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In-sensor computing using a MoS2
photodetector with programmable
spectral responsivity

Dohyun Kwak1,2, Dmitry K. Polyushkin 1,2 & Thomas Mueller 1

Optical spectroscopy is an indispensable technique in almost all areas of sci-
entific research and industrial applications. After its acquisition, an optical
spectrum is usually further processed using a mathematical algorithm to
classify or quantify the measurement results. Here we present the design and
realization of a smart photodetector that provides such information directly
without the need to explicitly record a spectrum. This is achieved by tailoring
the spectral responsivity of the device to a specific purpose. In-sensor com-
putation is performed at the lowest possible level of the sensor system hier-
archy – the physical level of photon detection – and does not require any
external processing of themeasurement data. The device can be programmed
to cover different types of spectral regression or classification tasks. We pre-
sent the analysis of spectral mixtures as an example, but the scheme can also
be applied to any other algorithm that can be represented by a linear operator.
Our prototype physical implementation utilizes an ensemble of optical cavity-
enhanced MoS2 photodetectors with different center wavelengths and indi-
vidually adjustable peak responsivities. This spectroscopy method represents
a significant advance in miniaturized and energy-efficient optical sensing.

With the proliferation of sensing devices in a wide range of portable
applications, from environmental monitoring to medical diag-
nostics and food quality control, the demand for more compact and
energy-efficient solutions is increasing. In-sensor computing is an
emerging field that aims to bring computation and data processing
capabilities to the edge of a sensing application. It leverages the
processing power of computing devices that are directly integrated
into the sensors. This approach differs from traditional solutions,
where the collected signals are usually transferred to an external,
centralized system for further processing. Recently, analog-domain
in-sensor computing has gained momentum1,2. There, the sensory
information is processed in its raw, analog format, bypassing the
need for analog-to-digital conversion. As a result, data processing is
faster and more energy-efficient, since it eliminates the transfer and
conversion steps. For example, the classification of optical images
directly during the light detection process has been utilized in

several recent works3–10. Similarly, the acquisition of an optical
spectrum is not an end in itself, but rather serves to extract certain
information about a specimen under examination, whether for
classification or quantification purposes.

In optical spectroscopy, reconstructive (or computational)
spectrometers11–20 have emerged as a promising alternative to their
conventional grating- or interferometer-based counterparts. The
underlying concept of these instruments is that superpositions of
intensities at different wavelengths are recorded, instead of the usual
measurement of spectral intensities at individual wavelengths. This
can be achieved with an array of filters or, preferably, a photodetector
with a variable spectral response. The input spectrum can then be
reconstructed from a series of such measurements. These devices do
not require bulky and fragile optical components, such as diffraction
gratings or moving mirrors, and can therefore be integrated on-chip.
However, although reconstructive spectrometers offer better
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scalability than conventional solutions, they require considerable
computational resources to reconstruct and analyze the optical
spectra. Therefore, to further reduce energy consumption, latency,
footprint, and cost, itwouldbedesirable tomove the processing of the
highly redundant and unstructured sensory data entirely into the
photosensors themselves.

The ambition of this work is to realize a photodetector that is able
to provide such information without having to resort to any external
data processing. To accomplish this, the device’s spectral responsivity
is adjusted to match a specific purpose. In-sensor computation occurs
at the lowest level of the sensor system hierarchy, which is the physical
level of photon detection. Our approach aims to improve the cap-
abilities of optical spectroscopy by providing a compressed repre-
sentation of the relevant information contained in an optical spectrum
and represents a significant advance in miniaturized and energy-
efficient optical sensing.

Results
In Fig. 1, we compare the detection schemepresented in this article to a
conventional optical sensing approach. Conventionally (Fig. 1a), inci-
dent light is dispersed to produce a spectrum and its corresponding
vector representation, p, is recorded. The digitized data are then
processed using an external processing unit/computer, which utilizes
a statistical ormachine-learning algorithm to analyze p and extract the
desired information, αi, from the measurement. In contrast, in our in-
sensor computing scheme (Fig. 1b), the same algorithm is imple-
mented in the analog domain on a physical level, resulting in the direct
output of the relevant information αi from the detector itself without
any need for further external data processing.

Photodetectors as spectral dot-product devices
At the heart of any optical spectroscopy application are photo-
detectors, devices that convert light into electrical signals. The most
important parameter that governs the behavior of a photodetector is
the photoresponsivity R= Iph=P, the ratio between the generated
photocurrent Iph (or photovoltage Vph) and the incident light power P,
expressed in A/W (or V/W). On closer look, however, R is not just a
constant, but a complicated functionRðν, J,x, . . .Þ thatmaydependona
number of variables, such as the frequency of the incident light ν, its
polarization J, the spatial position on the device x, and several other
parameters, including the power P itself. While the usual engineering
practice is to make R as independent of these variables as possible
(within a relevant parameter range), here we take the exact opposite
approach. The spectral responsivity R(ν) of our photodetector is tai-
lored to serve a specific purpose, and can be freely configured – or
programmed – to perform any linear regression or classification task.

In the linear response regime, a photodetector with frequency-
dependent photoresponsivity R(ν) illuminated with light of the spec-
trum P(ν) generates a photocurrent

Iph =
Z
ν

RðνÞPðνÞdν = hRðνÞ,PðνÞi = rTp: ð1Þ

If the spectrum and spectral responsivity are represented in a
finite-dimensional vector space Rn by two column vectors2

p= Pðν1Þ,Pðν2Þ, . . . ,PðνnÞ
� �T and r= Rðν1Þ,Rðν2Þ, . . . ,RðνnÞ

� �T, respec-
tively, the photoresponse Iph can be conveniently written as an inner
product, as depicted in Eq. (1). By performing the above operation m
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Fig. 1 | Operational scheme. Comparison between a, a conventional spectral
sensing schemeandb, the smart photodetection approachpresented in this article.
While conventionally a spectrum p is processed externally to extract the desired
coefficients αi, in our in-sensor computing scheme the same information is pro-
vided by the detector itself. ui is a set of spectra used for training. PD, photo-
detector. c, Geometrical interpretation of the implemented algorithm. ① p is first
projected onto the subspace U⊥, and ② the outcome is then projected onto the
spectral signature of interest um. Note that while in this particular example, U⊥ is a
one-dimensional subspace (represented by the green line), it is generally high-

dimensional. U (represented by the shaded plane in this example) is the subspace
spanned by the unwanted spectral signatures. The inset in the upper right corner
shows an optical spectrum that is a linear combination of three spectra (shown in
the other insets), p =α1u1 + α2u2 + α3u3, with coefficients α1 = α2 = 0.25 and α3 = 0.5.
d, Calculated spectral responsivity vector r for a photodetector that is sensitive to
u3 only (red line), and its approximation (black line) by a sum of N = 7 Gaussians
(dashed lines). Inset: Simulated photodetector output (normalized) when α3 is
varied between 0 and 1, while α1 and α2 are held constant. Iph, photocurrent.
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times involving different spectral responsivity vectors, a matrix-vector
multiplicationRpwith responsivity matrix R = rT1 ,r

T
2 , . . . ,r

T
m

� �T
can also

be carried out. Tailoring the spectral response of a photodetector thus
allows for the implementation of any linear model on the inner pro-
duct space Rn. As with computational spectrometers, such a photo-
detector measures a weighted superposition of spectral intensities at
differentwavelengths, butwith the goal of directly extracting a sought-
after quantity rather than reconstructing the underlying spectrum.
While a frequency-dependent response canalsobe achieved by using a
customized optical filter in front of a conventional photodetector21,
such a simple approach lacks reconfigurability and the ability to
achieve negative photoresponses (i.e., a reversed current flow direc-
tion) necessary for the implementation of most machine learning
algorithms.

Linear model implementation
Linear regression models have proven valuable in various fields,
including remote sensing and optical spectroscopy. In remote sensing,
linearmodels canbe used to determine land cover, vegetation density,
water content, and other environmental parameters. In optical spec-
troscopy they can be employed to provide quantification of analytes in
chemical mixtures. The relationship between the spectral response
and the characteristic of interest is modeled using a linear function,
where the coefficients of the function represent the weights assigned
to each variable. The coefficients are estimated from training data
using statistical methods, such as least squares regression. The
resultingmodel can thenbe used topredict the property of interest for
a new sample based on a spectral measurement. The general equation
for a linear regression model is

y = c+β1p1 +β2p2 + . . . +βnpn + ε= c+β
Tp+ ε ð2Þ

where y is the response variable (such as the concentration of an
analyte or the physical property of a material), the vector
p= p1,p2, . . . ,pn

� �T contains the predictor variables (which in the case
of optical spectroscopy and remote sensing are the spectral intensities
at different wavelengths), the vector β= β1,β2, . . . ,βn

� �T contains the
regression coefficients (i.e. the weights assigned to each predictor
variable), c is an offset, and ε is a random error term (the difference
between the predicted and the true response). Based on the formal
similarity between Eqs. (1) and (2), it can be concluded that linear
models can be implemented in a photodetector’s linear response by
equating its spectral responsivity r with the regression vector β. c can
be incorporated in the detector output by adding a constant offset
current (in many cases it may also be set to zero).

Analysis of spectral mixtures
As an illustrative example, we present the implementation of spectral
mixture analysis22–24, a powerful technique widely used to extract
information from complex spectral data. In fluorescence microscopy,
for example, this technique can be employed to separate the signals of
differentfluorophoreswith overlapping spectral profiles. It thus allows
to obtain quantitative information about the distribution and abun-
dance of multiple fluorophores used to label different cellular struc-
tures or molecules in biological imaging. Similarly, it can be employed
in Raman spectroscopy to identify and quantify the different chemical
components of a sample. The approach works by decomposing an
optical spectrum p into a linear combination of the spectra ui of m
spectrally distinct components,p=

Pm
i= 1αiui, where the coefficients αi

reflect the proportions of the individual components in the mixture.
Let um be the spectral signature of interest, and the remaining m-1
spectra are undesired signatures that we assemble into a matrix
U= u1u2 � � �um�1

� �
. As described in the Methods section, a regression

operator for um can be derived by proceeding in two steps. First, one
eliminates the effects of the undesired spectral contributions by

projecting p onto the orthogonal complement of the column space of
U. The result is then projected onto um to obtain an output that is
directly proportional to αm. Figure 1c provides a geometrical inter-
pretation of the algorithm. By comparison with Eq. (1) we can deduce
the frequency-dependent photoresponsivity

rT =uT
m I� U UTU

� ��1
UT

� �
: ð3Þ

A photodetector that possesses a spectral response according to
Eq. (3) projects a measured optical spectrum p onto the spectral sig-
nature of interest um, while simultaneously cancelling the contribu-
tions of the other classes. The larger the proportion of um in p, the
larger the output current. Equation (3) can be further extended to
include constraints (suchas e.g. the full additivity condition

Pm
i= 1αi = 1)

that can likewise be implemented in our photodetector, provided they
are linear.

To further illustrate the underlying concept, we show in the upper
right inset in Fig. 1c an example of an optical spectrum p that is a linear
superposition of three spectra u1, u2 and u3 (shown in the other
insets). The shapes of the spectra are known, but not how much each
of them contributes to the total. We are interested in determining the
contribution of u3. To realize a photodetector that is sensitive to u3

only, we determine the required photoresponsivity vector r from Eq.
(3) and plot the result as red line in Fig. 1d (the Python script is pro-
vided in Supplementary Note 1). The outcome is intuitive: u3 mainly
contributes at lower frequencies, while u1 and u2 are spectrally
broader and also have components at higher frequencies. Due to the
progression of r from positive to negative values, the integrated con-
tributions of u1 and u2 cancel out, while only u3 contributes to the net
photocurrent Iph. As shown in Fig. 1d (inset), Iph is indeed directly
proportional to α3.

Other commonly used regression models in optical spectroscopy
include partial least squares regression (PLS), multiple linear regres-
sion (MLR), and principal component regression (PCR). These meth-
ods differ from spectral mixture analysis only in the way the
regression/responsivity vector is calculated, but can be implemented
physically in the very same way. The implementation of linear classi-
fiers is also feasible. Consider the general equation of a binary classifier
y= σc wTp

� �
, where w is the weight vector, σc represents a threshold

function, and p is the input. By equating the spectral responsivity
r with the weight vector w, any binary linear classification algorithm
can be realized. The specific shape of r depends on the chosen algo-
rithm (perceptron, naïve Bayes, linear discriminant analysis (LDA),
support vector machine (SVM), etc.). The threshold function can be
implemented in hardware using external electronics connected to the
output of the detector. The specific choice of the regression or clas-
sification method depends on the characteristics of the data and the
problem at hand.

Sensors equipped with signal processing capabilities that allow
them to perform advanced and sophisticated functions beyond the
basic measurement and detection capabilities of traditional devices
are referred to as25 intelligent or smart. This is also the case here, as our
photodetector is able to detect desired spectral features and disregard
others. The calculation according to Eq. (2) is performed on the lowest
possible hierarchy level – the physical level of photon detection – and
does not require a spectrometer or any further signal processing to
analyze the data. The benefits of such an approach are obvious.
Reading out a single electrical signal requires less time, resources, and
energy than recording and analyzing the entire spectrum. In fact, the
energy consumption of the device is merely due to small leakage
currents. The power consumption of the device presented below is
estimated to be on the order of 10 nW, which represents a significant
improvement over conventional solutions that typically consume at
least tens of mW (e.g. Hamamatsu mini-spectrometer C12666A,
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30mW). The data analysis takes place in real-time and is constrained
solely by the physics of the process of photocurrent generation. Fur-
thermore, a large number of such detectors can potentially be arran-
ged in a two-dimensional (2D) array to realize a smart imaging system
that responds only to objects exhibiting a certain spectral signature.

Prototype implementation using a 2D semiconductor
Our physical implementation of a photodetector with programmable
spectral response is based on the use of N optical microcavities with
equally spaced center frequencies νi, i= 1 . . .N. Each cavity contains a
metal-semiconductor-metal (MSM) photodetector whose response is
strongly enhanced at the resonance frequency. The overall respon-
sivity of such a device can bemodelled byRðνÞ≈PN

i = 1aigðν � νiÞ, where
gðνÞ is a (Gaussian) line shape function originating from the resonator.
The parameters ai correspond to the peak responsivities of the
respective resonator segments and can be controlled by voltages
applied to the MSM elements, allowing an approximation to a desired
R(ν) as described in theMethods section. The result is shown in Fig. 1d
as black line, where an excellent approximation of the desired
responsivity is achieved.

Figure 2a depicts the actual device structure based on a chemical
vapor deposition (CVD) grown 2D semiconductor film. For details
regarding the fabrication process, refer to the Methods section. The N
optical resonators are formed by planar Fabry-Pérot microcavities
consisting of a highly reflective metallic bottom mirror, a semi-
transparent metallic top mirror, and Al2O3 buffer layers with different
thicknesses di, i= 1 . . .N. The resonance frequencies of the individual
segments are given by νi = c0=ð2nAl2O3diÞ, where c0 is the velocity of
light in vacuum and nAl2O3 is the refractive index of Al2O3. Chemical
vapor deposition (CVD)-grown MoS2 MSM photodetectors are
embedded between the mirrors. A 2D semiconductor was chosen as
the active material because of its excellent optoelectronic

properties26,27, ease of integration into anoptical cavity28–30, and easeof
electrical control of its properties using both gate and bias voltages.
The source electrodes are connected together to sum the photo-
currents generated by each segment, as shown in Fig. 2b. Each of the
drain electrodes is supplied by a separate voltage V i, i= 1 . . .N, to set
the photoresponsivity of the respective segment. This allows the
programming of an arbitrary photoresponsivity vector r. The bottom
mirror also serves as a gate electrode to control the carrier con-
centrations in the MoS2 layer (Fig. 2d). A negative gate bias
(VG =�35V) was applied in allmeasurements to fully deplete theMoS2
channel from carriers and suppress dark current (see Supplementary
Fig. 2a). As previously reported31–33, the photoresponse of MoS2 pho-
todetectors originates from photogating due to a charge transfer into
trap states in theMoS2 layer itself and/or its surrounding and shows an
approximately linear behavior with bias voltage VB as depicted in
Fig. 2d, inset. The peak responsivity atVG =�35 V andVB = 1 V amounts
to ~0.5 A/W. Within the investigated intensity range, the photocurrent
demonstrates a linear behavior, with no trap state filling observed (see
Supplementary Fig. 2b). This observation validates the applicability of
the theory presented above, which relies on the assumption of a linear
response.

Programmable spectral response and spectroscopy
demonstration
In Fig. 2c we present a microscope image of our prototype
device consisting of N = 3 segments with nominal cavity lengths of
d1 = 0:12 μm, d2 =0:14 μm and d3 =0:16 μm. The corresponding
reflectance spectra, depicted in Fig. 3a, confirm the resonant absorption
at the design wavelengths. Figure 3b shows the photoresponsivities of
each of the three segments. Compared to the reflectance spectra, the
photocurrent resonances are broadened and slightly blue-shifted. The
broadening is due to the cavity’s inhomogeneity caused by the metallic
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contacts with finite height (while the reflectance is obtained from a μm-
sized spot in the center of the device, the photocurrent is generated
over the entire channel, particularly in the vicinity of the contacts where
inhomogeneity is strongest), while the blue shift is attributed to the
increase in MoS2 absorption at smaller wavelengths34,35. One detector
segment exhibits an additional spurious resonance at around 620nm,
likely due to device imperfections and absorption enhancement from
the B-exciton resonance. In practice, however, the additional resonance
does not significantly affect the functionality of the sensor as it can be
compensated by the other two detector segments.

Despite consisting of only three wavelength selective elements,
our prototype MoS2 photodetector exhibits a certain degree of ver-
satility and can be effectively used in diverse spectroscopy applica-
tions within the visible regime. For instance, as shown in the first three
graphs of Fig. 4a, the device can potentially approximate the emission
spectra of widely-used fluorescent dyes that function as tracers in
biology and medicine. The shaded areas in the graphs represent the
targeted spectra, while the lines depict the spectral responsivities that
can be set through the specific combination and tuning of the three
elements. Furthermore, the remaining graphs in Fig. 4a demonstrate
the device’s versatility by showcasing the approximation of several
generic spectra, some of which exhibit negative response.

Our current device realization is limited by the large bandgap of
MoS2, which restricts its response to wavelengths below ~700nm.
Using graphene in place of MoS2 could expand the device’s response
to longer wavelengths, particularly into the spectroscopically impor-
tant infrared region36,37. The number of resonators required for opti-
mal performance depends on the field of application. For fluorescence
spectroscopy of biological samples, for example, we estimate that a
device with about ten wavelength-selective elements (e.g., resonators)

would be versatile enough to fully cover the visible spectral range
(380–700 nm), considering that the dyes used in this type of applica-
tion have spectral linewidths that are typically greater than 30 nm (see
also Fig. 4a).

To experimentally verify the smart sensing capabilities of our
photodetector, we used a white light source along with a set of optical
transmission filters to generate spectra u1, u2 and p, as shown in
Fig. 4b. The intensities of u1 and u2 were independently adjusted as
described in the Methods section. The spectral response r required to
detect the contribution of u2 and simultaneously cancel u1 was
determined fromEq. (2) and isplotted asblack line in Fig. 4c. By scaling
the segment responsivities with the factors a1 = 0:88, a2 =0:0 and
a3 = � 1:0, we can approximately set the desired spectral response in
our device (red line in Fig. 4c). Experimentally, this is achieved by
applying bias voltages of VB1 =0:7 V, VB2 =0:0 V and VB3 = � 1:0 V. If
we vary now the intensity of u2 while keeping u1 constant, the pho-
tocurrent Iph increases linearly with optical power as expected
(Fig. 4d). On the other hand, if we varyu1 while keepingu2 constant, no
change in output is observed (Fig. 4e). The photocurrent stems solely
from the spectral contribution u2.

Discussion
In summary, we presented a spectroscopy scheme in which the spec-
tral responseof a photodetector is programmed such that the device is
able to perform a specific regression or classification task. We used a
prototype consisting of three resonant cavity-enhanced MoS2 photo-
detectorswith individually adjustable peak responsivities todetermine
the fraction of a component in a spectral mixture. The underlying
concept can be applied to any spectroscopic algorithm that can be
represented by a linear operator. The current limitations of the device,
such as the limited spectral range and deviations from Gaussian
spectral line shapes due to the large bandgap of MoS2 and its strongly
wavelength-dependent absorption spectrum, respectively, can be
overcome, for example, by using graphene as the active photodetec-
tion material.

In addition to cavity-enhanced devices, there are several other
physical mechanisms that enable a wavelength-dependent photo-
response. One such mechanism involves utilizing plasmonic reso-
nances. By engineering the geometry and composition of
nanostructures, it is possible to achieve strong interactions with spe-
cific wavelengths of light, thereby enhancing the photoresponse at
those wavelengths38. Another avenue for achieving a wavelength-
dependent photoresponse is through the use of materials with inher-
ent wavelength-dependent properties. For example, organic semi-
conductors and perovskite materials can be tailored to have specific
energy band gaps, allowing them to selectively absorb and generate
charge carriers in response to different wavelengths of light39,40. By
harnessing these physical mechanisms, it should be possible to realize
photodetectorswith a tailoredwavelength-dependent photoresponse.

Finally, our concept is not limited to spectroscopy alone, but can
in the future also be applied to smart imaging systems. Current
hyperspectral imagers41 consist of an array of photosensors and a
spectrometer. Both the spectral and spatial domains are combined to
form a multi-dimensional data set that, after data processing, is often
reduced to a single number representation per pixel, such as the
concentration of a particular chemical compound in a 2D map. The
devices are bulky, their price is currently prohibitive for cost-effective
routine applications, and their size prevents their use in modern por-
table/wearable devices. To overcome these drawbacks, we propose to
process multispectral information in a 2D array of smart detectors,
presented here. Such an image sensor in combination with a tailored
algorithm can provide spatially resolved information for a specific
measure with high speed, low energy consumption and high sensitiv-
ity. With its ability to provide real-time analysis and interpretation of
spectroscopic signals, it has the potential to be applied in a wide range
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of industries and scientific fields, from industrial process control to
medical diagnostics.

Methods
Spectral mixture analysis
Consider a mixture of m spectrally distinct components, represented
by their respective spectra ui 2 Rn, and let p 2 Rn be a linear combi-
nation of these spectra with coefficients αi2R,

p=
Xm
i= 1

αiui: ð4Þ

To obtain a linear operator for a specific component of interest,
say um, it is necessary to eliminate the effects of interfering signatures
represented by the columns of matrix U, given by U= u1u2 � � �um�1

� �
.

This can be done by projecting p onto a subspace that is orthogonal to
the columns of U, resulting in a vector that contains energy only
associated with um and Gaussian noise Nð0,σ2

nÞ. Therefore, we first
apply the orthogonal subspace projection (OSP) operator22

P = I� UU+� �
, ð5Þ

whereU+ is the pseudo-inverse ofU, given byU + = ðUTUÞ�1
UT, and I is

the identity matrix. We then apply the operator ξT that maximizes the
signal-to-noise-ratio

SNR=
α2
m

σ2
n

ξTP?umu
T
mP

Tξ

ξTP?P
T
?ξ

: ð6Þ

As shown in ref. 22, the operator that maximizes this quotient is
ξT = κuT

m, with κ being an arbitrary proportionality factor. Altogether,
this leads to the regression vector ξTP, and after substitution for ξT

and P, we ultimately arrive at Eq. (3).

Approximation to R(ν)
The parameters ai required to approximate a desired R(ν) through a
sum of shifted Gaussians

PN
i = 1aigðν � νiÞ can be determined from the

linear systemGa = r, where r= Rðν1Þ, . . . ,RðνNÞ
� �T is a vector containing

the desired responsivity values at the support points νi as calculated
from Eq. (3), G = gki

� � 2 RN×N is a matrix with elements
gki = ð

ffiffiffiffiffiffi
2π

p
σÞ�1

expð�0:5 νk � νi
� �2

=σ2Þ and a= a1, . . . ,aN

� �T.
Device fabrication
The cavity in the resonant photodetectors is formed by silver mirrors
separated from the CVD-grown MoS2 film by aluminium oxide (Al2O3)
layers. The sample was fabricated by the following procedure. All
lithography steps were performed by electron-beam lithography using
a Raith eLINE system and Allresist PMMA 679.004. The metal deposi-
tion was carried out in a PlassysMEB550SL electron-beamevaporation
system at a pressure of 3–5 × 10−8 mbar. The fabrication starts with the
patterning of the Ti/Au gate pads with the subsequent patterning of
the bottom resonator mirror, made out of 100nm thick silver. An 80-
nm-thick Al2O3 gate oxide was then deposited using atomic layer
deposition. A MoS2 film was grown by CVD on sapphire42 and then
transferred onto the target wafer43. The grown film is continuous over
an area of >50 mm2 with monolayer thickness and small multi-layer
MoS2 islands. In the next step, rectangular MoS2 channels were pat-
terned and subsequently etched using Ar/SF6 plasma. The drain and
source contacts were then formed by another EBL process followed by
Ti/Au (3/30 nm) deposition. Additional patches were added on the
edges of the bottom metal mirror and contact pads to assure the
integrity of the electrical contact. The channels were then covered by
80-nm-thick Al2O3 gate oxide which was subsequently etched by wet
chemical etching in potassium hydroxide at specific places to achieve
the resonators with desired cavity lengths. In the next step, the semi-
transparent upper resonator mirror was patterned and evaporated
using nominally 30 nmof silver and 2 nmof aluminiumwhich serves as
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Fig. 4 | Programmable spectral response and spectroscopy demonstration.
a Exemplary spectral responsivities. The shaded areas represent the desired
responses, while the corresponding lines depict the best achievable least-squares
approximations obtained through linear combinations of the spectral responsiv-
ities in Fig. 3b. The numbers indicate the contributions ai of the individual detector
segments. The first three spectra in the figures correspond to widely-used

fluorescent dyes (fluorescein, azadioxatriangulenium (ADOTA), dimethylquinacri-
done (DMQA)), while the remaining spectra illustrate some generic examples.
b Optical spectra p = α1u1 + α2u2 used in experiments, shown here for α1 = α2 = 1.
c Optimal spectral responsivity r (black line) and its approximation r′ in our pho-
todetector (red line). d Iph when α2 is varied between 0 and 1, and α1 = 1 is kept
constant. e, Iph when α1 is varied between 0 and 1, and α2 = 0 or 1.

Article https://doi.org/10.1038/s41467-023-40055-w

Nature Communications |         (2023) 14:4264 6



a passivation layer to protect silver from oxidation. Finally, the oxide
on the contact pads was etched to open the contact pads for wire
bonding.

Experimental setup
The optical measurements were carried out with an optical setup,
consistingof twobeampathswith twodifferent light sources and a lens
to focus the light onto the device. Measurements were performed
using either an NKT SuperK compact source with an acousto-optic
tuneable filter for acquiring the wavelength-dependent photo-
responsivities or a white-light source OSL1 from Thorlabs with a broad
spectrum in the visible range. To generate light with optical spectrum
p, we split the OSL1 output into two paths using a beam splitter,
employed filters from Edmund Optics (46543) and Thorlabs (FL632.8-
3) in both paths to create the two spectra u1 and u2, respectively, and
recombined the outputs in a second beam splitter. Note that limiting
the experiment to only two spectra does not result in any loss of
generality. Continuously tuneable neutral density filters with trans-
parency varying from 0.04 to 2.0 OD were used in both paths to indi-
vidually adjust the α1 and α2 contributions. Keithley 2612B source
measurement units were used to set the bias voltages and record the
photocurrent. Prior to the optical measurements, the electrical per-
formanceof thedevicewas verified in a LakeshoreTTPX sample station
connected to an Agilent HP 4155 C semiconductor parameter analyzer.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The code and algorithm in this paper are available from the corre-
sponding author upon request.
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