborhood
analysis34, but these suffer from signal attenuation, difficulty in scaling
to large datasets, or requirements for additional data sources such as
scRNAseq on the same tissue. Altogether, cell classification has
hitherto remained a time-consuming and labor-intensive task, requir-
ing investigators to perform sequential rounds of clustering, gating,
visual inspection and manual annotation (Fig. 1A and Supplementary
Fig. 1A). Accordingly, the accuracy of classification is often user-
dependent and may impede the quality of downstream analysis.

In this work, we sought to accelerate and improve cell clas-
sification from multiplexed imaging by harnessing two insights
into this task. First, the effects of segmentation errors, noise,
spillover and projections accumulate over the millions of cells
routinely measured in multiplexed imaging datasets. As a result,
the time that it takes to classify cells using sequential rounds of
clustering, gating, image inspection and manual labeling is pro-
portional to the number of cells in the dataset. It is easier and
faster to generate curated classifications for thousands of cells
than for millions of cells. This observation implies that a machine-
learning approach that learns classifications from a subset of the
data and transfers them to the rest of the dataset could largely
expedite the process of cell classification as suggested35. Second,
while segmentation errors, noise, spillover and projections con-
found protein expression values in the expression matrix, they
are often distinguishable in images (Supplementary Fig. 1A). We
therefore reasoned that a computer-vision approach that works
directly on the images as input, rather than on the expression
matrix, may have better performance in the task of cell classifi-
cation. Specifically, deep convolutional neural networks (CNNs)
have had remarkable success in computer vision tasks and have
recently gained impact in medical imaging, from radiology to
electron microscopy20,22,36,37.

Here, we present CellSighter, a deep-learning based pipeline
to perform cell classification in multiplexed images. Given mul-
tiplexed images, segmentation masks and a small training set of
expert-labeled images, CellSighter outputs the probability of each
cell to belong to different cell types. We tested CellSighter on
data from different multiplexed imaging modalities and found
that it achieves 80–100% recall for major cell types, which
approaches inter-observer concordance. Ablation studies and
simulations showed that CellSighter learns features of protein
expression levels, but also spatial features such as subcellular
expression patterns and spillover from neighboring cells. Cell-
Sighter’s design reduces overfitting and it can be easily trained on
only thousands or even hundreds of labeled examples, depending
on cell type. Importantly, CellSighter also outputs confidence in
prediction, allowing an expert to evaluate the quality of the
classifications and tailor the prediction accuracy to their needs.
Finally, CellSighter can be applied across datasets, which facil-
itates cross-study data integration and standardization. Alto-
gether, CellSighter drastically reduces hands-on time for cell
classification in multiplexed images, while improving accuracy
and consistency across datasets.

Results
CellSighter—a convolutional neural network for cell
classification
We designed CellSighter as an ensemble of CNN models, each per-
forming multi-class classification. Given raw multiplexed images, as
well as the corresponding segmentation mask, CellSighter returns the
probability of each cell to belong to one of several classes (Fig. 1C). The
input for each model is a 3-dimensional tensor, consisting of cropped
images of K proteins centered on the cell to be classified (Supple-
mentary Fig. 1B, C). To incorporate the information of the segmenta-
tion, but in a soft manner, we added two additional images to the
tensor. The first consists of a binary mask for the cell we want to
classify (1’s inside the cell and 0’s outside the cell), and the second is a
similar binary mask for all the other cells in the environment. To deal
with large class imbalances between cell types, which in tissues can
easily reach 100-fold26,27, when training the network, we upsampled
rare cells such that the major lineages are represented in equal pro-
portions (Methods). However, for very low-abundant classes upsam-
pling alone can result in spurious correlations and overfitting. We,
therefore, added standard and custom augmentations to the data,
including rotations and flips,minor resizing of the segmentationmask,
minor shifts of the images relative to each other, and signal averaging
followed by Poisson sampling (Methods).

The final cell classification is given by integrating the results from
ten separately-trained CNNs. Eachmodel predicts the probability of all
classes.We then average those probabilities and take the classwith the
maximum probability as the final prediction and the probability value
as the confidence. We found that this design provides results that are
more robust and reduces grave errors of the network, including
hallucinations38. The confidence score gives the investigators of the
data freedom to further process CellSighter’s results to decide on the
level of specificity, sensitivity and coverage of cells in the dataset that
are best for their specific needs. Low-confidence cells can also be used
to guide and refine further labeling.

We first tested CellSighter on a dataset of human melanoma
metastases, acquired by MIBI-TOF2. We took 111 0.5 × 0.5mm2 images,
encompassing 145,668 cells and generated highly-curated ground-
truth labels for all cells using gating and sequential rounds of visual
inspection and manual annotation (Methods). Altogether, we dis-
tinguished ten cell types, including different types of immune cells,
tumor cells, stromal cells and vasculature.

We trained CellSighter on 101 images and tested it on 10 held-out
images. Training the network took one hour for one model in the
ensemble and prediction took a few minutes (see Methods for further
details on run times). Prediction recall on the test was high (88 ± 7%)
(Fig. 1D), and equivalent to the concordance between two different
human labelers (86 ± 17%, Supplementary Fig. 1D), suggesting labeler-
specific biases in annotation. It ranged from 99% on easily-
distinguishable cells, which were defined by nuclear proteins, such
as tumor cells (expressing SOX10) and T regulatory cells (Tregs,
expressing FoxP3) to ~80% on rare, entangled or lineage-related cell
types, mostly defined by membrane proteins such as myeloid and
mesenchymal cells. We evaluated to what extent these confusions
represent errors in CellSighter, errors in the expert annotations or
ambiguous cells. To this end, we assigned another expert to manually

Fig. 1 | CellSighter—a convolutional neural network for cell classification.
A Standard pipelines for cell classification take in multiplexed images and cell
segmentation masks and generate an expression matrix. Cells in the matrix are
annotatedby rounds of clustering, gating, visual inspection andmanual correction.
CellSighter works directly on the images. B Imaging artifacts and biological factors
contribute to making cell classification from images challenging. Segmentation
errors, noise, tightly packed cells and cellular projections are easily visible in ima-
ges, but hard to discern in the expression matrix. Scale bar = 5 µm. C CellSighter is
an ensemble of convolutional neural networks (CNNs) to perform supervised

classification of cells. D Comparison between labels generated by experts (x-axis)
and labels generated by CellSighter (y-axis) shows good agreement. E Expert
inspection of additional cells differing in classification between CellSighter and
expert annotation. Inspection was performed blindly, without knowledge of the
source of the label.FComparing the recall of CellSighter (blue),XGBoost trainedon
the same labels asCellSighter (orange) andClustering and gating (green).G For one
field of view (FOV), shown are the protein expression levels (left), expert-generated
labels (middle) and CellSighter labels (right). Source data are provided as a Source
Data file.
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inspect additional 246 random cells that received different annota-
tions by CellSighter and the expert, without knowing which approach
providedwhich annotation.We found that in 31%of cases the confused
cells were ambiguous and could be classified as either type, in 8% they
were both wrong, in 35% manual inspection agreed with CellSighter
and in 25% with the expert (Fig. 1E). Overall, this suggests that dis-
crepancies are mostly driven by ambiguous cells, and CellSighter
performs comparably to human labelers. Moreover, in 29% of cases
where the expert was correct, the correct classification was the second
ranking option (Supplementary Fig. 1E), and correct predictions
received higher overall confidence (Supplementary Fig. 1F).

To further benchmark CellSighter’s performance, we compared it
to two commonly-used approaches. First, we compared it to cluster-
ing. We used FlowSOM24 to cluster the cells to 100 clusters, and then
annotated the clusters based on the expression matrix. Second, we
used the samedata thatwasused to trainCellSighter to train a gradient
boosting classifier (XGBoost) that works on the expression matrix39.
Evaluation on the test showed that CellSighter outperformed Clus-
tering, with a recall of 88.6 ± 7 compared to 75 ± 16. CellSighter also
outperformedXGBoost in eight out of ten categories andhad the same
performance on the remaining two categories, with an average
increase in recall of 4% (88.6 ± 7% compared with 84.5 ± 9%, Fig. 1F,
Supplementary Fig. 1G). Altogether, visual inspection of the test ima-
ges confirmed that CellSighter indeed recapitulated both the predic-
tions of individual cells and the large-scale tissueorganization (Fig. 1G).

CellSighter learns protein coexpression patterns
We explored which features drive CellSighter’s predictions. First, we
checkedwhether a CNN running on a tensor of protein images was able
to learn protein expression per cell type, similar to what an expert does
when working on the expression matrix. To perform this analysis, we
turned to a second dataset of melanoma metastases in lymph nodes.
Lymphnodes areparticularly challenging for cell typeclassification, due
to thehighdensity of cells in the tissue.Wegenerated initial labels for all
cells using established approaches, including FlowSOM clustering24,
pixel clustering33, gating and sequential rounds of visual inspection and
manual annotation, altogether annotating 116,808 cells from sixteen
images into fourteen cell types (Methods). We trained CellSighter on
twelve images, and predicted the labels for an additional four, resulting
in high overall recall of 85 ± 8% (Supplementary Fig. 2A).

We correlated between the cellular protein expression levels and
CellSighter’s confidence in prediction. For example, the confidence in
predicting Neutrophil was highly correlated with the cellular expres-
sion levels of Calprotectin (R= 0.76, P < 10−20, Fig. 2A). Performing this
analysis for all proteins across all cell types revealed expected asso-
ciations between cell types and their respective proteins (Fig. 2B). For
example, the confidence of B cell classification was mostly positively
correlatedwith the expression of CD20 (R = 0.68, P = P < 10−20) and to a
lesser extent with CD45RA (R = 0.5, P < 10−20) and CD45 (R =0.28,
P = P < 10−20). We also found that CellSighter is aware of the problems
of spillover andmulti-class classification as B cell classificationwas also
mildly negatively correlated with the expression of CD3 (R = −0.25,
P < 10−20), CD4 (R = −0.23, P < 10−20) and CD8 (R = −0.19, P < 10−20).
Indeed, a scatter plot of cellular CD20 expression (a hallmark protein
for B cells) versus cellular CD8 expression (a hallmark protein for
cytotoxic T cells) revealed that CellSighter was confident in its classi-
fications for cells that had high expression of oneof theseproteins, but
had lower confidence in the classification of cells that expressed both
proteins (Fig. 2C).

To further probeCellSighter’s classification process, we examined
the gradients of the network using guided back propagation40,41. This
analysis provides a value for each pixel in each channel, which indi-
cates how strongly it influenced cell classification (Methods). We
found that the gradients were concentrated in the center cell (Fig. 2D)
and that they match the expected protein expression patterns. For

example, Fig. 2D shows an example of a cell classified as a Treg, where
prominent gradients are observed for FoxP3 inside the cell, but not in
the neighboring cells. Weaker gradients are observed for CD4, but not
CD45, reflecting their respective roles in classifying Tregs. In cells
classified as tumor cells, the strongest gradients were traced back to
the images of MelanA and SOX10, whereas for HEVs it was in the
images of CD31 and PNAd (Fig. 2E). Altogether, these analyses suggest
that protein expression levels are a major determinant of CellSighter’s
classification process, similar to gating and clustering.

CellSighter learns spatial expression features
Next, we examined whether CellSighter was able to leverage the fact
that it works directly on the images and learn spatial features to aid in
classification. Since CellSighter was trained on data resulting from
clustering the expression matrix, which suffers from spillover, we
wondered whether it could generalize to learn spatial expression
patterns. To do this we employed three complimentary approaches:
contrasting CellSighter with a machine learning model that works on
the expression matrix rather than on the images, analyzing perfor-
mance on simulated data, and examining the network’s gradients.

First, we evaluated whether CellSighter was more robust to spil-
lover compared with using machine learning approaches that work on
the expression matrix, such as XGBoost. Visual inspection of the ima-
ges suggested that CellSighter was more robust to spillover. For
example, inspection of Calprotectin showed that for each patch of
signal CellSighter tended to classify less cells overlapping with that
patch as Neutrophils (Fig. 3A and Supplementary Fig. 2B). Moreover,
cells that were classified as neutrophils by CellSighter were mostly the
cells that had higher overlap with the signal (>20%, Fig. 3B). To verify
that this observation was causal, we performed a simulation where we
took a patch of Calprotectin signal and moved it to vary its overall
overlap with the cell (Supplementary Fig. 2C, D).We found that for low
overlap (<20%) CellSighter was 9% less likely to classify cells as Neu-
trophils compared to the XGBoost, whereas for higher degrees of
overlap (>30%) this trend flipped (Supplementary Fig. 2C, D).

To further examine CellSighter’s ability to learn spatial expression
patterns, we performed a direct simulation of spillover that generates
contradicting expression patterns. Here, we took crops centered on T
helper cells and removed their cognateCD4andCD20 signals, to avoid
any confounding factors incurred by the original signals. We then
reintroduced CD4 as a membranous signal, and a patch of strong,
partially-overlapping CD20 signal, to simulate spillover (Fig. 3C). To
verify that our simulation is relevant to real-world data, the expression
levels for both CD4 andCD20were compatible with the distribution of
observed values in the dataset (Supplementary Fig. 2E). We then ran
both CellSighter on the images and XGBoost on the expression matrix
of the resulting cells. Not surprisingly, if we only added the CD4 signal,
both models classified 70–80% of cells as CD4 T cells (Supplementary
Fig. 2F). However, when introducing the CD20 signal, CellSighter
classified 30% of the cells as B cells, whereas XGBoost classified 47% as
B cells (Fig. 3D). Moreover, CellSighter had overall lower confidence in
these classifications than XGBoost. For example, CellSighter had high
confidence (>0.9) that 1.5% of these simulated cells are B cells, com-
pared to 30% for XGBoost (Fig. 3E). Altogether, we conclude that both
in real data and in simulations, running a CNN on images is more
robust to spillover.

Next, we evaluated whether CellSighter was able to learn the sub-
cellular expression patterns of different proteins. Visual inspection of
the gradient maps for several cells suggested that the gradients of
nuclear proteins were concentrated in the center of the cell, whereas
the gradients for membrane proteins followed the segmentation bor-
ders (Fig. 2D). We, therefore, used guided back propagation to
examine the gradients of the network at varying radii from the cell
center. We found that for nuclear proteins, such as FoxP3 and SOX10,
CellSighter turns its attention closer to the center of the cell whereas
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for membrane proteins this distance increases. For example, for
FoxP3, 60% of the gradient is achieved at a distance of 40% from the
center of the cell, whereas for CD4 it is at 75% (Fig. 3F and Supple-
mentary Fig. 2G).

To examine whether this relationship was causal, we performed
additional simulations. Again, we took patches centered on T helper
cells and removed their cognate CD4 and CD20 signals, to avoid any
confounding factors incurred by the original signals, and then rein-
troduced CD4 as a membranous signal. However, this time we also
introducedCD20as amembranous signal on the samecell. In different
simulations we varied the percent of membrane that was covered by
CD20, ranging from 100% to 12.5% (Fig. 3G). We also varied the overall
signal in a complimentarymanner, such that the average CD20per cell
was maintained at a relatively constant level (Supplementary Fig. 2H).
Here, too wemade sure that the overall signal was drawn from the real
CD20 expression distribution (Methods). We found that when the
CD20 signal surrounded 100% of the membrane, both models were
equally likely to classify the cell as a B cell, resulting in 84% of the cells
classified asB cells usingCellSighter and80%usingXGBoost. However,
as the fraction of overlap with the membrane was reduced, XGBoost

continued to classify a similar percentage of cells as B cells, whereas
CellSighter was less likely to classify the cells as B cells. For example, at
12.5% overlap, XGBoost classified 72% of the cells as B cells, whereas
CellSighter dropped to 35% (Fig. 3H). This suggests that CellSighter
learned the characteristic membranous expression pattern of CD20.

Overall, we found that CellSighter learns both protein expression
levels and spatial expression patterns and integrates both when clas-
sifying cells. We note that CellSighter was able to learn these spatial
features even though it was trained on imperfectly-labeled data, where
annotations were mostly generated using gating and clustering on the
expression matrix. This is important because most labs who perform
multiplexed imaging can relatively easily generate such imperfect
annotations for a subset of the data, whereas generating high-quality
manually-curated annotations is difficult and time-consuming. The fact
that CellSighter learns spatial and sub-cellular expression features
suggests that it is able to generalize beyond just learning the clustering.

CellSighter features contribute to performance
Next, we evaluated how different features of CellSighter affect the
performance of the predictions. First, we examined what benefits, if

Fig. 2 | CellSighter learns protein expression patterns. A For all cells predicted as
Neutrophils, shown is a 2Dhistogramdepicting the correlation between the cellular
expression levels of Calprotectin (x-axis) and CellSighter’s confidence in predicting
Neutrophil (y-axis).B For eachprotein (x-axis) in each cell type (y-axis), shown is the
correlation between the cellular expression levels of this protein and the con-
fidence in prediction of this cell type. High positive correlations are observed
between lineage proteins and their cognate cell types. C Scatter plot of cellular
expression levels of CD8 (x-axis) vs. CD20 (y-axis) for cells classified as either

cytotoxic T cells or B cells. Each cell is colored according to the absolute delta
between its confidence for CD8T and Bcell. D Shown are the expression levels
(bottom) and normalized gradients of the CNN (top) for a single cell classified by
CellSighter as a Treg, in the images of Foxp3 (left), CD4 (middle) and CD45 (right).
The images of the gradients showwhich proteins influence classification andwhere
the network is looking for them. E Shown is the average positive gradients for each
protein (x-axis) in each class (y-axis) normalized across the proteins, calculated
from a single CNN on 4961 cells. Source data are provided as a Source Data file.
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any, are incurred by using an ensemble of models. To this end, we
correlated between the cellular protein expression levels and the
confidence in prediction using either a single CNN or an ensemble. We
found improved correlations using the ensemble. For example, using a
single CNN 2.68% of the cells that were classified as Neutrophils had
low expression of Calprotectin (<2), yet they were classified as Neu-
trophils with high confidence (>50%). Using the ensemble, this number
drops 5-fold to 0.47%, and cells that are classified asNeutrophils either
have high expression of Calprotectin or are classified with low con-
fidence (Fig. 4A).Moreover,we compared the confidence in prediction

for all the cells forwhichour prediction agreedwith the expert labeling
to the confidence inprediction for all the cells for which our prediction
disagreed with the expert labeling (Fig. 4B). We found that using a
single model 20% of the cells that were wrongly classified had high
confidence (>0.9). However, using an ensemble, this number dropped
to 5%, and the overall confidence for wrong classifications was sig-
nificantly lower (Fig. 4B). Overall, limiting the analysis to high-
confidence cells, using a cutoff of 0.7 on the probability, results in
classifications for 79% of the dataset and increases the recall of pre-
diction by ˜10% (Supplementary Fig. 3A). Neural networks can be

Fig. 3 | CellSighter learns spatial expression features. A Left: Calprotectin (green)
and cell boundaries (white) in one FOV. Right: Zoom-in on boxes 1–3. Shown are
cells classified as Neutrophils by XGBoost (top, orange) or CellSighter (bottom,
blue). Arrows show cells that were classified as neutrophils by XGBoost, but not
CellSighter.B The proportion of cells classified as neutrophils (y-axis) as a function
of the fraction of pixels in the cell which stain for Calprotectin (x-axis). CellSighter
(blue) classifies as neutrophils less cells with low overlap with Calprotectin.
C Example images in which CD4 (green) is simulated as a membranous signal and
CD20 (red) as a patch, partially overlapping with the cell membrane.D Simulations
of 549 cells as in (C) repeated 100 times. Shown is the fraction of cells classified as B
cells (y-axis) byXGBoost andCellSighter. Asterix denote a two tailed t-test, P < 10−20.
Boxplots showmedian, first and the third quartile.Whiskers reach up to 1.5∙(Q3–Q1)
from the end of the box. Dots denote outliers. E Simulations of 549 cells as in (C).
Shown is the fraction of cells classified as B (y-axis) as a function of the models’

confidence (x-axis). CellSighter (blue) has lower confidence in erroneous classifi-
cations relative to XGBoost (orange). F Shown is the normalized sum of gradients
(y-axis) as a function of the normalized distance from the cell center (x-axis) for
1353 T-helper and 42 Tregulatory cells. Gradients for FoxP3 (nuclear protein, solid
line) andCD4 (membranous, dashed line) reach 60%of theirmaximumat±40%and
±75% of the cell, respectively. Mean± (SD/2) are shown by lines and gray area.
G Example images in which CD4 (green) is simulated as a membranous signal and
CD20 (red) as a membranous signal with differential overlap of the membrane,
ranging from 100% to 12.5%. H Simulations of 200 cells as in (G). Shown is the
fraction of cells classified as B (y-axis) as a function of the percent of membranous
CD20 (x-axis).Despite similar signal levels across the simulations, CellSighter (blue)
was less likely to classify cells as B cells when the overlap with the membrane was
small. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-40066-7

Nature Communications |         (2023) 14:4302 6



difficult to train and can learn spurious correlations. Using an ensem-
ble of models provides results that are more robust, with improved
correlation between the network’s confidence in prediction and its
accuracy.

In addition, we evaluated how much data is needed to train Cell-
Sighter. To this end, we retrained CellSighter on training sets that
varied in size, where we randomly sampled from each class either 100,
250, 500, 1000 or 5000 cells and evaluated the resulting accuracy in

Fig. 4 | Features of CellSighter contributing to performance. A For all cells
predicted as Neutrophils, shown is a 2D-histogram of the correlation between the
expression levels of Calprotectin (x-axis) and CellSighter’s confidence in prediction
(y-axis). Using an ensemble of models (right) reduces the fraction of cells with low
Calprotectin expression that are confidently classified as Neutrophils (red square)
compared to a single model (left). B Shown is the fraction of cells (y-axis) for
varying confidence levels (x-axis), for cells inwhichCellSighter predictions agree or
disagree with expert labeling (solid and dashed lines, respectively). The ensemble
(right) reduces the fraction of cells where CellSighter predicts with high confidence
a class that differs from expert annotations, relative to a single model (left). C For
CD4 T cells (left) and Tumor cells (right), shown is the classification accuracy
(F1 score, y-axis) as a function of the number of cells used for training (x-axis).
Boxplots show the results from five independent experiments with randomly

sampled cells. Dashed lines show the F1 score on the entire training set. Boxplots
showmedian, first and the third quartile. Whiskers reach up to 1.5·(Q3–Q1) from the
end of the box. Dots denote outliers.D Prediction accuracy (blue) for each class (x-
axis) when varying the number of cells from that class in the training (y-axis). Gray
indicates experiments that could not be performed since the dataset did not
contain enough cells. E Examples of cell classes that are easily classifiedwith a small
training set, either containing nuclear signals (Treg, top) or organized into defined
structures (HEVS, bottom). F Classification recalls (y-axis) for different classes (x-
axis) using a model that was trained on landmark cells (black) or comprehensive
annotations (blue). G Shown are the differences in accuracy of classification
(F1 score, y-axis) for different classes (x-axis) between a single model trained with
augmentations andwithout augmentations. ThemeanF1 scoreof epochs 35,40and
45 is shown for each class. Source data are provided as a Source Data file.
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prediction. To obtain confidence intervals, we repeated this process 5
times, each time training a separate model (Fig. 4C, D). We found that
the number of cells needed to plateau the prediction accuracy was
highly variable between classes. For example, for CD4 T cells we
observed a continuous improvement in F1 score from 50% to 80%
when increasing the number of cells. In contrast, for tumor cells, we
found that increasing the training set resulted in only a modest
increase in F1 score from 91% to 96% (Fig. 4C). These results indicate
that somecell types areeasier to learn thanothers. This can result from
these classes having better defining markers, such as nuclear proteins
that are less prone to spillover. Another factor contributing to making
a class more easily classifiable could be spatial organization patterns
where cell types of the same class cluster together, such as in the case
ofHEVs (Fig. 4E). Overall, these results suggest that labeling efforts can
be prioritized in an iterative process. A user can label a few images and
train CellSighter using either all cells or a subset to identify classes that
would benefit most from additional training data. The CellSighter
repository supplies functions to facilitate such analyses.

Encouraged by our results that showed that CellSighter could be
trained on only thousands or even hundreds of cells, we checked
whether it was possible to train the network on easy, well-defined cells,
that don’t suffer from segmentation errors, noise and spillover. If
possible, this workflow would be highly advantageous as it would
drastically reduce the time invested in the initial labeling. To this end,
we identified in the dataset landmark cells that can be quickly defined
using conservative gating (Methods). We then retrained CellSighter
only on landmark cells from the 12 images in the training set. As
expected, evaluating this model only on landmark cells in the test set
achieves excellent results (recall 97 ± 4%, Supplementary Fig. 3B). Next,
we tested how this model performs on the entire test set. We found
that using only landmark cells for training results in good classifica-
tions for well-defined classes such as Tregs, Tumor cells and HEVs.
However, overall, it achieved poorer classifications relative to using an
unbiased representation of the dataset (recall 70 ± 20% vs. 85 ± 8%,
Fig. 4F and Supplementary Fig. 3C). We conclude that simple gating
could be sufficient for some cell types, but for others the network
needs tobe trainedon representative data that reflects the issues in the
real data. This information canbe useful to prioritize labeling efforts to
more difficult cells.

Finally, we evaluated the contributions of augmentations by
training CellSighter with and without augmentations. We found that
removing augmentations reduces the prediction accuracy by 1% to
10%, depending on cell type (Fig. 4G). Expectedly, the effect of aug-
mentations was more significant for cell types that were under-
represented in the training set and are difficult to classify, such as
stromal cells and dendritic cells. Overall, having a wide plethora of
augmentations diversifies the training set and helps overcome imbal-
ances in the prevalence of different cell types.

We also tested the effects of other modifications to the pipeline,
including different forms of data normalization (Supplementary
Fig. 3D, E), inclusion of functional proteins in the classification process
(Supplementary Fig. 3F), reducing the image resolution from (0.5μm/
pixel) to (1μm/pixel) (Supplementary Fig. 3G) and overclustering
(Supplementary Fig. 3H–J). None of these materially affected the
classification performance for this dataset. Reducing the resolution
did reduce the time to train the model by 166% (from 5min per epoch
to 3min per epoch), suggesting that resolutions of 1 μm/pixel may
suffice for cell-level classification tasks.

CellSighter generalizes across datasets and platforms
We evaluated whether CellSighter could apply to different datasets
and platforms. First, we analyzed a published dataset of colorectal
cancer acquired using CO-Detection by indEXing (CODEX)26, a cyclic
fluorescence-based method. We downloaded a publicly available
dataset from Schurch et al., usedMesmer20 to resegment the cells, and

generated highly-curated ground-truth labels for 85,179 cells, from 35
FOVs using gating and sequential rounds of visual inspection and
manual annotation. We trained CellSighter on 27 images encompass-
ing 66,691 cells and tested the results on the cells from 8 heldout
images. CellSighter achieved good levels of recall (80 ± 9%), indicating
that the approach can also be applied to fluorescent data (Fig. 5A, B).
Next, we evaluated a published dataset of Melanoma metastases
acquired by Imaging Mass Cytometry (IMC), a different mass-based
imaging modality42. We used the cell classifications provided by the
authors to train CellSighter on 55 images and tested the results on 16
heldout images. CellSighter achieved high levels of recall (84 ± 17%) on
all classes except for stroma (36%), which was mostly confused with
tumor cells (Fig. 5C).

Finally, we checkedwhether amodel trained on one dataset could
be applied to a different dataset. This is a challenging task since dif-
ferent datasets are collected on different tissues where different
populations of cells reside, and these cells may have altered mor-
phology, phenotypes and spatial organizations. Technically, different
datasets will typically differ in the number and identity of proteins
visualized and may have batch effects relating to the instrumentation
and antibodies used at different times. We evaluated how CellSighter,
trained on the melanoma lymph node dataset performed on a dataset
profiling the gastrointestinal tract, which shares 19 proteins used to
define eight shared cell types (Fig. 5D). We found that training Cell-
Sighter on the melanoma lymph node data and evaluating on the
gastrointestinal data achieves high results for major cell types that
shared all of their defining proteins, including CD4 T cells (88%), Tregs
(83%), CD8 T cells (93%) and Endothelial cells (82%). For macrophages
the performance was significantly low (47%). Notably, for this class
there were unique proteins which were used for expert labeling in one
dataset, but not the other. As such, poorer performance could stem
from not having enough information for classification, or indicate
biological variability in the expression patterns and morphology of
these cell types between the lymph node and the gut43.

Altogether, we conclude that CellSighter achieves accurate cell
type classification within a single dataset for different types of multi-
plexed imaging modalities. Across datasets, accurate classification is
dependent on having shared lineage-defining proteins, morphology
and phenotypes.

Discussion
Cell classification lies at the heart of analysis of multiplexed imaging,
but has hitherto remained labor-intensive and subjective. In this work,
we described CellSighter, a CNN to perform cell classification directly
onmultiplexed images.Wedemonstrated that the network learns both
features of protein co-expression as well as spatial expression char-
acteristics, and utilizes both to drive classification. We showed that
CellSighter achieves high accuracy (>80%), onparwith current labeling
approaches and inter-observer concordance, while drastically redu-
cing hands-on expert labeling time.

CellSighter has several features that we found appealing as users
who frequently perform cell classification on multiplexed images.
First, CellSighter outputs for each cell not only its classification, but
also a confidence score. This type of feedback is nonexistent using
current clustering or gating approaches, which often result in variable
and arbitrary quality of cell classifications. Working with CellSighter,
we found that the confidence scores that are generated are useful in
evaluating any downstream analyses that are based on these classifi-
cations. Furthermore, evaluating CellSighter’s predictions on a test set
is highly informative of label qualities. We consistently found that
improving the labeling that is used for training improves CellSighter’s
performance and ability to generalize. Therefore, classes that have low
prediction accuracies can help the user to identify cell types that are
poorly defined. This, in turn, can direct further efforts to split classes,
merge classes, gate, or performmanual annotations on the cells of the
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training set until adequate results are achieved. This process will likely
increase the overall labeling quality in multiplexed imaging.

CellSighter also has some limitations. Primarily, it is a supervised
approach. As such, if a rare cell population (eg Tregs) is not repre-
sented in the training set, CellSighter will not be able to identify it in
the rest of the dataset. Oneway to diminish this issue is to validate that
for each antibody there are images containing positive staining in the
training set. Still, this will not resolve rare populations that are defined
based on differential combinations of proteins that are usually asso-
ciated with more abundant populations. For example, rare FoxP3+

CD8+ T cells44 may not be included in the training set and therefore
missed. Incidentally, such extremely rare populations are also com-
monly not classified using standard clustering and gating-based
approaches26,27,42. With CellSighter, such cells can be more readily
identified by examining cells that were confused between classes. For
example, FoxP3+ CD8+ T cells could be identified by evaluating cells
that have high probabilities to be classified as either Tregs or CD8
T cells. The user can then decide whether to add this class and make
sure that it is represented in the training set or, alternatively perform
subsequent gating of this population.

In addition, CellSighter receives as input images of multiple
channels. This has a big advantage in that multiple proteins are
assessed simultaneously to call out cell types. For example, CD4 T cell

classificationwill be driven byexpression ofCD3 andCD4, but notCD8
and assessing these proteins for both the classified cell and its
immediate surroundings. This mimics what human experts do when
they perform manual labeling and adds to the accuracy of classifica-
tion. On theflip side, different datasets often includedifferent proteins
in their panels. A good example for this is myeloid cells, where dif-
ferent studies measure different combinations of CD14, CD16, MHCII,
CD163, CD68, CD206, CD11C, etc6,26,27,42,45–48. Transferring models
between datasets that don’t share all the proteins used in classification
is not straightforward, and reduces the accuracy of classification.
There are several solutions to this issue.We found that proteins can be
interchanged if they share a similar staining pattern. In addition, as
technologies mature, antibody panels will likely increase in size and
become more standardized, reducing inter-dataset variability in the
proteins measured, which will facilitate transferring labels across
datasets and platforms. Altogether, we foresee that in the future, using
machine-learning approaches such as CellSighter will streamline data
integration, such that knowledge would transcend any single experi-
ment and consolidate observations from different studies49,50. Aug-
menting cell-based classification with pixel-level classifiers33,51, also
stands to provide benefit and increase accuracy. While CellSighter is
undoubtedly not there yet, it is an important step in facilitating this
process.

Fig. 5 | CellSighter generalizes across datasets and platforms. A For one FOV in
the CODEX dataset from Schurch et al., the protein expression levels (left), expert-
generated labels (middle) and CellSighter labels (right) are shown (B) Comparison
between labels generated by experts (x-axis) and labels generatedby CellSighter (y-

axis) for the CODEX dataset from Schurch et al. (C) Same as (B) for IMC data from
ref. 42 D Same as (B) showing performance of a model trained on a MIBI melanoma
lymph node metastases dataset and evaluated on a dataset of the gastrointestinal
tract. Source data are provided as a Source Data file.
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Methods
Datasets and expert annotations
MIBI melanoma dataset. 111 0.5 × 0.5mm2 images, altogether
encompassing 145,668 cells. Labels for all cells were generated using
sequential gating and sequential rounds of visual inspection and
extensive manual annotation. Of these, the cells from 101 images were
used for training and the model was evaluated on the remaining 10
images. The following populations have been defined: B cells (CD20,
CD45), CD4 T cells (CD3, CD4, CD45), CD8 T cells (CD3, CD8, Gran-
zyme B, CD45), Endothelial (CD31), Myeloid (CD16, CD68, CD163,
CD206, DC_SIGN, CD11c, CD45), Mesenchyme (SMA), Neutrophil
(MPO_ Calprotectin), T cell (CD3 only), T regs (FoxP3) and Tumor
(SOX10). The other cell types in this datasetwere not used as they have
ambiguity in their definition. Expression of all proteins across cell
types can be found in Supplementary Fig. 4A.

MIBI melanoma lymph node dataset. The dataset contains sixteen
labeled 0.8 × 0.8mm2 images, altogether encompassing 116,808 cells;
and 33 unlabeled images, altogether encompassing 333,765 cells. Of
these, the cells from 12 labeled images were used for training and the
model was evaluated on the remaining four labeled images. Labels for
all cells were generated using FlowSOM clustering24, in combination
with gating and sequential rounds of visual inspection and manual
annotation. The following populations have been defined: B cells
(CD20, CD45, CD45RA), DCs (DC_SIGN, CD11c, CD14, CD45, CCR7,
CD4), CD4 T cells (CD4, CD3, CD45), T regs (CD4, FoxP3, CD3, CD45),
Macrophages (CD45, CD68, CD163, CD206, DC_SIGN, CD14, CCR7),
CD8 T cells (CD8, CD3, CD45, Granzyme B), Stroma (COL1A1, SMA),
Follicular Germinal B cells (CD20, CD21, CD45, CD45RA,), HEVs (CD31,
PNAd), Memory CD4 Tcells (CD4, CD3, CD45, CD45RO), NK cells
(CD45, CD56), Neutrophils (S100A9_Calprotectin), endothelial cells
(CD31) and Tumor (MelanA, SOX10). Additional 8 cells were labeled as
immune cells. For some of the experiments on this dataset the fol-
lowing expert-annotated classes were not included in predictions:
unidentified, which contains a mixture of various proteins, and CD3-
only, together encompassing 5% of the data.

Expression of all proteins across cell types can be found in Sup-
plementary Fig. 4B.

MIBI gastroIntestinal (GI) dataset. Labels for eighteen 0.4 × 0.4mm2

images were generated using FlowSOM clustering24, in combination
with pixel clustering33 and sequential rounds of visual inspection
andmanual annotation. Themodel trained on themelanoma lymph
node dataset was ran on 9,532 cells from the following classes,
which were shared across the two datasets: T regs (FoxP3, CD4,
CD3, CD45), CD8 T cells (CD8, CD3, GranzymeB, CD45), CD4 T cells
(CD4, CD3, CD45), B cells (CD20, CD45RA, CD45), Macrophages
(CD68, CD206, CD163, CD14, DC-SIGN, CD45), Neutrophil (S100A9-
Calprotectin), Stroma (SMA, COL1A1) and Endothelial (CD31).
Expression of all proteins across cell types can be found in Sup-
plementary Fig. 4C.

IMCmelanoma dataset. Data and cell classifications were taken from
ref. 42. Of these, the cells from 55 images were used for training and the
model was evaluated on the remaining 16 images, altogether encom-
passing 70,439 labeled cells. The following populations, as defined by
the authors, have been used: Tumor, B cell, CD4 T cells, Macrophage
+pDC, CD8 T cells, Stroma, Neutrophil, Tregs and unknown. Annota-
tions were provided for a subset of cells. For this dataset, the crop size
for the CNN was chosen to be 30 × 30 pixels because of the image
resolution. To train CellSighter the following subset of protein chan-
nels was used: CD4, CD20, SMA, SOX10, FOXP3, CD45RO, Collagen I,
CD11c, CD45RA, CD3, CD8a, CD68, CD206/MMR, S100, CD15, MPO,
HLA-DR, CD45, CD303, Sox9, MiTF, CD19, p75.

CODEX colorectal dataset. Data were taken from ref. 26. We used
Mesmer to resegment the cells, and generated highly-curated ground-
truth labels for 85,179 cells, from 35 FOVs using gating and sequential
rounds of visual inspection and manual annotation. Cells were classi-
fied to the following classes: Myeloid, CD4 T cells, CD8 T cells, T reg-
ulatory cells, CD3T cells (CD3+ only), Neutrophil, Stroma, Endothelial,
Neuron, Lymphatic, Plasma cells, B cells, and Tumor cells. Expression
of all proteins across cell types can be found in Supplementary Fig. 4D.
The cells from 27 images were used for training and the model was
evaluated on the remaining 8 images. CellSighter was trained on the
following proteins: CD11b, CD11c, CD15, CD163, CD20, CD3, CD31,
CD34, CD38, CD4, CD45, CD56, CD57, CD68, CD8, Collagen, Cyto-
keratin, FOXP3, HLADR, MUC1, NAKATPASE, PDPN, SYP, VIM,
and SMA.

CellSighter
CellSighter is an ensemble of CNN models, each based on a ResNet50
backbone52. The input for each model is a 3-dimensional tensor, con-
sisting of cropped images of K proteins centered on the cell to be
classified, a binarymask for the cell to classify (1’s inside the cell and0’s
outside the cell), and a similar binary mask for all the other cells in the
environment (Fig. 1C). The crop size can vary, but ideally should
include the cell and its immediate neighbors. For the datasets at hand
no significant differences were observed when varying the crop sizes
from 40–100 pixels (corresponding to ±20–50μm2, see Supplemen-
tary Fig. 1C). A crop size of 60 × 60 pixels was used for all datasets
except the IMC,where a crop size of 30 × 30pixelswas used to account
for the different resolution.

To account for class imbalance, rare classes were upsampled,
either equally or such that the major lineages (Myeloid, T cell, tumor, B
cell, other) were represented in equal proportions. Training: In training,
the images randomly undergo a subset of the following augmentations:
no augmentation, rotations, flips, translations of the segmentation
mask, resizing of the segmentation mask by up to 5 pixels, shifts of
individual protein channels in the X-Y directions by up to 5 pixels with
probability of 30%, and gaussian signal averaging in awindowof 5 pixels
followed by Poisson sampling. The final cell classification is given by
integrating the results from ten separately-trained CNNs.We found that
randomization in initializations and augmentations are sufficient to
generate sufficient diversity between the models. Each CNN performs
multi-class classification and outputs a probability vector for all classes.
Those probabilities are then averaged to generate one probability per
cell type. The final prediction is the class with the maximal probability
and the prediction confidence is the probability value.

The code for CellSighter can be found at: https://github.com/
KerenLab/CellSighter.

CellSighter running times
Preprocessing of the dataset to crops is performed once per dataset,
and takes a few minutes for 250,000 cells. Training one model in the
ensemble with one GPU (Quadro RTX 6000) for one epoch, which is
equal to one pass over whole train set (132,052 cells), took approxi-
mately 6min for the Melanoma dataset. Each model in the ensemble
can be trained in parallel. For the different datasets in the manuscript,
we trained for between 10 to 40 epochs, depending on the dataset. So
altogether, training on one GPU took 1–4 h. Evaluation on new data
takes approximately 40 s for 1000 cells, so ~7min for 100,000 cells.
Inference can easily be done in parallel to reduce running times.
Naturally, the number of cells for training, crop size, batch size, RAM
availability and other parameters can affect the running time.

XGBoost
Python’s XGBoost gradient boosting tree model was used for bench-
marking experiments on tabular data (https://github.com/dmlc/
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xgboost39). Input to the model included the arcsinh transformed
expression values per cell normalized by cell size for all the proteins
that were used to train CellSighter20. For some of the datasets balan-
cing of cell types was implemented to increase performance. The
model was trained with the following parameters: n_estimators = 100
andmax_depth = 2, the rest of the parameters were kept as the default
of the library.

Gradient analysis
We can refer to CellSighter as a complex function F. Given an Image x
we can compute F(x) to be the cell classification, which is a vector with
probability per cell type. We can then derive F by x and see how each
pixel in x affects the value of F. For each pixel and cell type, we get a
value that indicates how important it is for predicting the cell to beof a
specific cell type.

The analysis was performed using one of the models of the
ensemble on 5000 cells from the test set. Small cells (<50 pixels) were
removed since their size is too small for spatial analysis, leaving
4961 cells. For each of these cells, the sum of positive gradients for
each marker was calculated in concentric circles centered in the mid-
dle of the input, ranging from 1 to 18 pixels in jumps of 2. For each cell,
the radius of the circles is then normalized by the radius of the cell.
Gradients are normalized relative to the largest radius profiled. Guided
back propagation was preformed using publicly available code41.

Neutrophil analysis
Calprotectin patch analysis. Calprotectin patches from seven unla-
beled FOVs, overall including 1334 cells that were classified as Neu-
trophils, were obtained by dilating the signal using a kernel of size 3
and identifying connected components. Cells that overlap with Cal-
protectin patches are identified.

Simulations. All 237 Neutrophil cells from the test set were used.
Calprotectin signal was simulated using Poisson sampling with
lambda = 4 normally distributed with a standard deviation of 5 pixels.
Simulations were performed inwhich this signal wasmoved relative to
the center of the cell ranging from 0 to 15 pixels in x and y directions.

CD4/CD20 simulations
CD20 patch experiments. 549 CD4 T cells were randomly-sampled
and their cognate CD4 and CD20 signals removed to avoid any con-
founding factors incurred by the original signals. CD4 signal was
simulated by Poisson sampling with lambda = 1.3 in horizonal and
vertical distances of at most 5 pixels from the border of the cell seg-
mentation. CD20 was simulated around a random point on the border
of the cell with Poisson sampling with lambda = 1.3 with a uniform
distance between 0 and 6. Cells that are smaller than 15 pixels across
their minor axis were filtered to eliminate complete overlap of the
patch with the cell.

CD20 membrane experiments. 200 CD4 T cells were randomly-
sampled and their cognate CD4 and CD20 signals removed to avoid
any confounding factors incurred by the original signals. CD4 signal
was simulated by Poisson sampling with lambda = 1.3 in horizonal and
vertical distances of at most 5 pixels from the border of the cell seg-
mentation. CD20 was simulated similarly, but varying the percent of
the membrane that is covered by the signal to be 12.5%, 25%, 50% and
100%. In order to keep the overall signal intensity in the cell similar, the
number of sampled points increased proportionally to the decrease in
membrane size.

Training with different input sizes
For these experiments, 100, 250, 500, 1000 or 5000 cells were ran-
domly sampled from the training set for each class. In cases in which

there were not enough cells in the data for sampling (e.g., Tregs had
only 440 cells in the training set), all cells from that classwere sampled,
but results for these values for these classes are not reported to allow
comparisons across experiments. Figures show the mean and std of
five independent experiments.

Landmark cell analysis
Landmark cells were defined for each class as the cells that express
above 20th percentile of the proteins that define the class, and are
not above the 15th percentile value of expression of any other
protein. E.g., landmark tumor cells strongly expressed either SOX10
or MelanA and no other lineage protein. For the following classes
some deviations from this formulation were necessary to allow
enough cells for training: For myeloid cells the threshold for the
other markers was the 20th and not 15th percentile. For Tregs and
neutrophils only high expression of FoxP3 and Calprotectin was
used, respectively, without consideration for other proteins. Visual
inspection validated that these cells were indeed landmarks of their
classes.

Landmark cells were partitioned to train and test by the same
image partition as in Supplementary Fig. 2A. CellSighter was trained on
the landmark training cells and tested both on the landmark test cells
(see Supplementary Fig. 3B) and on all cells in the test (see Supple-
mentary Fig. 3C).

Normalization
Two normalization methods were tested for their effect on classifica-
tion. The first method is Anscombe transformation, which reduces the
effect of the heavy tails in the distribution, and is commonly used for
low-count images. The second was scaling each pixel by the 99th
percentile. Results for both normalizations are shown in Supplemen-
tary Fig. 3D, E.

Over-clustering
To assess whether over-clustering improves CellSighter predictions,
the model was trained on two sets of labels. The first set included
lineage classes “DCs” and “Macrophages”. In the second set, these
classes were over-clustered to subsets, including DCs, CD14+ CD11c+
DCs, CD11c + DCsign+ DCs, Macs, Mono CD14+ DR, CD68+ Mac, DC-
SIGN+ Mac, and CD206+ Mac. Supplementary Fig. 3H depicts the
expression profiles of these subsets. CellSighter was trained on both
sets of labels and the results for “DCs” and “Macrophages” were eval-
uated on the test set (see Supplementary Fig. 3H–J).

Image resolution
To investigate the effect of image resolution on classification results,
we took the Melanoma LN data, which was acquired at a resolution of
0.5μm/pixel and then simulated from this data images at a resolution
of 1 μm/pixel using a 2 × 2 kernel (see Supplementary Fig. 3G).

Assessment of the contribution of functional proteins for cell
classification
To assess the contribution of functional proteins for cell classification,
CellSighter was trained on the same dataset using either 25 lineage
proteins, as described above, or 39 lineage + functional proteins,
including: CD103, Bax, HLA-DR-DP-DQ, HLA-class-1-A-B-C, IDO-1, Ki67,
LAG-3, PD-1, TCF1TCF7, CD45RA, TIM-3, Tox-Tox2, PD-L1 and CD69
(see Supplementary Fig. 3F).

Image visualization
For visualization purposes only, images were clipped to the dynamic
range. SomeMIBI images were Gaussian blurred using ImageJ (https://
imagej.nih.gov/ij/download.html). Figures were prepared using Bior-
ender and Adobe Illustrator.
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Statistics and reproducibility
All statistics were computed using Python 3.8.5. A complete list of
packages can be found at: https://github.com/KerenLab/CellSighter/
blob/main/requirements.txt. Mesmer’s version 0.11.1 and later
were used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Melanoma lymphnodedataset is available at: https://doi.org/10.17632/
zcz8743fcv.2.

CODEX colorectal dataset is available at: https://doi.org/10.7937/
tcia.2020.fqn0-0326.

IMC Melanoma data is available at: https://doi.org/10.5281/
zenodo.6004986 Source data are provided with this paper.

Code availability
The code for CellSighter can be found at: https://github.com/
KerenLab/CellSighter.
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