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Comparative genomics reveals a unique
nitrogen-carbon balance system in
Asteraceae

Fei Shen 1,5, Yajuan Qin 1,5, Rui Wang 2,5, Xin Huang 1, Ying Wang1,3,
Tiangang Gao4, Junna He 2, Yue Zhou 3, Yuannian Jiao 4, Jianhua Wei1 ,
Lei Li 3 & Xiaozeng Yang 1

The Asteraceae (daisy family) is one of the largest families of plants. The
genetic basis for its high biodiversity and excellent adaptability has not been
elucidated. Here, we compare the genomes of 29 terrestrial plant species,
including two de novo chromosome-scale genome assemblies for stem let-
tuce, a member of Asteraceae, and Scaevola taccada, a member of Good-
eniaceae that is one of the closest outgroups of Asteraceae. We show that
Asteraceae originated ~80 million years ago and experienced repeated
paleopolyploidization. PII, the universal regulator of nitrogen-carbon (N-C)
assimilation present in almost all domains of life, has conspicuously lost across
Asteraceae. Meanwhile, Asteraceae has stepwise upgraded the N-C balance
system via paleopolyploidization and tandem duplications of key metabolic
genes, resulting in enhanced nitrogen uptake and fatty acid biosynthesis. In
addition to suggesting a molecular basis for their ecological success, the
unique N-C balance system reported for Asteraceae offers a potential crop
improvement strategy.

Angiosperms (flowering plants) experienced a rapid terrestrial radia-
tion and diversification of species, eventually becoming ecologically
dominant before the end of the Cretaceous period, famously char-
acterized byCharles Darwin as “an abominablemystery”1. In particular,
the Asteraceae rival the Orchidaceae as the largest family of flowering
plants. The Asteraceae comprise more than 1620 genera and 30,000
species and account for approximately 10% of all flowering species
(Supplementary Fig. 1 and Supplementary Note 1)2,3. The richness of
Asteraceae species is much greater than that of related families in the
order Asterales, including Calyceraceae (47 spp.), Goodeniaceae
(430 spp.), and Menyanthaceae (60 spp.)3. As the most ecologically
successful family with incredible diversity and excellent adaptability,

its members occur in nearly every type of habitat on earth, including
extreme environments, such as deserts and salt flats (Supplementary
Fig. 1)4. Another example that can illustrate the extraordinary adapt-
ability of the Asteraceae is that the plants in this family rank among the
top three on the list of globally invasive species (Supplementary Fig. 1).
The ecological success of Asteraceae is considered to be related to its
specific morphology and physiology. For example, the characteristic
inflorescence (capitulum) substantially contributes to ecological
radiation by attracting insect pollinators that rely heavily on this family
to feed and reproduce5. The achene-like fruits (cypselae) with pappus
of bristles promote dispersion by wind or attach to the fur or plumage
of animals2. Both of these methods of dispersion result in seeds that
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are spread over a greater distance than most other types of seeds. In
addition, inulin-type fructans, instead of starches, are the primary
reserve carbohydrates in the Asteraceae, and they have potential
functions to increase their ability to adapt to environmental
challenges6–8. However, progressively understanding the explosive
diversifications and adaptability of Asteraceae still remains a strong
challenge to biologists.

The origin and early evolution of the Asteraceae is inconclusive
and mysterious. The recent phylogenetic studies of Asteraceae using
new fossil evidence and a broader sampling of the family placed its
origin sometime in the late Cretaceous period (69–89 million years
ago [MYA])2,5,9. The family was considered to be relatively young until
recently (40–50MYA) based on its existing fossil record, and this time
frame is consistent with that provided by molecular clocks2,10,11. A
paleopolyploidization event was proposed and shared by subfamilies
near the crown node of Asteraceae, which was considered to be a
whole-genome triplication by recent genomic analyses10,12–14. In addi-
tion, frequent potential ancient whole-genome duplications (WGDs)
within several tribes were estimated and predicted to be a force that
drives evolution and increases biodiversity considering that poly-
ploidizations duplicate all genes simultaneously and provide abundant
genetic materials for evolutionary processes, such as neofunctionali-
zation, subfunctionalization, and gene conservation owing to dosage
effects13,15. Insights into polyploidization enable the genetic base of
specific traits of Asteraceae to become feasible by delving into the
high-quality genomes utilizing cutting-edge sequencing technologies.

Nitrogen (N), alongwith carbon (C), is a primary constituent of the
nucleotides and proteins that are essential for life, but its availability is
often a limiting factor for plant growth in natural ecosystems. Cellular
N and C metabolism in plants are finely coordinated by sensor or
regulatory genes to sustain optimal growth and development16. For
example, the PII proteins act as reporters of the C metabolic state of
the cell by interdependently binding ATP/ADP and 2-oxoglutarate (2-
OG)17. Furthermore, the levels of cellular glutamine in plants are
additionally sensed via PII signaling16–18. The mode of function of PII is
conserved in the three domains of life under the control of PII-target
protein interactions via the binding of effector molecules. Ecologically
successful taxa evolve successful and efficient N assimilation systems
to survive in severe habitats or compete for nourishment. Approxi-
mately 90% of the species within the family Leguminosae can fix
atmospheric N through a symbiotic association with soil bacteria and
have become widespread through the most spectacular radiations19.
Orchids are one of the very few flowering plant lineages that have been
able to successfully colonize epiphytic or lithophytic niches, clinging
to trees or rocks and growing in dry conditions using crassulacean acid
metabolism20. We reasonably hypothesize that there could be unusual
factors in the nutrient absorption system of Asteraceae.

In this work, we generate two high-quality genome assemblies of
stem lettuce (Lactuca sativa var. angustana), a representative eco-
nomic cropofAsteraceae, and Scaevola taccada, a representative plant
of the Goodeniaceae family that is the sister lineage to Calyceraceae
and Asteraceae (Fig. 1a, b). A comparative genomics analysis of all the
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Fig. 1 | Phylogenic relationship and genome features of stem lettuce (Lactuca
sativa var. angustana) and Scaevola taccada. a Phylogenic relationship between
stem lettuce and Sc. taccada. Red arrows indicate their respective families, Aster-
aceae and Goodeniaceae. The tree was adapted from Angiosperm Phylogeny
(http://www.mobot.org/MOBOT/research/-APweb/). b Habitat, morphology, and
flowers of stem lettuce and Sc. taccada. Typical habitat of Sc. taccada on a tropical
beach in Sanya, Hainan Province, China (top left); Flowers of Sc. taccada (top right);

Morphology of stem lettuce as a commodity in a supermarket (bottom right);
Flowers of stem lettuce (bottom left). c Genome features of stem lettuce and Sc.
taccada. The tracks from outer to inner circles indicate I, chromosome karyotypes;
II, gene density in 1-Mbwindows; III, gene expression levels (averaged FPKM in 1-Mb
windows); IV, density of LTR-RTs (1-Mbwindows); V, DNA transposon density (1-Mb
windows); VI, GC content; VII, synteny between the two genomes.
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29 taxa, including seven Asteraceae species and 22 species, that are
representatives of different evolutionary clades of terrestrial plants is
performed. It uncovers the history of genomic evolution, genomic
architecture and gene functional differentiation of Asteraceae, which
could possibly lead to its uniqueness and diversity. Strikingly, the
conserved regulatory gene that maintained the balance of N/C assim-
ilation, PII, is lost across the Asteraceae family during its genomic
transition. A uniqueN-C balance systemhas been proposed and covers
but is not limited to the absorption of N and fatty acid synthesis and
provides a solid molecular basis for the adaptability of Asteraceae.

Results
Two high-quality de novo genome assemblies
The de novo genome assembly for stem lettuce was based on a set of
105-fold-coverage single-nucleotide real-time (SMRT) sequencing, 119-
fold-coverage optical mapping, 108-fold-coverage chromosome con-
formation capture (Hi-C) sequencing, and 158-fold-coverage Illumina
reads (Supplementary Table 1 and Supplementary Notes 2 and 3). The
N50 sizes of the contigs, scaffolds with optical mapping, and scaffolds
further analyzed with Hi-C, were 4.95Mb, 186.5Mb, and 332.3Mb,
respectively (Supplementary Tables 2 and 3). The final assembled
genome, namely SL1.0, is 2589.7Mb, including nine pseudo-
chromosomes and the complete genomes of chloroplasts and mito-
chondria (Fig. 1c, Supplementary Tables 2 and 3, Supplementary
Note 4, and Supplementary Figs. 2–5).

The RNA-Seq datasets from different tissues produced by this
study and all the expressed sequence tags (ESTs) of lettuce from NCBI
were used to predict the genes and annotate the genome (Supple-
mentary Note 5 and Supplementary Fig. 6). A total of 40,341 high-
confidence protein-coding genes and 5453 non-coding RNAs were
identified, and their functions were annotated by searching against six
publicly available databases (Supplementary Tables 4 and 5). Finally,
together with annotation against the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG), more than 85% of the
genes were annotated (Supplementary Table 4).

Different means were utilized to assess the genome quality
(Supplementary Note 6 and Supplementary Figs. 7–9). First, a pairwise
alignment between SL1.0 and the genome of another lettuce cultivar
(La. sativa var. capitata) was conducted, and in addition to its strong
collinearity and consistency, SL1.0 was much more complete (Sup-
plementary Fig. 8). Secondly, 98.37% of all the Illumina reads and
95.32% of ESTs, respectively, could be properly re-aligned to the SL1.0
assembly (Supplementary Tables 6–8), and its base accuracy, desig-
nated the quality value (QV), was estimated to be at least 42.38, which
was better than the two favorable published mammalian genomes
(QV35 for gorilla and QV34.5 for goat)21,22. Third, the genome covered
95.9% of the complete Benchmarking Universal Single-CopyOrthologs
(BUSCO), and ~92.3% of them were expressed in at least one tissue
(Supplementary Table 9 and Supplementary Fig. 7). A notable feature
of SL1.0 is the high portion of repetitive elements that comprised
more than 87% (Supplementary Table 10). After a careful examination
of the long terminal repeats (LTRs), the LTR assembly index (LAI) of
SL1.0 is as high as 18.13, comparable to the quality of model plants,
such as Arabidopsis thaliana, rice, and maize (Supplementary Fig. 9)23.
Moreover, SL1.0 captured five long stretches of telomeric sequences at
both ends of the five chromosomes, with repeat numbers that ranged
from 294 to 1073 (Supplementary Table 11). The combination pre-
viously described proved that the genome of stem lettuce is a high
quality genome in Asteraceae.

Similarly, the de novo genome assembly for Sc. taccada was
based on a set of 102-fold coverage SMRT reads, 102-fold coverage of
Hi-C reads, and 105-fold coverage of Illumina reads (Supplementary
Table 12, Supplementary Notes 7 and 8, and Supplementary
Figs. 10–13).We succeeded in generating the assembly of Sc. taccada,
namely ST1.0, with a size of 1159Mb, including eight chromosome-

scale scaffolds where contig N50 was as high as 9.6Mb, and with
complete genomes of the chloroplasts and mitochondria (Fig. 1c,
Supplementary Tables 13 and 14, Supplementary Note 9, and Sup-
plementary Figs. 11–13). The repeat sequences covered ~952 Mbp
(over 80% of the assembly), and the LTR retrotransposons (LTR-RTs)
occupied nearly 82% of all the repeats (Supplementary Table 15 and
Supplementary Note 10). When the RNA-Seq datasets from four dif-
ferent tissues were utilized to annotate ST1.0, 25,328 protein-coding
genes and 4219 non-coding RNAs were obtained with detailed
annotation information (Supplementary Tables 16 and 17 and Sup-
plementary Note 10). In addition, the repeat sequences of the gen-
ome were well assembled with the LAI as high as 12.01. The BUSCO
estimated completeness of ST1.0 reached 94.2% (Supplementary
Table 18 and Supplementary Fig. 14). All the other assessments that
were determined usingmethods identical to those of SL1.0 indicate a
high quality and completeness of ST1.0 (Supplementary Tables 18
and 19).

Cretaceous origin and ancestral whole-genome
triplication event
To investigate the origin and genome evolutionof Asteraceae, weused
the genomes of Sc. taccada and 21 representatives of different phylo-
genetic branches of land plants and all seven sequenced Asteraceae,
including lettuce (Fig. 2a, Supplementary Figs. 15 and 16, and Supple-
mentary Note 11). We traced the lineage differentiation time of Sc.
taccada and Asteraceae to approximately 78–82 million years ago
(MYA) in the late Cretaceous period (Fig. 2a), which was consistent
with findings from recent curation of pollen grain fossil records and
molecular analysis based on dispersed genome and transcriptome
sequences2,5.

We calculated the number of synonymous substitutions per
synonymous site (Ks) of all paralogs. The Ks distribution revealed
different polyploidization events experienced by the Asteraceae
species, including the ancestral whole-genome triplication of the
Eudicots (WGT-γ)24, whole-genome triplication that share by the
Asteraceae species (WGT-1)12,14, and a lineage-specific whole-genome
duplication in the sunflower genome (WGD-2)10 (Fig. 2b and Sup-
plementary Note 12). Sc. taccada shared a clear Ks peak with coffee
(Coffea arabica), suggesting that Sc. taccada and coffee experienced
only the WGT-γ event, an ancient WGT event that occurred
approximately 122–164 MYA10,24, which was consistent with previous
results from Scaevola aemula transcriptome25. The similar Ks dis-
tribution profiles of paralogs between Sc. taccada versus lettuce and
lettuce versus lettuce indicated that the WGT event occurred shortly
after the cladogenesis between Asteraceae and Goodeniaceae
(Fig. 2b and Supplementary Fig. 17a). WGT-1 was the only WGT event
that happened in the Asteraceae ancestors after WGT-γ. The inter-
genomic comparison and synteny analyses also supported this
observation (Fig. 2c and Supplementary Note 12). In addition, these
analyses suggest that the WGT-1 event took place near the time of
formation of Asteraceae (Fig. 2a).

We also investigated the triplication-retained regions (TRRs)
after theWGT-1 event using the Sc. taccada genome as the reference
(Supplementary Table 20, Supplementary Note 13, and Supple-
mentary Fig. 18). We detected key homologous genes responsible
for essential biological processes (e.g., flowering, cell wall bio-
synthesis/metabolism, fatty acid biosynthesis) in the TRRs. Further
analysis of TRR-enriched genes revealed that genes related to the
cell wall, protein phosphorylation, fatty acid biosynthesis, and cell
membrane were selectively retained (Supplementary Fig. 17b, Sup-
plementary Data 1–5, and Supplementary Note 13). All of these
functions are closely related to stress responses and environmental
adaptation, for example, pectin methylesterases (PMEs) can facil-
itate cell wall modification. Genes encoding delta-9 acyl-lipid
desaturases (ADSs) and MIKC-MADS transcription factors exhibited
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a similar retention pattern (Supplementary Figs. 17c, 19, and 20 and
Supplementary Note 13). The distinct genomic composition of TRRs
with significantly higher genic regions and lower repetitive
sequences compared to that of the whole genome indicates that
these regions were preferentially selected (Supplementary Fig. 17d
and Supplementary Note 13). An enrichment and depletion analysis
of the repeat element families in these TRRs indicated that the
decrease of the repeat elements was primarily caused by the dele-
tion of LTR-RTs (Supplementary Fig. 21 and Supplementary
Note 14), which have substantially expanded and dominate

Asteraceae genomes (Supplementary Note 14, Supplementary
Data 6–10, Supplementary Table 21, and Supplementary
Figs. 22–35).

The evolution of gene families
Next, we analyzed gene family evolution based on the phylogenetic
tree and orthologous groups in the ancestral node of Asteraceae and
the ancestral node of the Asteraceae and Goodeniaceae families
(Fig. 2a, Supplementary Note 15, and Supplementary Fig. 36). The
rapidly evolving gene families were involved in a wide range of
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Fig. 2 | Phylogenetic relationship of Asteraceae with other plants and whole-
genome triplication events. a Phylogeny and timescale of 29 representative ter-
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aceae around 80 million years ago (MYA) in the late Cretaceous. Numbers at each
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synonymous substitution rate (Ks) of syntelog pairs for intragenomic comparisons

(Sc. taccada, lettuce (La. sativa), sunflower (Helianthus annuus), artichoke (Cynara
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artichoke. c Macrosynteny visualization of the genomes of grapevine (Vitis vini-
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artichoke. Numbers indicate chromosomes. Source data are provided as a Source
data file.
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biological processes, particularly reproduction, response to stimuli,
immunity, and nutrient reservoirs (Supplementary Fig. 37). In parallel,
we analyzed the functional domains of these genes and identified 107
Interpro entries that were enriched in at least two Asteraceae species
(P < 0.05) (Supplementary Data 11 and Supplementary Note 16).
Notably, 18 entries were related to (retro)transposon domains, and
several types of zinc finger domains, including Zinc finger CCHC-type,
BED-type, PMZ-type, TTF-type, SWIM-type, and GRF-type were also
identified (Supplementary Data 11). Another enriched group was rela-
ted to fatty acid biosynthesis, such as acyl-CoA desaturases, beta-
ketoacyl synthases, and fatty acid desaturases (FADs) (Supplementary
Data 11). We also identified 114 orthologous gene groups in four cate-
gories as lineage-specific in Asteraceae, including transcriptional fac-
tor genes such as bHLH, MYB, Znf, SPL, and MADS-box, a subclade of
the FERONIA receptor kinase family, genes for key secondary meta-
bolism in Asteraceae (e.g., inulin and alkaloids biosynthesis), and cell
remodeling (SupplementaryNote 17, Supplementary Tables 22 and 23,
Supplementary Data 12 and 13, and Supplementary Figs. 38–48).

The loss of PII and its influences
We also investigated genes that were absent in the seven sequenced
Asteraceae species (Supplementary Table 24 and Supplementary
Note 18). Themost conspicuous absence in all sevenAsteraceaeand Sc.
taccadawas PII. PII occurs widely in all three domains of life, and has a
pivotal role in sensing and regulating N-C signals18. We used the tran-
scriptome data from the One Thousand Plant Transcriptomes (1KP)

Initiative26, including 39 Asteraceae species and fan flower (Scaevola
mossambicensis), another Goodeniaceae species, and confirmed the
loss of PII in the Asteraceae and Goodeniaceae (Fig. 3a, Supplementary
Note 19, Supplementary Data 14, and Supplementary Table 25), indi-
cating that PII was lost in the ancestor of Asteraceae and
Goodeniaceae.

To trace how PII was lost, we selected another close outgroup
species, carrot (Daucus carota), as the reference, and conducted
pairwise syntenic analyses with Sc. taccada and other Asteraceae spe-
cies (Fig. 3b and Supplementary Note 19). In contrast to carrot, in
which the PII-containing syntenic block maps to the middle of the
lower arm of chromosome 1, this syntenic block was located along the
telomere regions in the Asteraceae and Goodeniaceae genomes
(Fig. 3b). Pairwise synteny indicated an extensive chromosomal rear-
rangement between carrot (Chr 01) and Sc. taccada (Chr 05), and PII
was located on the edge of the rearranged area (Fig. 3b). Furthermore,
we detected amicro-inversion (involving 20–30genes) between carrot
and Sc. taccada (Fig. 3c) and between carrot and lettuce (Fig. 3d). PII
was located on the border of the inverted region (Fig. 3c, d). Taking
these results together, wepropose that a chromosomal rearrangement
followed by a micro-inversion occurred in the ancestor of Good-
eniaceae and Asteraceae, which led to the loss of PII.

PII is a chloroplast-localized N sensor that activates theN-acetyl-L-
glutamate kinase (NAGK) complex to promote N assimilation16,17. PII
also forms a complex with the biotin carboxyl carrier protein (BCCP)
subunit of acetyl-CoA carboxylase (ACCase, which catalyzes the first
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step in fatty acid biosynthesis) to inhibit ACCase activity18,27. Moreover,
PII may participate in the negative regulation of N uptake and prevent
overexcess of nitrite uptake in land plants28,29. To evaluate the influ-
ence of PII absence in Asteraceae, we generated transgenic lettuce
plants expressing an exogenous PII gene from carrot (Da. carota),
tomato (Solanum lycopersicum) and Arabidopsis (A. thaliana),
respectively. The PIIs from carrot/tomato represent the canonical PIIs
with plant-specific glutamine-binding sites that were partly deleted in
that of Arabidopsis (Supplementary Note 20 and Supplementary
Fig. 49). Consistent with previous reports30, AtPII localized to the
chloroplast in AtPII-expressing transgenic lettuce (Fig. 3e and Supple-
mentary Figs. 50 and 51). The in vivo assays (Bimolecular Fluorescence
Complementation-BiFC) and in vitro tests (Pull-down) strongly sup-
port the interactions between AtPII, DcPII, SlPII and NAGK in lettuce
(Fig. 3e, f, Supplementary Fig. 52, and Supplementary Note 20). The
nitrate N content and ACCase activity were significantly lower in the
transgenic plants (Supplementary Fig. 52 and SupplementaryNote 20).
Compared to wild-type lettuce, the total content of free amino acids,
especially glutamic acid, glutamine and arginine, was significantly
increased in the DcPII- and SIPII-expressing transgenic plants, while
reduced in AtPII-expressing lines (Supplementary Fig. 52 and Supple-
mentary Note 20). Although the specific reasons are deserved to
explore, differences in glutamine-binding sites of PII proteins were
highly suspected to have an effect (Supplementary Note 21). These
results indicate that exogenous PII could disturb the original N-C bal-
ance in lettuce.

Preferential retention and divergence of N absorption genes
The close-to-universal presence of PII in almost all domains of life
indicates that its absence in the Asteraceae should result in a major
reprogramming of the N-C balance system. Therefore, we examined
the different genomes for the presence of genes involved in N
absorption and metabolism. Asteraceae had significantly more mem-
bers of the Nitrate transporter 2 (NRT2) and NRT3 gene families, which
encode dual-component transporters involved in high-affinity nitrate
assimilation31, compared to the other species, including Sc. taccada
(P < 0.01; Fig. 4a, f). This observation was consistent with the rapid
expansion of N reservoir orthologs in the crown node of Asteraceae
(Supplementary Fig. 37 and Supplementary Note 22).

Colinearity analysis between lettuce and Sc. taccada revealed that
the expansion of the NRT2 and NRT3 families was initiated by theWGT
event andmainly arose by tandem duplications (Fig. 4c, h). The NRT2s
of Asteraceae primarily grouped in clades I and II of a reconstructed
phylogenetic tree (Fig. 4d and Supplementary Fig. 53) with preferential
expression in the root (Fig. 4e andSupplementary Fig. 54). These genes
clustered together with key members of high-affinity nitrate trans-
porters in Arabidopsis, including genes mainly functioning in roots,
such as NRT2.1 (At1g08090), NRT2.2 (At1g08100), and NRT2.6
(At3g45060) (Supplementary Fig. 53 and Supplementary Note 22)31.
Similarly, NRT3 members in Asteraceae mainly grouped into two
clades (II and III; Fig.4i) and were preferentially expressed in the root
(Fig. 4j and Supplementary Figs. 55 and 56). The Ka/Ks value of
orthologous gene pairs and paralogous gene pairs of clade I NRT2 and
clade III NRT3 members indicated that all the duplicated genes were
subjected to purifying selection during evolution (Fig. 4b, g and Sup-
plementaryNote 22). Theseobservations demonstrate an expansionof
the high-affinity nitrate transporters in Asteraceae via WGT and sub-
sequent tandem duplications.

The reinforcement of fatty acid metabolism
Another strong genomic footprint of PII loss was that the genes asso-
ciatedwith fatty acidmetabolism inAsteraceaewere enriched in TRRs,
had rapidly expanded, and had numerous InterPro entries (Supple-
mentary Data 1–5, Supplementary Fig. 17b and 57–59, and Supple-
mentary Note 23). Accordingly, we analyzed the key genes in fatty acid

biosynthesis, i.e. ADSs, FADs, and 3-oxoacyl-[acyl-carrier-protein] syn-
thases (KASs). All three families were significantly expanded in Aster-
aceae compared to the other species (P <0.01; Fig. 5a and
Supplementary Figs. 60–63). For example, the Sc. taccada genome
contained only three FAD genes, whereas those of Asteraceae species
contained at least 14 FADs (Fig. 5b and Supplementary Note 23). We
explored the mechanisms governing the expansion of these gene
families. Similar to the NRT families, expansion of the ADS, FAD, and
KAS families initially occurred via the WGT event and subsequently by
tandem duplications (Fig. 5c, Supplementary Note 23, and Supple-
mentary Figs. 60–65).

Proposal of a unique N-C metabolism balance system
Genome sequencing and comparison revealed a unique scenario in
Asteraceae evolution. Before the split between Asteraceae and Good-
eniaceae, a large chromosomal inversion placed the PII locus near the
telomere, whichwe hypothesize was subsequently lost due to amicro-
inversion (Fig. 3). Compared to other higher plants and Goodeniaceae
species, the Asteraceae evolved a stepwise upgrade of the N-C balance
system, initially through the WGT that occurred approximately 78–82
MYA (Fig. 2a), and subsequently by tandem duplications. In the
Asteraceae system, expansion of the high-affinity nitrate transporter
genes potentially increased their ability to take up N (Fig. 6 and Sup-
plementary Note 22), especially in N poor environments (Fig. 4).
Moreover, the removal of PII inhibition would increase ACCase activity
(Fig. 3) and providemore substrates for fatty acid biosynthesis (Fig. 6b
and Supplementary Note 23, which would be fulfilled by the expansion
of the fatty acid biosynthesis genes FADs, KASs, and ADSs (Fig. 5).
Therefore, we propose that the Asteraceae evolved a unique N-C bal-
ance system following the loss of PII, resulting in enhanced N uptake
capacity and fatty acid biosynthesis (Fig. 6), which may explain their
high biodiversity and excellent adaptability.

Discussion
Genomic novelty based on genome duplications contributes to
speciation, adaptive radiation, and is consequently likely to enable
organisms to utilize new ecological opportunities or to manage new
environmental challenges13,15,32. Consistent with previous reports2,9,12,
we estimated that the early paleopolyploidization in Asteraceae
happened near the speciation of Asteraceae and Goodeniaceae, tra-
cing back to the late Cretaceous period (~80 MYA), which possibly
provided geneticmaterials tomanage a series of explosive radiations
during the Eocene. Limited empirical evidence suggests that the
commonly retained duplicate genes after paleopolyploidization in
the critical stress-related pathways could be the key factors that
partially improve adaptability. For example, genes that alter the cell
wall in response to low temperature and darkness were commonly
retained after WGDs when global cooling and darkness were the two
primary stresses33. Investigating the duplicates of the MADS-box
gene family in the core eudicots suggested that the WGT-γ event
likely initiated the functional diversification of the developmental
regulators of floral organs, favored the morphological innovation of
flowers and potentially promoted the adaptive radiation of core
eudicots32. In particular, using Sc. taccada as a reference enabled us
to independently obtain retained genes after the paleopolyploidi-
zation in the Asteraceae species. Interestingly, we observed that the
genes associated with cell wall biosynthesis, protein phosphatase,
flowering and fat acid biosynthesis were simultaneously enriched in
the TRRs of surveyed Asteraceae genomes (P < 0.05), and several
vital families are related to adaptability, such as theMADS-box, PMEs
and ADSs (Supplementary Fig. 17b). Therefore, these biased gene
retention after WGDs is potentially related to the adaptability and
speciation of Asteraceae.

In addition, sub/neo-functionalization of vital duplicate genes
increase genetic diversity and possibly facilitate adaptive evolution in
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Asteraceae. Such genes include essential regulators and defense-
related functional genes (Supplementary Note 17). Impressively, the
signs of dramatic amplification anddifferentiationof the FERONA gene
family led to a mass of lineage-specific genes, accompanied with the
emergence of Asteraceae-specific miRNAs (Supplementary Note 17).
Moreover, the gene divergence of the biosynthetic pathways for
alkaloids and inulin potentially determined the genetic basis for these
characteristics in Asteraceae (Supplementary Note 17). As the most
abundant component of the genomes, (retro)transposons, function by
their insertions into genes or promoter regions, are additional key
drivers that prompt the divergence of genes and genomes in plants.
For example, the transposase-derived proteins FHY3/FAR1 regulate
chlorophyll biosynthesis in A. thaliana34. Here, we observed that
(retro)transposon-associated genes were significantly higher in the
Asteraceae, including several key genes, such as RVT-Znf and
RT_RNaseH_2. BDR4 (Supplementary Fig. 22f). In addition, the genes
with potentially regulatory DNA elements derived from (retro)trans-
posable elements were involved a wide range of biological functions,
such as BDR4 (Supplementary Note 14 and Supplementary Fig. 22f).
Our observations were consistent with other previous studies that
reflected the important roles of repetitive sequences in diversifying

the Asteraceae genomes35,36. All of the data discussed above provide
evidence for drivers and the impacts of genomic and gene dynamics
on species radiation and conservative/innovation characteristics of the
Asteraceae family.

Powerful nitrogenuptake and absorption systemsareessential for
plants to survive in nutrient-limited environments and particularly
prevalent in Asteraceae. As a representative of rapid growth Aster-
aceae plant,M. micrantha, its metabolites can increase the availability
of nitrogen by enriching the microbes that participate in nitrogen
cycling pathways37. Here, we identified that PII, playing a key role in
sensing nitrogen and carbon signals in all domains of life18 has been
lost in the Asteraceae plants. When expressing exogenous PII into
lettuce, PII proteins can still interact with NAGK and inhibit the ACCase
activity, which in turn affects many physiological and metabolic
pathways such as disturbing the synthesis of amino acids andNuptake
(nitrate). These changes indicate that Asteraceae, represented by let-
tuce, has evolved a unique N-C balance system. Given that the PII
sensing system is beneficial to maintain metabolic homeostasis under
fluctuating nitrogen supply, it is possible that the loss of PII in the
Asteraceae ancestors was not disadvantageous. Because of the
increase ofNRT2/3 genes viaWGT and tandem duplication, theNRT2/3
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genes (as binary), so called high-affinity nitrate transporters, could
absorb nitrate from a low nitrate concentration environment and
provides a relatively abundant nitrogen supply, resulting in balancing
the disadvantages of PII loss in Asteraceae. Under this situation,
Asteraceae species further developed compensatory systems to offset
the lossof PII, leading to their superiorfitness and successive radiation.

The altered genetic basis for the N-C balance system definitively
has amultifaceted influence on the plant physiology of Asteraceae and
finally affects the ability to adapt to the environment. The gene
expansion of high affinity nitrate transporters objectively increased
the ability of plants to absorb nitrogen and thus, their adaptability. For
example, glutamate signaling activates plant responses and adaptation
to environmental stress38, in addition to seed germination39, root
architecture40, pollen germination and pollen tube growth41,42. The use
of glutamate as a signaling molecule is also involved in the response
and adaptation to salt, cold, heat, drought, pathogen, and wound

stress38,43,44. PII regulates fatty acid synthesis in chloroplasts by inter-
acting with the ACCase complex and inhibits its activity. In Asteraceae,
relieving the inhibition of ACCase provides more possible substrates
for the biosynthesis of fatty acids (FA) and UFA (Fig. 6). Plants have
developed elaborate strategies with UFAs that have emerged as a
general defender to avoid adverse effects45,46.

Given that the loss of PII in Asteraceae might be occurred in the
ancestor of Goodeniaceae and Asteraceae (~80 MYA), the unique N-C
balance system in Asteraceae evolved for a long history, potentially
resulting in complicated changes when compared to other plants with
PII. More studies to fully investigate the physiological and metabolic
adaptation machinery based on the unique N-C balance system in
Asteraceae are further needed. Limited by geographical distribution
and availability of genomic information, we were not able to include
the Calyceraceae that is the other sister lineage to Asteraceae and
shared WGT-125. The adequate sampling of the genomes of
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Calyceraceae and basal subfamilies of Asteraceae (e.g., Barnadesioi-
deae, Famatnanthoideae, and Stifftioideae) will help us fully reveal
unique N-C balance system in Asteraceae and its evolutionary history
in the future. Based on the detailed understanding of this unique N-C
balance system, strategies by reconstructing the N-C system might be
designed for crop improvement especially in meeting the global cli-
mate challenges.

Methods
Plant materials and sequencing
Stem lettuce (Lactuca sativa var. angustana) was planted in the
greenhouse of the Beijing Academy of Agriculture and Forestry Sci-
ences (BAAFS), Beijing (39°94´N and 116°28´E) in the spring of 2018,
and Scaevola taccada seedlings were collected from Haikou, Hainan
Province (20°03´N and 110°12´E) and planted in an artificial climate
chamber at BAAFS in the summer of 2019.

Samples for denovo assemblywere collected froma single lettuce
plant and a single Sc. taccada plant. For single-molecule real-time
(SMRT) sequencing, genomic DNA was isolated using a Blood & Cell
Culture DNA Midi Kit (QIAGEN Inc., Valencia, CA, USA). The 20-kb
libraries were constructed using SMRTbell Template Prep Kits (Pacific
Biosciences, Menlo Park, CA, USA), and sequenced on a PacBio RS II
instrument (Pacific Biosciences) using the P6-C4 sequencing reagent.
For HiSeq analyses, DNA was isolated using Plant Genomic DNA kits
(Tiangen, Beijing, China). Libraries with 450-bp inserts were prepared
and sequenced on an Illumina HiSeq X platform (San Diego, CA, USA)
for 150-bp paired-end reads. Young leaves were used for optical
mapping by isolating high-molecular-weight DNA, which was then
labeled using the direct labeling enzyme DLE-1 after isolation. The
labeled DNA samples were imaged using a BioNano Irys system (Bio-
nanoGenomics, SanDiego, CA,USA), and onlymolecules >150 kbwere
used for further analysis. For theHi-C library, leaveswerefixed in 1% (v/
v) formaldehyde and the crosslinking reaction was terminated by
adding glycine. Then, the leaf sections were removed from the mix-
ture, rinsedwithddH2O, andground to afinepowder in liquidnitrogen
to isolate cross-linked DNA. The isolated cross-linked DNA was pur-
ified, digested withMobI enzymes, and tagged with biotin. The biotin-
tagged DNA fragments were captured and PCR enriched to construct
the Hi-C library47. The Hi-C library was sequenced on an Illumina HiSeq
X platform as 150-bp paired-end reads. Leaf, flower, root, and stem
samples were collected separately for transcriptome deep sequencing
(RNA-Seq). Total RNA was isolated using an RNAprep Pure Plant Kit
(Tiangen). RNA-seq library construction was performed following the

manufacturer’s standard protocol (Illumina) and sequenced on an
Illumina HiSeq X platform.

Genome survey and assembly
Jellyfish software (v2.0)48 was used to calculate the k-mer frequency (k-
mer length 21), then Genomescope (v1.0.0)49 was used to estimate
genome heterozygosity, repeat content, and genome size from the
sequence reads.

Tender leaves were collected from the sequenced Sc. taccada
plant and analyzed using a flow cytometer. Black cottonwood (Populus
trichocarpa) (2n = 2x = 38) and tomato (Solanum lycopersicum)
(2n = 2x = 24) samples were analyzed as genome size references. Over
5000 nuclei per sample were collected and detected using a CyFlow
Space flow cytometer (Partec, Germany) equipped with a UV-LED
source (emission at 365 nm) and a blue solid-state laser (455 nm). The
data were analyzed using Flomax2.8 (Sysmex Partec, France), with a
coefficient of variation <5%.

The assembly of the stem lettuce genome was performed in a
stepwise fashion. First, Falcon (v0.4)50 was used to obtain the initial
contigs. Then, an initial polishing step was performed with Arrow
(v2.2.3) using PacBio-only long reads, and then Pilon (v1.20)51 was used
to correct the sequencing errors in the contigs with accurate Illumina
short reads. Bionano optical maps were assembled into consensus
physical maps using BioNano Solve v3.0.1 (https://bionanogenomics.
com/). To anchor the hybrid scaffolds into chromosomes, the Hi-C
sequencing data were aligned into scaffolds by Juicer (v1.5)52 and 3D-
DNA (v201008)53.

The PacBio reads of the Sc. taccada genomewere corrected using
the reads correction module of the CANU pipeline (v1.7.1)54. De novo
assembly was conducted using WTDBG2 software (v2.5)55 in the CCS
mode. To anchor the hybrid scaffolds into chromosomes, the Hi-C
sequencing data were aligned into scaffolds as described for stem
lettuce.

Assessment of the genome assembly
The quality of the genome assembly was evaluated at different levels.
Illumina reads with high single-base accuracy were aligned using BWA
(0.7.12-r1039)56. Properly mapped reads were calculated to reflect the
correct degree of assembly. The base accuracy of the sequencing was
determined by calculating the quality value (QV) of the assembly21,22.
Briefly, single nucleotide polymorphism (SNP) calling was conducted
based on the aligned reads using SAMtools (v1.4)57, and the number of
SNPs was counted with Phred-scaled >30 and coverage >3 (n).
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Simultaneously, the number of genome positions with read coverage
>3 was also calculated (N). Finally, the QV of the assembly was calcu-
lated as:

QV=Log10
n
N

� �
ð1Þ

The completeness of the gene landscape was estimated using
expression data, including RNA-seq and expressed sequence tag (EST)
data. Lettuce ESTs from GenBank were aligned to the assembled
genomes using the BLAST-like alignment tool (v0.36) with default
parameters58. The reads generated in this study from different lettuce
and Sc. taccada tissues (roots, leaves, flowers, and stems) were aligned
to the two genomes using Hisat2 (v2.1.2)59. BUSCO was calculated to
assess the genomeassembly and annotation completenesswith single-
copy orthologs60.

Pairwise alignment between our lettuce SL1.0 genome and the
previously published leafy lettuce genome (the Lsa_v1 genome)14 was
performed by Minimap2 (v2.18)61 and visualized via Minidot (https://
github.com/thackl/minidot). The assembly of repeat sequences was
evaluated by the long terminal repeat assembly index (LAI) program23,
which evaluates the contiguity of an assembly using long terminal
repeat retrotransposons (LTR-RTs). The LTR_retriever pipeline
(v2.9.0)62 was used to integrate the candidate LTR-RTs identified by
LTR_FINDER (v1.0.7)63 and LTRharvest (v1.5.9)64. The whole-genome
LAI was then calculated based on the LTR-RT library generated by
LTR_retriever.

Repeat analysis and gene annotation
The two genomes were annotated with the same pipeline. For repeat
sequences, a customized repeat library was constructed to include
known and novel repeat families. Miniature inverted transposable
elements (MITEs) of the two assemblies were searched using MITE-
Hunter (v1.0)65 with default parameters. LTR_retriever pipeline was
then used to integrate the candidate LTR-RTs identified by LTR_FIN-
DER and LTRharvest. An initial repeat masking of the genomes was
performed with the repeat library derived by combining the identified
MITEs and LTR-RTs. The repeat-masked genome was uploaded into
RepeatModeler (v1.0.11)66 to identify repeat families. Finally, all the
repeat sequences identified were combined and searched against a
plant protein database (Swiss-Prot, https://www.uniprot.org/) that
excluded proteins encoded by transposons. Elements with significant
similarity to plant genes were removed. RepeatMasker (v4.0.6)66 was
used to search for similar transposable elements (TEs) in the Repbase
TE library and customized repeat library.

Theprotein-codinggeneswerepredicted from the repeat-masked
genome using MAKER-P (v2.31.10)67, which integrates evidence from
protein homology, transcripts, and ab initio predictions. The
homology-based evidence was derived by aligning protein sequences
from seven plant species (Arabidopsis thaliana, lettuce, sunflower
[Helianthus annuus], artichoke [Cynara cardunculus var. scolymus],
Chrysanthemum nankingense, Artemisia annua, and rice [Oryza
sativa]) to each genome assembly.

The RNA-seq data derived from four different libraries was
assembled de novo using Trinity (v2.8.2)68. ESTs extracted from the
NCBI nucleotide and EST databases (https://www.ncbi.nlm.nih.gov/
nucleotide/) were also used to predict genes. First, all transcript
sequences were uploaded to the PASA pipeline (v2.4.1)68 to conduct
alignment assembly. Five thousand complete gene models and
sequences were extracted to train the parameters for SNAP (v1.0)
and Augustus software (v3.0.3)69,70. All data and predictions were then
used to produce a consensus gene set. Finally, the PASA pipeline was
used again to refine the obtained gene model.

To refinemicroRNA (miRNA) identification, reads were aligned to
the repeat-masked genome using BWA56 and miRNAs were identified

usingmiRDeep2 (v0.1.3)71. The transfer RNA and ribosomal RNA genes
were predicted using tRNAscan-SE package (v2.0.0)72 and RNAmmer
(v1.2) algorithms with default parameters73, respectively. Other non-
coding RNAs were identified using Infernal cmscan (v1.1.4)74 by
searching against the Rfam database (https://rfam.xfam.org/,
release 13.0).

Evolutionary analysis
OrthoFinder (v2.4.0)75 was employed for inference of orthologous
groups in the 29 selected species. The 29 genomes consisted of
7 species fromAsteraceae, 8 from theAsterids order, 6 from theRosids
clades, 3 from monocot clades, and 5 ancient species (Ginkgo biloba,
Norway spruce [Picea abies], Selaginella moellendorffii, Amborella tri-
chopoda, and Chinese tulip tree [Liriodendron chinense]). Low-copy-
number (LCN) geneswere identifiedbasedonOrthoFinder resultswith
the requirements: strictly single copy in La. sativa, Sc. taccada, Se.
moellendorffii, G. biloba, and grapevine (Vitis vinifera), and single copy
in at least 5 of the 24 selected species76.

Two independentmethods were used to reconstruct the species
tree of the 29 selected species. Multiple alignments were conducted
using MUSCLE (v3.8.31)77. Next, trimAL (v1.2)78 was used to trim low-
quality aligned regions with the option “-automated1”. LCN gene
trees were estimated from the remaining sites using RAxML
(v.7.7.8)79 with the JTT + G + I model for amino acid sequences. The
best-fit model was selected using ModelFinder under the Bayesian
information criterion80. Phylogenetic reconstruction was performed
stepwise with a carefully selected set of 9784 genes using the coa-
lescence method implemented in ASTRAL (v5.5.1)81. In addition, the
multiple alignment sequences of the genes in the 389 LCN
OrthoGroups (OGs) were concatenated and the species tree was
reconstructed using RAxML.

The 389 LCN genes (185,822 sites) in each species were con-
catenated and the tree topology inferred from our coalescent-
based analysis of the 9784 genes from 29 taxa was fixed. Then,
Bayesian phylogenomic dating analysis of the selected genes in
MCMCtree, part of the PAML package (v4.10.0)82, and approximate
likelihood calculation for the branch lengths were performed.
Molecular dating was conducted using an auto-correlated model
of among-lineage rate variation, the JC69 substitution model, and
a uniform prior on the relative node times. Posterior distributions
of node ages were estimated using Markov chain Monte Carlo
sampling, with samples drawn every 200 steps over 10 million
steps following a burn-in of 200,000 steps. The penalized like-
lihood method under a variable substitution rate using r8s (v1.8.1)
was also implemented. Three fossil calibrations corresponding to
the crown groups of angiosperms (~126 Mya), eudicots (~120 Mya),
and monocots (~113 Mya) were implemented as minimum age
constraints in our penalized likelihood dating analysis83. The best
smoothing parameter value of the concatenated LCN genes was
determined by performing cross-validations of a range of smooth
parameters from 0.01 to 10,000 (algorithm = TN; crossv = yes;
cvstart = 0; cvinc = 0.5; cvnum = 15). Finally, a relaxed molecular
clock was calibrated via pairwise divergence time on the TIMETREE
website (http://www.timetree.org/)84 and the species divergence
timewas estimated using r8s (v1.8.1)85. CAFÉ software (v4.2.1)86 was
used to compute gene family evolution based on the phylogenetic
tree and orthologous groups.

Whole-genome duplication and synteny analysis
The Sc. taccada, lettuce, sunflower, artichoke, Ch. nankingense, and
coffee (Coffea arabica) genomes were compared. Synteny compar-
isons were identified by MCscan (v1.3.6)87 with default parameters to
predict paralogs and orthologs. The sequence divergence of paralogs
(within each genome) and orthologs (between Sc. sericea and another
genome)was calculatedbasedonsynonymous (Ks) substitutions using
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themaximum likelihoodmethod implemented in codeml of the PAML
package88 under the F3x4 model.

Analysis of triplication-retained regions
The triplication-retained regions (TRRs) were defined across the
chromosome-scale genomes of the Asteraceae species lettuce,
artichoke, sunflower, and Mikania micrantha. No other WGD
events occurred in the lettuce and artichoke genomes after the
WGT-1 event. However, sunflower and M. micrantha experienced
anotherWGD event after WGT-1. First, the Sc. taccada genomewas
used as the common reference to generate orthologous regions
relative to other selected Asteraceae genomes by MCscan87. For
lettuce and artichoke, the three best matches to each Sc. taccada
region were extracted to compute the layout for the gene-level
equivalents. The genomic regions that contained consecutive
triplicated homologous genes were defined as TRRs. For sun-
flower and M. micrantha, the six best matches to each Sc. taccada
region were extracted, and the genomic regions that contained
four, five, and six consecutive copies of homologous genes were
defined as TRRs.

The genomic composition of the TRRs in the Asteraceae
species were further investigated. The repeat sequences were
integrated and annotated with Extensive de novo TE Annotator
(EDTA, v2.0.0)89. The genomic composition (genic or repetitive
sequences) within 1-Mb windows and 1 Mb steps across the gen-
ome was calculated for comparison. Pairwise data arrays were
subjected to a two-tailed Student’s t-test to examine the sig-
nificance of difference. Each repetitive sequence family was sub-
jected to a hypergeometric test to predict the enrichment or
depletion in TRRs compared with their genome-wide distribution.
A multiple testing correction was conducted by the false-
discovery rate (FDR) method, and the adjusted threshold was
set to P < 0.01.

Gene ontology (GO) was conducted in the TRRs using Cytoscape
(v3.8.2)90. Significantly enriched GO terms (P < 0.01) shared by the
genomes were identified and visualized using the ggplot2 package.
The overrepresented gene families in the TRRs were examined using a
hypergeometric test.

Protein functional domain enrichment analysis
The function of the proteins encoded by all predicted genes was
annotated using InterProScan (v5.24)91 by searching publicly available
database. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes
andGenomes (KEGG) IDs for eachgenewere assigned according to the
corresponding InterPro entry. Enrichment analysis was performed
based on the functional domains of all encoded proteins across the
29 species using the Fisher test with an FDR correction.

Gene expression analysis
After clipping the adapter sequences and removing low-quality reads,
the RNA-seq data from each sample were mapped to the reference
genomes using Hisat 2 (v2.1.2)59 and StringTie (v1.3.4)92 with default
parameters. Gene expression levels were normalized as fragments per
kilobase of exon per million fragments mapped (FPKM).

Plant transformation
The plant tissues used for the PII function study were from the lettuce
cultivar ‘Grand Rapids’. Surface-sterilized seeds were germinated on
Murashige and Skoog (MS) agarplates containing 3% (w/v) sucrose and
0.8% (w/v) agar, with pH adjusted to 5.8 with KOH. The plants were
grown in growth chambers at 25 °C under a 16-h light/8-h dark pho-
toperiod. The full-length PII cDNA from carrot (DcPII, DCAR_002917),
tomato (SIPII, Solyc06g009400.3.1) and Arabidopsis (AtPII,
AT4G01900) was cloned into a plant expression vector (pYBA1132)
respectively, and then transformed into lettuce with Agrobacterium

(Agrobacterium tumefaciens, strain EHA105) using the leaf disc trans-
formation method93.

Reverse transcription quantitative PCR (RT-qPCR) analysis
Total RNA was extracted from lettuce seedlings using the TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) and treated with DNase I
(TaKaRa, Dalian, China) to eliminate genomic DNA contamination.
Total RNA was reverse transcribed into cDNA using SuperScript II
Reverse Transcriptase (Invitrogen) and random primers (Promega,
Madison, WI, USA). Relative PII expression was measured using Power
SYBR Green PCRMaster Mix (Applied Biosystems,Waltham, MA, USA)
on an ABI 7500 thermocycler (Applied Biosystems) following the
manufacturer’s instructions. The primers were designed using Primer
Premier 5 (http://www.premierbiosoft.com/primerdesign/) (Supple-
mentary Data 15). Three biological replicates were performed for each
sample. Lettuce TUBULIN (TUB) was used as an internal reference to
normalize the data. The primers were TUB-F: 5’-TAGGCGTGTGAGT-
GAGCAGT-3’ and TUB-R: 5’- AACCCTCGTACTCTGCCTCTT-3’. The fold-
change in gene expression values was calculated using the 2–ΔΔCt (cycle
threshold)method. Relative gene expression valueswereplottedusing
SigmaPlot version 10.0 (SYSTAT Software, Inc., https://systatsoftware.
com/).

Subcellular localization analysis
The leaves of transgenic plants carrying the pYBA1132-derived con-
struct expressing the green fluorescent protein (GFP) fusion were cut
into small squares for fluorescence observation. The fluorescence
from GFP or chloroplast autofluorescence was observed by confocal
laser-scanning microscopy (ZEISS710; Carl Zeiss, Oberkochen,
Germany).

GST pull-down assay
The coding regions of PIIs in three species and LsNAGKwere ligated to
pMal-C5x and pGEX-4T-1 vector, respectively. Constructed plasmids
were transformed into Escherichia coli BL21 competent cells
(ZOMANBIO, Beijing, China). Empty vectors also transformed to the
competent cells for negative control. Cells were grown in Luria-Bertani
(LB) medium at 37 °C until OD600 reached 0.5 then cooled to 16 °C.
Add IPTG to the medium to the final concentration to 200μM and
cultured overnight in an incubator at 160 rpm at 16 °C. The MBP and
MBP-fused PIIs protein was purified by Amylose Resin (NEB, MA, US).
The GST and GST-fused LsNAGK protein was purified by GST Mag-
Beads (Sangon Biotech, Shanghai, China).

Purified GST and GST-fused LsNAGK protein (10 nmol) were
adsorbed onto the GST magnetic beads. MBP and MBP-fused PIIs
proteins were added into the system and incubated at room tem-
perature for two hours. Then the magnetic beads were washed twice
and boiled in 1× SDS loading buffer for 15min and analyzed byWestern
blot using anti-GST and anti-MBP antibody (Yeasen, Shanghai, China).

Bimolecular fluorescence complementation
For bimolecular fluorescence complementation (BiFC) experiment,
the constructed plasmids and empty vectors were transformed to the
Agrobacterium EHA105 competent cells (Coolaber, Beijing, China). At
the same time, Agrobacterium GV3101 carrying the P19 expression
protein was cultured. Different combinations of cYFP, nYFP, and P19
agrobacterium solutions were co-infiltrated into the leaves of Nicoti-
ana benthamiana. The fluorescence signals were detected by using
NikonA1 confocalmicroscope. TheYFP signal is excited using a laser at
488 nm. We also detected chloroplast autofluorescence at 665 nm to
determine the location of LsNAGK and PIIs.

Metabolite detection
Fresh plants were harvested, immediately frozen, and ground into a
finepower in liquidnitrogen. Todetermine the contents for free amino
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acid monomers, samples were extracted with 0.1M hydrochloric acid
and derivatized with Waters AccQ•Tag reagent. The sample extracts
were analyzed using an UPLC-Orbitrap-MS system (UPLC, Vanquish
ultra-high performance liquid chromatography system;MS, Q Exactive
hybridQ–Orbitrapmass spectrometer, Thermo Fisher Scientific, USA).
The total free amino acid contents were calculated as the sum of the
contents of 25 free amino acid monomers.

ACCase activity was detected via the molybdenum blue method
(Boxbio, Beijing, China). In brief, ACC can catalyze acetyl coenzyme A,
NaHCO3 and ATP to generate malonyl CoA, ADP and inorganic phos-
phorus. Molybdenum blue and phosphate generate a substancewith a
characteristic absorption peak at 660nm. ACC activity is determined
by measuring the increase of inorganic phosphorus by ammonium
molybdate phosphorus determination method. We measured the
ACCase activity of wild-type and overexpressing PIIs lettuce using
BioTek SynergyH1MultimodeMicroplate Reader (Agilent, SantaClara,
CA, USA) for three biological replicates and three technical replicates.

The nitrate nitrogen content was measured by the nitrosalicylic
acid method using the corresponding assay kit (Boxbio, Beijing,
China). In brief, NO3

− can react with salicylic acid to form nitrosalicylic
acid under the condition of concentrated acid, which shows yellow
under the condition of pH>12.Within a certain range, the color depth is
proportional to the content.Wemeasured the nitrate nitrogen content
of wild-type and overexpressing PIIs lettuce using BioTek Synergy H1
MultimodeMicroplate Reader (Agilent, Santa Clara, CA, USA) for three
biological replicates and three technical replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data used in this study, assembled chromosomes,
unplaced scaffolds, and annotations have been deposited into the
Genome Sequence Archive (GSA) and Genome Warehouse (GWH)
database in the BIG Data Center under accession code PRJCA007442.
Annotated information on stem lettuce in detail can also be found in
LettuceGDB [https://lettucegdb.com/]94. Additional files including the
customized repeat library, gene trees and phylogenetic trees have
been uploaded to Zenodo [https://zenodo.org/record/
8058114]95. Source data are provided with this paper.
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