
Article https://doi.org/10.1038/s41467-023-40064-9

A preclinical secondary pharmacology
resource illuminates target-adverse drug
reaction associations of marketed drugs

Jeffrey J. Sutherland1, Dimitar Yonchev2, Alexander Fekete1 & Laszlo Urban 1

In vitro secondary pharmacology assays are an important tool for predicting
clinical adverse drug reactions (ADRs) of investigational drugs.We created the
Secondary Pharmacology Database (SPD) by testing 1958 drugs using 200
assays to validate target-ADR associations. Compared to public and sub-
scription resources, 95% of all and 36% of active (AC50 < 1 µM) results are
unique to SPD, with bias towards higher activity in public resources. Anno-
tating drugs with free maximal plasma concentrations, we find 684 physiolo-
gically relevant unpublished off-target activities. Furthermore, 64% of putative
ADRs linked to target activity in key literature reviews are not statistically
significant in SPD. Systematic analysis of all target-ADR pairs identifies several
putative associations supported by publications. Finally, candidate mechan-
isms for known ADRs are proposed based on SPD off-target activities. Here we
present a freely-available resource for benchmarking ADR predictions,
explaining phenotypic activity and investigating clinical properties of mar-
keted drugs.

Adverse drug reactions (ADRs) are a significant cause of drug dis-
covery and clinical program terminations and post-marketing drug
withdrawals1. Further, ADRs are a frequent cause of patient drug dis-
continuation, increasing disease burden for patients and the health-
care system2. Anticipating the ADR profile of investigational drugs
during lead optimization allows drug discovery teams to pursue stra-
tegies for reducing the safety liability while maintaining favorable on-
target pharmacological properties.

ADRs mediated by unintended drug activity may involve interac-
tion with one or more targets in the druggable proteome3. Despite
advances in high-throughput transcriptomic, proteomic, or cellular
imaging techniques for predicting ADRs4, panels of in vitro biochem-
ical and cellular assays measuring the effect of drugs on key protein
targets retain their pre-eminence in preclinical secondary pharmacol-
ogy testing5,6. However, the number of targets with well-established
roles inmediatingADRs is limited. Examples includehERG (KCNH2) for
QT prolongation, α1A adrenergic receptor (ADRA1A) modulation for
arrhythmia (agonists) or orthostatic hypotension (antagonists), and
dopamine D1 (DRD1) antagonism for dyskinesia and tremors7. Beyond

the hERG channel, a lack of scientific consensus on the strength of the
evidence linking target activity to ADRs may contribute to the high
variability in panel composition across the pharmaceutical industry8.

Prior studies have explored relationships between activity results
from biochemical in vitro assays and ADRs from marketed drugs9–12.
These studies have been qualitative in nature (e.g., citing literature
implicating the target), were limited to curated activity results from
resources such as ChEMBL13 and DrugCentral14, and generally used
measures of activity potency that did not account for variable human
pharmacokinetic properties of drugs, namely the maximal drug
exposure (Cmax) at the highest approved dose. Recently, Smit et al.15

reported the first systematic analysis of safety margin vs. ADR rela-
tionships using biochemical activity and human exposure results from
ChEMBL, and identified 45 targets with statistically significant rela-
tionships vs. human ADRs. Because results from ChEMBL are parsi-
monious (i.e., most assays vs. compound pairs have no reported
results from the literature), the authors used QSAR modeling to fill in
missing values and could not account for potential confounding rela-
tionships when establishing statistical significance.
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Over the course of several years, we have systematically evaluated
the activity of 1958 drugs vs. panels of biochemical and cellular in vitro
assays to create a secondary pharmacology database (SPD). Unusually
for such resources, all compounds were tested at 8 or more con-
centrations, with the concentration resulting in 50% of maximal
activity (AC50) available for all tested drug vs. assay pairs. The database
reports ca. 150 000 AC50 values for marketed drugs, allowing sys-
tematic analysis of target (assay) vs. ADRs reported in databases such
as SIDER16 and the FDA adverse drug reaction reporting system
(FAERS). To our knowledge, the only comparable resource is the
Eurofins BioPrint database17 which is available by subscription only.
Here, we report overall low concordancebetween results from the SPD
(obtained using a limited number of assay protocols for each target)
vs. results from ChEMBL and DrugCentral (obtained using a wide
variety of such protocols). We illustrate the utility of the database by
identifying unpublished drug activities that may account for drugs’
therapeutic benefits and/or ADRs.Weused the SPD to identify putative
target vs. ADR associations via systematic analysis and explain known
ADRs via target activities not previously reported in public resources.
Beyond the present work, the SPD has broad utility for drug safety and
mechanism of action investigations, and phenotypic activity decon-
volution for drug activity in cellular models.

Results
In vitro safety pharmacology database
In vitro safety pharmacology assays areused to reveal potential clinical
ADRs of low molecular weight compounds during lead optimization8.
To interpret these results in the context of marketed drug safety
profiles, we tested 1958 unique drug substances across 200 safety
pharmacology assays, resulting in 147 653 concentration-response
curves (Supplementary Data 1–3). As some of these results were
repeated measurements on different dates and/or different lots of
drug substance, results were summarized into 121 097 unique drug vs.
assay pairs. The number of assays per drug ranged from 20 to 161, with
a median of 66. Thus, SPD represents an unprecedented resource for
investigating on- and off-target pharmacology of marketed drugs.

The database was completed over the course of several years.
Changes in assay formats (e.g., radioligand binding vs. luminescence),
internal vs. external sourcing, and other factors resulted in multiple
assays for a given target and mode (agonist, antagonist, inhibitor). To
simplify data analysis and maximize the number of tested drugs for a
given target and mode, assays were merged into 168 assay groups by
analyzing the concordance of repeated measurements. Assay groups
ranged from 1 to 4 assays, and often combine similar assays performed
internally vs. contract research organizations (CROs). The number of
unique drugs tested per assay group ranged from 30 to 1942, with a
median of 794 drugs per assay.

In vitro assay results for marketed drugs published in the litera-
ture are available in several open-access resources, such as ChEMBL13

and DrugCentral14, and from commercial providers of results curated
from journals. Results from our database were cross-referenced to
these sources, revealing low overall coverage of drug-target pairs,
especially for inactive results (Fig. 1a). Further, quantitative agreement
of AC50 values is modest (Fig. 1b, c), possibly because of heterogeneity
in methods used to assess pharmacological activity when aggregated
across publications. For drug-assay pairs with results in ChEMBL, 66%
of SPD AC50 values ≥10 µM have a median ChEMBL AC50 <10 µM.
Conversely, 82% of SPD AC50 values <0.1 µM are reported to be simi-
larly potent in ChEMBL. These observations are consistent with pub-
lication bias towards positive or active findings.

To systematically investigate factors contributing to activity dif-
ferences, we matched SPD vs. 21 596 individual ChEMBL activity
results, and annotated each activity pair using assay and target attri-
butes (methods). When modeling differences in log AC50 values, SPD
attributes denoting agonist assays (Mode), kinase assays (Protein

Class), and protein functional assays (Event, e.g., calcium flux assays)
tended to increase differences, as did ChEMBL attributes “protein
format” (a Bioassay Ontology term often denoting brain homogenate
assays) or ChEMBL standard type of EC50 (typically associated with
functional assays). SPD attributes denoting binding assays (Mode =
Bindingor inhibition)were associatedwith smaller activity differences.
As noted above, activity differences tended to be larger when the
reported activity was higher in ChEMBL. Notably, comparing assays
across species (e.g., human vs.mouse protein) was not associatedwith
larger activity differences. Taken together, these represent received
wisdom in comparing assays across sources: assays measuring func-
tional events downstream of targets are more variable than those
measuring binding events at targets. These trends are likely to be
confoundedby the association ofmeasurement approaches and target
families difficult to distinguish in our database (e.g., kinase/enzyme
assays are cell-free assays and GPCRs or ion channels are cell-based
assays).

Assessing the clinical relevance of drug-assay associations
The clinical relevance of results from in vitro safety pharmacology
panels is commonly assessed by calculating a safety margin, or the
ratio of in vitro AC50 and the therapeutic free plasma concentration at
the highest approved dose5. To calculate safety margins from the SPD,
we compiled human plasma Cmax and plasma protein binding (PPB)
results from several sources, obtaining free Cmax estimates for 937
drug substances (Supplementary Data 2; Methods). Across all assays,
6783 drugs vs. assay safety margins were calculated and distinguished
by on-target activities (i.e., the assay measures activity at the drug’s
target), off-target activity that is known (in DrugCentral, ChEMBL, or
subscription resources), and non-published off-target activities in the
SPD (Fig. 2a). Themedian on-targetmarginwas2.4 vs 80 for knownoff-
target activities and 353 for unpublished activities. This suggests that a
large proportion of off-target activities frombiochemical assays would
not manifest as ADRs at clinically relevant exposures.

According to the free-drug hypothesis, biochemical activity from
in vitro assays becomes physiologically relevant when the safety
margin approaches 1. Overall, 28% (122/429) of on-target margins in
our database exceed 10 and 12% (51/429) exceed 50. To investigate the
target dependence of safety margins, we tabulated the median value
for mechanisms (target and mode; Supplementary Data 4). Among
mechanisms represented by ten or more drugs, the median margin
ranged from 0.2 (SLC6A4, or serotonin transporter) to 5.9 (HTR2A
antagonism). Several mechanisms with lower representation had
median margins exceeding 10, and 23/47 mechanisms have 25% or
more of drugs with margins of 10 or higher.

We labeled as potentially physiological all off-target activities with
a margin of 10 or less, resulting in 517 known and 684 unpublished
physiological off-target activities. Drugs with higher overall pro-
miscuity, defined as the percentage of assay groups with AC50<10 µM,
contributed a significant portion of known and unpublished physio-
logical off-target activities (Fig. 2b). For instance, the promiscuous
antidepressant nefazodone (31/88 assays with AC50 results <10 µM, or
35%) has four on-target and 23 off-target physiological activities; five
off-target activities were not reported in the sources we considered.
There are outliers from the overall trend: sunitinib has 51% target
promiscuity, yet only a single physiological activity (on-target), owing
to its very low freeCmaxof 6.3 nM; the antibiotic cefepimehas noAC50

results <10 µM, yet six off-target activities above this threshold may be
physiologically relevant owing to its high free Cmax of 260 µM (Sup-
plementary Fig. 1).

To identify unpublished off-target activities with potential impact
on disease unrelated to the on-target activity, we focused on a subset
with non-overlapping on- vs. off-target indications according to
DrugCentral (Supplementary Data 5). Unpublished activities that were
noteworthy included CNR1 inhibition of losartan (AC50 = 1.2 nM) and
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glipizide (AC50 = 19 nM), which may contribute to their therapeutic
effect in treating hypertension and metabolic syndrome (the CNR1
antagonist rimonabant is used in the management of obesity18). Roti-
gotine, a dopamine agonist used for Parkinson’s disease, was found to
be anADRA1A (α1a) agonist (AC50 = 3.3 nM); it has been described as an
α2b agonist in a journal not curated by the sources used in our
analysis19. Clinical studies have shown increased systolic blood pres-
sure in treated patients, consistent with α1a agonism

20,21. Citalopram, a
selective serotonin reuptake inhibitor (SSRI), was found to inhibit the
histamine H2 receptor (HRH2; AC50 = 350nM). Depression22 and the
use of tricyclic antidepressants have been reported to increase the
incidence of gastroesophageal reflux disease (GERD), but not SSRI
antidepressants23 (of which citalopram is the most prescribed24).
Clinical studies suggest direct effects (rather than altered pain per-
ception) on esophageal function25. HRH2 antagonists (e.g., ranitidine,
cimetidine) reduce gastric acid secretion and are clinically approved to
treat GERD symptoms. Therefore, HRH2 inhibition by citalopram
may contribute to its observed effects on the digestive system.

Zolpidem, a GABA agonist used for treating insomnia, inhibited
CHRM1 (AC50 = 0.21 µM), possibly contributing to its observed effect
on dystonia26.

Evaluation of literature-reported target vs. ADR relationships
Variability in the composition of safety pharmacology assay panels
suggests that many target vs. clinical ADR associations are not fully
understood8. Associations reported in the biomedical literature are
summarized in three reviews5,9,27. We utilized the SPD to evaluate the
significance of associations involving 60 targets, each listed as risk
factors for 1 to 34 ADRs coded using MedDRA preferred terms. To
characterize the strength of such associations, we correlated drug
activity measured in SPD assays vs. clinical ADRs according to SIDER16

and FAERS, as summarized in DrugCentral28. Drug activity was repre-
sented as (unadjusted) AC50 values, (2) ratio of AC50 vs. Cmax, tot (i.e.,
total margin), and (3) ratio of AC50 vs. Cmax, free (free margin), and
correlated vs. presence or absence of ADRs using the Kruskal–Wallis
(KW) test (Supplementary Fig. 2). Because we performed multiple
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Fig. 1 | Safety pharmacology results vs. literature-based resources.
a Distribution of AC50 values from SPD by AC50 range, where highly active results
are denoted as AC50 < 0.1 µM and inactive results as AC50 ≥ 10 µM. Drug-assay pairs
were cross-referenced to resources containing results curated from the biomedical
literature:DrugCentral AC50 < 10 µMor target annotated as theMOA inDrugCentral
(blue), ChEMBL AC50 < 10 µM (orange), subscription resources AC50 < 10 µM (yel-
low), or single concentration activity > 50% in either ChEMBL or subscription

resources (green). Resources were labeled hierarchically, i.e., activities reported in
DrugCentral are mostly available in ChEMBL and other resources. b qualitative
comparison of median ChEMBL vs. SPD AC50 values for 5106 drug-assay pairs; SPD
results with AC50 qualifier > (AC50 greater than max concentration tested) are
shownas ≥10 µM. cquantitative comparisonofmedianChEMBLvs. SPDAC50 values
for 2700 drug-assay pairs where the SPD AC50 qualifier is = (i.e., measurable
activity); Pearson R2 = 0.48.
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statistical tests per target-ADR pair, associations were classified as sig-
nificant (p≤0.001),marginal (0.001 <p ≤0.05), not significant (p >0.05)
or not tested (associations with fewer than 10 positive or 50 negative
drugs for the ADR). We also imposed a minimal threshold ROC AUC
≥0.6 for distinguishing positive vs. negative drugs for a given ADR
(Fig. 3a). Across 719 tested associations, 240 (33%)were significant and a
further 20 (3%)weremarginal. Theproportion varies significantly across
targets (Fig. 3b). A large percentage of associations were confirmed for
adrenergic receptors (e.g., ADRA1A; 15/15), muscarinic receptors (e.g.,
CHRM1; 30/34), 5-HT receptors (e.g., HTR1A; 20/20—the notation indi-
cates number significant +marginal/number tested). Our evaluation of
target-ADR relationships from Bowes et al.5, which represents a con-
sensus of safety pharmacology targets across several pharmaceutical
companies, is summarized in Supplementary Table 1, with full results in
Supplementary Data 6. Similar results were obtained using alternate
FAERS risk or assay score thresholds (Supplementary Notes).

Several targets hadno statistically significant associations, despite
many potential ADRs reported in the literature. Lack of significance
might be due to characteristics of the assay data (i.e., few actives, low
statistical power), few drugs causing an ADR, biases towards certain
ADR types, etc. To investigate further, associations were labeled as
significant (p ≤0.001 and ROC AUC ≥0.6) or non-significant (all oth-
ers). We created a Lasso-penalized logistic regression model of these
outcomes using several properties, including measures denoting the
proportion of drugs active in the assay and MedDRA system organ
class (SOC) of the ADRs. A small number of variables, including
decreasing 5th percentile of AC50 values, increasing count of drugs
with AC50 <1 µM, and ADRs belonging to the SOCs “Nervous system
disorders” or “Psychiatric disorders” all increased the probability of a
target-ADR association being significant (Supplementary Fig. 3). These
results are intuitive: targets havingmanydrugswithpotentAC50 values
(the percentile measure), or sub-micromolar actives, and CNS-related
ADRs observed whenmodulating promiscuous GPCRs5 aremore likely
to have significant ADRs.

The model class assignments (“likely significant” or “likely non-
significant”) can be viewed as a prior likelihood of validating a target-
ADR association, given the characteristics of the assay data and the
ADR class. When evaluating the predictions for 459 literature asso-
ciations having p > 0.05 or ROCAUC<0.6, 414 (90%)were assigned the
likely non-significant class. These are literature-reported associations
identified by the model as having a low likelihood of being significant,
given the dataset. Conversely, 45 associations with p >0.05 were
identified by themodel as likely significant (i.e., dataset characteristics
should enable validation of a true association). These include both
serious ADRs (heart failure for ADRA2B, DRD1, and DRD2 activation)
and lower severity effects (sleep or memory impairments for several
targets).

Safety margins, either based on free5 or total Cmax29, have been
proposed as superior to unadjusted AC50 for predicting ADRs. A
practical limitation is that estimated human Cmax is usually not
available in early lead optimization. The proportion of significant
associations was highest when using AC50 as an activitymeasure,more
notably when using SIDER as the source of ADR annotations (Supple-
mentary Fig. 4). This remained true when using the ROC AUC rather
than p value for selecting significant associations, a measure which
should be less sensitive to the smaller sample sizes for margin-based
activity measures. Even for target-ADR pairs significant on both AC50

and free margin, the strength of association is generally higher for
AC50-based activity measures (Supplementary Fig. 5).

Systematic evaluation of target vs. ADR relationships
The 743 literature-derived targets vs. ADR associations represent a
small proportion of all possible such associations. We systematically
evaluated all possible target vs clinical ADR annotations from SIDER
and FAERS. To increase the power to detect associations for less
common ADRs, we also modeled assay vs. MedDRA high terms (HT)
and group terms (HG) that combine related preferred term (PT) ADRs.
In total, we examined 562 744 relationships for each of 124 assays and
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2647MedDRA termswith sufficient representation in SPD, using three
activity measures for each pair (AC50 values in µM, total margin, free
margin). Overall, 1992 assay vs. MedDRA pairs met the statistical cri-
teria of ROC AUC ≥0.7 and KW p value <1e-06 on one or more activity
measures (Supplementary Data 7). This included 671 associations
using HT or HG terms, of which 560 had one or more significant child
terms. To limit redundancy, we focused further analysis on 1321 PT and
111 HT/HG-based associations without a more predictive child term.

Only 25% of the 1432 assay vs. ADR associations overlapped with
those reported in the literature reviews, suggesting that somemight be
worthy of investigation (Fig. 4a). Mirroring our findings for literature

associations, a large proportion were significant only on AC50, com-
pared to margin-based activity measures (Fig. 4b). However, we noted
that the proportion supported by a margin-based measure increased
with the proportion of active drugs that were on-target, suggesting
that margin-based associations were more likely to be plau-
sible (Fig. 4c).

Drugs often modulate off-targets with high sequence similarity
(and hence similar binding pockets) vs. the intended target. Statisti-
cally significant off-target vs. ADR relationships from the univariate
analysis may be confounded by the corresponding on-target rela-
tionship. For example, the most significant association involving
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glucocorticoid receptor (NR3C1) binding vs. “Adrenal cortical hyper-
functions” (MedDRA 10001341; p value = 2e-42, ROC AUC=0.87) is
mirrored by a similar relationship for progesterone receptor (PGR)
agonism (p value = 1e-17; ROC AUC=0.87). Among 12 drugs causing
this ADR, according to SIDER and tested in both assays, eight drugs
modulate both NR3C1 and PGR with AC50 <10 µM; seven drugs are
glucocorticoid antagonists, and one drug is a PGR agonist. Achieving
selectivity is difficult30, and whether one or both targets contribute to
the occurrence of this ADR cannot be determined via univariate sta-
tistical analysis.

To distinguish overlapping vs. orthogonal assay contributions to
clinical ADR risk, we performed multivariate logistic regression to
model the probability of observing a given ADR using the subset of

significant assays identified above. Because unpublished high-
significance assays and known lower-significance assays might
explain the same variation inADR risk, we included assays for literature
targets that reached the lower-significance threshold p ≤0.001 (i.e.,
significant per Supplementary Data 6 but not reaching the combined
p ≤ 1e-06 and ROC AUC ≥0.7 for inclusion in Supplementary Data 7).
The analysis workflow employing the lasso penalty seeks to select the
smallest number of variables (assays), resulting in a model with pre-
dictive accuracy within one standard error of the best model (with any
number of variables). Accordingly, assays retained in the sparsemodel
are likely to represent distinct contributions. The selection of assays
retained in the sparse models was stable across random resampling of
the data (Supplementary Notes).
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Fig. 4 | Systematic identification of assay vs. ADR relationships. a Number of
assay vs. ADR pairs having KW p value ≤1e-06 and ROC AUC ≥0.7 in either SIDER or
FAERS, by MedDRA type (PT preferred term, HT high term, HG group term), dis-
tinguished by their presence or absence among the literature-reported associa-
tions. b Proportion of associations considered significant by three activity
measures considered; associations significant by free margin alone, or both free
and total margin, are labeled as “free margin”; associations significant by a total
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activity measure vs. fraction of drugs active in the assay that are on-target (i.e.,
activity at the drugs’ known targets). d Identification of non-redundant assays

linked to “extrapyramidal disorder”. The left panel indicates univariate ROC AUC
for each assay, showing cumulatively in stacked form significant associations for
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the coefficient in the penalized logistic regression model, i.e., only 3 assay AC50
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To illustrate, twodatasetsweremodeled to identify non-redundant
assays for predicting “Adrenal cortical hyperfunctions”: one fromSIDER
consisting of 487 drugs annotated as positive (18) vs negative (469) for
the ADR, and a second fromFAERS consisting of 605 drugs (17 positives
vs 588 negatives). These datasets are not identical owing to differences
in SIDER and FAERS, with 11 shared positive drugs in both datasets.
MeasuresofAC50, totalmargin and freemargin forNR3C1 andPGRwere
employed as predictors (3 × 2 variables). The optimal (sparse)model for
each dataset was reduced to a single variable, namely the NR3C1 AC50.
This suggests that the total and free NR3C1 margins and the PGR end-
points explain the same variation in the ADR risk as the NR3C1 AC50. Put
differently, there is no evidence of utility beyond the NR3C1 AC50 to
predict this ADR. For “extrapyramidal disorder” (MedDRA 10015832)
SIDER annotations, this approach reduced the number of predictive
assay + activity measure pairs from 28 to 3, namely SLC6A4, HRH1, and
DRD3bindingAC50 values (Fig. 4d);DRD3 is not reportedas a risk factor
for this ADR according to the literature reviews. Overall, this approach
eliminated 801 assay vs. ADR pairs identified as significant by univariate
analysis but redundant with other retained (more predictive) assays.
Comparing retained vs. eliminated assays shows enrichment towards
margin-based measures (Fig. 4e).

In summary, we identified 189 ADRs with a single predictive assay
(p value ≤1e-06 and ROC AUC ≥0.7; no multivariate modeling) and a
further 442 ADR vs. assay pairs with univariate significance and
retention in the sparse models. The glucocorticoid receptor (NR3C1),

histamine H1 receptor (HRH1), serotonin transporter (SLC6A4),
dopamine D3 (DRD3), adrenergic alpha-1A (ADRA1A), and dopamine
D1 (DRD1) receptors accounted for the largest proportion of
ADRs (Fig. 4f).

Investigation of unpublished target vs. ADR relationships
The analytical workflow described above systematically evaluated all
possible assay (target) vs. ADR relationships, identifying 631 associa-
tions that met stringent statistical criteria (p value ≤1e-06 and ROC
AUC ≥0.7) and were not redundant with known risk factors (i.e.,
retained via the sparse modeling). As validation of this approach, 149
associations (24%) were from the literature reviews described above.
This suggests that a subset of the remaining 482 associations may
represent clinically relevant unpublished target vs. ADR risk factors.

Amongst these, the glucocorticoid receptor (NR3C1) accounted
for many associations. Even though these were not all listed in the
literature reviews, immune suppression that results from activity at
NR3C1 is well recognized31, and most of these interactions are on-
target. Activity linked to the serotonin transporter (SLC6A4) similarly
shows a range of ADRs associated with the indication of mood dis-
orders that are treated with SSRI drugs32.

We searched the literature for associations where 20% or more
of active drugs were off-target and that seemed plausible to us
(Table 1). For example, ADRA2C inhibition was associated with
auditory hallucination and paranoia in FAERS, on AC50 and margin

Table 1 | Selected assays vs adverse drug reaction relationships from univariate and multivariate analyses with support in the
biomedical literature

Assay name MedDRA name KW p value ROC AUC significant sources a Literature b

ADRA1A binding Eosinophilia 3.6E-08 0.85 F 32194050

Tardive dyskinesia 1.9E-23 0.87 S 45, 46

ADRA2C inhibition Hallucination, auditory 1.1E-11 0.86 F 33–35

Paranoia 1.2E-09 0.82 F 33–35

AR binding (agonist) Erythema nodosum 2.6E-10 0.70 S 27075133

Ovarian and fallopian tube cysts and neoplasms 2.4E-09 0.70 S 30791431

Retinal embolism and thrombosis 6.5E-07 0.74 S 29040227

Ovarian neoplasms malignant 55(excluding germ cell) 5.9E-12 0.82 S 30791431

CHRM1 inhibition Micturition urgency 4.0E-09 0.73 S 35117285

Dental caries 3.9E-07 0.73 S 31289718, 12974516

CHRM2 binding Ileus paralytic 2.7E-10 0.76 S 14607264

DRD2 binding Breast enlargement 2.4E-08 0.72 S 36–38

Menstruation irregular 2.4E-08 0.71 S 38

Salivary hypersecretion 7.9E-11 0.71 S 16421461

DRD3 binding Tardive dyskinesia 4.3E-31 0.90 F, S 40–42

Extrapyramidal disorder 5.1E-33 0.87 F, S 19506579

Gambling disorder 2.8E-09 0.83 S 26192187

Hyperprolactinemia 1.6E-17 0.86 S 16169407,
33854317

Blood prolactin increased 4.2E-14 0.88 S 33854317

HRH1 binding Hypomania 5.0E-17 0.88 S 34572558

HTR2B antagonist Lethargy 7.4E-07 0.71 S 30666218

Sleep disorders NEC 1.9E-08 0.72 S 30666218

OPRK1 binding Salivary hypersecretion 2.8E-08 0.74 S GOc

PGR agonist Hyperpigmentation disorders 7.8E-13 0.71 S 39

SLC6A4 binding Generalized tonic-clonic seizure 1.5E-08 0.76 F 31849820

Galactorrhea 2.0E-21 0.76 S 14997175

Blood prolactin increased 2.5E-07 0.78 S 14997175
a Sources are abbreviated as S (SIDER) and F (FAERS).
bReferences not discussed in the text are provided as PubMed IDs.
cEvidence from Gene Ontology.
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measures. A mouse knockout model showed increased startle reflex
and aggression33. Differential gene expression34 and genetic
alterations35 in ADRA2C also suggest a role in schizophrenia. DRD2 and
DRD3 binding were associated with mammary and menstruation-
related ADRs in SIDER36–38. PGR agonism was associated with hyper-
pigmentation disorders in SIDER, with drugs acting both on-target
(medroxyprogesterone and progesterone) and off-target (NR3C1
modulators). A recent report describes the effect of asoprisnil, a
selective PGR modulator, on melanocytes39.

More challenging is the interpretation ofmotor dysfunction ADRs
associated with modulation of DRD3 and adrenergic receptors, given
the preponderance of evidence implicating DRD1 and DRD2 (Fig. 4d).
Even though sparse model building selected DRD3 over DRD2, both
targets may explain the same variation in ADR risk. DRD3 gene poly-
morphisms have been associated with tardive dyskinesia (TD)40–42, and
DRD3 knockout animals have slightly altered locomotor activity, and
enhanced sensitivity to DRD1/DRD2 agonists43. Motor dysfunction-
related ADRs are listed in the FDA label for cariprazine, an atypical
antipsychotic selective for the D3 receptor44. As such, DRD3 may
contribute to the ADR profile of dopaminergic drugs, usually ascribed
to DRD2 in the literature. Although TD is strongly linked with
abnormalities of the dopaminergic system, there is some evidence
from clinical case studies, that 3H-dihydroergocryptine (3H-DHE)-
alpha2 adrenergic receptor binding and cerebrospinal fluid nor-
epinephrine (NE) were positively correlatedwith the severity of TD45,46.
It remains elusive to link drug-induced TD to engagement with adre-
nergic receptors by antipsychotic drugs, as most of them have high
pharmacological promiscuity with prominent effects at dopamine,
histamine, and serotonin receptors, also associated with movement
disorder side effects. However, it is plausible that combined effects at
these receptors include the adrenergic component.

SPD assay results reveal the putative cause of known drug ADRs
Many drug vs. assay results from the SPD are not described in the
pharmacology resources we interrogated. To determine if these
unpublished activities explain known ADRs of marketed drugs, we
tabulated 325 drug-target-ADR triples for target-ADR relationships
reported in the literature and statistically significant in our analysis
(Fig. 5 and SupplementaryData 8, 9). Themostprevalent class of newly
explained ADRs were cardiac and respiratory effects. These include 16
drugs active atOPRK1with association “cardio-respiratory arrest”, with
AC50 values ranging from 0.35 to 4 µM. A variety of ADRs belonging to
movement disorders (e.g., extrapyramidal disorder, Parkinsonism, and
dyskinesia) were associated with several targets, including OPRK1 (9
drugs), CHRM2 (8 drugs), and ADRA1A (5 drugs). We investigated
selected examples in further detail (Table 2).

Case study: accommodation disorder and muscarinic activity
Accommodationdisorder is one of themost commonADRs associated
withmuscarinic receptor antagonists47.We found severaldrugs thatdo
not have known association with muscarinic receptors, but caused
accommodation disorder. Zolpidem is a GABA-A receptor agonist with
no muscarinic receptor-related side effect in its label48. However,
FAERS data suggest that it is related to accommodation disorder,
clearly associated with muscarinic receptor antagonism but not with
GABA. When we tested zolpidem for its effects at a large range of
targets, we found that in addition to engagement to the GABA-A
receptor (AC50 = 46 nM) it also bound to the M1 muscarinic receptor
with high potency (AC50 = 210 nM). Eletriptan is a highly selective
HTR1A receptor agonist for the treatment of migraine49. To our
knowledge, there is no evidence that it has pharmacodynamically
relevant muscarinergic engagement, which could explain the pre-
dicted accommodation disorder in associationwith theM2muscarinic
receptor.

Case study: citalopram off-target-ADR associations
Citalopram is an SSRI antidepressant used to treat anxiety disorders
and other psychiatric conditions50. While catecholamine uptake was
broadly investigated with SSRIs51, there is little knowledge about their
engagement with monoaminergic and other CNS receptors, in con-
trast to other antidepressants52. We found several ADRs that could be
associated with dopaminergic engagement: movement or extra-
pyramidal disorders, psychotropic disorders, and endocrine adverse
reactions (Supplementary Data 8). Our results indicatemodest activity
at D1 and D3 (AC50 = 4 and 5 µM, respectively), but not D2 receptors
(AC50 > 10 µM). The major metabolite of citalopram, desmethyl-cita-
lopram, has been reported to have similar binding activity at the D3
receptor53.

There is published evidence that SSRIs, including citalopram, are
rarely associated with TD. The present hypothesis is that this is related
to an indirect anti-dopaminergic effect induced by increased levels of
serotonin54,55. However, there is indirect support for the interaction of
citalopram with the dopaminergic system. Citalopram induces the
upregulation of dopamine D1, D2, and D3 receptor mRNA levels in the
rat nucleus accumbens56, which is an essential part of the rewarding
and primary motivational CNS network. The results indicate that
alterations in the availability of neurotransmitters at synapses induced
by citalopramare strong enough to induce immediate and long-lasting
adaptive changes in the neuronal network. However, the strongest
effect was observed with the D2 receptor57. This finding also raises the
possibility, that homo- and/or hetero-dimerization58 of the dopamine
receptorsmight occur due to citalopram treatment and possibly result
in D2 upregulation59, suggesting that antidepressants can induce
adaptive changes in the brain.

Based on the engagement with the dopaminergic system, it is not
surprising that citalopram also has psychotropic ADRs similar to that
of atypical antipsychotic drugs. However, this class of ADRs is difficult
to differentiate from symptoms associated with the treated disease12.
Also, the serum concentration of citalopram is affected by con-
comitant treatment with neuroleptics, benzodiazepines, and tricyclic
antidepressants andby the ageof thepatients60. These conditions have
two important effects on the ADR association of citalopram, namely
the concomitant treatment could cause the side effects and the ele-
vated concentration of citalopram could bring its weak effects at the
serotonin and dopamine receptors in coverage. Thus, careful analysis
is needed to link common ADRs of psychotropic drugs to citalopram.

Finally, we have encountered information on hormonal changes,
namely hyperprolactinemia, an endocrine disorder that is associated
with risperidone, an atypical antipsychotic drug61. It manifests in
galactorrhea andgynecomastia, particularly prominent in boys treated
for irritability associated with autism62. In a previous study, we linked a
high volume of hyperprolactinemia/gynecomastia reporting in FAERS
to the strong engagement of risperidone to serotonin and dopamine
receptors, transporters with a narrow safety window12. However,
endocrinal ADRs are rarely associated with antidepressant drugs
(SSRIs) and monoamine oxidase inhibitors (MAO-I)63. The HRH2
activity noted herein may therefore contribute to the ADR of hyper-
prolactinemia reported in SIDER.

Discussion
In vitro safety pharmacology assays are an important tool in lead
optimization and risk assessment prior tohumanstudies.With the goal
of interpreting results for new chemicals in context, we created the
Secondary Pharmacology Database (SPD) over a multi-year period to
characterize approximately 2000 drugs. In this work, we present a
comprehensive analysis of bioactivity vs. ADR relationships using
uniform and standardized assay protocols. Many of these assays are
offeredby commercial vendors, allowing the application of the SPD for
probing the safety characteristics of newly synthesized compounds.
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By comparing results from our database to freely available
(ChEMBL, DrugCentral) and subscription resources, we found that ca.
95% of assay results were unique to the SPD. This proportion was
highest among inactive results but remained ca. 36% for results with
AC50 < 1 µM. When activity results in SPD were also described in the
public resources from literature curation, literature-reported AC50

values tended to be smaller (i.e., more potent). These observations are
consistent with a bias toward publishing active results.

The availability of inactive results (typically AC50 ≥ 30 µM) for
many drug vs. target pairs allowed us to test the association between
the presence or absence of drug ADRs and the presence or absence of
activity at a given target. When evaluating the statistical significance of
literature-reported target vs. ADR relationships, we found 64%with no
support. This varied significantly by target, suggesting that smaller
panels of assays based on carefully selected targets could be used at
earlier stages of lead optimization. Ourmodeling suggested thatmany
associations lacking support reflect limitations in the dataset (i.e., too
few potent drugs for the target). However, 128 associations flagged by
the model as unlikely to be significant have strong support from our
data (p <0.001). This suggests that many of the literature associations
lacking support may have modest predictive utility (low effect size),
even if substantiated in larger datasets. Contrary to our expectations,
we found more relationships to be supported by unadjusted AC50

values vs. human Cmax-derived safety margins. From a practical per-
spective, this facilitates risk assessment early in lead optimization
when human Cmax estimates may not be available.

We systemically analyzed target vs. ADR pairs using our database,
identifying unpublished associations. Statistical analyses linking

targets toADRsare highly confoundedbypolypharmacology,whereby
ADR risk might be attributed to target activity correlated with the
causal risk drivers. Prior investigations using publicly available assay
data eitherdidnot control15 or clustered similar associations to identify
putative drivers10. We attempted to control known associations by
performing penalized multivariate selection using all individually sig-
nificant assays, including lower-significance associations reported in
the literature. This approach eliminated ca. 800 associations,
increasing the likelihood that those retained are causal.

Methods used in this work to annotate drugs with ADRs have
limitations. Expert annotation of structured product labels is limited
to small drug sets64, and revealed limitations of natural language
processing (SIDER) or post-marketing spontaneous reports as
approximations. Severity and frequency are not generally available
in SIDER, and hence not reflected in the associations described
herein. Inferring ADRs from FAERS has several pitfalls, including
reporting biases and confounding by drug indication12. Various
statistical approaches have been proposed to extract trends from
FAERS data65–67, and consensus on the most effective approach
remains elusive. Our work leveraged the likelihood ratio test68 as
implemented in DrugCentral; other approaches may yield different
results.

Since many druggable proteins were not included on our
panels, the absence of the causal proteins would fail to deselect non-
causal proteins. For instance, 12 associations involving the protein
kinase KDR are listed as unpublished in Supplementary Data 7. These
include “stomatitis”, “gastrointestinal perforation”, and “malignant
neoplasm progression”. These associations may represent general

Table 2 | Selected adverse drug reaction newly explained by SPD database

Drug (targets) Assay target AC50 (µM) Explained ADRs

amiodarone (KCNH2) HRH1 2.4 akinesia, bradykinesia, decreased activity, disorientation, extrapyramidal disorder, hypokinesia, inap-
propriate antidiuretic hormone secretion

amlodipine (CACNA1C) ADRB2 1.8 sinus bradycardia

DRD2 2.9 parkinsonism

OPRK1 1.2 cardio-respiratory arrest, drug abuse

citalopram (SLC6A4) DRD1 3.9 akathisia, catatonia, choreoathetosis, dyskinesia, ejaculation disorder, extrapyramidal disorder, libido
increased, movement disorder, orgasmic disorders and disturbances, parkinsonism, priapism, psychotic
disorder, serotonin syndrome, substance related and addictive disorders, tardive dyskinesia, torticollis,
trismus

citalopram (SLC6A4) HRH2 0.35 hyperprolactinemia

donepezil (ACHE) ADRA1A 4.4 drooling

CHRM2 1.1 extrapyramidal disorder

eletriptan (HTR1B, D, F) CHRM2 4.2 accommodation disorder

fluoxetine (SLC6A4) OPRK1 1.5 cardio-respiratory arrest, coordination abnormal, delusion, drug abuse

lurasidone (DRD2, HTR2A) ADRA1A 0.075 bloodprolactin increased, cogwheel rigidity, drooling,muscle rigidity, oculogyric crisis, sexualdysfunction,
torticollis

CHRM2 3.5 dyskinesia

DRD1 0.13 dyskinesia, sedation, substance related and addictive disorders

pregabalin (CACNA2D1,2) ADRA1A 3.7 autonomic nervous system imbalance, blood prolactin increased, dizziness postural, miosis, orgasmic
disorders and disturbances, restlessness, sudden death, torticollis, trismus, urinary incontinence

quetiapine (DRD2, HTR2A) OPRK1 1.6 cardio-respiratory arrest, choreiform movements, coordination abnormal, delusion, drug withdrawal
syndrome

OPRM1 1.8 drug dependence, respiratory arrest

ranitidine (HRH2) CHRM2 2.6 dyskinesia

sibutramine (SLC6A2,3,4) HTR2A 1 torticollis

OPRK1 4.8 delusion

tramadol (OPRM1) CHRM2 1.5 dyskinesia, parkinsonism

trimipramine (SLC6A2,3,4) CHRM1 0.31 accommodation disorder, mydriasis

CHRM2 0.16 accommodation disorder, extrapyramidal disorder, mydriasis, parotid gland enlargement

valbenazine (SLC18A2) HTR1A 1.4 tardive dyskinesia

zolpidem (GABRA1) CHRM1 0.21 accommodation disorder, mydriasis
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kinase-mediated ADRs, with the latter illustrating confounding of
ADRs due to drug treatment vs. symptoms associated with the
treated disease.

An illustrative example concerns associations between targets
and “electrocardiogram QT prolonged”. Logistic regression was
applied to several assays, which are either described as risk factors for
long QT in the literature reviews (ADRB2, HRH1, KCNH2, and SLC6A2)
orwere identifiedbyunivariate analyses (ADRA1A,DRD2,DRD4,HRH2,
and HTR2B). Among the literature-reported associations, activity at
thehERGchannel (KCNH2) is thought tobe theprimary risk factor. The
penalized modeling approach retained ADRA1A, DRD2, HRH1, and
hERG as non-redundant variables. The role of all but hERG is con-
troversial. Several drugs devoid of activity at hERG (i.e., AC50 > 10 µM)
are annotated with long QT in SIDER or FAERS and support these
associations (i.e., AC50 < 1uM): ADRA1A (alfuzosin, clonidine, mian-
serin, olanzapine, quetiapine), DRD2 (amisulpride, olanzapine, que-
tiapine), and/or HRH1 binding (cetirizine, mianserin, mirtazapine,
olanzapine, quetiapine, and valproic acid).

There is overwhelming evidence of cardiac arrhythmias caused by
H1 histamine receptor antagonists. While a broad range of anti-
histamines could cause QT prolongation either on their own or in
combination with other drugs, there has been an emerging common
denominator,whichmakes this class ofmedications prevalent to cause
cardiac arrhythmias. That is hERG channel inhibition, which has been
reviewed extensively during the past two decades69. All H1 anti-
histamines and/or their metabolites—with very few exceptions—have a
direct hERG effectwith various levels of potency. Their effectmight be
exacerbated by high exposure because of the co-administration of
drugs interfering with the metabolism of the antihistamines. Alter-
natively, combination therapy with other hERG-inhibiting drugs could
synergize their effects. In summary, caution is needed when ubiqui-
tous off-target effects appear in a class of drugs aiming at the same
therapeutic target.

Throughout this work, we labeled as unpublished off-target any
activities in SPD not reported in ChEMBL, DrugCentral or the sub-
scription resources containing curated pharmacological activity
results. Curation-based resources have limited journal coverage, and
results we claim as unpublished can sometimes be found with manual
searches (e.g., PubMed, Google Scholar). For example, lurasidone and
vandetanib are annotatedwith the ADR “Torsade de pointes” andwere
found to have hERG AC50 values of 0.53 and 0.35 µM, respectively.
These activities are not reported in the sources we considered, but are
reported in the literature70,71. A condition for practical large-scale
analyses of pharmacological activity results is inclusion in commonly
used databases. As such, activity results from SPD are a significant
addition to existing resources summarizing the bioactivity of drugs.

Methods
Compliance with ethical regulations
Human clinical data on adverse drug reactions were obtained from
publicly available resources that contain results in aggregated form
only. These resources do not provide individually-identifiable health-
care information under the Health Insurance Portability and
Accountability Act of 1996 (HIPAA). As such, no institutional review
board approval was required to use these resources.

In vitro safety pharmacology assays
Compounds were obtained from the Novartis Institutes of Biomedical
Research (NIBR) compound library and tested in a panel of in vitro
biochemical and cell-based assays at Eurofins and/or NIBR in
concentration-response (eight concentrations, half-log dilutions
starting at 10 or 30 µM). Assay formats varied from radioligand bind-
ing, to isolated protein, and cellular assays. Normalized concentration-
response curves were fitted using a four-parameter logistic equation
performed using software developed internally (Helios). The equation

used is for a one-site sigmoidal dose response curve: Y = A + ((B-A)/
(1 + ((X/C)^D))), where A =min, B =max, C = IC50, D = slope. By default,
min is fixed at 0, whereas max is not fixed.

When drugs had no significant biological activity at the highest
concentration tested, the AC50 was reported with qualifier >; for
example, an AC50 is reported with qualifier > and AC50 value 30when a
compound exhibits no significant activity at concentrations up to
30 µM. Where curve fitting produces an AC50 value below the highest
concentration tested, activity is reported with qualifier =.

Mapping chemicals to DrugCentral structure IDs
Multiple chemical substances were tested in the SPD assays. Different
substances include distinct lots sourced from chemical vendors or
synthesized internally of a given drug, different salt forms, and/or
metabolites of the parent drug. In preparation of the dataset released
with this study, SMILES representation of substances were de-salted
and converted to InChI keys using RDKit’s MolToInchi function
(https://rdkit.org/; accessed 09/22/2021; RDKit version 2021_03_5).

The DrugCentral PostgreSQL database dated 09/18/2020 was
downloaded (https://drugcentral.org/download; accessed 09/22/
2021). The InChI key consists of three parts separated by hyphens, of
14, 10, and 1 character(s), respectively. These correspond to the con-
nectivity information (or graph; 14 characters), remaining layers (10
characters), and protonation state (1 character). For each NIBR struc-
ture, matches to DrugCentral were attempted at multiple levels of
decreasing stringency: (1) perfect matches: the InChI key obtained on
the DrugCentral SMILES matches the key from a NIBR SMILES, (2)
match without the protonation part of the key, (3) match using only
the graph part of the key, but require a name or synonym match, and
finally (4) try to match on name or synonym, and review structures.
Level 4 matches are common with complex drugs such as natural
products, where drawing errors occurred during the registration of
substances. Matches involving names and/or synonyms compare
those from DrugCentral to names assigned as part of the NIBR sub-
stance registration. Note that DrugCentral sometimes includes both
parent drugs and metabolites, both of which were used in the
matching process.

Dataset summarization
Substances sharing the same InChI key tested in multiple assay runs
were summarized into a single numeric AC50 for a given InChI vs. assay
pair. When one or more AC50 values had qualifier =, the geometric
mean was computed and reported with qualifier =; N summarized
indicates thenumber of averagedAC50 values, andN total indicates the
total number of AC50 values for the InChI vs. assay pair, including AC50

values with qualifier > excluded from the geometric mean computa-
tion. In the absence of any AC50 value with qualifier =, the largest value
among those with qualifier > was retained. For instance, the AC50

values of >1 and >30 µM are summarized as follows: qualifier >,
numeric AC50 value 30, N summarized 2, and N total 2.

Defining assay groups
The SPD database was created over several years, with some targets
havingmultiple assay protocols employed. Eachprotocolwas assigned
a unique identifier. Changes inprotocol often result in the creation of a
new assay, designated with a new identifier, even when both assays
effectively measure the same biochemical event. Examples include
changes in radioligand, measurement technology (e.g., filter binding
vs. TR-FRET), outsourcing to a contract research organization (CRO),
etc. To maximize power for detecting statistically significant relation-
ships and simplify the analysis, we defined assay groups that combine
assays resulting in concordant AC50 values when comparing results on
the same drug substances.

Concordance analysis was performed by evaluating the agree-
mentof assay resultswhere at least ten compoundswere tested in each
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pair of assays having the same target and mode (e.g., both binding,
agonist, or antagonist assays). Qualitative agreement (<10 and ≥10 µM)
was assessed by calculating the sensitivity of each assay for detecting
actives from the other, with a minimum of 0.5 for both assays (i.e., #
active in both assays / # active in assay 1 ≥0.5 and # active in both
assays / # active in assay 2 ≥0.5, and PearsonR ≥0.7 calculated on 10or
more log AC50 values, where both results had qualifier =. Assay pairs
with insufficient overlapping test compounds were not merged.
Viewing assays as nodes and concordant assay pairs as edges, all nodes
within a connected graphweremerged, even if some assay pairswithin
the group fell below our concordance cutoff (or lacked sufficient
overlapping pairs to assess). To increase the number of overlapping
test compounds for a pair of assays, this analysis was performed on all
results available for the assays, including proprietary compounds not
included in the supplement. Supplementary Data 1 is provided at the
level of both individual and grouped assays.

Within each assay group, the assay supplying the largest propor-
tion of results was designated as the preferred assay. When results
were available for the preferred vs. other group assays, results from the
preferred assay were used in downstream analyses.

Integration of external activity results
Activity data from DrugCentral, including annotation of targets as
drugs’ mechanism of action (MOA), were obtained from the act_da-
ta_full table for humans and mammals (rat, mouse, cow, guinea pig,
rabbit, pig, sheep, dog, chicken, and monkey). Drugs from the SPD
were mapped using the DrugCentral structure ID as described above.
For each DrugCentral target ID, the Swissprot identifier from the tar-
get_component was mapped to Entrez gene IDs using the gene2ac-
cession file from Entrez gene or the Uniprot ID mapping tool (https://
www.uniprot.org/uploadlists/; accessed 09/23/2021) in the absence of
an Entrezmatch. Finally, any non-human Entrez gene IDsweremapped
to the human ortholog using a compilation of associations from
Ensembl, Homologene, RGD, and MGI. For SPD, assays using non-
humanproteinswere representedwith the humanEntrez gene ID. Each
drug vs. assay pair from SPD was annotated with the median AC50 for
all DrugCentral activity records with the same structure ID and human
gene ID. This matching did not consider activity mode (inhibitor,
antagonist, etc. - action_type in act_data_full), because it was undefined
in most cases.

When defining on-target activity, the DrugCentral act_type vari-
able defining adrug’smodeof action at the targetwas compared to the
assay mode. For functional assays, only drugs annotated as having the
same mode as the assay were retained (e.g., agonist drugs for agonist
assays). For GPCR and nuclear receptor assays having binding or
inhibitionmodes, agonist drugs were removed. Antagonist drugs were
retained because binding and functional antagonist readouts are cor-
related on our panels.

ChEMBL version 27wasdownloaded as a PostgreSQLdatabase. To
increase the number of matches while allowing variation in structural
representations (e.g., ignoring chirality, structuredrawing errors, etc.),
ChEMBL compound identifiers provided by DrugCentral were sup-
plementedwith thosematching the SPD InChi keys identified using the
multi-criteria match described above. ChEMBL targets identified with
Uniprot accession numbers were mapped to SPD assays as described
above. Activity types and units suggestive of multiple concentration
testing were converted to AC50 values in µM units (pM, nM, µM, mM,
andM); results with units of ng/mL, pg/mL, and ug/mLwere converted
tomolarities using the drugfree base RDKitmolecular weight. ChEMBL
results suggestive of single concentration testing (units of %) were
considered separately. Multiple ChEMBL drug vs. target values were
summarized as the median, separately for AC50 and single con-
centration results.

Clarivate Cortellis (https://clarivate.com/cortellis/solutions/pre-
clinical-intelligence-analytics/; accessed 8/3/2021) and Excelra

GOSTAR (https://gostardb.com/gostar/; accessed 8/3/2021) are
subscription-based resources similar to ChEMBL andDrugCentral. The
same processing applied to ChEMBL was used to identify median AC50

values for SPD drug vs. assay pairs.

Selecting representative SPD result for each drug vs. assay
group pair
Multiple InChi keys are available for certain drugs, and multiple
assays within assay groups. To simplify the analysis, we denoted one
result as a representative among all available for a given prescribed
(parent) drug vs. assay group pair. For a given drug vs. assay group
pair, the algorithm selects assay results for the active metabolite
over any collected for the parent drug (e.g., take activity results for
enalaprilat when describing the activity of enalapril). The algorithm
favors high quality structural matches between DrugCentral and
SPD and selects from the preferred assay within the assay group.
Detailed logic is available in the Jupyter notebook make_all_pre-
scribable_drug_activity_dataset.ipynb. The selected activity records
have column representative_result_drug_assay_group = TRUE in
Supplementary Data 1.

Comparison of activity results to ChEMBL
Tomodel assay and target characteristics thatmay affect concordance
between SPD and literature-reported activity results, we assembled a
dataset matching SPD activity results with each individual ChEMBL
activity reported for a given drug and target pair (i.e., not averaging
results for a given drug and target across publications). Only pairs
where the activity qualifier was = in both sources were retained. SPD
assay results were annotated with assay characteristics reported in
Supplementary Data 3, and ChEMBL results with the ChEMBL assay
type (e.g., B for binding or F for functional), assay format using the
Bioassay Ontology terminology, and standard_type variables from the
ChEMBLactivity database table. Resultswereexcludedwhen theywere
represented by fewer than500pairs in the dataset of ca 22000SPD vs.
ChEMBL result pairs: ABCB11 (SPD-Event = incorporation assay),
SCN5AandCACNA1C (SPDReadout = electroanalytical readout), ACHE
(SPD Readout = absorbance readout), SPD Protein Class = Protease,
ChEMBL bao_format of organism, mitochondrion, microsome, cell-
free (blood assays), ChEMBL standard_type not one of Ki, Kd, IC50,

EC50, ChEMBL assay_type of T or A. Several annotations were merged:
SPDMode of Binding and inhibition, ChEMBL bao_format = subcellular
format (mostly brain synaptosomes) with tissue-based format. The
final dataset consisted of 21 596 matched SPD vs. individual ChEMBL
activity results involving the same drug substance and target (includ-
ing ortholog matches across species). Activities were converted to
pAC50 values (negative log10 of AC50 in molar units), and the absolute
difference was calculated. The activity difference was modeled using
continuous variables of SPD pAC50, ChEMBL pAC50, a binary variable
same_species (1 = yes, 0 = no), andmulti-level categorical variables SPD
Protein Class (e.g., GPCR), SPD-Event (e.g., protein binding assay), SPD
Format (e.g., in vitro assay with cellular components), SPD Mode (e.g.,
Binding), SPD Readout (e.g., radioactivity), ChEMBL assay_type (e.g., =
B for binding assays), ChEMBL bao_format (e.g., assay format),
ChEMBL standard_type (e.g., IC50). All categorical variables were
converted to binary dummy variables with the R library fastDummies.
A penalized lasso regressionmodelwasfit using theR library glmnet to
identify variables that were associated with activity differences. Vari-
ables discussed in the text were present inmodels up to and including
the 1semodel (model with the fewest variables within 1 standard error
of the best model) and had an absolute coefficient greater or equal to
0.1. The modeled dataset is provided in Supplementary Data 10.

Human drug exposure (Cmax) and plasma protein binding
The maximal drug exposure (Cmax) at the highest approved dosage
was curated from the primary literature for 487 drugs. To broaden the
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dataset, we extracted human Cmax values from Pharmapendium
(https://pharmapendium.com; accessed 10/26/2021). These are often
from heterogeneous sources, and include results from lower doses,
metabolites, pediatric studies, Cmax at steady state, etc. Selecting a
representative value could be achieved by calculating the median,
average, 3rd quartile, or 90th percentile. We employed the 487
manually curated results as a reference set and found maximal corre-
lation when Pharmapendium values were summarized as the 3rd
quartile. This supplied a further 451 drugCmax results. Finally, weused
values reported in ref. 15 for a further 146 drugs, yielding a dataset of
1084 marketed drug Cmax values (Supplementary Data 2).

To calculate free Cmax values, we employed a similar approach
for compiling plasma protein binding (PPB) %: primary literature
curation (572 drugs), Pharmapendium (332), DrugCentral (90), and
Smit et al. (52), providing a dataset of 1045plasmaprotein binding. For
Pharmapendium, results reported as albumin or glycoprotein binding
were excludedbecause correlation vs. our curateddatasetwas low; the
3rd quartile provided thehighest concordancevs. curation, as observed
for Cmax.

Cmax(free) was determined as the product (100-PPB%)× Cmax(-
tot) for 940 drugs having both parameters available.

ADR annotation using FAERS and SIDER
Annotation of drugs as being positive or negative for MedDRA-coded
ADRs was performed using two sources. In the absence of freely
available high-quality manual curation of ADRs and their frequency
from labels for all FDA-approved drugs64, surrogate approaches must
be employed. The FDA adverse drug reaction reporting system
(FAERS) is often used inpharmacovigilance research todetectADRs. In
this work, we used FAERS data fromDrugCentral28 without any further
post-processing. ADRs with a likelihood ratio test (LRT) ≥5 times the
drug-specific threshold value were deemed positive for a given drug14;
otherwise, the drug was labeled as negative for the ADR. Results
obtained using an LRT cutoff of 2 are broadly similar (Supplemen-
tary Notes).

The SIDER database provides annotation of drug ADRs obtained
from text mining applied to drug labels16. SIDER uses drug annotation
from STITCH, a sister database (http://stitch.embl.de/download/
chemicals.v5.0.tsv.gz; accessed 09/23/2021). SMILES from STICH
were converted to InChi keys and matched to DrugCentral structures
using the multi-criteria matched described above. The mapping is
provided in Supplementary Data 11.

Drug ADRs were obtained from the file meddra_all_se.tsv.gz
available from the SIDER website (http://sideeffects.embl.de;
accessed 09/24/2021). Drugs weremapped to DrugCentral using the
stereo_id using Supplementary Data 11. SIDER ADRs were labeled
using UMLS CUIs; they were mapped to MedDRA preferred term
(PT) codes using the UMLS REST API (https://documentation.uts.
nlm.nih.gov/rest/home.html; accessed 09/24/2021). A version of
meddra_all_se.tsv, using DrugCentral struct_id and MedDRA PT
codes is provided as a supplementary dataset with the Jupyter
notebooks (final_sider_map_to_drugcentral_meddra.txt).

Creating ADR training sets
For each ADR, positive drugs (causing the ADR) and negative drugs
(not causing the ADR) must be defined. To study the association
between ADRs and assays, ADR terms from SIDER and FAERS reported
as MedDRA preferred terms (PTs) weremapped toMedDRA high-level
terms (HT) and high-level group terms (HG). The mappings were
obtained using the UMLS API.Mapping to higher terms results inmore
drugs labeled as positive (i.e., higher power to detect an effect), but
potentially combining PTs with distinct target (assay) risk factors. We
therefore modeled relationships at three levels: PT, HT, and HG.

Depending on the level of MedDRA terms, different strategies
were employed for definingADR-negative drugs (i.e., drugs that do not

cause a given ADR). For HGs, any drug not positive for one of the
underlying PT terms was considered a negative. For HTs, any drug not
positive for the term and not positive for a sister HT under the current
HG was considered a negative. For PTs, any drug not positive for the
term and not positive for a sister PT under the current HT was con-
sidered negative. This strategywas used to avoid labeling as negative a
drug that produces a similar ADR to the one under study. For example,
negatives for PT 0044066 (Torsade de pointes) would exclude drugs
that are positive for PT 10047302 (Ventricular tachycardia), because
both PTs share the HT 10047283 (Ventricular arrhythmias and cardiac
arrest). The Jupyter notebook make_ADR_training_sets.ipynb was used
to automate the definition of positive and negative drugs for each PT,
HT, and HG term.

Because drugs sharing an active metabolite may have different
ADR annotations (e.g., betamethasone dipropionate vs. betametha-
sone valerate), eachwas treated separately. Annotation of drugs with a
selected activity record from SPD for each assay was performed using
the multi-criteria approach described above, using the Jupyter note-
book make_ADR_vs_activity_dataset.ipynb. It should be noted that this
differs from make_all_prescribable_drug_activity_dataset.ipynb, where
we selected a single representative drug form (betamethasone) among
all those tested.

Univariate ADR vs. assay association
Toestablish the strengthof associationbetweendrugs’ status forADRs
(Boolean) and assay activity measure (continuous measures of AC50,
free and total margin), the Kruskal–Wallis (KW) test and ROC AUC
computation was performed for each ADR vs. assay pair; KW p values
were not adjusted for multiple hypothesis testing. ROC AUC values
were calculated with the sklearn.metrics.roc_auc_score function using
each of the three activity measures as predicted values, and the ADR
class (positive = 2, negative = 1) as actual values.

Activity measures of AC50, total margin, and free margin fre-
quently have qualifier >, indicating that measured AC50 was estimated
to exceed the highest concentration tested in the assay. Themaximum
tested concentrations of 10 and 30 µMwere employed formost assays.
To calculate a rank-based association test between assays and ADRs, it
was necessary to select an AC50 cutoff and replace all values in excess
with the cutoff value (truncating). Values with qualifier > but AC50

below the cutoff were excluded. For AC50 values, the numeric dis-
tribution for qualifier = and>were largely non-overlapping, the natural
cutoff is 10 or 30 µMdepending on the assay, and few values needed to
be truncated or excluded. Because drug total and free Cmax vary over
a wide range, safety margin distributions overlap significantly for
qualifier = and >. This makes the selection of cutoff more difficult: too
low andone loses the ability to distinguish ranks for drugswith a safety
margin above the cutoff, but too high and one must exclude from
analysis many values with qualifier > below the threshold (and hence a
loss of power). We performed tests using cutoffs of 10 and 30 µM for
AC50, 2 and 10 for total margin, and 10 and 100 for free margin.

For assessing the statistical significance of literature-reported
assay vs. ADR associations (see below; Supplementary Data 12), we
retained the threshold giving the smallest (most significant) KW p
value. For systematic analysis of all assay vs. ADR pairs, we selected a
single threshold per assay in order to minimize the number of tests
performed (i.e., increasing the false discovery rate). For each assay and
activitymeasure (AC50, totalmargin, freemargin), the cutoff providing
the largest total number of assay vs. ADR associations with ROC AUC
≥0.7 and KW p value ≤1e-06 was selected and used for all further
analyses. The higher cutoffs (30/10/100 for AC50/total margin/free
margin) were generally selected (37 vs. 23 assays for AC50, 28 vs. 14
assays for total margin, and 35 vs. 5 assays for free margin cutoff).

Excluded from analysis were all combinations of assays, activity
measures (AC50, free margin, total margin), and ADRs not meeting the
following criteria: ten ormorepositive drugs (i.e., drugswith the ADR),
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50 or more negative drugs and ten or more non-qualified activity
values. Univariate analyses were performed using the Jupyter note-
book calc_ADR_vs_assay_score.ipynb.

Multivariate modeling of ADRs
Multiple assays and activitymeasures (AC50, total margin, freemargin)
may show significant association with a given ADR. Because assay
activity is often correlated across related targets (e.g., targets with
similar binding pockets), variable selection strategies can be used to
select a smaller number of assay and activitymeasures among all those
which met our univariate threshold (KW p value ≤1e-06 and ROC AUC
≥0.7). We used L1-penalized (Lasso) logistic regression to model each
ADR outcome (positive or negative) using the subset of assay + activity
measures selected by univariate analysis. AC50 andmargins were log10
transformed prior to modeling.

When modeling ADR outcomes with multiple assays, missing
activity values occurwhen somedrugswere not tested in all assays. For
each ADR, we required individual assays to reach 70% or greater cov-
erage compared to the assay with maximal drug count; missing values
were imputed by using the median.

For each dataset (ADR class as dependent variable and assay
activities as independent variables), a sequence of penalties “C” was
generated. The average and standarderrorofROCAUCat eachpenalty
were determined using 50 trials of leave 20%-out cross-validation. The
smallest “C” (or largest penalty) producing a model with ROC AUC
within 1 standard error of the best model was selected. This led to the
creation of models with few variables, to discern the principal con-
tributors to ADR risk. Variables with zero coefficients have no sig-
nificant role in explaining the odds of being positive for a given ADR,
after accounting for the contributions of variables with non-zero
coefficients.

Because small values of AC50 or margins indicate activity in an
assay, variableswith large negative coefficients in the logistic regression
model represent assays for which increasing activity results in higher
odds of being positive for a given ADR. For coefficients ≥−0.08, the
variable was tagged as not in the model. This corresponds to inter-
preting a 10-fold decrease in AC50 or margin being associated with a
smaller than 20% increase in odds ratio of observing the ADR. There
were occurrences of coefficients >0.1, i.e., indicating decreased risk of
the ADR for activity in the assay. These were almost exclusively in
modelswhere an expectednegative associationwaspresent for another
activity parameter of the same assay (i.e., AC50 had a large negative
coefficient and freemargin had a small positive coefficient). Thesewere
considered excluded from the model (i.e., coefficient of 0 in Supple-
mentary Data 7). Multivariate analyses were performedwith the Jupyter
notebook build_ADR_vs_assay_model.ipynb.

Literature-reported target vs. ADR associations
Target-ADR relationships, as published in three key reviews, were
obtained from the supplementary material in ref. 15. Because they did
not provide the direction of association (target activation vs. inhibi-
tion), we reviewed associations from the three publications. Smit et al.
mapped terminology from the reviews to MedDRA preferred terms
(PT). In reviewing their results, we added some missing associations
and refined mappings to MedDRA codes. These are denoted as pre-
analysis supplemental terms in Supplementary Data 12.

Because the selection of MedDRA PTs from the literature reviews
may differ from their representation in SIDER or FAERS, we examined
the frequency of each literature PT code in SIDER and FAERS. Some
terms with suspiciously low frequency triggered searches for better
terminology. For instance, “Intestinal transit time decreased” is a valid
MedDRA PT used in Lynch et al., however, it is not used in SIDER or
FAERS. However, both “Gastrointestinal disorder” and “Diarrhea”were
identified as substitutes. These additionalmappings were added to the
Literature vs. MedDRA PT term mapping.

For each combination of MedDRA code and target from the lit-
erature, we examined the significance of the association in the SPD.
Each associationwas tested across all SPDassays for the target (median
1, range 1–6), two sources (SIDER, FAERS), three activity measures
(total margin, freemargin, AC50), and two activity cutoffs for denoting
active vs. inactive results (total margin 10 vs. 2, free margin 100 vs. 10,
AC50 30 vs. 10 µM). As such, 12 to 72 tests (median of 12) were con-
ducted per literature association, and we classified as “marginally sig-
nificant” those associations with KW p value between 0.05 and 0.001
(nominal p value of 0.001 with 72 tests yields a Bonferroni-corrected p
value ~0.07). We only tested associations having at least 10 positive
drugs and 50 negative drugs with available assay results; ADRs with
counts below these thresholds were typically rare (e.g., death) and
were classified as “not tested”.

Failure to achieve significance might be due to a poor selection
of MedDRA PT for the ADR. For associations classified as marginal,
not significant, or not tested, we repeated the statistical testing
described above for each PT that shares a given HT with the
literature-derived term. For example, Smit et al. mapped “urinary
contraction” (given in the Bowes review as an ADR for CHRM3
activation) to the term “Bladder spasm” (MedDRA 10048994). Our
dataset only contained six drugs annotated with this ADR (classifi-
cation “not tested”). However, several MedDRA PTs sharing the same
HT met our criteria of KW p value ≤0.001 and ROC AUC ≥0.6.
Ordered by increasing p value (most significant first), these include
“Urinary retention” (10046555), “Urinary hesitation” (10046542),
“Micturition disorder” (10027561), and “Strangury” (10042170). The
selection algorithm sorted all related terms by p value, accumulating
the number of tests performed, and stopping at first satisfying the
above criteria. In Supplementary Data 6, the association of CHRM3
activation with “urinary contraction” (literature ID 364) contains the
p value and ROC AUC for “Urinary retention” and is classified as
highly significant (p ≤ 1e-06), with distance 1 (i.e., the significant PT
and starting PT are connected via 1 intermediate in the network, via
the shared HT).

When no PT terms sharing a given HT were identified, terms
sharing a high-level group term (HG) were examined. These are
encoded as distance 2 in Supplementary Data 6 (i.e., the starting and
significant terms are linked via two intermediates: HT then HG. For
both the HT and HG expansion, we used a two-step process: first
identifying possible related terms, then manually reviewing and con-
firming them. This is especially important for distance 2 relations
where very broad (and sometimes opposite) effects are grouped at the
HG level. Only 14 target-ADR pairs were found significant via a shared
HG term (distance = 2), but not distance 0 or 1; 11 of these used the
term “Ileus paralytic” (10021333) ascribed to “constipation”, “gastro-
intestinal motility decreased”, “gastrointestinal transit decreased”)
reported in the three reviews.

The Jupyter notebook calc_lit_AE_vs_assay_score.ipynb was used
to perform this analysis.

The final set of literature-derived target vs. ADR annotations,
including those obtained from Smit et al. and our additions via the
common HT and HG terms, are provided in Supplementary Data 6.
Tabulation, as significant, marginally significant, not significant, or not
tested in results, uses the strongest association for any of the indivi-
dual MedDRA PTs regardless of their source.

Developmental ADRs from Lynch et al.9 are included in Supple-
mentary Data 6 for completeness but were excluded from result
summaries described throughout. Because these are rare effects, only
three of these associations meet the criteria of 10 positives and 50
negatives in SIDER and/or FAERS.

Assay and ADR characteristics vs. validation of target-ADR pairs
Establishing statistical significance of a given target vs. ADR pair
requires having a sufficient number of drugs that are positive and
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negative for the ADR, and a sufficient number of drugs with measur-
able activity in the assay. We selected minimal but arbitrary require-
ments of 10 positives, 50 negatives, and 10 or more non-qualified
activity values to test the association. Failure to find significance may
simply reflect the limited power of the dataset, i.e., the above cutoffs
were not set high enough.

Because the majority of significant literature-reported associa-
tions were supported by the AC50 activity measure (rather than free
or total margin), we repeated the selection process described above
to identify the most significant MedDRA code, source (SIDER or
FAERS), assay, and activity cutoff for the AC50 activity measure only.
This avoided combining AC50 and margin-based activity measures
having different scales, and for which standard percentile values
would be non-comparable (free margin = 1 and AC50 = 1 µM are not
comparable).

Literature-reported target vs. ADR pairs were classified as sig-
nificant (222 pairs) or non-significant (497 pairs), using the criteria KW
p value ≤0.001 and ROC AUC ≥0.6. Since this analysis used only the
AC50 activity measure, there are fewer significant associations com-
pared to Supplementary Data 6 (which used AC50, free and total
margin). To identify families of ADRs more or less likely to be sig-
nificant, MedDRA PTs were mapped to system organ classes (SOCs),
and each literature association was annotated as assigned to (1) or not
(0) a given SOC. Some PTs map to multiple SOCs (e.g., “Metabolism
and nutrition disorders”, “Endocrine disorders”). Several summary
statistics that capture the proportion of drugs with potent activity in
the assay were selected: percentile values (2.5, 5, 10, 25, or 50th; e.g.,
assays with many potent drug activities will be represented with
smaller percentile values), count of AC50 values less than or equal to
100, 500, or 1μM, and count of drugs with assay results that are
positive or negative for an ADR. The dataset used for this modeling is
provided in Supplementary Data 13.

Lasso-penalized logistic regression modeling was performed
using the R package Glmnet using default parameters [glmnet(x,y,-
family = “binomial”)] and the AUC metric for cross-validation
[cv.glmnet(x,y,family = “binomial”, type.measure = “auc”)].

Unpublished assay results vs. known drug ADRs
Unpublished SPD activity results, i.e., drug-target pairs not reported in
the sources we considered, were compared to known drug ADRs to
determine if these unpublished activities might explain the ADRs. The
following criteria were applied: (1) the drug has AC50 < 5 µM at a given
target that is not reported inChEMBL,DrugCentral, or the subscription
resources, (2) the drug is known to cause a given ADR according to
SIDER and/or FAERS, (3) literature-reported target vs. ADR relationship
is significant in SPD (p ≤0.001) on one of more of AC50, free or total
margin, (4) the drug’s activity on one or more of those significant
measures is in the top three quartiles among all drugs active in the
assay and having the ADR, (5) the drug’s on-target activity is not
associatedwith this ADR, (6) any known off-target activities associated
with the ADR have significantly lower potency compared to the new
activity (≥10-fold). The final criteria avoid flagging unpublished weak
activities unlikely to make significant additive contributions to the
ADR risk.

Data analysis
IPython version 7.29 was used to run the provided Jupyter notebooks.
Other analyses were performed with R 4.2.1. Plots were prepared in R,
Excel (Office 365), and TIBCO Spotfire 11.8. Concentration-response
curves were produced with GraphPad Prism 9.5.1. Final figures were
assembled with Adobe Illustrator 27.6.1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
A Zenodo repository contains results from the Safety Pharmacology
Database (SPD), data files used as inputs for the Jupyter notebooks,
including downloads from FAERS and SIDER, and Supplementary Data
referenced in themanuscript. The repository is available at https://doi.
org/10.5281/zenodo.7378746. Source data for figures and tables are
provided in Source Data.xlsx and the supplementary datasets refer-
enced in the text. Source data are provided with this paper.

Code availability
The associated Python code in the form of six separate Jupyter Note-
books described in the Methods section of the manuscript is available
on GitHub (www.github.com/Novartis/SPD).
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