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Automatically annotated motion tracking
identifies a distinct social behavioral profile
following chronic social defeat stress

Joeri Bordes 1,6, Lucas Miranda 2,3,6, Maya Reinhardt 1, Sowmya Narayan1,3,
Jakob Hartmann 4, Emily L. Newman 4, Lea Maria Brix1,3,
Lotte van Doeselaar 1,3, Clara Engelhardt1, Larissa Dillmann1, Shiladitya Mitra1,
Kerry J. Ressler 4, Benno Pütz2, Felix Agakov5, Bertram Müller-Myhsok 2 &
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Severe stress exposure increases the risk of stress-related disorders such as
major depressive disorder (MDD). An essential characteristic of MDD is the
impairment of social functioning and lack of social motivation. Chronic social
defeat stress is an established animalmodel forMDD research,which induces a
cascade of physiological and behavioral changes. Current markerless pose
estimation tools allow for more complex and naturalistic behavioral tests.
Here, we introduce the open-source tool DeepOF to investigate the individual
and social behavioral profile in mice by providing supervised and unsu-
pervised pipelines using DeepLabCut-annotated pose estimation data.
Applying this tool to chronic social defeat in male mice, the DeepOF super-
vised and unsupervised pipelines detect a distinct stress-induced social
behavioral pattern, whichwas particularly observed at the beginning of a novel
social encounter and fades with time due to habituation. In addition, while the
classical social avoidance task does identify the stress-induced social beha-
vioral differences, both DeepOF behavioral pipelines provide a clearer and
more detailed profile. Moreover, DeepOF aims to facilitate reproducibility and
unificationof behavioral classificationbyproviding anopen-source tool,which
can advance the study of rodent individual and social behavior, thereby
enabling biological insights and, for example, subsequent drug development
for psychiatric disorders.

Stress is an essential aspect of our daily lives, which contributes to our
mood and motivation. However, exposure to severe stress can have
negative consequences and has become an increasing burden on
society. In particular, stress-related disorders, such as major depres-
sive disorder (MDD), have been steadily on the rise for the last decade1.
Our understanding of the behavioral and neurobiological mechanisms

related to MDD is limited, which is part of the reason for the only
moderate success of current drug treatments2. MDD is a complex and
heterogeneous disorder, and its classification is dependent on a
widespread set of symptoms. An important characteristic of MDD is
the impairment of social functioning and lack of social motivation,
which can lead to social withdrawal from society in extreme cases3. In
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addition, disturbances in social behavior are an important risk factor
for developing MDD, as poor social networks are linked to lowered
mental and physical health4,5. The impact of social interactions was
highlightedduring theCOVID-19 pandemic,where a substantial part of
society experienced little to no social interactions for a sustained
period. An increasing number of studies are now reporting the enor-
mous impact of the pandemic, emphasizing a dramatic increase in the
prevalence of stress-related disorders, in particular MDD6,7. Unfortu-
nately, there is still a lack of awareness of the importance of social
interactions and their role in stress-related disorders. Therefore, it is
crucial to increase the understanding of the biological and psycholo-
gicalmechanisms behindMDD, and the influence of social behavior on
the development of MDD.

Along these lines, animal models have an important role in MDD
research. Although unable to recreate the exact nature of the disorder
in humans, they provide a controlled environmentwhere symptoms of
MDD can be investigated8,9. The well-established chronic social defeat
stress (CSDS) paradigm is continuously used for studying symptomsof
MDD in animals10,11. In the CSDS model, mice are subjected daily to
severe physical and non-physical stressors from aggressive mice for
several weeks, which results in the chronic activation of the physiolo-
gical stress response system, leading to bodyweight differences,
enlarged adrenals, and elevated levels of corticosterone12. In addition,
animals subjected toCSDS show stress-related behaviors such as social
avoidance, anhedonia, reduced goal-directed motivation, and anxiety-
like behavior10,13–16. EspeciallyCSDS-induced social avoidance behavior,
which is the avoidance of a novel conspecific, is a recognized phe-
nomenon that is used to investigate the social neurobiological
mechanisms related to chronic stress exposure and stress-related
disorders11,17,18.

Currently, several social behavioral tasks can assess different
constructs of social behavior, particularly the social avoidance task18. It
is important that these behavioral tasks are conducted with control
over the environment to investigate the effects of external stimuli,
such as stress exposure. For decades there has been a trend to stan-
dardize and simplify these tests to allow for greater comparability and
higher throughput. Unfortunately, this has led to an oversimplification
of the social behavioral repertoire and increased the risk for cross-over
effects by other types of behavior, such as anxiety-related behavior.
Moreover, due to limitations in tracking software, the analysis of the
interaction betweenmultiple freelymoving animals remained difficult,
which further limited the complexity of the behavioral assessment.
Social behavior is a complex behavioral construct, which relies on
many different types of behavioral interactions, that often are too
complicated, time-intensive, and repetitive to assess manually19–21.
Ultimately, this can lead to poor reproducibility of the social beha-
vioral construct, as observed for social approach behavior22.

The current advancement in automatically annotated behavioral
assessment, however, allows for high-throughput analysis using pose
estimation, involving both supervised classification (intending to
extract pre-defined and characterized traits) and unsupervised clus-
tering (which aims to explore the data and extract patterns without
external information)23–28. Importantly, the open-source tool Dee-
pLabCut has provided a robust and easily accessible system for deep-
learning-based motion tracking and markerless pose estimation29,30.
The use of supervised classification, by defining the behavioral pat-
terns of interest a priori, is a powerful tool that simplifies the analysis
by using predefined relevant behavioral constructs without losing the
complexity of social behavior. Furthermore, recent studies have shown
the value of unsupervised clustering in addition to a supervised ana-
lysis, which can reveal novel and more complex structures of
behavior19,26,31–33. By acting in a more exploratory fashion, these prac-
tices can not only assist the discovery of novel traits but also direct
researchers toward the main behavioral axes of variation across
cohorts of interest. In addition, both the supervised and unsupervised

analysis approaches can providemore transparency for the behavioral
definition and can easily be shared via online repositories, which
contributes to a more streamlined definition of behavior across dif-
ferent labs21,34. These computational tools can elevate the current
understanding of the influences of stress exposure on behavior, by
increasing the resolution of the observed behavioral output35.

Therefore, the current study provides an application of our open-
source tool DeepOF36, which enables users to delve into the individual
and social behavioral profiles of mice using DeepLabCut-annotated
pose estimation data (Fig. 1). DeepOF provides two main workflows; a
supervised behavioral analysis pipeline, which applies a set of anno-
tators and pre-trained classifiers todetectdefined individual and social
traits, and an unsupervised analysis pipeline, capable of embedding
themotion-tracking data of one ormore animals in a latent behavioral
space, pointing toward differences across experimental conditions
without any label priming. Furthermore, DeepOF can retrieve unsu-
pervised clusters of behavior that can be compared across conditions
and therefore hint at previously unrecognized behavioral patterns that
trigger newhypotheses.Wedescribe adistinct social behavioral profile
following CSDS inmice that can be recapitulated with both supervised
and unsupervised workflows. Moreover, the current study observes a
clear state of arousal upon exposure to a novel social conspecific that
fades over time, which provides crucial insights for the quantification
of optimal behavioral differences across time and experimental
conditions.

Results
The supervised pipeline provided by DeepOF yields general-
izable annotations
As expected, all rule-based behaviors show high performance when
compared to manual labeling, which constitutes an argument in favor
of simple behavioral tagging (Supplementary Fig. 1).

When evaluating the performance of the huddle classifier,
balanced accuracy in the training set (0.78 ±0.005) was marginally
higher than in both validation settings (suggesting no overfitting), and
performance on the internal validation (0.75 ± 0.046) was not sig-
nificantly higher than performance on the external validation
(0.75 ± 0.04) suggesting excellent generalization to new datasets
(independent samples t-test: T(7.34) = −0.03, p =0. 51, Supplementary
Fig. 2A). In addition, pseudo-labeling conducted on the external
dataset showed a strong and significant correlation between total
behavior duration acrossmanual and predicted labels (Supplementary
Fig. 2B). Finally, the SHAP analysis of the deployed classifier revealed
low head movement, low spine stretch, low body area, and low loco-
motion speed as themost important features of themodel, which goes
in line with the accepted definition of the behavior (Supplemen-
tary Fig. 2C).

The physiological and behavioral hallmarks of stress are repro-
duced by CSDS
The CSDS paradigm was performed to maintain stress exposure for
several weeks (Fig. 2A), which induced dysregulation of the
hypothalamic-pituitary-adrenal axis (HPA-axis) and a stress-related
behavioral profile. Male mice that were subjected to CSDS showed
clear hallmarks of stress exposure, as observed by a significant
increase in body weight during the stress paradigm, which was espe-
cially apparent towards the end of the stress (Fig. 2B, C), an increase in
relative adrenal weight (Fig. 2D), reduced locomotion and time spent
in the inner zone of the OF (Fig. 2E, F), and a significantly reduced SA-
ratio in the SA task (Fig. 2G). Notably, no bodyweight difference was
observed at the beginning of the CSDS paradigm (Fig. 2B).

Further exploration of the OF data using PCA across four 2.5min
consecutive time bins showed that all time bins were significantly
different from each other, suggesting that they all should be included
in further behavioral analysis of the OF data (Supplementary Fig. 3A,
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Fig. 1 | DeepOFworkflow. A 11 labels were tagged on each annotatedmouse using
DeepLabCut. B DeepOF preprocessing pipeline. One or two mice (a C57Bl/6N
experimental subject and a CD1 social companion depending on the dataset) were
tagged using the provided DeepLabCut models. After tracking body parts with
DeepLabCut, DeepOF was used to smooth the retrieved trajectories, interpolate
outliers, and extract features (including coordinates, distances, angles, areas,
speeds and accelerations). C Set of predefined behaviors that the DeepOF super-
vised pipeline can retrieve. These include dyadic motifs (such as nose-to-nose
contacts) and individual motifs (such as climbing), which are reported individually
for all tracked mice. The stopped-and-huddled classifier28 is abbreviated as “hud-
dle” in DeepOF output (not to be confused with group huddling behavior67).
D Schematic representation of the supervised pipeline in DeepOF. A set of
extracted motion features (only three dimensions are shown for visualization
purposes) are fed to a set of rule-basedannotators andpre-trained classifiers, which
report the presence of each behavioral trait at each time by learning how the
corresponding trait is distributed in the feature space (red dots). The set of

classifiers then yields a table indicating the presence of each motif across time,
which can be used for further analysis. Note that annotators are not necessarily
mutually exclusive, as several predictors can be triggered at the same time. EGraph
representation of animal trajectories used byDeepOF in the unsupervised pipeline.
All 11 body parts per animal are connected using a pre-designed (but customizable)
adjacency matrix. Nodes are annotated with x, y coordinates and speed of each
body part at each given time, and edges with the corresponding distances. This
representation can also handle multi-animal settings, where the graphs of indivi-
dual animals are connected with nose-to-nose, nose-to-tail, and tail-to-tail edges.
F Schematic representation of the deep neural network architecture used for the
unsupervised clustering of behavior. Data is embedded with a sequence-aware
spatio-temporal graph encoder, and clustered at the same time by selecting the
argmax of the likelihood of the components of a mixture-of-Gaussians latent pos-
terior. Unidirectional black arrows indicate forward propagation, and gray arrows
indicate the reconstruction and KL divergence terms of the loss function, the latter
of which minimizes the distance to an also mixture-of-Gaussians prior.
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B). The OF PCA between conditions revealed a significant difference
and showed the importance of the OF parameters, in which total dis-
tance, look-around, and sniffing came out as the top contributing
behaviors (Supplementary Fig. 3C, D). A significant stress effect was
observed for the total distance, look-around, and inner–zone time
throughout the different time bins, whereas sniffing was altered, but
not in all time bins (Supplementary Fig. 3E–J). Importantly, even
though a stress-induced effect can be found in the OF task, a general
habituation effect to the OF in both NS and CSDS can be observed, as
total distance reduces over time, while look-around and sniffing
increase. The successful habituation to the novel environment is cru-
cial for the subsequent SI task to allow full attention to the novel social
conspecific (Supplementary Fig. 3E–G).

DeepOF social behavioral classifiers show a stronger PCA
separation for stress exposure than social avoidance
The social behavioral pattern during the SI task was investigated in
four non-overlapping time bins of 2.5min each to match the time
frame in the SA task. Principal component analysis (PCA) was per-
formed to show the difference between time bins in the social beha-
vioral profile regardless of the animal’s stress condition (Fig. 3A).
Interestingly, the PCA showed a significant effect between the time
bins, in which the first 2.5min time bin was significantly different from
the subsequent ones (5, 7.5, and 10min). In contrast, the subsequent
time bins did not show variation between one another (Fig. 3B). This

suggests that the different time bins in the SI task are an important
variable, and that the first 2.5min time bin should be specifically
investigated. Next, the SA and SI tasks were compared on their ability
to distinguishbetweenNS andCSDSanimals. PCAswereperformed for
the SA task (Fig. 3C) and the 2.5min timebin SI data (Fig. 3D, E), both of
which showed a significant difference between the conditions in the
principal component (PC) 1 eigenvalues (Fig. 3C–E). However, the SI
task showed a clearer separation of the conditions than the SA task,
suggesting that the SI task is a more powerful tool for identifying
stressed animals than the SA task. In addition, the PC1 top contributing
behaviors for the 2.5min time bin SI data were calculated using the
corresponding rotated loading scores (Fig. 3F). The top five con-
tributing behaviors were reported as essential behaviors for identify-
ing the stressed phenotype, which consisted of B-huddle, B-look-
around, B-nose-to-tail, B-speed, andB-nose-to-body from theC57Bl/6N
animal, whereas the other behaviors within the top 10 were either
contributing to the CD1 animal or had a low rotated loading score
(Fig. 3F). Here, “B-” indicates behaviors related to or initiated by the
C57bl/6N animals, whereas “W-” refers to the CD1.

DeepOF social behavioral classifiers are strongly altered
by CSDS
Next, the influence of the CSDS on the top five contributing behaviors
in the SI task was investigated. In accordance with the PCA time bin
analysis, a clear stress-induced effect was observed, with elevated

Fig. 2 | Classical hallmarks for chronic social defeat stress. A Experimental
timeline for the CSDS paradigm and behavioral testing, including the open field
(OF) and social interaction (SI) task onday 15–16 (animals weredividedbetween the
two days) and social avoidance (SA) task on day 17. B Significant increase of body
weight after CSDS exposure (two-way ANOVA: within-subject effect of time:
F(6,406) = 13.58, p = 4.59e-14, as well as time×condition interaction effect:
F(6,406) = 6.13, p = 3.65e-6, but no between-subject effect on condition:
F(1,406) = 0.20, p =0.653). Post-hoc analysis with Benjamini Hochberg revealed no
significant difference on day 1, 11, 15, and 18, but there was a significant difference
on day 4 (T(1,58) = 6.36, p =0.033, 8 (T(1,58) = 6.55, p =0.033, and 21 (T(1,58) = 11.57,
p =0.007). C The delta body weight during the CSDS paradigm (day 21–day 1) was

significantly increased in CSDS-exposed animals (Two-tailed independent samples
t-test: T(58) = −6.09, p = 9.8e-8). D Increase of relative adrenal weight after CSDS
exposure (Two-tailed independent samples t-test: T(57) = –5.44, p = 1.15e-6). E The
total locomotion in the OF was reduced after CSDS exposure (Two-tailed inde-
pendent samples t-test:T(51) = 6.15,p = 1.18e-7).FThe inner zone time in theOFwas
reduced after CSDS exposure (Two-tailed independent samples t-test: T(51) = 3.37,
p =0.0015). G The SA-ratio was reduced in the SA task after CSDS exposure (Two-
tailed wilcoxon test:W = 617, p =0.006). The timeline and bar graphs are presented
asmean ± standard errorof themeanand all individual samples as points.N = 30 for
NS and CSDS for (B–G). Source data are provided as a Source Data file.
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duration in the CSDS animals for B-look-around (Fig. 4A, B) and
B-huddle (Fig. 4C, D),while lowered for the B-speed (Fig. 4E, F), B-nose-
to-tail (Fig. 4G, H), and B-nose-to-body (Fig. 4I, J). The total duration
per time bin for the top contributing behaviors showed the strongest
CSDS-induced effect in the 2.5min time bin data (supplemental Fig. 4,
timeline graphs), compared to the 5, 7.5, and 10 min time bins. In
addition, supplemental Fig. 4 shows the 10min total duration and time
bin analyses for all other DeepOF behavioral classifiers, in which a
significant stress effect is observed for B-sniffing, B-wall-climbing, and
Side-by-side.

Z-score for DeepOF social interaction correlateswith Z-score for
stress physiology
The Z-score of stress physiology was calculated using the relative
adrenal weight and body weight on day 21 of the CSDS. The stress
physiology Z-score provides a strong CSDS profiling tool andwas used
for correlation analysis between the SA and SI tasks. Even though the
behavioral and physiological readouts were not obtained at the same

time, the former can be used as a proxy of the impact of the stress
exposure, and are expected to be stable during the last week of the
CSDS pipeline. No significant correlation was observed between the
Z-score of stress physiology and the SA ratio (Fig. 5A). Subsequently,
the Z-score of SI was calculated by using the 2.5min timebin of the top
five contributing behaviors in the SI task (Fig. 4). Stress physiology and
SI Z-score showed a significant positive correlation (Fig. 5B), which
indicates that the SI Z-scoreprovides a stronger tool forCSDSprofiling
compared to the SA ratio. Next, correlation analyses were performed
between the Z-score of SI and all other behavioral and physiological
measurements which indicated a strong correlation with several OF
parameters. Highly affected OF parameters, such as speed, distance,
inner zone entries, and look-aroundmight be directly related to social
anxiety and warrant further investigation. Interestingly, no correlation
with the SA ratio was observed (Fig. 5C).

Notably, the SA task is extensively used to distinguish resilient and
susceptible animals in the CSDS paradigm10,17, and depending on the
protocol and stress severity this can give a distinction between

Fig. 3 | Social interaction binning yields more separable PCA projections than
the social avoidance task. A In the SI data a PCA revealed that the first 2.5min time
bin is significantly different from the other time bins. (Kruskal-Wallis test:
H(3) = 19.90, p =0.0002. B The PC1 eigenvalues of the SI time bin PCA. Post-hoc
Wilcoxon: 2.5min vs. 5min (W = 957, p =0.01), 2.5min vs. 7.5min (W = 860,
p =0.0018), 2.5min vs. 10min (W = 811, p =0.0011). C The SA task PCA showed a
significant difference in the PC1 eigenvalues between conditions. The PCA data
consisted of the SA-ratio, total time spent with the non-social stimulus, and total
time spent with the social stimulus. Two-tailed independent samples t-test:
T(57) = –2.84, p =0.006. D The SI 2.5min time bin PCA showed a significant dif-
ference in the PC1 eigenvalues between conditions. The PCA data consisted of all
the SI DeepOF behavioral classifiers, as listed in Fig. 1C. Two-tailed independent

samples t-test: T(51) = 8.28, p = 5.39e-11. E The PC1 eigenvalues of the 2.5min time
bin SI task. F The top contributing behaviors of the SI 2.5min time bin in PC1 using
the corresponding rotated loading scores. The top five behaviors were reported as
the essential behaviors for identifying stress exposure (B-huddle (–0.41), B-look-
around (–0.40), B-nose-to-tail (0.39), B-speed (0.36), B-nose-to-body (0.33). “B-”
indicates C57Bl/6N behaviors and “W-” indicates CD1 behaviors. The PCA graphs
(Fig. 3A, C, D) are provided with a 95% confidence ellipse and all individual samples
as points. Further PC1 analyses (Fig. B, E) are represented with a violin plot and all
individual samples as points. In Fig. 3F the absolute score of the PC1 value is
represented by the point.N = 26 for NS and n = 27 forCSDS in (A,B,D–F) andn = 30
for NS and CSDS in (C). Source data are provided as a Source Data file.
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resilient and susceptible animals (Fig. 5D–F). Interestingly, while
clearly differentiating affected and non-affected individuals, the Dee-
pOF module does not find a distinction between SA-ratio-defined
susceptibility and resiliency on the 2.5min bin SI DeepOF behavioral
classifiers (Fig. 5G–M), indicating that the DeepOF behavioral classi-
fiers represent a unique and distinguished set of resilience-linked
phenotypes.

The DeepOF unsupervised pipeline can be flexibly applied
across different experimental settings
The unsupervised pipeline within DeepOF was applied to three data-
sets and four settings. These included both single and multi-animal
embeddings on the SI dataset, single-animal embeddings on the OF
dataset, and single-animal embeddings on the SA dataset. When
applying this workflow to a new dataset, the number of clusters is a
hyperparameter the user must tune. In this study, an optimal solution
was found by selecting the number of clusters that explains the largest
difference between experimental conditions (in terms of the area
under the ROC curve of a classifier to distinguish between them, see
methods for details). While DeepOF could be used to describe the
behavioral space of a single condition, this model selection procedure
aims at maximizing the power to detect behavioral differences
between experimental conditions. An optimum of 10 clusters was
measured for both single- and multi-animal SI settings (Fig. 6A and

Supplementary Fig. 5A), whereas the single-animal OF setting showed
an optimum of 11 clusters (Supplementary Fig. 6A), and the SA setting
of 17 clusters (Supplementary Fig. 7A). Timepoint UMAPprojections of
the latent space depicting all clusters can be found in Fig. 6B, and
Supplementary Figs. 5B, 6B, and 7B for all four settings, respectively.

DeepOF can quantify behavioral differences over time in an
unsupervised way
Once the number of clusters was fixed, the stress-induced phenotype
was investigated over time in both SI and OF settings. SA was excluded
of this analysis due to the shorter length of the videos (2.5min), in
which no decay of arousal should be observed in the animals. To this
end, a growing time window spanning an increasing number of
sequential seconds was analyzed. For each analysis, the discrimin-
ability between conditions was tested by evaluating the performance
of a linear classifier to distinguish between them in the global animal
embedding space, for which each experiment is represented by a
vector containing the time spent per cluster (see methods for details).
The bin size for which discriminability was maximized was then
selected as optimal and used for further analysis. In this case, we
observed an optimum of 126 and 124 s for the single-animal andmulti-
animal SI tasks respectively, indicating that differences between con-
ditions are maximized early in the 10-min-long experiments, which is
compatible with habituation. Furthermore, performance across

Fig. 4 | Top contributing behaviors in the social interaction task for 10min
total duration and time bins. A The total duration of B-look-around. Two-tailed
Welch: T(34.1) = –3.71, p =0.0007. B Time bin for B-look-around. Benjamini Hoch-
berg (BH) posthoc for the 2.5min time bin: (T(51) = 33.46, p = 1.78e-6) and the 5min
timebin (T(51) = 6.84,p =0.024), but not for the 7.5 and 10min timebins (p =0.067,
p =0.093, respectively), two-way ANOVA: condition effect: F(1,208) = 37.45,
p = 4.59e-9, time effect: F(1,208) = 4.02, p =0.046, and condition × time effect:
F(1,208) = 8.87, p =0.003). C The total duration of B-huddle. Two-tailed indepen-
dent samples t-test: T(51) = –6.40, p = 4.8e-8. D Time bin for B-huddle. Wilcoxon
posthoc for the 2.5min time bin (W(26,27) = 63.5,p = 1.3e-6), and the 5min time bin
(W(26,27) = 204, p =0.018), but not for the 7.5- and 10min time bins (p =0.52,
p =0.52, respectively), Kruskal-Wallis: 2.5min: p = 1.25e-6, 5min: p =0.018, 7.5min:
p =0.51, and 10min: p =0.51. E The total duration of B-speed. Two-tailed Welch:
T(35.04) = 2.84,p =0.0074.FTime bin for B-speed. BHposthoc for the 2.5min time
bin (T(51) = 22.41, p = 7.16e-5), but not for the 5-, 7.5-, and 10min time bins

(p =0.076, p =0.20, p =0.24, respectively), two-way ANOVA: condition effect:
F(1,208) = 22.60, p = 3.72e-6, time effect: F(1,208) = 7.51, p =0.007, and condi-
tion × time effect: F(1,208) = 6.34, p =0.013). G The total duration of B-nose-to-tail.
Two-tailed Welch: T(36.70) = 2.18, p =0.036. H Time bin for B-nose-to-tail. Wil-
coxon posthoc for the 2.5 min time bin (W(26,27) = 660, p = 1.5e-7), but not for the
5-, 7.5-, and 10min time bins (p =0.19, p =0.49, p =0.49, respectively), Kruskal-
Wallis: 2.5min: p = 1.43e-7, 5min: p =0.18, 7.5min: p =0.48, 10min: p =0.48. I The
total duration of B-nose-to-body. Welch: T(35.85) = 1.18, p =0.24. J Time bin for B-
nose-to-body. Wilcoxon posthoc for the 2.5min time bin (W(26,27) = 626.5,
p = 3.97e-6), but not for the 5, 7.5 and 10min time bins (p =0.85, p =0.85, p =0.85,
respectively), Kruskal-Wallis: 2.5min: p = 3.8e-6, 5min: p =0.85, 7.5min: p =0.85,
10min: p =0.85. The timeline and bar graphs are presented as mean± standard
error of the mean and all individual samples as points. N = 26 for NS and n = 27 for
CSDS in (A–J). Source data are provided as a Source Data file.
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consecutive, non-overlapping bins retaining the optimal size was also
reported (Fig. 6C and Supplementary Fig. 5C). Here, decaying perfor-
mance across bins in the SI setting is also compatible with a state of
arousal, where conditions become less distinguishable over time after
the behavior of the C57Bl/6Nmicebecomes less influenced bynovelty.
The largest difference between NS and CSDS animals can thus be
observed during this period. In line with this finding, the optimal
distance in the single animal OF data was reached at 595 s, suggesting
that no binning is necessary since behavior between conditions
remains consistently distinguishable across the videos (Supplemen-
tary Fig. 6C).

Interestingly, global animal embeddings showa clearer separation
between conditions in both single and multi-animal embeddings for
the SI setting (Fig. 6D and Supplementary Fig. 5D), whereas the dif-
ference is milder in the OF setting, as the projected distributions are
less separable (Supplementary Fig. 6D). In the SA setting, projections

show, as expected, a higher separation between conditions in trial two,
which includes the encaged conspecific (Supplementary Fig. 7C, D).

These global embeddings also capture how distributions merge
over time in the SI settings, as the behavioral profiles of NS and CSDS
mice become closer (Supplementary Figs. 8, 9).

Individual unsupervised clusters reveal differences in behavior
enrichment
Going beyond global differences in behavior, the aggregated embed-
dings depicted so far are the result of summarizing the expression of
the set of detected behavioral clusters. Once obtained, DeepOF
enables the user to test the differential expression between conditions.
To this end, the time spent on each cluster across all videos for each
condition is recorded for each time bin. Importantly, DeepOF has no
knowledge of the assigned animal conditions at the time of training
and assigning clusters.
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The expressionbetweenNSandCSDSanimalswas then compared
using 2-wayMann-WhitneyU tests for each cluster independently, and
p values were corrected for multiple testing using the BH method
across both clusters and time bins, when applicable. We observed
significant differences in eight out of ten and six out of ten clusters for
the first time binof the single andmulti-animal SI settings, respectively
(Fig. 6E and Supplementary Fig. 5E). Interestingly, and in line with
habituation to the environment, these differences also fade across
time. The single-animal setting still shows some (although less) sig-
nificant differences in all time bins, albeit with reduced effect sizes
(Supplementary Fig. 10). Interestingly, also in the single-animal
embeddings, cluster 8 remains highly significant during the entire
course of the experiments. The multi-animal setting yields in contrast
almost no significant results beyond the first time bin (Supplemen-
tary Fig. 11).

In the OF setting, 7 out of 11 clusters showed a significant differ-
ential expression in the first 595 s (Supplementary Fig. 6E). The SA test,
in turn, is an interesting setting to test DeepOF given that its main axis
of variation is the distance to the cage with the conspecific, which
constitutes information that is not available to DeepOF in its current
form (which only looks at the posture of the tracked animals). Inter-
estingly, and while the analysis shows no significant results in trial one
(without the conspecific, Supplementary Fig. 7E), 6 out of 17 clusters
show significant differential expression in trial two (with the con-
specific, Supplementary Fig. 7F), suggesting thatDeepOF can correctly
detect behavioral differences even without absolute location
information.

Finally, we also explored the spatial distribution of cluster
expression across all three settings. We obtained heatmaps depicting
the global exploration of the arena by the C57Bl/6N across all videos
(for both conditions). Along these lines, our results show how, while,
as shown, CSDS animals tend to occupy the center of the arena sig-
nificantly less (Fig. 2F) there is no spatial preference across animals
for individual clusters (Fig. 6F and Supplementary Figs. 5F, 6F show
the overall locomotion distribution, while a comprehensive overview
of individual clusters is presented in Supplementary Figs. 12, 13,
and 14).

Individual unsupervised clusters reveal differences in behavior
dynamics
Aside from comparing cluster enrichment, DeepOF can help gain
insight into how cluster transitions and sequences differ across con-
ditions. To accomplish this, an empirical transition matrix was
obtained for each condition by counting how many times an animal
goes from one given cluster to another (including itself). Since all
transitions were observed to have non-zero probability, the Markov
chains obtained from simulations canbeproven to reach a steady state
over time (where probabilities to go from one behavior to another
stabilize). The entropy of these steady state distributions was reported
for both conditions, with higher values corresponding to a less pre-
dictable exploration of the behavioral space. Interestingly, CSDS ani-
mals showed a significantly lower behavioral entropy in the social
interaction task than their NS counterparts, retrievable in both single
andmulti-animal embeddings (Fig. 6F andSupplementaryFig. 5F). This
goes in line with the NS animals exploring the behavioral space more
thoroughly, while CSDS animals are more conditioned by the con-
specific. In line with this hypothesis, no significant differences across
conditions were found in the single-animal OF experiments (Supple-
mentary Fig. 6F). Moreover, to validate these results, the obtained
behavioral entropy score was correlated with the physiology Z-score
presented earlier (Supplementary Fig. 15). As expected, significant
negative correlations were found for the SI setting both when
exploring the single andmulti-animal behavioral spaces. No significant
correlation was observed for the single-animal OF setting.

Shapley additive explanations reveal a consistent profile across
differentially expressed clusters
An important aspect of any machine learning pipeline using highly
complexmodels is its explainability. In this study, we aimed to explain
cluster assignments by fitting a multi-output supervised classifier (a
gradient boosting machine) that maps statistics of the initial time
series segments (including locomotion and individual body part areas,
speeds, distances, and angles) to the subsequent cluster assignments.
Performance and generalizability of the constructed classifiers across
the dataset were assessed in terms of the balanced accuracy on a 10-

Fig. 5 | Z-score correlation analysis and the exploration of susceptibility and
resiliency. A Pearson correlation analysis between the SA-ratio and the Z-score of
stress physiology (R = –0.23, p =0.089).B Pearson correlation analysis between the
SI task 2.5min time bin top five contributing behaviors and the Z-score of stress
physiology (R =0.43, p =0.0014). C Pearson correlation analyses between the
Z-score of SI and all other parameters. A strong correlation was observed with
several OF parameters, such as speed (R = –0.56, p = 1.76e-5), total distance
(R = –0.54, p = 4.27e-5), look-around (R =0.48, p =0.0004), and inner zone: entries
(R = –0.47, p =0.0004), but not with the SA-ratio (R = –0.13, p =0.37). D The SA-
ratio shows a significant main effect with the Kruskal-Wallis: H(2) = 21.22,
p <0.0001). Wilcoxon posthoc shows that SUS animals (SI-ratio <1) have a sig-
nificantly lower SI-ratio compared to NS animalsW(9,30) = 249, p = 4.1e-5 and RES
animals W(9,24) = 216, p = 1.56e-7. There is no difference between NS and RES ani-
malsW(30,24) = 270, p =0.12. E The PCA for SA shows a significantmain effect with
the one-way ANOVA: F(2,60) = 10.90, p = 9.19e-5. F The PC1 eigenvalues of the SA
show a significant difference between SUS and NS animals Post-hoc Benjamini
Hochberg (BH): T(9,30) =p =0.0005 and between SUS and RES animals
T(9,24) =p = 5.88e-5. There is no significant difference between NS and RES animals
T(30,24) =p =0.196. G The PCA for the 2.5min SI ratio shows a significant main
effect with the Kruskal-Wallis: H(2) = 24.83, p = 4.06e-6. H The PC1 eigenvalues of
the 2.5min bin SI show a significant difference between NS and RES animals Post-
hoc Wilcoxon: W(30,24) = 92, p = 1.82e-6), and between NS and SUS animals
W(30,9) = 41, p =0.0015. There is no difference between RES and SUS animals
(W(24,9) = 117, p =0.736). I B-look-around shows a significant main effect with the
one-way-ANOVA: F(2,60) = 19.23, p = 3.53e-7. Post hoc BH shows a significant dif-
ference between NS and RES (T(30,24) =p = 9.86e-7), and NS and SUS
(T(30,9) =p =0.0002), but no difference between RES and SUS T(24,9) =p =0.94.

JB-huddle shows a significantmain effect with the one-way-ANOVA: F(2,60) = 12.35,
p = 3.23e-5. Post hoc BH shows a significant difference between NS and RES
(T(30,24) =p =0.0003), and NS and SUS (T(30,9) =p =0.0004), but no difference
between RES and SUS (T(24,9) =p =0.39. K B-speed shows a significant main effect
with theone-way-ANOVA: F(2,60) = 18.63,p = 5.1e-7. Post hocBHshows a significant
difference between NS and RES (T(30,24) =p = 3.12e-6), and NS and SUS
(T(30,9) =p = 7.62e-5), but no difference between RES and SUS T(24,9) =p =0.67.
LB-nose-to-tail shows a significantmain effectwith the Kruskal-Wallis:H(2) = 26.70,
p = 1.59e-6. Post hoc Wilcoxon shows a significant difference between NS and RES
(W(30,24) = 628, p = 1.82e-6), and NS and SUS (W(30,9) = 236, p =0.0005), but no
difference between RES and SUS W(24,9) = 152.5, p =0.075. M B-nose-to-body
shows a significantmain effectwith the Kruskal-Wallis:H(2) = 19.61, p = 5.52e-5. Post
hoc Wilcoxon analysis shows a significant difference between NS and RES
(W(30,24) = 567,p =0.0003), andNS and SUS (W(30,9) = 230, p =0.0009), and RES
and SUS W(24,9) = 167, p =0.018. The correlation analyses (A, B) are represented
with a regression line and a 95% confidence interval window and all individual
samples as points. C has the correlation value (R) represented by the red line
(positive) or blue line (negative), black circles around the points are identified as
significant correlations, p <0.05. The bar graphs are presented as mean ± standard
error of the mean and all individual samples as points. The PCA graphs (E, G) are
provided with a 95% confidence ellipse and all individual samples as points. Further
PC1 analyses are represented with a violin plot and all individual samples as points
(F, H). The bar graphs are presented as mean± standard error of the mean and all
individual samples as points. N = 30 for NS and CSDS in (A), and n = 26 for NS and
n = 27 for CSDS in (B,C),n = 30 forNS,n = 24 for RES,n = 9 for SUS in (D–M). Source
data are provided as a Source Data file.
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fold stratified cross-validation loop, which was designed so that seg-
ments coming from the same video were never assigned to both train
and test folds. Data for SI (single and multi-animal) and OF settings
were standardized, and the minority class was oversampled using the

SMOTE algorithm to correct for class imbalance. Performance per
cluster is shown by means of the confusion matrices per task and the
balanced accuracy per cluster (Fig. 7A, B and Supplementary Figs. 16A,
B and 17A, B for all three settings, respectively). Importantly, classifier

Fig. 6 | Single-animal unsupervised analyses identify different behavioral pat-
terns between stressed and non-stressed mice during the SI task. A Cluster
selection pipeline results reporting the area under the ROC curve from a logistic
regression classifier discriminating between conditions. A 10-component solution
(from a range between 5 and 25) was selected as optimal in a fivefold (N = 5) cross-
validation loop (see methods for details). B Embeddings by time point obtained
using DeepOF’s unsupervised pipeline. Different colors correspond to different
clusters. Dimensionality was further reduced from the original 8-dimensional
embeddings using UMAP for visualization purposes. C Optimal binning of the
videos was obtained as the Wasserstein distance between the global animal
embeddings of both conditions across a growing window, between the first
10–600 s for each video at one-second intervals (gray curve). Higher values cor-
respond to larger behavioral differences across conditions. A maximum was
observed at 126 s, close to the stipulated 150 s selected based on the SA task lit-
erature. The dark green curve depicts the Wasserstein distance across all sub-
sequent non-overlapping bins with optimal length. The decay observed across time
is consistent with the hypothesized arousal period in the CSDS cohort.
D Representation of the global animal embeddings for the optimally discriminant
bin (126 s) per experimental video colored by condition (see methods for details).

E Cluster enrichment per experimental condition (N = 26 for NS and N = 27 for
CSDS) in the first optimal bin (first 126 s). Reported statistics correspond to a 2-way
Mann-Whitney U non-parametric test corrected for multiple testing using Benja-
mini-Hochbergs’s method across both clusters and bins (significant differences
observed in clusters 0: U = 1.6e+2, p = 7.7e-4, 1: U = 1.1e+2, p = 1.3e-5, 2: U = 6.3e+2,
p = 1.1e-6, 4: U = 6.4e+2, p = 3.3e-7, 5: U = 1.6e+2, p = 6.3e-4, 7: U = 5.3e+2, p = 1.3e-3,
8: U = 6.2e+2, p = 1.9e-6, 9: U = 1.9e+2, p = 4.4e-3). Bar graphs represent mean ±
standard deviation of the time proportion spent on each cluster. F Example heat-
mapdepicting spatial distribution across all experiments (in both conditions) for all
clusters. Specific heatmaps for all individual clusters are available in Supplementary
Fig. 12).G Behavioral entropy scores per condition. NS animals show a significantly
higher entropy than CSDS animals, which can be attributed to a less predictable
exploration of the behavioral space (U = 5.3e+2, p = 1.68e-3,N = 26 for NS andN = 27
for CSDS). Moreover, and in accordance with these results, behavioral entropy
shows a significant negative correlation with the presented stress physiology
Z-score (Supplementary Fig. 15A). Source data are provided as a Source Data file.
Box plots in (A,G) show themedian and the inter-quartile range.Whiskers show the
full range, excluding outliers as a function of the inter-quartile range.
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Fig. 7 | SHAP analysis of unsupervised cluster assignments in the single-animal
social interaction task. Gradient boosting machines were trained to map from a
predefined set of time series statistics (including body part speeds, distances,
distance speeds, areas, area speeds, and supervised annotations) to the previously
obtained cluster assignments. A Confusion matrix obtained from the trained gra-
dient boosting machine classifying between clusters. Aggregated performance
over the validation folds of a fivefold cross-validation is shown. B Validation per-
formance per cluster across a fivefold (N = 5) cross-validation loop. Balanced
accuracy was used to correct for cluster assignment imbalance. The dashed line
marks the expected performancedue to chance, considering all outputs. Bars show

mean ± 95% confidence interval. C Overall feature importance for the multi-output
classifier using SHAP. Features in the y-axis are sorted by overall absolute SHAP
values across clusters. Classes on the bars are sorted by overall absolute SHAP
values across features. D–F Bee swarm plots for the three most differentially
expressed clusters between NS and CSDS mice (1, 2, and 5), identified with the
unsupervised DeepOF pipeline on the SI experiments using single-animal embed-
dings. The depicted plots display the first eight most important features for each
classifier, in terms of the mean absolute value of the SHAP values. Source data are
provided as a Source Data file.
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performance is substantially greater than random in all cases for all
three settings,meaning that all clusters are highlydistinguishable from
one another by the set of summary statistics employed.

The result of this analysis is thus a set of feature explainers for
each retrieved cluster, which can be used to interpret, alongside visual
inspection of the corresponding video fragments (included as Sup-
plementary files), what the obtained behavioral motifs represent. Both
global (Fig. 7C, Supplementary Figs. 16C, 17C) and cluster-specific
feature importance values can be retrieved. In this context, we found
consistent descriptions of clusters that are differentially represented
across conditions for all three tasks.

In the single-animal SI task, for example, cluster 1 (Fig. 7D, enri-
ched in CSDS animals) is consistently explained by low locomotion
speed, low head movement, and low spine stretch, and is positively
associated with the huddle classifier. Visual inspection reveals a
behavior close to freezing. Cluster 2 (Fig. 7E, enriched in NS animals) is
in contrast explained by high locomotion speed, exploratory behavior,
low headmovement, and spine stretch. Close visual inspection depicts
active locomotion and engagement with the conspecific. Interestingly,
cluster 8 (Fig. 7F, enriched in NS animals across all time bins) is
explained by increased speed, head movement, and negatively asso-
ciated with sniffing. Visual inspection suggests engaging in motion
(shifting from a still position to active locomotion).

In the case of the multi-animal SI setting, the explainability pipe-
line reveals how themodels work differentlywhen taking both animals
into account. In this case, the two-animal system is embedded as a
whole, and features including both animals are considered when run-
ning SHAP. As mentioned in the methods section, a regularization
hyperparameter allows the system to focus more on interactions
between the animals or in joint individual behaviors. In this case, we
used amoderated value of the parameter that enables the contribution
of both, which becomes apparent when analyzing the explainability
profiles of the retrieved behaviors. Cluster 3, for example (Supple-
mentary Fig. 16D, highly enriched in CSDS), is explained not only by
low speed on the C57Bl/6N animal, but also by increased speed of the
CD1, among others. Upon visual inspection, one can observe exactly
that the CD1 is exploring the arena while the C57Bl/6N stands still, in a
posture usually associated with the stopped and huddled trait. Cluster
5 (Supplementary Fig. 16E, also enriched in CSDS) closely captures an
interaction between the two animals, where the CD1 is typically more
engaged in movement. The SHAP pipeline eloquently reveals negative
correlations with spine stretch and back, torso, body and head areas,
as well as speed in both mice. Conversely, cluster 8 (Supplementary
Fig. 16F, enriched in NS) is well explained by increased speed in both
animals, which can be confirmed by visual inspection.

Finally, this pipeline was also used to interpret clusters in the OF
setting. In this case, cluster 0 (Supplementary Fig. 17D, enriched in
CSDS animals) is explained by a decreased overall speed, positive
correlations with mid and back spine stretch, back area, and left leg
extensions, and negative association with right leg extensions. Visual
inspection indeed reveals a cluster highly enriched in digging. Cluster
8 (Supplementary Fig. 17E, also enriched in CSDS animals), is in turn
explained by decreased speed, mid, and back spine stretch, increased
head area and extended right legs. Visual inspection shows a cluster
enriched in slow walking, often including head movement and inter-
action with the walls. Finally, cluster 9 (Supplementary Fig. 17F, enri-
ched in NS animals) is positively correlated with speed and head
movement, and negatively correlated with spine stretch, among oth-
ers. Visual inspection depicts an exploratory behavior with active
movement.

All in all, the provided cluster explainability pipeline is a useful
tool to interpret all reported patterns. Moreover, visual inspection of
cluster snippets is also made possible with a single command within
DeepOF, which makes the interpretation process more effective.

Discussion
For decades there has been a trend to standardize and simplify social
behavioral tests, which has led to an oversimplification of the
description of the social behavioral repertoire. The current develop-
ments of open-source markerless pose estimation tools for tracking
multiple animals have provided the possibility for more complex and
socially relevant behavioral tests. The current study provides an open-
source tool, DeepOF, which can investigate both the individual and
social behavioral profiles in mice using DeepLabCut-annotated pose
estimation data. Applying this tool, the current study identified a dis-
tinct social behavioral profile following CSDS using a selection of five
traits annotated by DeepOF on the C57Bl/6N animal. In addition, a
similar social behavioral profile was identified using an unsupervised
workflow, which could detect behavioral differences in different
experimental settings, including social interaction and single-animal
open field tests, and a social avoidance task. Moreover, DeepOF
allowed to study behavioral dynamics in unprecedented detail and
identified the 5 min during the interaction with a novel conspecific as
crucial for the socialprofilingof CSDSexposure inboth supervised and
unsupervised workflows. Overall, this study demonstrates the high
utility and versatility of DeepOF for the analysis of complex individual
and social behavior in rodents.

DeepOF as part of a markerless pose estimation toolset
The initial release of DeepLabCut in 201829 provided a reliable and
accessible tool for researchers around the globe to process marker-
less pose estimation data, which has undoubtedly changed the field
of behavioral neuroscience. This has set in motion a rapid growth of
tools for analyzing pose estimation data that are increasing the range
of possibilities in the field, which were unimaginable using classical
tracking approaches or manual scoring. An important distinction
between these pose estimation analysis tools is whether they intend
to extract pre-defined and characterized traits (supervised) or to
explore the data and extract patterns without external information
(unsupervised). The DeepOF module is designed to provide both
analysis pipelines. The supervised behavioral classifiers offer a quick
and easy-to-use analysis to detect individual and social behavioral
traitswithoutmanual labeling. In addition, whendifferences between
the conditions are not reflected in these traits, or the researcher aims
to obtain behavioral embeddings, the DeepOF package can encode
the data in a time-aware way that can report differentially expressed
patterns in an unsupervised manner, taking single and multi-animal
inputs.

The supervised framework: spotting recognizable patterns
The supervised pipeline within the DeepOF package can be used on
single anddyadic behavioral data inmultiple-shaped arenas.DeepOF is
capable of reporting a pre-defined set of behavioral traits without any
extra labeling or training required. To accomplish this, it relies on both
simple rule-based annotations and machine learning binary classifiers
whosegeneralizability has been tested, trading offflexibility for easeof
use. This makes it user-friendly for researchers without computational
expertise to apply this supervisedpipeline,without having tomake any
modifications. To further detect unsupported patterns, using a more
involved and flexible tool (such as SimBA37 or MARS27) could be a
reasonable next step to take. These tools include a supervised
approach that requires the user to label and train classifiers, providing
the freedom to train powerful classifiers and recognize behavioral
traits, which is especially beneficial for labs without computational
expertise. However, in contrast to DeepOF, this approach also dele-
gates to the user the responsibility of testing the generalizability of the
results (howwell the trainedmodels can be applied to newlygenerated
data, even in similar settings), which requires careful practices from
the experimenters.
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The DeepOF module provides a more complete social beha-
vioral profile than the social avoidance task
The social behavioral profile in CSDS-subjected animals has been mea-
sured extensively using the SA task, which is based on the separation of
social behavioral traits between non-stressed and stressed animals11,17,38.
Previous research has shown that rodents have a social interaction
preference towards a novel conspecific compared to a familiar
conspecific39. However, the duration of this social behavioral arousal
state has not been well documented. In this context, and by replicating
the time the SA task typically lasts for10, the current study shows that the
CSDS-related social behavioral profile, obtained with the DeepOF
supervised classifiers, was increasingly observed during the first 2.5min
of the 10min SI task. Furthermore, the presented unsupervised work-
flow was used to determine an optimal binning of our experiments by
measuring how different both conditions were across time for a linear
classifier. This yielded an optimal separation at ~2.1min (126 and 124 s
when testing with single and multi-animal embeddings, respectively),
which then decayed over subsequent time bins in a manner consistent
with the arousal hypothesis. The fact that this result was not seen in the
absence of a conspecific strengthens this argument. Taking this into
account, we argue that the introduction of a novel conspecific induces a
state of arousal, which coincides with a distinct social behavioral profile
that disappears over time after 2–3 min due to habituation.

Along these lines, this study shows that the DeepOF social beha-
vioral classifiers provide a stronger separation of the social behavioral
profile between stressed and non-stressed animals compared to the
classical SA task, which also correlates better to physiological stress
parameters.

Furthermore, the identification of stress-susceptible and resilient
animals is often performed using the SA-ratio of the SA task10,17 and for
this DeepOF offers unique advantages. While the SA ratio clearly dis-
tinguishes stress-affected individuals, especially following more severe
CSDS paradigms, the DeepOF module will significantly advance the
possibilities and sensitivity of this distinction, by investigating the
degree of resilience based on multiple behavioral classifiers with high
sensitivity and in freely moving animals, which enables uncovering a so-
far undescribed set of resilience-linked phenotypes that are different
from the univariate SA task. Taken together, it can be concluded that
using the DeepOF social behavioral classifiers provides a more robust
and clearer social behavioral profile in animals subjected to CSDS
compared to the SA task. An important reason for the superiority of
DeepOF in social behavioral profiling depends on the experimental set-
up: theSA task relieson the confinementof ananimal (for exampleusing
a wired mesh cage), which means that no natural interaction between
freely moving animals is possible, whereas the SI task is based on a
naturally occurring interaction between freely moving animals18. More-
over, in the SA task, the confined animal can show symptoms of anxiety-
related behavior, which influences the physiological state and the social
interaction and approach behavior of the conspecific40–42. Differences in
anxiety-related behavior between experimental animals can still con-
tribute to alterations in social behavior and recent data suggest distinct
neurobiological circuits driving both phenotypes43, therefore sufficient
habituation and the ability to observe behavior in freelymoving animals
will lead to improved discrimination. Moreover, a further crucial
advantage of the DeepOF module is the many different behavioral
classifiers that can be investigated at the same time without increasing
the labor intensity. The combined analysis of multiple behavioral clas-
sifiers into a Z-score of social behavior provides a more complete social
behavioral profile than solely investigating social avoidance behavior.

DeepOF can detect and explain differences across experimental
conditions in a fully unsupervised way, embedding data from
one or more animals
The supervised pipeline within DeepOF follows a highly opinionated
philosophy, which focuses on ease of use and relies on predefined

models. As an alternative, DeepOF offers an unsupervised workflow
capable of representing animal behavior across experiments without
any label information. In its most basic expression, this involves
obtaining a representation for each experiment in a time-aware man-
ner: unlike other dimensionality reduction algorithms like PCA, UMAP,
and T-SNE26, DeepOF, when applied to the raw dataset, relies on a
combination of convolutional and recurrent neural networks capable
ofmodeling the sequential nature ofmotion. Each input to themodels
consists of a subsequence across a non-overlapping sliding window of
each experiment. Although this idea has been explored before33,
DeepOF introduces several novelties to the field, such as unified
embedding and clustering, the support for multi-animal embeddings,
and graph representations that integrate not only coordinates by also
body-part-specific speed and distance information, which makes it
ideal for settings where informative body parts (such as paws) are
occluded, as is the case for commonly used top-down videos.

In addition, these global embeddings can be decomposed into a
set of clusters representing behavioral motifs that the user can then
inspect both visually and with machine learning explainability meth-
ods. Moreover, by comparing cluster enrichment and dynamics across
conditions, it is possible to answer questions that are relevant to
understanding what the observed difference might be based on,
without any previous knowledge: Which behaviors are most or least
expressed in each condition? Is the set of behaviors expressed differ-
ently in experimental conditions? Are they expressed differentially
across space and time? This constitutes a complementary approach
that can be beneficial to further direct hypotheses when little knowl-
edge is available. In addition, by not only showing overall differences
between cohorts but also reporting which motion primitives might be
driving them, it is possible to test hypotheses by training novel
supervised classifiers based on thosemotion primitives. This can allow
researchers to distinguish new, meaningful patterns that have not
been reported before and that may be significantly associated with a
given condition.

Taken together, the current study exemplifies that the unsu-
pervised pipeline provided in DeepOF does not only recapitulate
results previously obtained with the supervised analysis, but also
shows how this tool can be used to detect habituation and overall
differences in behavioral exploration. We also show that detected
differences are significantly stronger when a conspecific is present,
although also detectable during single animal arena exploration alone.

Towards an open-source behavioral analysis ecosystem
One of themain advantages of DeepOF, SimBA37, VAME33, MARS27, and
many other packages cited in this manuscript, is that they are open
source. This means that their inner workings are transparent, and that
it is possible for the community to contribute to their development.
We strongly believe that the adoption of open-source frameworks can
not only increase transparency in the field but also incentivize a feeling
of community, in which researchers and developers can share ideas,
code, and solve bugs and problems together. Moreover, the open
source framework facilitates beneficial feedback loops, where the data
generated using these tools can be published, thus increasing the
opportunity to produce better software. A good example of this is
zero-shot pose estimation44, which enables motion tracking without
labeling, by cleverly leveraging information from several publicly
available datasets. In addition, new technologies are starting to enable
joint learning from multiple modalities, such as neural activation and
behavior45, which enables the exploration of how these modalities are
influencing each other.

In addition to the software, an equally important problem to
tackle is the need for open-source benchmarks. As platforms for
testing and validating pose estimation and detection algorithms
become available, it becomes easier to clearly show and compare the
performance of different software options for different tasks. An
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example of this is the Caltech Mouse Social Interactions (CalMS21)
dataset, a pioneer in the field that provides benchmarking for classic
detection of social interactions, annotation style transfer, and detec-
tion of rare traits46. While unsupervised learning benchmarking
remains highly unexplored to the best of our knowledge, it would be
crucial to compare the DeepOF pipeline with other available methods
in this context when the tools become available.

Finally, and in contrast to several other options that offer exten-
ded functionality but rely onproprietary algorithmsand/or specialized
hardware23, these tools have the potential to make otherwise expen-
sive software available to a larger audience.

In conclusion, the current study provides a novel approach for
individual and social behavioral profiling in rodents by extracting pre-
defined behavioral classifiers and unsupervised, time-aware embed-
dings using DeepOF. Furthermore, while the tool provides means of
customization, it is uniquely optimized for the most common beha-
vioral setup: top-down video recordings.Moreover, we show evidence
for the validation of the provided behavioral annotators and offer an
open-source package to increase transparency and contribute to the
further standardization of the behavioral constructs. We also show
that, while differences across conditions are detectable during single
animal exploration, they are enhanced in the SI task involving a com-
panion mouse. Furthermore, while the classical SA task does identify
the social behavioral profile induced by CSDS, the DeepOF behavioral
classifiersprovide amore robust and clearer profile. DeepOF is thereby
a highly versatile tool that can also be applied to other research
questions, e.g., to study sex differences in social behavior or analyze
home-cage behavior throughout the lifespan of animals using long-
itudinal recordings. In addition, the DeepOF module contributes to a
more specific classification of the affected individual and social
behaviors in stress-related disorders, which could contribute to the
study of drug development for psychiatric disorders.

Methods
Time series extraction from raw videos
Time series were extracted from videos using DeepLabCut version
2.2b7 (single animal mode). 11 body parts per animal were tagged,
including the nose, left and right ears, three points along the spine
(including the center of the animal), all four extremities, and the tail
base (Fig. 1A). The DeepLabCut model was trained to track up to two
animals at once (one CD1mouse and one C57Bl/6Nmouse) and canbe
found in the Supplementary material (see code and data availability
statement). Using the multi-animal DeepLabCut30, extending the
tracking to animals from the same strain is also possible. Next, Dee-
pLabCut annotated datasets were processed and analyzed using Dee-
pOF v0.4.636.

Time series data preprocessing
All videos and extracted time series undergo an automatic pre-
processing pipeline that is included within the DeepOF package, con-
sisting of smoothing and two sequential imputation levels, applied to
all body parts of all tracked animals independently. For smoothing
DeepOF applies a Savitzky-Golay filter47 to each independent tracked
variable by fitting an n/2-degree polynomial over an n-frame sliding
window, where n is the frame rate of the corresponding videos.

To identify and correct any artifacts in the time series, a moving
average model is then fitted to the time-based quality scores of each
tracked variable (as reported by DeepLabCut’s output likelihood). By
detecting divergences (of at least three standard deviations) from the
moving average model, DeepOF can detect sudden and consistent
drops in tracking quality, often correlated with body-part occlusions.
Body parts with low quality are thus removed from the data, and fur-
ther imputed using sci-kit learn’s iterative imputer with default
parameters48, which predicts missing values based on all available

features at a given time point using a Bayesian ridge regression
method. A second imputation method is then conducted, aiming to
remove spatial jumps in the tracked body parts. To do this, another
moving average model is fitted, this time to the body part coordinates
themselves, and any data point located at least three standard devia-
tions from the model is replaced by the predicted values.

Time series feature extraction
After preprocessing the time series independently, DeepOF extracts a
set of features aiming to describe how entire animals move and
interact. These include centered and aligned coordinates, distances
between body parts, angles, and areas of specific regions of each
available body (Fig. 1B), as well as their speeds, accelerations, and
higher-order derivatives. The value for each feature is reported per
time point.

Coordinates. Raw coordinates for each body part are centered (the
cartesian origin is set to the center of each animal) and vertically
aligned so that the y-axis matches with the line delimited by the center
of each animal and spine 1 (see Fig. 1A for reference). This is done so
that both translational and rotational variances are not considered in
further processing steps (in principle, and except for some annota-
tions such as wall climbing and sniffing—see below—DeepOF extracts
posture patterns that are invariant to where in the arena and in which
rotational orientation they are expressed).

Distances and angles. Distances and angles over time between all
body parts within and across all animals are computed by DeepOF by
default, and available for retrieval.

Areas. The full area of the animal over time is computed byDeepOF by
defining a polygon on all external body parts (nose, ears, legs, and tail
base). The head area is delimited by the nose, ears, and spine 1. The
Torso area is delimited by spine 1, both forward legs, and spine 2. The
back area is delimited by the center, both back legs, and the tail base.

Finally, speeds, accelerations, jerks, and larger-order derivatives
of each extracted feature are also computed using a sliding window
approach. Importantly, the detailed 11-body-part labeling scheme
suggested and provided by DeepOF plays a crucial role here. While
parts of the pipeline can still work with fewer labels, the comprehen-
sive set of features that DeepOF is able to extract with this set of labels
enhances not only supervised annotations, but also data representa-
tions and model interpretability.

Supervised behavioral tagging with DeepOF
The supervised pipeline within DeepOF aims to provide a set of
annotators that work out of the box (without user labeling) for several
behaviorally relevant traits. The workflow supports both dyadic
interactions and individual traits, which are reported for each mouse
individually (Fig. 1C). Furthermore, annotated traits fall into one of two
categories:
1. Traits annotated based on pre-defined rules. Several motifs of

interest are annotated using a set of rules that do not require a
trained model. For example, contact between animals can be
reported when the distance between the involved body parts is
less than a certain threshold.

2. Traits annotated following a supervised machine learning pipeline.
While rule-based annotation is enough for some traits, others are
too complex or might bemanifested in subtly different ways, and
machine learning models are often a better option. In this case, a
rigorous validation pipeline has been applied to measure the
performance of the classifier not only in a separate test data set,
but also across datasets comprehending different arenas and
laboratories.
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Rule-based annotated traits. Among the rule-based annotated dyadic
traits, nose-to-nose and nose-to-tail depend on single distance
thresholds between specific body parts of the animals involved. In the
case of nose-to-body, a single threshold is used between the nose of
one animal and any body part of the other (except nose and tail base).
Side-by-side and side-reverse-side are computed using two equal
thresholds, measuring the distance between both noses and two tails
in the former, and both nose-to-tail distances in the latter.

Of the individual traits, “look around” requires the animal to stand
still (speed to bebelow a defined threshold) and the head to bemoving
(nose and ear speeds to be above a defined threshold). Finally, sniffing
and wall climbing rely on the interaction of each animal with the arena
(which can be detected automatically in certain settings, or indicated
manually by the user using a GUI—graphical user interface—when
creating a DeepOF project). An animal is annotated as sniffing thewalls
when speed is below a defined threshold, the distance between the
nose and thewall is below a defined threshold, and the head ismoving.
Consequently, wall climbing is detected when the nose of an animal
goes more than a certain threshold beyond the delimited arena. All
mentioned thresholds can be specified (in millimeters) by the user. All
analyses presented in this article were conducted with default values,
which can be seen in Supplementary Table 1.Moreover, all annotations
require a reported tracking likelihood of at least 0.85 on all involved
body parts.

Annotation using pre-trained machine learning models. In the case
of stopped and huddled, we trained a gradient boosting machine
(scikit-learn, v1.2.0, default parameters) to detect the trait per frame,
using a set of 26 variables including distances between body parts,
speeds, and areas. Data were preprocessed by standardizing each
animal’s trajectories independently (controlling for body size), and the
training set as a whole. Furthermore, to deal with the imbalanced
nature of the dataset (as only 8.48 % of the frames were positively
labeled) we applied Synthetic Minority Over-sampling Technique
(SMOTE)49 to oversample theminority class (using imblearn v0.10.150).

Performance was then evaluated using a tenfold stratified cross-
validation (to keep approximately the same number of positive labels
in each validation fold) on a single dataset formodel development and
tested externally using a leave-one-dataset-out approach. Four inde-
pendent datasets were used, collected in four different settings and
across two different labs (see dataset details in Supplementary
Table 2). Three of them (SI, OF, and SA) were tagged with manual
labeling only, whereas the fourth (EX, obtained externally) combined
manual labels and automatic pseudo-labeling using SimBA (Supple-
mentary Fig. 2). The final classifier deployed with the latest version of
DeepOF was then trained on a set of more than half a million labeled
frames (567.367), coming from all four mentioned independent data-
sets, and global feature importancewas obtained using SHAP (Shapley
additive explanations).

After applying the annotators, a Kleinberg burst detection
algorithm37,51 is applied to all predictions. This step smoothens the
results bymerging detections that are close in time (called bursts) and
removing isolated predictions, which an infinite hiddenMarkovmodel
deems as noise. Moreover, rather than having a fixed detection win-
dow, the filter will be less likely to ignore isolated or less frequent
events if they are far enough from higher frequency bursts but will be
more prone to removing isolated events closer to a region where
annotations are more frequent. In addition, it is important to notice
that the annotatorswork independently, somore than one label can be
assigned to an animal at a given time point (Fig. 1D).

Overall, while the provided behavioral set may not cover all sce-
narios, this out-of-the-box pipeline can be used to detect differences in
behavior across experimental conditions without the need for further
programming. More complex behaviors, involving user definition and
labeling can thus be extracted using other available tools if required37.

Graph representations
To analyze complex spatio-temporal data involving features such as
coordinates, speed, and distances, the unsupervised pipeline within
DeepOF can structure the variables as an annotated graph (Fig. 1E).

In this representation, each node is annotated with three values,
corresponding to both coordinates of each body part, as well as their
speeds. Edges are in turn annotated with distances between both
connected body parts. The adjacencymatrix describing connectivity is
provided by DeepOF for top-down videos, but can also be defined by
the user. Moreover, this representation can be extended to a multi-
animal setting, where independent graph representations for each
animal are connected through nose-to-nose, nose-to-tail, and tail-to-
tail edges, allowing the models to incorporate relative distances
between animals. It is worth mentioning that the provided repre-
sentation works best when adjacent body parts are being tracked so
that propagation through space is not too coarse. One of the main
assumptions behind spatio-temporal graph embeddings is that con-
nected body parts are sufficiently correlated in space, which may not
be the case if too little tracking labels are included52.

Unsupervised deep embeddings with DeepOF
Unsupervised analysis of behavior was conducted using an integrated
workflow within DeepOF, which enables both the deep embedding of
animal trajectories and their clustering, to retrieve motion motifs that
are consistent across time.

To this end, node and edge features (for either single or multiple
animals) are processed using a sliding window across time, and stan-
dardized twice: once per animal, to remove size variability, and a
second time on the entire training set.

The resulting data is then embedded using a deep clustering
neural network architecture based on Variational Deep
Embeddings53,54, a deep clustering algorithm that can be adapted to
sequential data. During training of the models, DeepOFminimizes the
ELBO (evidence lower bound), represented in Eq. (1):

LELBOðxÞ ¼ Eqðz;cjxÞ½logpðxjzÞ� � DKLðqðz; cjxÞjjpðz; cÞÞ ð1Þ

The first term corresponds to the reconstruction loss, which
encourages the latent space (z) to represent the data (x) well over a set
of clusters (c). The second term is the Kullback-Leibler divergence
(DKL) between a mixture-of-Gaussians prior (p(z,c)) and the variational
posterior for each cluster (q(z,c|x)), which regularizes the embeddings
to followamixture-of-Gaussians distributionwhere each component is
associated with a particular behavior. A schematic overview of the
model can be found in Fig. 1F.

Importantly, this loss function enforces a clustering structure
directly in the latent space, removing the need for post-hoc clustering
of the embeddings required by other available tools33. This has several
advantages, the main one being that the clustering structure back-
propagates to the encoder during training, improving clustering
performance55.

The main contribution of the provided architecture lies however
in the encoder-decoder layers, which are designed to handle spatio-
temporal graphdata (inwhich connectivity is static, but node and edge
attributes change over time)56. To accomplish this, features corre-
sponding to each body part are first processed independently by a
temporal block, which consists of a one-dimensional convolutional
neural network (CNN) and two gated recurrent unit (GRU) layers).
Subsequently, the outputs of these layers are passed by a spatial block,
that shares information across adjacent body parts. This is accom-
plished using CensNet convolutions, a graph convolution architecture
capable of embedding node and edge attributes at the same time57.
This allows DeepOF to take advantage of several data modalities
related to motion with a single data structure as input.
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Once the models are trained, cluster assignments are obtained as
the argmax of the posterior distribution given the data, as described in
Eq. (2):

q c∣xð Þ=p c∣zð Þ � p zð Þp z∣cð Þ
PK

c0 = 1p c0ð Þp z∣c’ð Þ ð2Þ

where c’∈ (1, K) is an iterator over all clusters in the model.
In practice, this unsupervised pipeline can retrieve consistent

patterns of animal motion in a flexible, non-linear, and fully unsu-
pervised way. Moreover, as body part speeds and distances can be
naturally included, this workflow works even when critical body parts
(such as the paws) are occluded, which makes it ideal for top-down
videos.

In addition, DeepOF is capable of training multi-animal embed-
dings by usingmulti-animal graphs (see graph representations section
above). When more than one animal is detected, DeepOF allows the
user to control how much these embeddings should consider inter-
actions between the animals over the multi-animal system. This is
achieved with an L1 penalization over the node embeddings in the
aforementioned CensNet layers: larger values will prime themodels to
prioritize animal interactions, whereas smaller values will increase the
contribution of the individual behavior of each animal. All experiments
included in this study used a moderated parameter (0.25) which
allowed the model to consider both interactions and joint individual
behaviors.

Unsupervised model training and hyperparameters
All unsupervised models used default values (as specified in DeepOF
version 0.4.6). On each dataset, 10% of the available videos were used
as a validation set to evaluate performance during training. Data were
processed using sliding windows with a length matching the video
frame rate of each dataset and stride of 1, mapping to eight-
dimensional latent spaces. The training was conducted using the
Nadam optimizer58 (with a learning rate of 0.001 and gradient-based
clipping of 0.75) over 150 epochs with early stopping based on the
total validation loss and patience of 15 epochs. Upon training end,
weights of the models are restored to those obtained in the best per-
forming epoch using the same metric. The number of populated
clusters over time, confidence in selected clusters (as the argmax of
the produced soft counts), regularizers, and individual components of
the loss function (see unsupervised deep embeddings with DeepOF
section above) are tracked over time by DeepOF.

Global animal embeddings
Aside from embedding time points individually, global animal
embeddings (where each data point corresponds to the trajectory of
an entire animal rather than to a single time point) were obtained by
constructing a k-dimensional vector with the time proportion each
animal spent on each cluster, where k is the number of clusters in the
given model.

Cluster number selection
For each dataset that was analyzed with the unsupervised pipeline,
models ranging from 5 to 25 clusters were trained five times, resulting
in a total of 120 models per explored setting. All model hyperpara-
meters were set to DeepOF defaults (see section below and API doc-
umentation for additional details). Global animal embeddings were
thenused as input to a logistic regressionclassifier (scikit-learn, default
parameters) aiming to discriminate CSDS from non-stressed animals.
The model with the smallest number of clusters that reached a per-
formancewithin one standarddeviation of the globalmaximumacross
the whole range (in terms of the area under the ROC—receiver oper-
ating characteristic—curve) was selected for further processing.

Time binning and habituation quantification
A key aspect of DeepOF is that it allows for quantification of behavioral
differences between cohorts over time in an unsupervised way. In this
context, this is done by measuring the Wasserstein distance over time
between the multivariate distributions describing global animal
embeddings for CSDS and non-stressed animals.

By measuring this distance across a growing window, we can
quantify how important additional information is to discriminate
between conditions. This way, a peak in the distance curvewouldmark
the point in time inwhich behavioral differences aremaximized. In this
study, we used a range between 10 and 600 s for each experiment,
computing the Wasserstein distance between conditions every sec-
ond. The time point at which the maximum was reached was selected
as the optimal size for consecutive (non-overlapping) time bins. By
reporting the behavioral distance along these bins, DeepOF can report
behavioral habituation (which would involve behavioral differences
between conditions decreasing over time).

Unsupervised cluster interpretation using Shapley additive
explanations (SHAP)
When applying the unsupervised pipeline, and quantifying which fea-
tures DeepOF deems relevant for the unsupervised models to deter-
mine the assignment of a given time segment to a given cluster, all
obtained sequence-cluster mappings were analyzed using Shapley
additive explanations59,60.

To this end, a comprehensive set of 52 distinct features (111 for
two-animal embeddings) was built to describe each sliding window in
the training set, including mean values of distances, angles, speeds,
and supervised annotators.

Gradient boosting machines (using Catboost v1.1.161, which offers
models specifically optimized for non-binary classification) were then
trained to predict cluster labels from this set of statistics after nor-
malization across the dataset and oversampling theminority classwith
the SMOTE algorithm49. Performance is reported as the validation
balanced accuracy across a 10-fold stratified cross-validation loop, and
feature importance (global and for each cluster) is reported in terms of
the average absolute SHAP values, obtained using a permutation
explainer.

Animals for chronic social defeat stress experiments
Eight-week-old experimental male C57Bl/6N mice were bred in-house.
The CD1 male mice (bred in-house) were used in the social avoidance
and social interaction task as social conspecifics (CD1 animals were
4–6 weeks old) and as aggressors in the CSDS paradigm (CD1 animals
were at least 16 weeks old). The study was conducted with male ani-
mals as a proof of principle, and for comparability to widely available
data on chronic social defeat. All animals were housed in individually-
ventilated cages (IVC; 30 cm× 16 cm× 16 cm connected by a central
airflow system: Tecniplast, IVC Green Line—GM500) at least 2 weeks
before the start of the experiment to allow acclimatization to the
behavioral testing facility. All animals were kept under standard
housing conditions; 12 h/12 h light-dark cycle (lights on at 7 a.m.),
temperature 23 ± 1 °C, humidity 55%. Food (Altromin 1324, Altromin
GmbH,Germany) andwaterwere availablead libitum. All experimental
procedures were approved by the committee for the Care and Use of
Laboratory Animals of the government of Upper Bavaria, Germany. All
experiments were in accordance with the European Communities
Council Directive 2010/63/EU.

Chronic social defeat stress
At 2 months of age, male mice were randomly divided into the CSDS
condition (n = 30) or the non-stressed condition (NS) (n = 30) (Sup-
plementary Table 2, experiment code 1). TheCSDSparadigmconsisted
of exposing the experimental C57Bl/6N mouse to an aggressive CD1
mouse for21 consecutivedays, aspreviously described62. An additional
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cohort (NS: n = 30, CSDS: n = 33, subdivided into susceptible animals
n = 9, and resilient animals n = 24) was used to test the DeepOF social
interaction classifiers on the resiliency and susceptibility division of
the social avoidance ratio (Supplementary Table 2, experiment code
2). The prolonged 3-week CSDS paradigm was specifically chosen to
elicit a more profound passive defeat phenotype, as originally repor-
ted by Kudryavtseva et al. 13, and to allow multiple behavioral assess-
ments under stress conditions. In short, the CD1 aggressor mice were
trained and specifically selected on their aggression prior to the start
of the experiment. The experimental mice were introduced daily to a
novel CD1 resident’s territory, who attacked and forced the experi-
mental mouse into subordination. Defeat sessions lasted until the
stress-exposed mouse received two bouts of attacks from the CD1
aggressor or at 5min in the rare instances when two bouts were not
achieved within this duration. Animal health was monitored through-
out the experiment to ensure that any minor injuries healed prior to
the subsequent defeat session. Between daily defeats, stressed mice
were housed in the resident’s home cage but physically separated from
the resident by a see-through, perforated mesh barrier, allowing sen-
sory exposure to the CD1 aggressor mouse while preventing further
attacks. The defeat time of day was randomized between 11 a.m. and
6p.m. to avoid habituation and anticipatory behaviors in defeated
mice. NS mice were single-housed in the same room as the stressed
mice. All animals were handled daily and weighed every 3–4 days.
Behavioral testingwas performed after 14 days of the defeat paradigm,
wherebehaviorwas observed in themorning and the defeat continued
in the afternoon. The animals were sacrificed a day after the CSDS
ended under deep isoflurane anesthesia by decapitation, which was at
3 months of age. Then, the adrenals were obtained, and the relative
adrenal weight was calculated by dividing the adrenal weight by the
body weight before sacrifice.

Behavioral testing
Behavioral tests were performed between 8 a.m. and 11 a.m. in the
same roomas the housing facility.Onday 15 of the CSDSparadigm, the
animals were tested on the social avoidance (SA) task, while on day 16,
the animals were tested on the combined open field (OF) and social
interaction (SI) task. The SA task was analyzed using the automated
video-tracking software AnyMaze 6.33 (Stoelting, Dublin, Ireland),
whereas theOF and SI tasks were analyzed usingDeepLabCut 2.2b7 for
pose estimation29,30, after which DeepOF module version 0.4.6 was
used for preprocessing, supervised, and unsupervised analyses of
behavior.

Social avoidance
The SA task was performed in a square OF arena (50 × 50cm) to
observe the social behavioral profile after CSDS, as well-established in
previous studies13,62–64. The SA task consisted of two phases: the non-
social stimulus phase and the social stimulus phase. During the non-
social stimulus phase, which was the first 2.5min, the experimental
mouse was allowed to freely explore the OF arena with a small empty
wired mesh cage against the wall of the OF. Then, the empty wired
mesh cage was replaced with a wired mesh cage including a trapped
unfamiliar young CD1 mouse (4–6 weeks old). During the following
2.5min, the social-stimulus phase, the experimental mouse could
freely explore the arena again. The SA-ratio was calculated by calcu-
lating the amount of time spent with the social stimulus, which was
then divided by the time spent with the non-social stimulus. The
identification of CSDS susceptibility and resiliency was obtained using
a SA-ratio score of lower than “1” for susceptible animals, and an SI-
ratio score higher than “1” for resilient animals.

Open field and social interaction task
TheOF and SI tasks were performed in a roundOF arena (diameter of
38 cm). The bottom of the arena was covered in sawdust material to

minimize the cross-over effects of stress and anxiety by the novel
environment. First, the OF task was performed, during which the
experimental animal was allowed to freely explore the arena for
10min. Subsequently, for the SI task, an unfamiliar young CD1
(4–6 weeks old) was introduced inside the arena and both animals
were allowed to freely explore the arena for 10min. The DeepOF
module can identify five behavioral traits during the single animal OF
task, which include wall-climbing, stopped-and-huddled, look-
around, sniffing, and speed (locomotion), whereas in the SI task, all
behavioral traits can be identified (Fig. 1C). During the analysis, the
10min OF and SI tasks were analyzed in the total duration of
the behavioral classifiers, and in time bins of 2.5min to match the
time frame in the SA task.

Z-score stress physiology and social interaction calculation
The Z-scores combine the outcome of multiple tests via mean nor-
malization and provide an overall score for the related behavior of
interest. Z-scores were calculated as described previously65. The Z-
score indicates for every observation (X), the number of standard
deviations (σ) above or below the mean of the control group (μ). This
means that for each individual observation Eq. (3) is calculated:

Z =
X � μ

σ
ð3Þ

Then, the obtained values need to be corrected for the direc-
tionality, such that an increased score will reflect the increase of the
related behavior of interest. This means that per test, the scores were
either already correct or were adjusted in the correct directionality by
multiplyingwith “–1”. Finally, to calculate thefinal z-score, thedifferent
z-scores per test were combined and divided by the total number of
tests, as in Eq. (4).

Ztotal =

Pi
1 ztesti

Number of tests
ð4Þ

The Z-score analysis of stress physiology is based on the relative
adrenal weight and the body weight at day 21 of the CSDS, which are
both strongly influenced by CSDS exposure12. The directionality of
both tests did not require additional adjustment. Then, the Z-score of
SI was calculated based on five DeepOF behavioral classifiers from the
C57Bl/6N mouse, which were B-look-around, B-speed, B-huddle, B-
nose-to-tail, and B-nose-to-body. The directionality was adjusted for B-
speed, B-nose-to-tail, and B-nose-to-body.

Behavioral entropy calculation
Shannon’s entropy of the behavioral cluster space was obtained
directly using DeepOF, as a measure of how predictable the sequence
of behaviors expressed by a given animal is. To accomplish this, Dee-
pOF obtains transitionmatrices across clusters using the unsupervised
cluster assignments per animal. Stationary distributions for each
transitionmatrix are then obtained by simulation through thematrices
until convergence, and Shannon’s entropy is computed for each sta-
tionary distribution. Entropy scores obtained for NS and CSDS animals
were then compared. Overall entropy scores were also compared to
the stress physiology Z-score for validation purposes.

External dataset for validation of the DeepOF huddle classifier
An additional experiment was performed using different conditions
and behavioral set-up, to assess the transferability of the DeepOF
huddle classifier (Supplemental Table 2, experiment code 3) to data
produced by a different lab. 12 weeks old C57BL/6J mice (n = 24, pur-
chased from the Jackson Laboratory (catalog number 000664), Bar
Harbor, ME, USA) were paired in a home-cage environment
(19 × 19 cm) with 12 weeks old ovariectomized CFW female mice
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(purchased from Charles River Laboratories (catalog number 024),
Wilmington, MA, USA) and were allowed to freely explore each other
for 1.5min. The animals were housed under standard laboratory con-
ditions with a 12 h light–dark cycle (lights on from 07:00 to 19:00),
temperature 22 ± 1 °C, humidity 50%, in clear Plexiglas cages
(19 × 29 × 13 cm) with unrestricted access to food (Purina Laboratory
Rodent Diet 5001) and water. Procedures were approved by the
McLean Hospital Institutional Animal Care and Use Committee and
complied with the National Institutes of Health guidelines.

Statistics
Statistical analyses and graphs were made in RStudio (R 4.1.166) and
python (v 3.9.13). All data were used for further statistical analysis
unless stated otherwise. During the DeepLabCut tracking, seven
animalswere excludeddue to technical difficulties (fourNS and three
CSDS were excluded). Statistical assumptions were then checked, in
which the data were tested for normality using the Shapiro-Wilk test
and QQ-plots and for heteroscedasticity using Levene’s test. Data
that violated these assumptions were analyzed using non-parametric
tests. The time-course data was analyzed using the two-way ANOVA
(parametric) or Kruskal-Wallis test (non-parametric) with time (days)
as a within-subject factor and condition (NS vs. CSDS) as a between-
subject factor, further posthoc analysis was performed using the
Benjamini-Hochberg (BH) test (parametric) or the Wilcoxon test
(non-parametric). P-values were adjusted for multiple testing using
the Benjamini-Hochberg (BH) method. Three-group comparisons
were analyzed using the one-way ANOVA (parametric) or Kruskal-
Wallis test (non-parametric), and further posthoc analysis was
performed using the BH test (parametric) or the Wilcoxon test (non-
parametric). Two-group comparisons were analyzed using indepen-
dent samples t-tests (parametric), Welch’s tests (data are normalized
but heteroscedastic), or Wilcoxon tests (non-parametric). Correla-
tion analyses were performed using the Pearson correlation coeffi-
cient; outliers deviatingmore than 5 standard deviations froma fitted
linear model were excluded from the analysis. The timeline and bar
graphs are presented asmean ± standard error of themean. Data was
considered significant at p < 0.05 (*), with p < 0.01 (**), p < 0.001 (***),
p < 0.0001 (****).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that data supporting the findings of this study are
available within the Article and Supplementary Information. Source
data are provided with this paper.

Code availability
All data and the accompanying code to perform the analyses and
creating the figures are available for download via the Max Planck
DataShare services. The most recent version of DeepOF is hosted in a
GitHub repository, and a Zenodo release of the version used in this
manuscript (v0.4.6) is found under https://doi.org/10.5281/zenodo.
8013401. Themost recent stable version of DeepOF is available in PyPI.
Full documentation and tutorials are available on read the docs.
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