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Chronic inflammation, neutrophil activity,
and autoreactivity splits long COVID

Matthew C. Woodruff 1,2,12,13 , Kevin S. Bonham3,12, Fabliha A. Anam1,2,
Tiffany A.Walker 4, Caterina E. Faliti 1,2, Yusho Ishii1,2, Candice Y. Kaminski 5,
Martin C. Ruunstrom6, Kelly Rose Cooper1,2, Alexander D. Truong6,
Adviteeya N. Dixit6, Jenny E. Han 6, Richard P. Ramonell 7,
Natalie S. Haddad 8, Mark E. Rudolph9, Srilakshmi Yalavarthi10, Viktoria Betin11,
Ted Natoli 11, Sherwin Navaz10, Scott A. Jenks1,2, Yu Zuo10, Jason S. Knight 10,
Arezou Khosroshahi1,2, F. Eun-Hyung Lee 6,13 & Ignacio Sanz 1,2,13

While immunologic correlates of COVID-19 have been widely reported, their
associations with post-acute sequelae of COVID-19 (PASC) remain less clear.
Due to the wide array of PASC presentations, understanding if specific disease
features associate with discrete immune processes and therapeutic opportu-
nities is important. Here we profile patients in the recovery phase of COVID-19
via proteomics screening and machine learning to find signatures of ongoing
antiviral B cell development, immune-mediated fibrosis, and markers of cell
death in PASC patients but not in controls with uncomplicated recovery.
Plasma and immune cell profiling further allow the stratification of PASC into
inflammatory and non-inflammatory types. Inflammatory PASC, identifiable
through a refined set of 12 blood markers, displays evidence of ongoing neu-
trophil activity, B cell memory alterations, and building autoreactivity more
than a year post COVID-19. Our work thus helps refine PASC categorization to
aid in both therapeutic targeting and epidemiological investigation of PASC.

The COVID-19 pandemic resulting from the emergence of the novel
beta-coronavirus SARS-CoV-2 has been deeply immunologically
investigated1,2, and is characterized by significant heterogeneity in dis-
ease manifestations3, clinical outcomes4, and recovery5. A particularly
important aspect of those investigations hasbecomean increased focus
on patients that, despite resolution of many of the symptoms asso-
ciated with acute viral infection, experience ongoing complications6.
These post-acute sequelae of COVID-19 (PASC), commonly referred to
as “longCOVID”, rangeboth inmanifestation and severity fromanosmia

to fatigue to joint pain persisting months or even years following the
acute phase of disease7. Although a continuum of disease has been
clearly documented from the acute phase in patient cohorts8, the US
Center for Disease Control and the World Health Organization recog-
nize PASC diagnosis at 4 and 12 weeks after COVID-19 onset, respec-
tively, to allow for acute-phase response recovery9,10. While significant
effort has generated an expansive collection of immunologic associa-
tions across a spectrum of COVID-19 disease courses, their differential
resolution and potential contribution in PASC remains less clear1.
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Reliable immunotypes of severe/critical versus mild/moderate
COVID-19 dependent on, or contributing to, a high-inflammation
environment have been identified in acute disease11. In particular,
integration of systems approaches to immune assessment have iden-
tified prominent roles for myeloid activation12, neutrophil activity13,14

and cytotoxic T-cell responses15 as common features of severe illness.
A striking observation in these patients was the collapse of germinal
centers (GCs) responsible for classical pathways of B-cell development
in patients that had succumbed to the illness16 and the emergence of
antibody-secreting cells via an alternative extrafollicular (EF)
pathway17. This pathway, previously described in human autoimmune
diseases such as lupus17,18, has been demonstrated to generate virally
targeted but cross-reactive responses resulting in de novo
autoreactivity19. In patients recovering from severe illness with symp-
toms consistent with PASC, these autoreactive responses were iden-
tifiable for months.

Similar to the acute phase of disease, recent work investigating
the early phase of COVID-19 recovery has identified immunotypes of
PASC that might be predicted by early inflammation signatures,
although those studies were limited in their window post recovery and
reported waning immunologic association over time8. Other studies
identify correlates of PASC that appear to be broader, such as cortisol
levels, but ongoing associations with dysregulated immunity and
ultimate pathophysiological significance of those signatures remain
less clear20. As ongoing inflammation beyond the acute phase of
infection and ongoing autoreactive development and persistence
would have strong implications in potential treatment modalities, an
integrated assessment of various aspects of immune dysregulation is
required.

To this end, this study combines broad serological screening,
clinical testing, and B-cell response characterization with novel
machine-learning methods to identify common features of PASC not
observed in donors experiencing uncomplicated COVID-19 recovery.
We further identify an inflammatory subclassification of PASC with
distinct clinical correlates, building autoreactivity, and strong evi-
dence of ongoing innate and adaptive immune activation and
response. Taken together, this work identifies biological signatures of
PASC with potential diagnostic and therapeutic potential and estab-
lishes a clear disease subtype that is both easily identifiable and highly
relevant to ongoing investigations of immunomodulatory therapy as a
treatment modality in PASC.

Results
PASC patients display hallmarks of systemic inflammation
To understand the immunologic features underpinning the complex
symptomatology associated with PASC, 97 patients were recruited
from COVID-19 recovery clinics in Atlanta, GA, USA to provide blood
samples and deep clinical documentation. Enrollees had amean age of
50 years (range 21–81), 71 (73%) were female, and the majority were
African American (59%) (Table 1). Fifty-seven (59%) had mild acute
COVID-19 with the remaining requiring hospitalization. At the time of
sampling, patients were amean of 140 days fromCOVID-19 onset, with
the most common self-reported PASC symptoms, including dyspnea
(69%), fatigue (64%), and brain fog (47%) (Table 1). Due to incon-
sistency in formal PASC diagnosis criteria provided by major health
organizations for minimum COVID-19 recovery period9,10, alongside
significant data suggesting that acute-phase diseasemay predict PASC
manifestations8, patient samples were collected across a wide range of
recovery time points (22–446 DPSO) to understand disease develop-
ment and potential resolution. Patients who were suspected or diag-
nosed with rheumatic diseases prior to COVID-19 diagnosis were
excluded from the cohort.

Due to the critical role that systemic inflammation plays in COVID-
1921, and early documented associations with PASC21, a high-
dimensional screen of blood proteomics of almost 3000 indepen-
dent targets was performed on patient plasma via the Olink Explore
3072 platform. A matched cohort of 26 donors with uncomplicated
recoveries from COVID-19 at similar intervals post symptom onset
were included as COVID-recovery (CR) controls (Table 1). Substantial
heterogeneity in overall levels of blood markers was observed within
the PASC group, with a large fraction of patients showing clear dis-
crimination from theCR cohorts based onproteomic signatures, alone
(Fig. 1a). More than 700 proteins displaying significantly increased
abundance in the PASC cohort, with 20 additional proteins sig-
nificantly decreased in comparison to CR controls (Fig. 1b). While
elevated protein signatures were diverse in function,many of themost
significant hits were inflammatory in nature and have been repeatedly
identified as associates of the acute phase of severe COVID-19 includ-
ing IL-622, IL-823, and NF-kB24 (Fig. 1b, c).

To identify broader trends in proteomic alterations within the
PASC cohort we identified blocks of related proteins that were

Table 1 | Patient data table

Characteristics PASC
patients (n = 97)

Uncomplicated COVID
recovery (n = 26)

Sex

Female 71 (73%) 10 (50 %)

Male 26 (27%) 13 (50%)

Age, mean (range) 50 (21–81) 40 (24–70)

20–39 years 16 (17%) 15 (58%)

40–59 years 60 (63%) 8 (31%)

60–79 years 18 (19%) 3 (12%)

>80 years 1 (1%) 0 (0%)

Race/ethnicity

African American/Black 57 (59%) 7 (27%)

White 27 (27%) 14 (54%)

Hispanic 7 (7%) 2 (8%)

Asian 2 (2%) 3 (12%)

Unknown 4 (4%) 0 (0%)

Acute COVID-19 severity

Asymptomatic 0 0

Outpatient 57 (59%) 23 (88%)

Hospitalized 37 (39%) 3 (12%)

ICU-admitted 3 (3%) 0

Collection DPSO.
Mean (range)

140 (22–446) 110 (18–304)

0–3 months 39 (41%) 13 (50%)

3–6 months 34 (36%) 8 (31%)

6–12 months 20 (21%) 5 (19%)

>12 months 2 (2%)) 0 (0%)

PASC symptoms (self-reported)

Dyspnea 65 (68%)

Fatigue 61 (64%)

Brain fog 45 (47%)

Cough 31 (33%)

Headache 29 (31%)

Chest pain 23 (24%)

Depression 20 (21%)

Myalgias 19 (20%)

Weakness 19 (20%)

Anxiety 18 (19%)

Anosmia/dysguesia 15 (16%)

Arthralgias 14 (15%)
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enriched in PASC subjects over CR controls (see “Software and analy-
sis”). Although all biological pathways may not be evenly represented
in the curated proteomics set, an analysis of pathway enrichment
revealed several interesting biological pathways positively associated
with the PASC cohort (Fig. 1d). Consistent with increased expression of
IL-6 and IL-8 (Fig. 1c) neutrophil degranulation was the most enriched
pathway in the set with matrix metalloprotease 8 (MMP8)
and myeloid cell nuclear differentiation antigen (MNDA) highly
increased (Fig. 1b, e, f). While multiple cytokine signaling pathways
showed elevation in PASC, the IL-1B pathway was particularly respon-
sive, with elevated levels of both the cytokine itself and the primary
receptor elevated in the blood (Fig. 1b, g, h). The identification of IL-
1R1, a transmembrane receptor, within the proteomics screen was
reflective of anunanticipated ability of thismethod to identify proteins
usually restricted to cellular compartments—potentially attributable to
receptor cleavage via metalloprotease activity. Strong increased
abundances of markers associated with cell death, including caspase 8
and the TNF death receptor, DR4, provide another potential explana-
tion (Fig. 1b, j), suggesting that increased cellular debris from active
cell death may be generally more abundant in these patients.

ML identifies unanticipated features of PASC
Previous reporting on biological and clinical associations of PASC have
yielded mixed results, with some prominent studies finding no clear

biologic discrimination between patients with PASC and uncompli-
cated recovery25. Others identify clear distinctions at later time points
in disease20. To take advantage of the high-dimensional nature of the
proteomics dataset, we turned to Random Forests (RF), a class of
supervised, nonparametric machine-learning (ML) models based on
aggregatingdecision trees.RFmodels canbe trained to take advantage
of multiple independent or correlated features to generate probabil-
istic classifiers for a categorical response variable. (Fig. 2a). They are
particularly well suited for this task, as blocks of co-regulated protein
abundances within the dataset suggested that feature-wise parametric
testing underlying feature significance testing may be underpowered
(Supplementary Fig. 1). Further, trainedRFmodels prioritize the ability
of a feature to help distinguish between cohorts over measures of
statistical deviation, thereby elevating the importance of features that
may be less striking when considering only effect size and parametric
significance but are critical discriminators between cohorts,
nonetheless.

As RF model training is inherently random by design, potentially
incorporating sub-optimal features for any individualmodel, we took a
consensus modeling approach whereby 10,000 independent RF
models were trained and evaluated on different data splits. This cross-
validation approach is critical in ensuring that resultingmodels are not
overfit to the dataset andmaintain their generalizability to the broader
patient population26. Despite clear proteomics signatures of PASC
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identified through traditional parametric testing (Fig. 1b), model per-
formance was highly dependent on the patient cohort selected for
inclusion within the training set (Fig. 2b) potentially indicating high
heterogeneity within the PASC patient group. To identify individual
features associated with strong model performance and PASC gen-
eralizability, proteins were individually scored for the following: (1) the
frequency of incorporation into a final model over 10,000 iterations,
(2) the importance of the feature for each model in group dis-
crimination, and (3) the overall performance of the models it was
integrated into (Supplementary Data 1). Perhaps unsurprisingly, the
most influential features identified in this way were also significantly
different between the PASC and CR groups through parametric test-
ing, although they were not uniformly the most significant or differ-
entially expressed features in the set (Fig. 2c).

Notably, many of the most significantly expressed inflammatory
cytokines linked to neutrophil activity, including IL-6 and IL-8, were
not identified among the top-scoring discriminators of PASC based on
blood-based protein profiling (Supplementary Data 1). While neu-
trophil degranulation was highly represented in the overall differential
expression analyses (Fig. 1d), it was conspicuously absent in an
assessment of the biological pathways associated with high feature
potency, which instead highlighted coagulation cascades, endothelial
growth factor (EGF) signaling, antiviral sensing, and antigen pre-
sentation (Fig. 2d).

These pathways were reflected in the most potent individual dis-
criminators of PASC within the feature set. IFI30, an interferon-gamma-
induced mediator of peptide processing recently identified in the
context of dysregulated neutrophil activity in COVID-1913, was incor-
porated as a key discriminator of PASC more than 96% of the time and
associated with models with high predictive value (Fig. 2e and Supple-
mentary Data 1). USP8, a component of T-cell antigen receptor (TCR)
signalosome critical for thymocyte development, homeostasis, and
proliferation27, was incorporated into models with similar frequency,
although its selection was slightly less well associated with predictive
power (Fig. 2f and Supplementary Data 1). Perhaps most interestingly,

the epidermal growth factor (EGF), epiregulin (EREG), was consistently
upregulated in PASC and was selected for incorporation into almost
90%offinal predictivemodels (Fig. 2g and SupplementaryData 1). EREG
has been identified as a critical mediator of IL-6/IL-17-induced upregu-
lation of several EGF members and has been previously identified in
COVID-19 as a correlate of inflammation28. It has also been suggested as
a possible modulator of pain sensation in PASC29, and importantly, has
been recently implicated in the immunologic maintenance of pulmon-
ary fibrosis30. Together, features identified using this approach are
extremely robust in the classification of PASC patients (Fig. 2h) and
identify pathways of potential therapeutic value.

Broad inflammation defines a subset of PASC
Although RF-based approaches were promising in identifying PASC
based on blood proteomics alone, expression of individual markers
within the PASC cohort was highly heterogeneous. This was particularly
true of protein sets associated with inflammation and neutrophil
activity, and suggested that there may be subsets of the cohort with
differential immunologic activity signatures (Fig. 1c, f, h). Consistent
with this hypothesis, unsupervised clustering of the total recovery
cohort into two subsets identified a clear subset of PASC patients
clustering together with the CR cohort, while another set segregated
almost entirely independently (Fig. 3a). Hierarchical clustering of the
PASC cohort revealed a stark bifurcation of the overall cohort into two
broad subsets (Fig. 3b). Assessment of the major markers of inflam-
mation significantly upregulated in PASC such as IL-6, IL-8, and IL-1B all
showed significantly increased abundances in one of the two PASC
subsets, hereafter referred as the inflammatory PASC (inflPASC) subset
(Fig. 3c, d). While non-inflammatory PASC patients (niPASC) showed
elevated levels of some inflammatory cytokines, they often failed to
reach significance in reference to the CR cohort (Fig. 3c). Of note, IL-8
and IL-1B signatures in the inflPASC cohort well-exceeded levels seen in
severe/critical COVID-19 patients sampled in the acute phase of disease
suggesting an inflammatory process unique to the recovery phase in
this cohort.

CR
PASC CR

PASC CR
PASC

CR
PASC

Normalized pathway enrichment

-lo
g(

N
om

in
al

 p
-v

al
ue

)

-lo
g(

Ad
j. 

p-
va

lu
e)

False-positive rate

Tr
ue

-p
os

iti
ve

 ra
te

p(
PA

SC
)

Ab
un

da
nc

e

Ab
un

da
nc

e

Ab
un

da
nc

e

a

d e hf g

b c Increased in CR Increased in PASC

0

2

4

6

−1 0 1 2
Normalized protein abundance

difference estimate

IL-8

MMP8

IL-6
IL-1B CASP8

-2

-1

0

1

2

3

IFI30

-2

0

2

4

USP8

-2

0

2

4

6

8

EREG

0

1

2

3

4

5

0.4 0.8 1.2 1.6

Systemic Lupus
Erethematosus

Complement and
Coagulation Cascades

ERBB Signaling
Viral Myocarditis

Antigen
Processing/

Presentation

RLR Signaling

Lysosome

Peroxisome

**** **** ****

0
0

0.5

0.5

0.4

0.6

0.8

1.0

1

1
PASC/CR

cohort

Training set (70%)

x10,000 Random Splits

Model
training

Model
testing

Feature
Selection

(frequency)

Prediction
Score

(quality)

Feature
Potency

Test set (30%) (x)

(=)

−2

0

2

4

6

−1 0 1 2 3
IFI30

PASC

CR

ER
EG

15\123
(86.7%)

17/123
(94.1%)

58/123
(96.5%)

33/123
(36%)

Fig. 2 | RF modeling identifies PASC features. a–g Blood plasma from 97 PASC
patients and 26 CR controls was assessed for 2925 independent protein features.
a Cartoon overview of random forest modeling approach and feature potency
assessment. b Left—Receiver-operating characteristic (ROC) plot displaying ten
models with randomized train/test splits classifying PASC and CR. Right—prob-
abilistic classification plots for individual patients from the test sets derived from
the ten models displayed in the ROC plot. c Feature-wise comparison between

PASC and CR cohorts. Proteins of interest are labeled with the 30 features with
highest feature potency highlighted. d KEGG pathway analysis of proteins ranked
by feature potency in PASC discrimination modeling. e–g Normalized abundance
of indicated proteins with means displayed (red). h Correlated but distinct infor-
mation is provided by EREG and IFI30. Fraction of total samples and % purity
indicated for each quadrant. e–g Two-tailed unpaired T test. *P <0.05; **P <0.01;
***P <0.001, ****P <0.0001. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-40012-7

Nature Communications |         (2023) 14:4201 4



The broad range of time points collected within the recovery
cohort raised the possibility that that the stark separation of PASC
patients based on proteomics assessment could simply be attributable
todifferences in recoveryperiods (DPSO)or initial disease severity (IDS)
differences between the inflPASC and niPASC groups (Table 2). How-
ever, this was not the case. Generalized linear modeling of the pro-
teomics data using DPSO and IDS as explicit covariates had little impact
on the statistical significance of the markers as highly correlated with
PASC (Fig. 3d). Similarly, filtering patients on those at more than 3
months post symptom onset, those with mild/moderate initial disease

severities, or both, conclusively revealed this inflammatory state to be
largely independent of either DPSO or IDS (Fig. 3e–g). This, combined
with individual observations of inflPASC profiles more than a year post
recovery, strongly suggest that these responses may be unexpectedly
stable in a sizable proportion of patients.

Clinical distinctions in inflPASC
The identification of inflPASC based on clear differences in inflam-
matory signaling in the blood suggested that this heterogeneity may
help explain the mixed results in clinically identifying PASC as a whole
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through standard clinical testing. This was confirmed, as broad mar-
kers of inflammation including C-reactive protein (CRP) could be
readily identified in the plasma of inflPASC patients but not in niPASC
counterparts (Fig. 3h). Fibrinogen was also elevated, with more than
50% of patients resulting a clinically abnormal test result (Fig. 3i).
Although inside normal clinical ranges, neutrophil counts correlated
tightly with fibrinogen levels in PASC patients and were significantly
increased in the inflPASC cohort (Fig. 3j). Increases in neutrophil
counts also correlated with proteins known to be released with neu-
trophil degranulation such as myeloperixidase (Fig. 3k). Testing for
established biomarkers of neutrophil degranulation (calprotectin) and
NETosis (citrullinated histone H3) revealed high levels of neutrophil
activity observed exclusively in the majority of inflPASC patients tes-
ted. Altogether, thesefindings suggest thatwhile available clinical tests
fail to independently discriminate the inflPASC subgroup, they directly
correlate with markers of neutrophil activity with strong established
implications in neutrophil-based immunopathology13,14.

Although broad epidemiologic studies are necessary, clinical dif-
ferences in disease presentation could also be observed between the
niPASC and inflPASC cohorts (Supplementary Data 2). While many of
the most prominent symptoms such as dyspnea and fatigue were
present roughly equivalently between the groups, niPASC designation
was associated with more than two-fold increased reporting of joint
pain (23% vs. 6%), heart palpitations (14% vs. 6%), and anxiety (25% vs.
13%) compared to inflPASC. Muscle weakness was reported with
increased frequency in inflPASC (13% vs. 33%). These differences in
presentation became more prominent with time, with new dis-
crepancies emerging between the groups with myalgia (17% vs. 29%)
and numbness (7% vs. 13%) increased in inflPASC patients, alongside
general weakness, at 90+ DPSO, thereby further confirming the per-
sistence of this subset of patients well beyond the onset of disease. At
more than 3 months following acute infection, almost 75% of niPASC
patients reported brain fog in contrast to only 29% of inflPASC

patients. Altogether, these data confirm a clinically distinct subset of
PASC patients, independent of recovery time point, with differential
inflammatory signaling, neutrophil activity, and clinicalmanifestations
of disease.

inflPASC patients show active B-cell profiles
To understand the nature of the cellular responses underlying the
altered humoral targeting in the inflPASC group, antigen-specific flow
cytometry was performed on 11 CR and 38 PASC patients (n = 14
inflPASC; n = 24 niPASC, Supplementary Fig. 2 and Supplementary
Table 1). In the acute phase of severe COVID-19, naïve-derived extra-
follicular B-cell responses correlated with the rapid expansion of
antibody-secreting cells (ASCs)17, resulting in both antiviral and anti-
self-reactivity19. Althoughmild in comparison to the acute phase of the
disease, activity within the EF pathwaywas still observable through the
elevation of DN2 B cells in PASC, with significant enrichment in the
inflPASC subgroup. Interestingly, while strongly elevated ASCs were a
hallmark of acute infection responses, PASC patients displayed fre-
quencies on par, or even below CR donors (Fig. 4a, b).

Despite amuted ASC response, assessment of the antigen-specific
B-cell compartment revealed increased ag-specific circulating B cells
across both PASC subtypes (Fig. 4c). Using antigen-specific frequency
of individual B-cell compartments to identify relevant repositories of
SARS-CoV-2 specificity revealed a clear separation of patients. Almost
all CR patients (10/11) were relegated to a cluster with a low frequency
of ag-specific memory across most B-cell subsets (Fig. 4d) The other
cluster, in contrast, was enriched for inflPASC patients (9/14) with
increased ag-specific frequencies contained in the DN2, DN3, and IgG-
class switched memory compartments (Fig. 4d). While CR patients
showed ag-specific retentionpredominantly in thememory-associated
DN1 compartment, inflPASC patients displayed increased spike reac-
tivity in EF-associated DN populations (Fig. 4e, f). Similarly, while CR
patients ag-specific memory compartment consisted of relatively
balanced IgG and unswitched memory response, IgG responses
dominated inflPASCmemory retention atmore than 80%of the overall
population (Fig. 4g, h). Importantly, PASC patients were characterized
by expansion of antigen-specific activated naïve (aN), B cells, sugges-
tive of persistent viral triggering of de novo B responses. (Fig. 4j).

inflPASC patients display altered humoral targeting
In acute COVID-19, high levels of inflammation in critical illness drove
higher levels of SARS-CoV-2-targeted antibody responses with sig-
nificant cross-reactivity against self-antigens19. Serological testing of
niPASC and inflPASC patients identified no clear serological difference
between the groups in targeting the SARS-CoV-2 receptor binding
domain binding, although IgMand IgA titers were slightly higher in the
inflPASC group (Fig. 5a). By contrast, non-spike targeting was elevated
in inflPASC. In particular, nucleocapsid antibodieswere enriched in the
inflPASC cohort across all isotypes tested, with significant increases in
both IgA and IgG responses (Fig. 5b). As anti-nucleocapsid responses
are known to diminish significantly over time31, it was again possible
that the differences in targeting were attributable to the established
trends in the inflPASC group towards earlier DPSO. However,
restricting the analysis to patients collected more than 120 days post-
diagnosis and eliminating the early time point bias of the inflPASC
group showed similar enrichment of anti-nucleocapsid antibodies,
suggesting that these differences in humoral immune targeting are
stable over the time periods assessed (Fig. 5c). As previous studies
have suggested that antiviral responses to unrelated viruses may be
responsible for PASC manifestation, a screen of patient plasma anti-
bodies against peptide libraries ofmore than 450 characterized human
pathogens was performed. Although PASC patients showed a trend
toward increased viral reactivity in general, no specific viral targets
beyond SARS-CoV-2 could be identified as correlated with PASC
(Supplementary Fig. 3).

Table 2 | Subset patient data table

Characteristics inflPASC (n = 49) niPASC (n = 48)

Sex

Female 34 (70%) 37 (77 %)

Male 15 (31%) 11 (23%)

Age, mean (range) 53 (32–77) 48 (24–81)

20–39 years 7 (14%) 11 (23%)

40–59 years 27 (55%) 32 (67%)

60–79 years 12 (24%) 5 (10%)

>80 years 0 (0%) 1 (2%)

Race/ethnicity

African American/Black 34 (69%) 22 (46%)

White 9 (18%) 19 (40%)

Hispanic 5 (10%) 2 (4%)

Asian 1 (2%) 1 (2%)

Unknown 0 (0%) 4 (8%)

Acute COVID-19 severity

Asymptomatic 0 0

Outpatient 24 (49%) 33 (69%)

Hospitalized 24 (49%) 14 (29%)

ICU-admitted 1 (2%) 1 (2%)

Collection DPSO. Mean (range) 123 (24–312) 156 (22–446)

0–3 months 24 (49%) 14 (29%)

3–6 months 16 (33%) 19 (40%)

6–12 months 9 (18%) 14 (29%)

>12 months 0 (0%) 1 (2%)
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Previously, non-spike targeting in multisystem inflammatory
syndrome in children (MIS-C) correlated with the production of self-
targeted antibodies32. Ag-specific retention in the EF compartment
(Fig. 4d–f) and reductions in Uridylate-Specific Endoribonuclease
(EndoU, Fig. 5d), a positive regulator of peripheral tolerance enforce-
ment, further suggested that inflPASC patients might also be enriched
for autoreactive targeting. To this end, plasma samples were screened
against 30 clinically relevant autoantigens associated with connective
tissue disorders. As in acute COVID-19, patients with PASC were enri-
ched for autoreactivity with more than 75% showing reactivity against
at least one autoantigen (Fig. 5e). Also similar toCOVID-19, anti-nuclear
antibody (ANA) testing showed broad positivity, althoughmuch of the
cohort displayed low titers (1:80–1:160) of questionable clinical rele-
vance. However, more than a third of patients displayed autoreactivity
against 2 or more autoantigens, with some patients resulting 5 total
positive tests (Fig. 5e). As in COVID-19, anti-carbamylated protein
responses were enriched with 17% of patients testing positive, along-
side an unexpected enrichment in RNA polymerase 3 reactivity across
the cohort.

While autoreactivity was enriched across the entire PASC cohort,
it was further emphasized within the inflPASC subset. As a broad
measure of broken tolerance, inflPASC patients displayed both higher
incidence (>55%) and higher titers of ANAs. Increased ANA titers were
reflective of broader autoreactivitywithin the groupwhich contained a
higher percentage of patients with positive tests to two or more
independent self-antigens (Fig. 5f, g). Of great interest, anti-neutrophil
cytoplasmic antibodies (ANCA) were restricted to the inflPASC group
(4/44). Further, of the six patients resulting positive tests for anti-beta-
2-glycoprotein 1 (B2GP1) antibodies, associated with clotting
abnormalities in both anti-phospholipid syndrome and COVID-19, 5
segregated into the inflPASC subset.

Critically, a targeted follow-up of patients roughly 1 year after
initial visit revealed resolving ANA reactivity in niPASC patients (5/7) in
contrast to thebuilding reactivity in inflPASCpatients (6/8) (Fig. 5h). Of
the eight inflPASC patients with follow-up testing, three were initially
collected 90 +DPSO and all showed increasing titers demonstrating
clear evidence of building autoreactivity beyond the acute phase of
COVID-19. Further, one inflPASC patient had developed new reactivity
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against dsDNA, opening the possibility of antigen walk and chronic
autoimmune development.

Classifying inflPASC through ML
The inflammatory milieu, neutrophilia, discordant self-reactivity and
altered B-cell responses suggest that the inflPASC cohortmay uniquely
benefit from immunomodulation in the alleviation of disease burden.
To accurately identify this specific patient subset, RF modeling was
again implemented, this time classifying inflPASC patients from all
other COVID-19 recovery. The resulting predictive modeling was
extremely robust –10,000 models with randomized training/test set
splits resulted in a mean ROC AUC of 0.95 (SD + /−0.04), suggesting
that, unlike the generalized PASC cohort, inflPASC patients could be
efficiently identified irrespective of the patient set selected for model
training (Fig. 6a). This, combined with the broad set of proteins with
increased abundance in inlfPASC patients strongly suggested that
restricting our feature set to targets of known immunologic

significancemight still be effective in parsing the group. To this end, a
list of 12 targets was manually curated from the most potent dis-
criminators of inflPASC and used as inputs into a new RF model
(Fig. 6b). Despite the restricted feature set, use of feature potency
scores to guide parameter selection resulted in modeling that con-
tinued to be effective in discriminating the inflPASCgroupwith amean
ROC AUC of 0.94 (SD + /−0.05), suggesting that full proteomics
screening is not necessary to identify these patients (Fig. 6c).

Discussion
Clinical heterogeneity in patients with PASC hasmade it challenging to
identify clear biological associations with the disease25. Here, we sug-
gest that PASC should be subclassified into (at least) two distinct
conditions, characterized by the presence (inflPASC) or absence
(niPASC) of broad inflammatory signatures consistent with high neu-
trophil activity and qualitative changes in B-cellmemory and response.
Using high-dimensional proteomics in combination with machine-
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learning-based modeling, we characterize clear signatures of general-
ized PASC strongly suggestive of dysregulation of discrete biologic
processes underlying disease thatmay be tractable for both diagnostic
and therapeutic purposes. Although traditional feature-wise testing
showed an inflammatory component to PASC as a whole, a finding
largely in agreement with emerging literature, pro-inflammatory
cytokines such as IL-6, IL-8, and IL-1B were not identified as strong
candidates for the discrimination of PASC when modeling the totality
of blood protein content. Instead, signatures of complement and
clotting cascades, active antigen processing, and EGFR signaling were
more consistently associated across the group, with the identification
of unanticipated targets, such as EREG, that may hold important
diagnostic and therapeutic value. These findings are particularly
interesting in light of recent work suggesting EREGs role, among
other things, in pain sensation29, inflammatory dysregulation and
autoimmunity33, and maintenance of pulmonary fibrosis30.

Likewise, proteomics-based clusteringof PASCpatients revealed a
clear subset of patients closely associated with inflammatory immune
signatures strongly suggestive ofneutrophilic activity. Through readily
available clinical testing, these inflPASC patients displayed neutrophil
expansion correlating with both fibrinogen levels and biomarkers of
degranulation and NET formation. Strikingly, many of the proteomics
signatures associated with these patients, including IL-8, IL-1B, and
IFI30, were highly reminiscent of recent work identifying transcrip-
tional reprogramming of lung-infiltrating neutrophils that contributes
to self-sustaining pathogenic neutrophilia in severe COVID-1913. This,
alongside the known pathology associated with aberrantly regulated
NET formation34 and the recent success of the neutrophil-modulator
metformin in reducing PASC emergence by more than 40% in clinical
trial cohorts35. It will be important to understand the significanceof the
correlation of these neutrophil signatures in these patients with clot-
ting cascade members (Fig. 3i), their combined contribution to the
clotting abnormalities identified in COVID-19 recovery and PASC36, and
their detailed associations with clinical manifestations of PASC in lar-
ger longitudinal cohort studies. The streamlined approach to identi-
fying these patients outlined here will greatly aid in those efforts.

It is important to note that while these clinical markers such as
neutrophil counts and fibrinogen are elevated within the inflPASC
group, they do not necessarily reflect ‘abnormal’ test results in all
cases. That is, the testing of any marker independently may not, by
itself, indicate clear disorder. Instead, the elevation of multiple mar-
kers, even when within “normal” ranges, seem to best reflect the broad
inflammatory signals identified in the proteomics screen. This finding
only emphasizes the need to develop tools capable of providing
nuanced assessment across a variety of clinical parameters in patient
classification. Similarly, it is important to acknowledge that niPASC is

defined only as the absence of the robust inflammatory signature
identified in inflPASC by comparison, and not as the absence of dis-
ease. As others have now shown20, and we show here (Fig. 2b, h),
biological associations such as EREG upregulation and cortisol
levels8,20 can be readily identified across a wide spectrumof PASC even
independent of clear inflammatory signaling. It will be critical to
understand how all of these signatures predict, and potentially con-
tribute to, long-term patient morbidity.

A surprising finding from these data, in combination with the
published literature25, is the difficulty in discriminating disease
subtype through symptompresentation alone.While clear trends do
emerge based on subclassification, symptom presentation alone is a
poor discriminator of the inflPASC and niPASC groups despite their
discordant underlying biology. It is notable, however, that in chronic
autoimmune disorders, differences in underlying biology can
heavily impact treatment success independently of overall disease
presentation37. In the case of PASC, and based on the data presented
here, two patients with highly similar symptomatic presentations
might respond differently to immunomodulatory therapy. As a
result, it is important to move beyond symptomatic presentation as
a primary method for the classification of patients in therapeutic
trial designs.

It is also important to understand how the signatures reported
here might evolve over the course of the disease. While our cross-
sectional approach defines clear lines between inflPASC and niPASC,
and it is clear that inflPASC can present well beyond the expected
phase ofCOVID-19 recovery, it is not yet clear if these presentations are
mutually exclusive. In the case of reservoir-based viral reactivation as a
main driver of PASC, as several have argued38, it could be that inflPASC
manifestations are an observation of an inflammatory phase of cyclic
reactivation rather than a discrete patient subtype. However, it is
worth considering that the trending differences in symptomatology
between the groups and differential persistence of autoantibodies
argue against this interpretation. Alternatively, thedistinctionbetween
inflPASC and niPASC could reflect a difference in the physiologic
location of a viral repository. This would be consistent with the
variability in memory isotype selection differences between the
niPASC and inflPASC group despite the identification of antigen-
specific aN B cells in both PASC subtypes strongly suggesting ongoing
EF B-cell activation, presumably due to persistence viral antigens. If
confirmed, the continued reliance on these EF-derived clonotypes for
memory retention could have long-term implications in both ongoing
cross-reactivity and self-targeting as well as the potential for self-
sustaining autoimmune development in a subset of patients.

The overwhelming disease burden attributable to PASC
worldwide6 demands that serious attention must be paid both to its
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Fig. 6 | Identifying inflPASC in small feature sets. a Left—Receiver-operating
characteristic (ROC) plot displaying ten models with randomized train/test splits
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accurate diagnosis as well as potential therapeutic avenues. The
identification of a clear subclassification of PASC with a highly
inflammatory presentation is an important first step. Based on these
data, it is likely that these two PASC subclassifications may respond
differently to the immunomodulatory therapies, particularly those
targeted at neutrophil activity and autoimmune B-cell development,
currently being investigated in large-scale clinical trials. Using
machine-learning approaches, we have identified critical factors that
can be used as positive classifiers of inlfPASC with a high degree of
sensitivity and precision. While initial characterization of this hetero-
geneity required high-dimensional and unbiased screening, we found
that a small subset of features that could be tested at scale, selected
through novel assessments of feature potency, was nearly as perfor-
mant when considered alone. Further, our integration of these data
with classical in-clinic blood counts, clotting tests, autoreactive
screening, and inflammatory marker assessment suggests that there
may be several viable avenues to the positive identification of inflPASC
patients without the need for highly specialized technology. These
assessments could be easily integrated into ongoing clinical trials to
understand if therapeutics exert discordant effects on specific patient
groups and reduce the potential for false-negative outcomes due to
patient heterogeneity.

Methods
Human subjects and clinical assessment
All research was approved by the Emory University Institutional
Review Board (Emory IRB nos. IRB00058507, IRB00057983 and
IRB00058271) and was performed in accordance with all relevant
guidelines and regulations. Informed consent was obtained from all
participants. Donors with uncomplicated COVID-19 recoveries (n = 26)
were recruited using promotional materials approved by the Emory
University Institutional Review Board.

Patients with PASC (n = 97) were referred by primary care
providers or by self-referral to Emory University Midtown, Emory
University Executive Park, and Grady Memorial Hospital PASC
Clinics. Adults aged ≥18 years with documented SARS-CoV-2
antigen or anti-nucleocapsid antibody (64%), or those meeting
the CDC COVID-19 clinical case definition who were experiencing
new or worsening symptoms and were >14 days from COVID-19
onset (36%) were eligible. Sociodemographic, comorbidity, acute
COVID-19, and PASC symptom data were collected by patient
report through a review of systems and confirmed through
medical record review. Clinical blood testing was performed on a
subset of patients through routine care protocols.

Peripheral blood was collected in either heparin sodium tubes
(PBMCs) or serum tubes (serum; both BD Diagnostic Systems). Study
data were collected and managed using REDCap electronic data cap-
ture tools hosted at Emory University.

Proteomic assessment and analysis
Frozen donor plasma was submitted for analysis using the com-
mercially available Olink Explore 3072 platform based on previously
published technological approaches39. Briefly, individual protein
features are targeted by two independent antibodies carrying ssDNA
tags. Upon dual-Ab binding, the ssDNA tags hybridize forming a
PCR-competent substrate for amplification and sequencing. Protein
abundances are normalized against in-plate and global controls and
reported alongside sensitivity thresholds and quality control
metrics. The resulting data was further assessed for quality with 1
PASC patient removed due to generalized protein abundances well
outside of normal assay ranges. All samples were generally assessed
for normal protein expression distributions and analyzed either
through assessment tools provided by Olink in their custom
“R” package, or through customized analysis pipelines developed
in-house.

COVID-19 multiplex immunoassay
SARS-CoV-2 antigens were coupled to MagPlex Microspheres of
spectrally distinct regions via carbodiimide coupling and tested
against patient samples as previously described31. Results were ana-
lyzed on a Luminex FLEXMAP 3D instrument running xPonent
4.3 software. Median fluorescent intensity (MFI) using combined or
individual PE-conjugated detection antibodies (anti-IgA/anti-IgG/anti-
IgM) was measured using the Luminex xPONENT software on the
Enhanced PMT setting. The background value of the assay buffer was
subtracted from the serum/plasma to obtain MFI minus background
(net MFI). Serum and plasma samples were tested at 1:500 dilution.

Quantification of neutrophil activity biomarkers
Cit-H3 levels in the plasma were quantified using the Citrullinated
Histone H3 ELISA Kit (Cayman, 501620) according to the manu-
facturer’s instructions. Patient plasma was diluted 1:10 prior to assay
loading. Calprotectin levels in the plasma were measured with the
Human S100A8/S100A9 Heterodimer DuoSet ELISA (R&D Systems,
DY8226-05) as per themanufacturer’s instructions. Patient plasmawas
diluted 1:500 prior to assay loading.

Flow cytometry
Isolated PBMCs (10 × 106) were centrifuged and resuspended in 75μl
FACS buffer (PBS+ 2% FBS) and 5μl Fc receptor block (BioLegend, no.
422302) for 5min at room temperature. For samples stained with anti-
IgG, it was observed that Fc block inappropriately interfered with
staining, so a preincubation step of the anti-IgG alone for 5min at 22 °C
was added before the addition of the block. Next, 25μl of antibody
cocktail (Supplementary Table 1) was added (100μl staining reaction),
and samples were incubated for 20min at 4 °C. Cells were washed in
PBS, and resuspended in a PBS dilution of Zombie NIR fixable viability
dye (BioLegend, no. 423106). Cells were washed and fixed at 0.8%
paraformaldehyde (PFA) for 10min at 22 °C in the dark before a final
wash and resuspension for analysis.

Cells were analyzed on aCytek Aurora flow cytometer usingCytek
SpectroFlo software. Up to 3 × 106 cells were analyzed using FlowJo v10
(Treestar).

Autoreactivity screening
For autoimmune biomarker analysis, frozen plasma was shipped on
dry ice to Exagen, Inc. (Vista, California, USA) which has a clinical
laboratory accredited by the College of American Pathologists (CAP)
and certifiedunder theClinical Laboratory ImprovementAmendments
(CLIA). Thawed plasmawas aliquoted and distributed for the following
tests: anti-nuclear antibodies (ANA) were measured using enzyme-
linked immunosorbent assays (ELISA) (QUANTA Lite; Inova Diag-
nostics) and indirect immunofluorescence (IFA) (NOVA Lite; Inova
Diagnostics); anti-double-stranded DNA (dsDNA) antibodies were also
measured by ELISA and were confirmed by IFA with Crithidia luciliae;
extractable nuclear antigen autoantibodies (anti-Sm, anti-SS-B/La IgG,
anti-Scl-70 IgG, anti-U1RNP IgG, anti-RNP70 IgG, anti-CENP IgG, anti-Jo-
1 IgG, and anti-CCP IgG) aswell as Rheumatoid Factor (RF) IgA and IgM
were measured using the EliA test on the Phadia 250 platform (Ther-
moFisher Scientific); IgG, IgM, and IgA isotypes of anti-cardiolipin and
anti-β2-glycoprotein, as well as anti-Ro52, anti-Ro60, anti-GBM, anti-
PR3, and anti-MPO were measured using a chemiluminescence
immunoassay (BIO-FLASH; InovaDiagnostics); anti-CarP, anti-RNA-pol-
III, and the IgG and IgM isotypes of anti-PS/PTweremeasured by ELISA
(QUANTA Lite; Inova Diagnostics), while C- and P-ANCA were mea-
suredby IFA (NOVALite; InovaDiagnostics). All assayswere performed
following the manufacturer’s instructions.

Phage immunoprecipitation sequencing and analysis
Frozen plasma samples were shipped to ImmuneID for analysis
through their commercially available VirScan analysis pipeline based
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on previously published technological approaches40. Briefly, a custom
T7 bacteriophage library consisting of 149,259 peptides tiling all
protein-coding sequences from viruses with human hosts was con-
structed. Viral protein sequences were downloaded from Uniprot,
collapsed on 90% identity, and bioinformatically parsed into 90 amino
acid peptide tiles with 45 amino acid overlaps between adjacent tiles.

T7 bacteriophage libraries were aliquoted into 96-well plates and
incubated with 20μl each of protein A and G Dynabeads on a rotator
for 4 h at room temperature. Next, plates were placed on a magnet,
and supernatants were transferred to a fresh 96-well plate, towhichwe
added patient plasma containing 2μg of total IgG, and continued with
the immunoprecipitation and washing steps, as previously described.
Following the washes, protein A and protein G Dynabeads were
resuspended in PCRmastermix, amplifiedwith 16 rounds of PCR, SPRI
cleaned to remove primers, and indexed for sequencing with 8 rounds
of PCR with primers containing Illumina p5 and p7 barcodes. NGS
libraries were quantified on a Tapestation4200 and normalized for
sequencing on an Illumina Nextseq2000 instrument. Each library
received a minimum of 3M reads.

PhIP-seq single-end DNA sequences were aligned to a library of
149,259 75 bp reference DNA sequences with the bowtie2 aligner (v2.0)
using end-to-end matching. Read counts were summarized using sam-
tools (v1.14) and collated into a counts matrix. The raw counts were
converted to counts per million (CPM) using the “cpm” function from
the R package edgeR (v3.36.0). CPM values for healthy controls were
summarized by computing the peptide-wise mean and standard devia-
tion across all healthy control samples. CPM values for each patient
sample were collapsed by computing the peptide-wiseminimum across
technical replicates. Peptide-wise z-scores were then computed as:

Zi, j = ðCi, j�μjÞ=σj

where Zi,j is the z-score for patient i, peptide j; Ci,j is theminimumCPM
for patient i, peptide j; μj is themean of peptide j in the healthy control
samples, and σj is the standard deviation of peptide j in the healthy
control samples. For each patient, hits were identified as those
peptides with Ci, j ≥ 10 AND Zi, j ≥ 10.

Software and analysis
Computational analysis was carried out in R (v3.6.2; release 12 Dec
2019).Heatmapswere generatedusing the “pheatmap” library (v1.0.12),
with data pre-normalized (log-transformed z-scores calculated per
feature) before plotting. Clustering was carried out using Ward’s
method. Custom plotting, such as biological pathway analysis, was
performed using the “ggplot2” library for base analysis, and then post-
processed in Adobe Illustrator. UMAP coordinates were generated
using the ‘UMAP’ library, and then visualized through the “ggplot2”
library package. GSEA analyseswereperformedusing theGSEAdesktop
application using ReactomeorKEGGgene sets. Statistical analyseswere
performed directly in R, or in GraphPad Prism (v8.2.1).

Patient classification through machine learning
Random forest models were trained using “MLJ.jl” and “Decision-
Trees.jl”. Hyperparameter tuning (maximum splits, minimum number
of samples to allow split, minimum number of samples per leaf) for
each class of models (CR vs PASC, inflPASC vs. Other) was performed
independently using a subset of 80% of samples. Iterative training was
performed as follows:
1. A stable random number generator seed was selected.
2. Samples were randomly assigned to training (80%) and test

(20%) sets.
3. The model was trained on the training set using 1000 trees, and

hyperparameters identified from the tuning step.
4. Gini (impurity) feature importance was calculated from

training data.

5. AUC for the model was calculated based on classifications of the
test set.

6. Importance scoring for feature $f$ andmodel $M$was calculated
as $Score(f|M) = Gini(f) * AUC(M)$.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The proteomics data have been deposited in Zenodo under accession
number 8092298. All data are included in the Supplementary Infor-
mation or available from the authors upon reasonable requests, as are
unique reagents used in this Article. Source data are provided with
this paper.

Code availability
The custom code used for this analysis has been deposited in Zenodo
under accession number 8092298.
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