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Context-defined cancer co-dependency
mapping identifies a functional interplay
between PRC2 and MLL-MEN1 complex in
lymphoma

Xiao Chen 1,9,10, Yinglu Li1,10, Fang Zhu1,2, Xinjing Xu1, Brian Estrella3,
Manuel A. Pazos II3, John T. McGuire1, Dimitris Karagiannis1, Varun Sahu1,
Mustafo Mustafokulov1, Claudio Scuoppo4,5, Francisco J. Sánchez-Rivera 6,7,
Yadira M. Soto-Feliciano 6,7, Laura Pasqualucci 4,5,8, Alberto Ciccia 1,4,8,
Jennifer E. Amengual 3,8 & Chao Lu 1,8

Interplay between chromatin-associated complexes and modifications criti-
cally contribute to the partitioning of epigenome into stable and functionally
distinct domains. Yet there is a lack of systematic identification of chromatin
crosstalk mechanisms, limiting our understanding of the dynamic transition
between chromatin states during development and disease. Here we perform
co-dependency mapping of genes using CRISPR-Cas9-mediated fitness
screens in pan-cancer cell lines to quantify gene-gene functional relationships.
We identify 145 co-dependency modules and further define the molecular
context underlying the essentiality of these modules by incorporating muta-
tional, epigenome, gene expression and drug sensitivity profiles of cell lines.
These analyses assign new protein complex composition and function, and
predict new functional interactions, including an unexpected co-dependency
between two transcriptionally counteracting chromatin complexes - poly-
comb repressive complex 2 (PRC2) and MLL-MEN1 complex. We show that
PRC2-mediatedH3K27 tri-methylation regulates the genome-wide distribution
of MLL1 and MEN1. In lymphoma cells with EZH2 gain-of-function mutations,
the re-localization of MLL-MEN1 complex drives oncogenic gene expression
and results in a hypersensitivity to pharmacologic inhibition of MEN1. Toge-
ther, our findings provide a resource for discovery of trans-regulatory inter-
actions as mechanisms of chromatin regulation and potential targets of
synthetic lethality.

Chemical modifications of DNA and histones are important carriers of
chromatin regulatory information that cooperate with transcription
factors to integrate intrinsic and extracellular stimuli to control gen-
ome accessibility1. Precise regulation of chromatin dynamics is

essential for maintaining cellular and organismal phenotypes and is
frequently perturbed in various human diseases including cancer2.
While modifiers (e.g. writer and eraser enzymes) and biological func-
tions for many histone and DNA marks are well-defined individually,
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less is understood about how chromatin modifications can “commu-
nicate” with each other. Enzymatic activities of chromatin modifiers
areknown tobe sensitive to the local chromatin environment such that
various trans-regulatory interactions exist among epigenetic marks3–6.
These chromatin “crosstalk” are thought to contribute to the parti-
tioning of the epigenome in a stable and sometimes heritablemanner.
For instance, studies have demonstrated that genome-wide patterns of
DNA methylation result, at least in part, from the recruitment of de
novo DNA methyltransferases guided by histone modifications7–11.
Similarly, the establishment and propagation of histone H3K27
methylation, which is catalyzed by Polycomb Repressive Complex 2
(PRC2) and associated with transcriptional silencing, is subject to
complex regulation by various chromatin-associated activities12.
H3K36 methylation, histone marks of active transcription, allosteri-
cally inhibit PRC2’s nucleosome access and catalytic activity13,14. The
SWI/SNF chromatin remodeling complex also has an established role
in antagonizing PRC215,16. Accordingly, tumors harboring inactivating
mutations in H3K36methyltransferases (e.g. NSD1, SETD2) or SWI/SNF
complex members exhibit globally elevated levels of H3K27
methylation17–19. Importantly, Tazemetostat, which inhibits the EZH2
catalytic subunit of PRC2, was recently approved to treat epithelioid
sarcomas with loss of SWI/SNF complex member SMARCB120. Fur-
thermore, diffuse large B-cell lymphoma growth can be blocked by
inhibition of SETD2 in the case of EZH2 hypermorphic mutation-
mediated drug addiction to PRC2 inhibitors21. These findings suggest
that disease-associated defective chromatin crosstalk could represent
targets of synthetic lethality for successful therapeutic intervention.

A limited number of crosstalk between chromatin regulators and
modifications have been documented through conventional bio-
chemical approaches7,13,22,23. Yet for many epigenetic marks, it remains
unknown if trans-regulatory pathways exist in addition to their direct
modifiers. To date, there has been little effort to systematically survey
the functional interactions among chromatin modifications and their
associated complexes. Genetic interaction mapping is a powerful
approach to discover gene–gene functional relationships24. Indeed,
previous high-throughput screens have quantified the impact of pair-
wise gene double-knockout on the fitness of yeast strains at the gen-
ome scale to identify genetic interactions24–26. These efforts have
successfully uncovered novel functional relationships between gene
pairs, including a recent report that connects individual histone resi-
dues to chromatin-associated complexes and pathways27. However, a
similar approach in human cells is technically challenging due to the
large genome size (~20,000 genes) and thus far the largest perturba-
tion screen only covered a small number of genetic interactions (472
genes × 472 genes)28.

As an alternative approach, co-dependencymapping (also known
as co-essentiality mapping or parallel screening) has recently been
applied to identify functionally interacting genes29–31. Co-dependency
mapping takes advantageof singlegeneperturbation screens in a large
panel of diverse cell lines, with the assumption that two genes whose
perturbations result in highly correlatedphenotypes acrossgenetically
and biologically heterogeneous cell lines are likely to be functionally
related. Over the past few years, several consortium-based efforts,
such as DepMap32 and Project Score33, have performed CRISPR-Cas9
genetic knockout fitness screens in hundreds of cell lines of diverse
tumor origins, providing a catalog of their genetic dependencies.
Furthermore, themolecular featuresof thesepan-cancer cell lines have
been extensively profiled, generating detailed information about their
genetic makeup, transcriptome, protein expression, histone mod-
ifications, and metabolome34. We reasoned that integrative analysis of
co-dependency mapping and molecular phenotyping using these
multidimensional datasets would enable systematic measurements of
genetic interactions and provide a key resource to nominate new
context-dependent chromatin crosstalk for mechanistic studies and
translational application.

Here, we investigate the potential of combining large-scale
CRISPR-Cas9 essentiality screens in >1000 pan-cancer cell lines with
their molecular characteristics to define context-specific co-depen-
dency of genes and reveal novel insights into chromatin complex
composition and crosstalk. Our analysis uncovers a functional inter-
play between PRC2 andMLL–MEN1 complex that appears at odds with
their roles in transcriptional regulation. We further investigate the
impact of PRC2 and H3K27 methylation on regulating the binding of
the MLL–MEN1 complex and determine the therapeutic implication of
this crosstalk in the context of diffuse large B-cell lymphomas
(DLBCLs) harboring gain-of-function EZH2 mutations. Together, this
work highlights the utility of integrating genetic screens with mole-
cular profiling of cancer cells for high-throughput genetic interaction
discovery that will not only offer critical insight into basic regulatory
mechanisms of cancer epigenome progression but also nominate
potential therapeutic targets of chromatin-associated synthetic
lethality.

Results
Developing the genetic dependency correlation network (DCN)
Knockout of functionally linked genes is expected to produce similar
fitness effects across cancer cell lines of diverse tissue origins, muta-
tional backgrounds, and gene expression profiles. We analyzed data-
sets of CRISPR-Cas9genetic perturbation screenspublishedbyBroad’s
Achilles and Sanger’s SCORE projects from the DepMap portal31, cov-
ering 17,386 genes across 1086 pan-cancer cell lines, to build a genetic
co-dependency network. To enhance the specificity of our genetic
interaction mapping, we filtered out 532 common essential genes
(gene effect score < −1 in more than 90% of cell lines). For each pair of
genes,we calculated the Pearson correlation coefficient for gene effect
scores, whichmeasure the effect size of gene knockout on cell fitness,
across all cancer cell lines and generated the dependency correlation
matrix (Fig. 1a). As a validation, we analyzed the correlation scores for
genes coding for proteins with biochemical interactions documented
in CORUM, a curated protein complex database35. We found that their
scores were significantly higher than randomly selected gene pairs in
equal numbers (observed vs. simulated, Supplementary Fig. 1a, b). We
also overlapped the physical interactions collected in the BioGRID
databasewith the genetic interactions in our network and39% (305out
of 781) of our genetic interactions canbe identified inBioGRIDdatasets
(Supplementary Data 1). These results demonstrate the utility of this
approach to identify complex-level protein–protein interactions.

To better visualize and prioritize significant gene–gene functional
interactions, we selected genes that have at least one strong interac-
tion with other genes (matrix cutoff, Pearson’s r > 0.4). Distinct
“modules”—groups of genes among which correlation coefficients are
higher than the background—are readily discernable from the depen-
dency correlation matrix (Supplementary Fig. 1c, Supplementary
Data 2). To maximize the power of identifying functional modules, we
examined the sensitivity and specificity to recover CORUM complex-
level interactions using various thresholds and determined 0.34 as the
optimized cutoff (Supplementary Fig. 1b). Basedon this cutoff, wenext
generated the dependency correlation network (DCN) consisting of
145 modules (≤15 genes) (Supplementary Fig. 1d, Supplemen-
tary Data 3).

Deplink: an integrative analysis of context-specific genetic
dependency
In addition to CRISPR-Cas9 genome-wide fitness screens, cancer cell
lines in the DepMap project have been extensively profiled, with
detailed annotations of their genetic mutations, gene and protein
expression, histone modifications, and metabolome34. Therefore, we
sought to integrate thesemolecular features with our DCN analysis, in
order to uncover the context underlying the essentiality of the co-
dependency gene modules. We established a pipeline, named
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“Deplink”, to identify associations between module dependencies and
molecular phenotypes, including cancer type, mutational profiles,
drug sensitivity, and transcriptome/chromatin signatures (Fig. 1a).

Cancer type. Consistent with previous report29, we observed that
some modules are selectively essential to specific cancer types
(Fig. 1b). Indeed, the dependency profiles of blood cancers—acute
myeloid leukemia (LAML), multiple myeloma (MM), acute lympho-
blastic leukemia (ALL) and diffuse large B cell lymphomas (DLBCL)—
cluster closely and away from solid tumors (Fig. 1b, Supplementary
Fig. 2a). Using a cutoff of FDR <0.1, we identified 137 cancer type-
specific modules (Supplementary Fig. 2b, Supplementary Data 4).
Some of these represent well-studied lineage survival oncogenes,

including RUNX1/MYB/IRF4/NFKB1/MEF2C (module #1) in LAML, ALL,
MM and DLBC36,37, and MITF/SOX10 (module #20) in cutaneous
melanoma38 (Supplementary Fig. 2b); whereas others are yet to be
characterized, such as STXBP3/STX4/SNAP23 (module #15) in head and
neck cancers (Supplementary Fig. 2b).

Mutational signature. We also identified 31 modules (p-value < 0.05)
that are selectively essential to solid tumor cell lines carrying specific
COSMIC mutational signatures39 (Fig. 1c, Supplementary Data 5). As
expected, COSMIC signature 7, predominantly found in UV exposure-
linked skin cancers, predicted dependency on module #20 (BRAF/
MAPK1/MITF/SOX10) for cell survival. These results suggest that other
significantly enriched modules may be involved in the development
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and/or represent vulnerabilities of specific mutational processes. For
example, module #79 (PRPF39/TRNAU1AP) is selectively essential for
cells carrying mutational signatures of defective DNAmismatch repair
(COSMIC 6, 15, and 26), suggesting that this poorly characterized gene
pair may play a role in the etiology or maintenance of mismatch repair
deficient tumors.

Chromatin modification. To integrate our DCN analysis with global
chromatin profiles, we identified cell lines with high abundance (top
18%) of each of the 26 histone H3 modifications quantified by Dep-
Map. Seventy-four (74) modules were significantly more essential to
blood cancer cell lines carrying specific chromatin signatures (Fig. 1d,
Supplementary Data 6). Notably, H3K14ac-, H3K18ac- and H3K23ac-
high cell lines share a common dependency on module #24, which
consists of genes coding for INO80 chromatin remodeling complex
(Fig. 1d). To probe the potential underlying mechanism, we analyzed
genome-wide binding of INO80 complex in relation to various
chromatin features using publicly available datasets40. INO80 com-
plex localization positively correlated with open chromatin, histone
acetylation, and the binding of various histone acetyltransferases
(Supplementary Fig. 2c). Therefore, it is possible that cells with his-
tone hyperacetylation recruit INO80 complex and require its
nucleosome-remodeling activity to maintain genome access and/or
integrity.

Transcriptome signature. By integrating the genetic co-dependency
maps and gene expression profiles, we annotated modules that were
preferentially essential to cell lines exhibiting various cancer hallmark
transcriptional signatures (Fig. 1b, Supplementary Data 7). Several
significant correlations emerged from this analysis that are consistent
with the described functions of module genes. For example, module
#51 (DCP2/XRN1/ADAR) and module #101 (FOXA1/SPDEF) are more
essential to cells displaying transcriptional signatures of “Interferon
alpha response” and “Estrogen Response”, respectively41–43. We also
found that functionally linked gene expression signatures, such as
“Epithelial–Mesenchymal Transition” and “TGF beta signaling”, were
closely clustered based on module effect scores (Fig. 1b). Therefore,
gene expression signatures represent another important determinant
for the specificity of module dependencies.

Drug response. We incorporated data from Genomics of Drug Sen-
sitivity in Cancer (GDSC)44 to determine the relationship between
DCN module dependencies and drug response. For each DCN mod-
ule, we quantified the differences in drug sensitivity (IC50) between
dependent vs. non-dependent cell lines. Using a cutoff of drug
sensitivity Z-score > 0.2 and FDR < 0.1, we uncovered 1262 significant
drug–module pairs (Supplementary Data 8). Importantly, cells that

required module #20 (BRAF/MAPK1) for survival also displayed
increased sensitivity to multiple inhibitors of the BRAF/MEK
pathway, providing validation for our analysis (Supplementary
Fig. 2d). Intriguingly, we found that cells dependent on module #53
(CCNE1/SKP2/CDK2) are highly resistant to CDK4/6 inhibitor Palboci-
clib (Fig. 1e). This finding is consistent with previous studies reporting
the link between CCNE1 (cyclin E1) overexpression and Palbociclib
resistance45,46. Indeed, we confirmed that there was a significant
positive correlation between CCNE1/SKP2 expression and depen-
dency (Fig. 1e). These results suggest a potential synergy between
inhibitors of cyclin E and CDK4/6 in cancer treatment.

DCN reveals novel insights into composition of chromatin
complexes
We next examined chromatin-related DCN modules in further detail.
Consistent with our global analysis (Supplementary Fig. 1), many
modules correspond to chromatin biochemical complexes docu-
mented in the CORUM database, including EMSY complex (module
#21), SIN3–HDAC complex (module #73), G9a/GLP H3K9 methyl-
transferase complex (module #49), ANCO1–HDAC3 complex (module
#62), INO80 complex (module #24) and Integrator complex (module
#35) (Fig. 2a). Interestingly, SIN3A and SIN3B were identified in dis-
tinct DCN modules (SIN3–HDAC and EMSY, respectively), high-
lighting a functional divergence between the two SIN3 family
members47.

Some modules contain genes that are not annotated as members
of the corresponding chromatin complexes, such as SETD5 in module
#62/ANCO1–HDAC3 complex48–50 and C7ORF26 in module #35/Inte-
grator complex (Fig. 2a). In particular, C7orf26 shows similar depen-
dency landscape to INTS10/13/14, but not genes encoding other
integrator complex subunits, across 1086 pan-cancer cell lines (Sup-
plementary Fig. 3a). We tested if these genetic co-dependencies
represent biochemical interactions. We ectopically expressed FLAG-
tagged C7orf26 in HeLa cells and performed co-immunoprecipitation
followed by mass spectrometry. A specific interaction between
C7orf26 and INTS10/13/14, but not other Integrator complexmembers,
was identified and validated using immunoblotting (Supplementary
Fig. 3b–d, Supplementary Data 9). These data indicate that C7orf26
and INTS10/13/14 may form a biochemically distinct subcomplex that
is functionally independent of the canonical Integrator complex. In
agreement, Deplink analysis revealed that C7orf26-containing module
#35 was preferentially essential to solid tumor cell lines exhibiting
COSMIC mutational signature 3 (failure of DNA homologous recom-
bination repair) (Fig. 1c and Supplementary Fig. 3e). Therefore,
C7orf26/INTS10/13/14 subcomplexmayparticipate in theDNAdamage
response independently of the canonical function of Integrator com-
plex in transcriptional regulation.

Fig. 1 | Development of dependency correlation network (DCN) and Deplink
analysis. a A workflow to set up the dependency correlation network (DCN) and
Deplink analysis. Step 1, acquire the dependency profiles of 17,386 genes across
1086 pan-cancer cell lines from DepMap CRISPR-Cas9 essentiality screen dataset;
Step 2, for 16,854 non-essential genes, calculate the pairwise Pearson correlation
score between each gene pair and generate the dependency correlation matrix;
Step 3, generate DCN based on the correlation matrix using Genets; Step 4, inte-
grateDCNwithmolecular profiles of pan-cancer cell linesusingDeplink.bHeatmap
showing cancer type-specific (top) or cancer hallmark gene set enrichment analysis
(GSEA) signature-specific (bottom) dependency of DCNmodules. Names of cancer
types are consistent with TCGA study abbreviations. For cancer type-specific
dependency analysis, the color scale shows the dependency score difference
between cell lines from each specific cancer type and cell lines from other cancer
types. 686 cell lines from cancer types containing at least 10 cell lines were ana-
lyzed. Only modules significantly associated with at least one specific cancer type
are shown (FDR<0.1). For hallmark signature enrichment analysis, the color scale

shows the hallmark signature score difference between cell lines showing high
dependency for each module and cell lines showing low dependency for that
module (18% top and bottom cell lines ranked by dependency score, respectively,
p-value < 0.01). Modules are ranked in the same order for both panels. c Dot plot
showing DCN modules that are significantly preferentially essential to solid tumor
cell lines carrying various COSMIC mutational signatures. 616 cell lines from solid
tumors containing at least 10 cell lines were analyzed. d Dot plot showing DCN
modules that are significantly preferentially essential to blood cancer cell lines
showing high levels of various histone modifications. 70 cell lines from blood
cancers containing at least 10 cell lines were analyzed. e Left, volcano plot showing
the correlation between the genetic dependency of DCN modules and drug sen-
sitivity (GDSC). The cell lines with high dependency on module #53 (CCNE1, CDK2,
SKP2) are more resistant to CDK4/6 inhibitor Palbociclib. Right, the correlation
between dependency and expression of genes in module #53. For b–d, p values
were determined by unpaired two-tailed Student’s t-test. For e, the p-value was
determined by one-way ANOVA. Source data are provided as a Source Data file.
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Functional interplay between MLL–MEN1 complex and PRC2
complexes
We speculate that our DCN analysis may also reveal functional rela-
tionships between biochemically distinct chromatin complexes. To
this end, we focused on module #8, which contains MLL(KMT2A)-
MEN1, PRC1, PRC2, KAT7-JADE and MOZ/MORF (KAT6A/B) complexes
(Fig. 2a, b). This co-dependency module is also intriguing since it
contains well-characterized chromatin complexes with distinct and
opposing functions in either transcriptional activation (MLL–MEN1,
KAT7, and KAT6A/B) or repression (PRC1, PRC2). Deplink analysis
found that genes within module #8 were preferentially essential to
blood but not solid cancer cell lines with high levels of H3K27me3
(Fig. 2c, Supplementary Fig. 4a). While it is conceivable that
H3K27me3-high cell lines, such as DLBCL cells carrying EZH2 gain-of-
function mutations51, require PRC2 complex for survival52, the role of
MLL–MEN1 complex in this setting is unclear. We confirmed that
DLBCL cell lines with either mutations or overexpression of PRC2
complex members were significantly more dependent on MEN1 and
DOT1L for survival (Fig. 2d, e).

EZH2mutant DLBCL cells display preferential dependency on
MLL-MEN1
To validate findings from our DCN and Deplink analysis, we indepen-
dently performed a CRISPR genetic screen using a chromatin-focused
gRNA library53 in a Cas9-expressing EZH2 mutant DLBCL cell line
(KARPAS422) (Fig. 3a). We found highly concordant effects of knock-
ing out PRC2 complexmembers (EZH2/EED/SUZ12),MLL1 andMEN1 on
decreasing cell competitive fitness between our screen and the Dep-
Map dataset (Fig. 3b, c). As a comparison, knockout of Module #8
genes hadminimal impact on cell fitness in K562 leukemia cell line that
is EZH2 wildtype (Supplementary Fig. 4b). The detrimental effect of
CRISPR-Cas9-mediated knockout ofMEN1 on the proliferation of EZH2
mutant lymphoma lines KARPAS422 and SuDHL4 was also evident in
competitive proliferation assays (Fig. 3d), and in xenograft experi-
ments where depletion of MEN1 decreased the incidence of tumor
formation (Fig. 3e). Furthermore, we subjected a panel of lymphoma
cell lines to a small-molecule inhibitor ofMEN1,MI-50354, andobserved
that compared to EZH2 wildtype, EZH2mutant cells were significantly
more sensitive to MEN1 inhibition (Fig. 3f, Supplementary Fig. 4c).

In addition to DLBCL, a subset of multiplemyeloma (MM) tumors
display globally elevatedH3K27me3 levels due to either inactivation of
H3K27 demethylases (UTX/KDM6A) or overexpression of PHF1955,56.
H3K27me3-high MM cell lines also show increased sensitivity to inhi-
bition of EZH255–57. We treated a pair of MM cell lines that are either
H3K27me3-high (RPMI-8226) or H3K27me3-low (MM.1S) (Supple-
mentary Fig. 4d) with MEN1 inhibitor (VTP50469)58. MEN1 inhibition
significantly inhibited the viability of RPMI-8226 but notMM.1S cells in
a dose-dependent manner (Fig. 3g). This finding further confirms our
Deplink analysis result that the co-dependency between PRC2 and
MLL–MEN1 applies broadly to hematopoietic tumors with high levels
of H3K27me3 (Fig. 2c).

Expansion of H3K27me3 domains drives redistribution of
MLL–MEN1 complex
To investigate howPRC2 andMLL–MEN1 complexes, which are involved
in transcriptional repression and activation, respectively, demonstrate
cooperative effects on lymphoma cell fitness, we performed CUT&Tag
to profile genome-wide distribution of H3K27me3, MEN1, and MLL1 in
both EZH2wildtype (Farage) andmutant (KARPAS422) lymphoma lines.
As expected, genome-wide bindings of MEN1 and MLL1 are strongly
correlated and enriched at gene promoter regions (Supplementary
Fig. 5a, b, Supplementary Data 10). Consistent with previous reports59,
there was an increase in the number of large (>100kb) H3K27me3
domains in EZH2 mutant KARPAS422 cells compared to the wildtype
Farage cells (Fig. 4a), suggesting that EZH2 gain-of-function mutation

promotes the expansionofH3K27me3domains. In contrast, the number
of total or promoter-specific MEN1 and MLL1 peaks was markedly
reduced in KARPAS422 cells compared to Farage cells (Fig. 4b, Supple-
mentary Fig. 5c, d). By integrating these datasets, we found that the
changes in H3K27me3 were significantly negatively correlated with
changes in MLL1/MEN1 bindings (Fig. 4c, Supplementary Fig. 5e). Fur-
thermore, these changes were associated with changes in gene expres-
sion, with promoters that gained H3K27me3 and lost MLL1/MEN1
bindings exhibited decreased expression of corresponding genes
(Fig. 4c, Supplementary Fig. 5e). As representative examples, H3K27was
hypermethylated at genomic loci encompassingMYB and IRF5 genes in
KARPAS422 cells, accompanied by abolished MEN1/MLL1 binding and
silencing of these two genes (Fig. 4d). At the CD24 loci, on the other
hand, loss of H3K27me3 from the promoter region was correlated with
MEN1/MLL1 binding and CD24 transcription. These results prompted us
to consider the possibility that the expansion of H3K27me3 by hyper-
active mutant EZH2 prohibits MLL1/MEN1 binding, resulting in a
genome-wide redistributionand “concentration”ofMLL–MEN1complex
at a limited number of accessible gene promoters. Supporting this
notion, MLL1/MEN1 promoter peaks present in both KARPAS422 and
Farage cells showed markedly higher signal abundance (Fig. 4e) and
higher expression of their associated genes (Fig. 4f) in KARPAS422 cells.

To determine if similar H3K27me3-driven redistribution of
MLL–MEN1 complex binding can be observed in MM cells, we per-
formed epigenomic profiling of H3K27me3-high RPMI-8226 and
H3K27me3-low MM.1S cells. We found an increased number of
H3K27me3 large domains in RPMI-8226 cells, which was accompanied
by a decrease in the number of MEN1 but not MLL1 peaks (Supple-
mentary Fig. 6a, b). Importantly, both genome-wide analysis and
inspection at representative loci revealed higher signal abundance for
MEN1/MLL1 promoter peaks in RPMI-8226 cells (Supplementary
Fig. 6c, d), mirroring that in KARPAS422 cells.

We next determined if higher levels of MLL1/MEN1 binding in
H3K27me3-high DLBCL or MM cells can be reversed with depletion of
H3K27me3. To this end, we treated KARPAS422 cells with an EZH2
inhibitor (EPZ-6438). EZH2 inhibition effectively abolished genome-
wide H3K27me3 enrichment, and regained MLL1/MEN1 bindings at
H3K27me3-high regions in untreated cells (Supplementary Fig. 7a, b).
Concomitantly, we observed decreased signal abundance of shared
MLL1/MEN1 peaks (Fig. 4e, Supplementary Fig. 7a, b). A similar “titra-
tion” of MLL1/MEN1 binding was also observed in RPMI-8226 cells
following EPZ-6438 treatment (Supplementary Fig. 6c). Together,
these results suggest a causal function of H3K27me3 in regulating
genome-wide patterns of MLL1/MEN1 binding.

EZH2mutant lymphoma cells are addicted to MLL–MEN1 tar-
get genes
We reason that expression of genes bound by high levels of MEN1/
MLL1 is also hypersensitive to MEN1 inhibition, which could underline
the preferential toxicity of MEN1 inhibitor to EZH2 mutant lymphoma
cell lines. We assessed MEN1/MLL1 and H3K27me3 enrichment and
gene expression in Farage and KARPAS422 cells before and after the
treatment of MEN1 inhibitors MI-503 and VTP50469 using CUT&Tag
and RNA-seq, respectively. We observed a gain of H3K27me3 sur-
rounding MLL1/MEN1 binding peaks following MEN1 inhibitor treat-
ment in both KARPAS422 and Farage cells (Supplementary Fig. 7c–e),
suggesting that the opposition between MLL-MEN1 complex and
H3K27me3 is bidirectional. MEN1 inhibitor treatment resulted in a
more pronounced loss of MEN1 andMLL1 bindings to gene promoters
in KARPAS422 cells compared to Farage cells (Fig. 5a, Supplementary
Fig. 8a, b). This preferential loss of MEN1/MLL1 binding was associated
with significantly reduced transcription of MLL1/MEN1-bound genes
and a larger impact on the transcriptomeofKARPAS422 cells following
MI-503 exposure (Fig. 5a, Supplementary Fig. 8c, Supplementary
Data 11). We identified 60 genes that were bound by MEN1 and
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significantly downregulated after MI-503 treatment in KARPAS422
cells. Approximately one-third (21) of these genes were also down-
regulated by MI-503 in another EZH2 mutant lymphoma cell line DB.
Importantly, genes that were downregulated following MEN1 inhibi-
tion showed significantly lower dependency scores in genome-wide
knockout screens of KARPAS422 and DB cells, suggesting that MEN1-
regulated genes are more essential to the fitness of EZH2 mutant
DLBCL cell lines (Fig. 5b).

Gene Ontology (GO) analysis of MEN1-regulated genes revealed
a significant enrichment of mTORC1 signaling and unfolded protein
response (UPR) pathways (Fig. 5c). Indeed, levels of phosphorylated
S6, a marker of mTORC1 signaling, were higher in KARPAS422 cells
and suppressed by MI-503 treatment (Fig. 5d). Closer examination of
individual genes confirmed results of genome-wide analysis: com-
pared to Farage cells, these genes exhibited decreased occupancy of
H3K27me3, increased binding of MEN1 at their promoters, and
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significant differences in dependency between genes in module #8 (n = 14 and 12
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injection of KARPAS422 cells transduced with control or MEN1 sgRNAs. P values
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treatment ofMEN1 inhibitorMI503with indicated dosage (left) andmeasured IC50
(right) for EZH2-mutant and -wildtype DLBCL cell lines. n = 3 independent experi-
ments. Dots and whiskers are mean ± s.d. P values were determined by unpaired
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mean ± s.d. *p <0.05; **p <0.01; ***p <0.001. Source data are provided as a Source
Data file.
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increased transcription in KARPAS422 cells (Fig. 5e). Upon MEN1
inhibition, however, there was a more pronounced decrease in the
MLL1/MEN1 binding at, and the expression of, these mTORC1 sig-
naling pathway genes in EZH2 mutant KARPAS422 and DB cells
(Fig. 5f, Supplementary Fig. 8d). Notably, two genes showing the
largest decrease in expression upon MEN1 inhibition, PSAT1 and
SLC1A5, were significantly associated with worse prognosis in a
DLBCL patient cohort60 (Supplementary Fig. 8e). Furthermore,
compared to Farage cells, KARPAS422 cells were more sensitive to
pharmacologic inhibition of mTORC1 by rapamycin (Fig. 5g).

Conversely, knockout of TSC1, an upstream negative regulator of
mTORC1 signaling, partially rescued the decreased viability of KAR-
PAS422 cells following VTP50469 treatment (Supplementary Fig. 8f),
supporting a functional role of mTORC1 signaling in EZH2 mutant
DLBCL cells’ hypersensitivity to MEN1 inhibition. Taken together, it
appears that the redistribution of the MLL–MEN1 complex by
H3K27me3 expansion drives a higher and MEN1-dependent expres-
sion of genes involved in key oncogenic pathways (e.g.
mTORC1 signaling) that are required for the growth of EZH2 mutant
DLBCL cells (Fig. 5h).
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represents the median, the box limits are the 25th and 75th percentiles, and the
whiskers are the minimum to maximum values. For statistical analyses of both
MEN1/MLL1 target gene expression, p < 2.22e−16 in all comparisons. For all
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MEN1 inhibitor synergizes with Tazemetostat in inhibiting
growth of EZH2 mutant DLBCL
Tazemetostat (EPZ-6438) is an EZH2 inhibitor recently approved for
relapsed or refractory follicular lymphomas carrying EZH2 gain-of-
function mutations61. However, the clinical benefit of Tazemetostat as
a single agent for EZH2 mutated DLBCL is modest62. We, therefore,
tested if combined inhibitionofMEN1 (MI-503 orVTP50469) and EZH2
(EPZ-6438) could result in synergistic effects on tumor transcriptome
and growth in vitro and in vivo. RNA-seq analysis indicated that while
VTP50469 and EPZ-6438 each hadmodest impact on gene expression
of KARPAS422 cells, co-treatment of both drugs induced >2400 dif-
ferentially expressed genes (914 upregulated and 1513 downregulated)
whichwere functionally enriched forMyc targets, E2F targets aswell as
mTORC1 signaling (Fig. 6a, Supplementary Fig. 9a). This synergy on
transcriptome remodeling was also evident in another EZH2 mutant

DLBCL line SuDHL10, where VTP50469 had minimal impact as single
treatment yet together with EPZ-6438 caused differential expression
of >600 genes (Fig. 6b, Supplementary Fig. 9b). Consistently, a
synergistic impact on decreasing cell viability between EZH2 andMEN1
inhibitors was observed in KARPAS422 and SuDHL10 but not Farage
cells (Fig. 6c, Supplementary Fig. 9c). A similar trendwas found inMM,
where co-treatment of EPZ-6438 + VTP50469decreased the viability of
H3K27me3-high RPMI-8226 cells but not H3K27me3-low MM.1S cells
(Supplementary Fig. 9d). We also tested the efficacy of combination
therapy in DLBCL cells that have acquired resistance to EZH2 inhibi-
tion. We continuously exposed the EZH2-mutant lymphoma cell line
DB to increasing concentrations of EPZ-6438 for 6weeks to develop an
EPZ-6438-resistant line (DB-r) (Supplementary Fig. 9e). Combined
treatment ofMI-503 and EPZ-6438displayed a strong synergistic effect
on inhibiting the proliferation of DB-r cells (Fig. 6d). Finally, to test the
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Fig. 6 | Inhibition of both MEN1 and EZH2 in EZH2-mutated DLBCL. a Venn
diagram showing the overlaps of up-regulated (left) and down-regulated genes
(right) between individual treatments of VTP50469 (330 nM, purple), EPZ-6438
(1 µM, green), and combo treatment of both inhibitors (gray) in KARPAS422
(K422) cells for 48 h. b Venn diagrams showing the overlaps of up-regulated (left)
and down-regulated genes (right) between individual treatments of VTP50469
(330 nM, purple), EPZ-6438 (1 µM, green), and combo treatment of both inhibi-
tors (gray) in SuDHL10 (DHL10) cells for 24 h. c Relative percentage of viable
Farage or KARPAS422 cells following individual treatments of VTP50469
(160 nM, red), EPZ-6438 (200 nM, yellow), or combo treatment of both inhibitors
(purple) for 8 days, normalized to the DMSO-treated controls. n = 3 independent
experiments. Bar plots and whiskers are mean ± s.d. For statistical analyses of the
relative percentage of viable cells in KARPAS422, p (EPZ-6438 vs. EPZ-
6438 + VTP50469) = 0.00203; p (VTP50469 vs. EPZ-6438 + VTP50469) = 0.0115.
d Relative percentage of viable EPZ-6438-resistant DB-r cells treated with either
EPZ-6438 (1μM, yellow) or MI-503 (800 nM, red), or both inhibitors for 7 days.

n = 4 independent experiments. Bar plots and whiskers are mean ± s.d. For sta-
tistical analyses of the relative percentage of viable cells, p (EPZ-6438 vs. EPZ-
6438 +MI-503) = 0.00138; p (MI-503 vs. EPZ-6438 +MI-503) = 0.00522.
e Volumes of SuDHL10 tumors treated with vehicle, VTP50469 (20mg/kg), EPZ-
6438 (125mg/kg), or both inhibitors. n = 10 biologically independent animals per
group. Dots and whiskers are mean ± SEM. For statistical analyses of tumor
volume on Day 28, p (EPZ-6438 vs. vehicle) = 1.31e−5; p (EPZ-6438 + VTP50469 vs.
vehicle) = 9.96e−11. f Kaplan–Meier survival curves of mice in each group as
indicated in (e). P-values were determined by Log-rank (Mantel–Cox) test
between each group and vehicle group. n = 10 biologically independent ani-
mals per group. For statistical analyses of the EPZ-6438 treated group and EPZ-
6438 + VTP50469 treated group, p < 0.0001 for both groups when each com-
pared to the vehicle group. For all experiments, p values were determined by
unpaired two-tailed Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001. Source data
are provided as a Source Data file.

Fig. 5 | EZH2mutant lymphomas are addicted to MLL–MEN1-regulated onco-
genic gene expression. a Violin plots showing the normalized signal abundance
(Z score) ofMEN1 peaks atMEN1-bound promoters (left, n = 5075 promoters) and
normalized gene expression (Z score) of MEN1 target genes (right, n = 5075
genes) in Farage and KARPAS422 cells treated with DMSO or MEN1 inhibitors
(800 nM MI-503 for 3 days, 330 nM VTP50469 for 7 days). The center line in the
embedded boxplots represents the median, the box limits are the 25th and 75th
percentiles, and the whiskers are theminimum tomaximum values. For statistical
analyses of MEN1 on promoter, p < 2.22e−16 in all comparisons. For statistical
analyses of expression, p (Farage: DMSO vs. MI503) = 4.19e−9, p (K422: DMSO vs.
MI503) = 3.82e-16 and p < 2.22e−16 in all other comparisons. b Violin plots
showing the dependency scores of genes (n = 34 and 262 genes for KARPAS422
and DB cell lines, respectively) bound by MEN1 and were down-regulated by
MEN1 inhibitor treatment (800 nM MI-503 for 3 days) compared to other genes
(n = 16,820 and 16,592 genes for KARPAS422 and DB cell lines, respectively) in
KARPAS422 (left) and DB cell lines (right) from DepMap screens. Lower depen-
dency score indicates that a gene is more likely to be essential. The center line in
the embedded boxplots represents the median, the box limits are the 25th and
75th percentiles, and the whiskers are the minimum to maximum values. For
statistical analyses of genetic dependency in KARPAS422 and DB, p = 0.00236
and p < 2.22e−16, respectively. c Volcano plot showing the gene expression
change after MEN1 inhibitor treatment (800 nMMI-503 for 3 days) in KARPAS422

cells (left). Genes that were also downregulated in another EZH2-mutated DLBCL
cell line DB upon MEN1 inhibitor treatment are highlighted in black. Pathway
enrichment analysis was performed on these genes (right). d Western blot
showing total and phosphorylated S6 in Farage and KARPAS422 (K422) cells with
or without the treatment of MEN1 inhibitor (800 nM MI-503 for 3 days). The
experiments were repeated twice independently with similar results. e Bar plots
showing H3K27me3 (left), MEN1/MLL1 binding (middle) signals at promoters of
genes in mTORC1 signaling pathway in Farage and KARPAS422 cells. Right panel
shows the corresponding gene expression (n = 2). f Heatmaps showing the fold
change of MEN1 and MLL1 binding signals at mTORC1 pathway gene promoters
(left), and the fold change of corresponding gene expression (right) between
control (DMSO) and MEN1 inhibitor-treated (800 nM MI-503 for 3 days) EZH2
wildtype or mutant DLBCL cell lines. g Relative cell counts of DLBCL cell lines
treated with 1 nM Rapamycin for 96 h, normalized to the DMSO-treated controls.
n = 3 independent experiments. Bar plots and whiskers are mean ± s.d. For sta-
tistical analyses of relative cell counts between Rapamycin-treated and control in
Farage and KARPAS422, p = 5.20e−8 and p = 3.14e−5, respectively. For statistical
analysis of relative cell counts of Rapamycin-treated cells between Farage and
KARPAS422, p = 0.00431.hA schematic diagram showing themolecular interplay
between PRC2 and MLL–MEN1 in DLBCL. Created by BioRender. For all experi-
ments, p values were determined by unpaired two-tailed Student’s t-test.
**p < 0.01; ***p < 0.001. Source data are provided as a Source Data file.
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efficacy of this combination therapy in vivo, we assessed combined
treatment of EPZ-6438 and the orally available VTP5046958 on tumor
growth using the EZH2 mutant SuDHL10 xenograft model. Compared
to a single agent, combined treatment with EPZ-6438 and VTP50469
demonstrated markedly more potent efficacy in reducing tumor bur-
den and extending animal survival (Fig. 6d, e). Taken together, these
results suggest that the co-dependency between PRC2 andMLL–MEN1
complexes represents a potential therapeutic vulnerability for EZH2
mutant DLBCLs.

Discussion
In this study, we combined CRISPR-Cas9 essentiality screen datasets
with molecular profiles of cancer cell lines to enable the large-scale
discovery of context-defined genetic interactions between chromatin
pathways. Our approach uncovered functional intra- and inter-complex
interactions. We also developed a computational platform for the
identification of context-specific genetic dependency by integrating
various histological and molecular features including cancer type,
geneticmutation, copynumber variation, chromatinmodification, gene
expression, and drug sensitivity (https://github.com/seanchen607/
deplink). Collectively, this atlas provides a resource (http://www.
chaolulab-database.com/) to the research community to facilitate
hypothesis generation/testing and evaluate potential chromatin-based
therapeutic strategies for cancer and other human diseases.

Our DCN analysis is based on the idea that knockout of func-
tionally related genes would produce similar phenotypic effects (e.g.
fitness) across multiple conditions (e.g. cell lines), thus enabling the
identification of functional interactions by measuring the fitness
effects of single-gene perturbations across a panel of genetically and
phenotypically heterogeneous cancer cell lines. Compared to recent
studies29–31,63–65, the current work uses distinct approaches for module
calling and network visualization, and builds the pan-cancer genetic
co-dependency network from the largest CRISPR-Cas9 fitness screen-
ing dataset to date (Supplementary Data 12). We observed that direct
physical interactions among complex subunits were often reflected by
a strong correlation (Pearson’s r >0.4), such as the co-dependency
between C7orf26 and INTS10/13/14 (r =0.52, 0.56, and 0.63, respec-
tively).On theother hand, amoderate correlation (Pearson’s rbetween
0.34 and 0.4) may reflect an indirect interaction between two proteins
functioning in the same pathway. This is the case for interactions
between biochemically distinct chromatin complexes, such as
MLL–MEN1 and PRC2 complex members. As proteins usually function
in a complex and one complex could further functionally interact with
other complexes, we came up with a complex-centric strategy using a
two-step cutoff for correlation coefficient to enhance the power of
discovering novel functional modules. We first use a more stringent
cutoff (Pearson’s r > 0.4) to identify complex-level interactions, and
then use a less stringent cutoff (Pearson’s |r | > 0.34) as the network
cutoff to help capturing/visualizing the less strong genetic/functional
interactions between members of distinct complexes. Our current
pipeline has a good balance between sensitivity and specificity for
predicting curated interactions in the BioGRID database, which col-
lects experimentally validated biochemical and genetic interactions
(Supplementary Fig. 10). The current co-dependency mapping
approach likely lacks enough specificity to identify bona fide interac-
tions among gene pairs with weak correlation (Pearson’s r <0.34), as
the number of interactions rises rapidly. This limitation may be cir-
cumvented with a secondary screen using complementary approa-
ches, such as conventional pair-wise gene interaction analysis.

A unique feature of our study is the combination of co-
dependency mapping with molecular features of the cell lines ana-
lyzed (Deplink). This integrative analysis allowed us to address why a
module of co-dependent genes is specifically essential to a subset of
cell lines but not others, thereby inferring the potential function of
the module. For example, our DCN analysis predicted that an

uncharacterized gene C7orf26 functionally interacts with INTS10/13/14
but not genes encoding other members of the Integrator complex
(module #35). This genetic interaction was validated biochemically, as
C7orf26 binds to INTS10/13/14 but not the rest of the Integrator
complex. These findings are consistent with recent reports that
INTS10/13/14 constitute a biochemically distinct subcomplex of
Integrator64,66–68. Our Deplink analysis shows that module #35 is
selectively essential to solid tumor cell lines harboring COSMIC
mutational signature 3 (failure of DNA homologous recombination
repair) (Supplementary Fig. 3e). Therefore, we speculate that C7orf26/
INTS10/13/14 subcomplex may participate in the DNA damage
response independently of the canonical function of Integrator com-
plex in transcriptional regulation. As another example, module #46,
consisting of the INO80 chromatin remodeling complex, is required
for the survival of blood cancer cell lineswith histone hyperacetylation
(Fig. 1d). While the causality of this correlation remains to be investi-
gated, it is consistent with a recent study showing that INO80 complex
is a central component of metabolic homeostasis that influences his-
tone acetylation69. Notably,we found that a numberofmodules showed
correlations with copy numbers and/or expression levels of module
genes (Supplementary Fig. 2e, f and Supplementary Data 13, 14).
We speculate that thesemodules represent cases of oncogene addition,
where module genes are amplified/overexpressed and required for
tumor cell growth. Furthermore, while currently, it is statistically
underpowered to construct co-dependency networks separately for
each cancer type due to the limited number of cell lines, future efforts
along this line will provide key insights into cancer type-specific gene
co-functionalities.

Our DCN analysis also nominates a functional co-dependency
between PRC2 and MLL-MEN1, two well-characterized and tran-
scriptionally opposing chromatin-modifying complexes. Indeed, we
demonstrated that genetic or pharmacologic inhibition ofMEN1 could
phenocopy the effects of PRC2 knockout in inhibiting the proliferation
of EZH2 mutant and/or H3K27me3-high DLBCL and MM cells (Fig. 3).
The therapeutic implication of this functional interplay between PRC2
and MLL–MEN1 is likely to extend beyond lymphoid malignancies53,70.
For example, MLL rearrangement is a common event in pediatric leu-
kemias, and MLL-rearranged leukemias exquisitely depend on MLL1/
MEN1 for survival. In several mouse models, PRC2 has also been
demonstrated to be essential for the maintenance of MLL-rearranged
leukemias71,72. Furthermore, both MEN1 and PRC2 were identified as
the top hits in a genome-wide screen for regulators of MHC-I expres-
sion as potential strategies to augment cancer immunotherapy73.
Importantly, a combination of highly specific and potent inhibitors of
PRC2 and MEN1, which are either FDA-approved or in clinical trials to
treat distinct cancer types, demonstrated remarkable efficacy in the
treatment of DLBCL in xenograft study (Fig. 6). These encouraging
preclinical results warrant future studies to design strategies of
rationally repurposing and/or combining PRC2 and MEN1 inhibitors
for synergistic anti-cancer effects.

MLL–MEN1 and PRC2 complexes are themammalian homologs of
the trithorax (TrxG) and polycombgroup (PcG) proteins inDrosophila,
respectively. TrxG and PcG regulate the developmental programs and
the expression of Hox genes in an antagonisticmanner74. Consistently,
we observed that regions with increased levels of H3K27me3 in EZH2
mutant cells showed reduced MLL1 and MEN1 binding (Fig. 4). Fur-
thermore, inhibition of EZH2 can lead to increased MLL–MEN1 bind-
ing, while inhibition of MEN1 increases H3K27me3 at surrounding
regions (Supplementary Fig. 7). However, perturbing the local oppo-
sition between PRC2 and MLL–MEN1 appears to induce a complex
redistribution of these epigenetic regulators at the genome-wide level,
as we found that the exclusion of MLL1/MEN1 from H3K27me3-high
regions promoted a re-localization and strong enrichment of these
proteins at a limited number of H3K27me3-low regions, thereby ele-
vating the expression of corresponding genes. These genes are
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implicated in oncogenic pathways such as mTORC1 signaling, which
has been linked to the development and drug resistance of EZH2
mutant DLBCL75, and their overexpression predicted a worse prog-
nosis forDLBCL patients. Therefore, wepropose that in addition to the
described function of silencing B cell differentiation genes59, EZH2
gain-of-function mutations may also activate an MLL–MEN1-depen-
dent oncogenic gene expression program to facilitate DLBCL patho-
genesis (Fig. 5h). Notably, while this notion provides a potential
mechanistic basis for the observed co-dependency between PRC2 and
MLL–MEN1, it is also possible that these twocomplexes co-regulate the
expression of bivalent genes such as MHC-I73,76 in a cooperative
manner.

In summary, our work highlights the potential of integrating
parallel genetic screens with molecular phenotyping for high-
throughput, context-defined genetic interaction discovery and analy-
sis, which provides a powerful alternative to conventional biochemical
approaches in the study of chromatin crosstalk. Our mechanistic
investigation into the essentiality of the MLL–MEN1 complex in EZH2-
mutated lymphomas provides one example of cancer-associated
mutations in chromatin enzymes that creates a synthetic depen-
dency on its interacting trans-regulatory pathway. We believe that
further exploration of the resource presented here will uncover addi-
tional regulatory mechanisms involved in the progression of cancer
epigenome and pave the way to new precision epigenetic therapeutic
strategy.

Methods
Dependency correlation network analysis
The gene effect dataset of CRISPR-Cas9 essentiality screens in 1086
pan-cancer cell lines (gene effect scores derived from CRISPR knock-
out screens published by Broad’s Achilles and Sanger’s SCORE pro-
jects, release public 2022q2)77–79 was downloaded from Cancer
Dependency Map portal (DepMap, https://depmap.org/portal/). The
Pearson correlation scores were calculated for gene effect scores in
pan-cancer cell lines between each two of the genes using function
‘cor’ in R. To validate the power of identifying complex-level interac-
tions, human core complexes information was downloaded from
CORUM database (https://mips.helmholtz-muenchen.de/corum/)35.
The interactions mapped to reported protein interactions between
CORUMcore complexmembers and randomly selected interactions in
equal numbers were generated as observed and simulated datasets,
respectively. ROC curves were plotted using an R package ‘pROC’. The
modularity of interactions from the observed and simulated datasets
was assigned as 1 and 0, respectively. The sensitivity and specificity
(AUC score) of identifying CORUM complex-level interactions using
different cutoffs were determined by the p-values from T-test between
the correlation scores from complex-level interactions and those from
global interactions. The heatmap of the Pearson correlation matrix of
genes that have at least one strong interaction with other genes
(matrix cutoff: Pearson’s r >0.4) was generated using the R package
pheatmap (Pretty Heatmaps v1.0.10, parameters: cluster-
ing_method = ‘ward.D’, clustering_distance_cols = ‘euclidean’). Based
on the correlation matrix, the dependency correlation network was
generated (network cutoff: Pearson’s |r | > 0.34, only top 15 strongest
co-dependency interactions for each gene were kept and singletons
were removed) and visualized using GeNets (http://apps.
broadinstitute.org/genets) and an R package ‘geNet’ (https://github.
com/haneylab/geNet), which integrates a machine-learning algorithm
Quack that is trained for comparing the global and local biological
signal of networks and identifying the optimal network with which to
interpret large genomic datasets such as cancer co-dependency rela-
tionships from project Achilles80. To validate our prediction of genetic
interactions, previously identified genetic or physical interaction
information was acquired from the BioGRID database (https://
downloads.thebiogrid.org/BioGRID)81.

Deplink
The genetic profile (gene expression, mutations, copy number varia-
tion, and chromatin modification) and drug sensitivity (GDSC and
PRISM) datasets of pan-cancer cell lines were downloaded from the
DepMap portal (https://depmap.org/portal/). Association of genetic
dependency with various functional characterization of cell lines was
performed by a custom R package ‘deplink’ (https://github.com/
seanchen607/deplink, parameters: cutoff.freq = 10, cutoff.percentile =
0.18, cutoff.pvalue = 0.05, cutoff.qvalue = 0.1, cutoff.diff = 0.1,
cutoff.fc = 2). For eachmodule in the dependency correlation network,
Deplink selects top and bottom cell lines based on their ranking of
genetic dependency of the module members and compares their
molecular features (chromatin modification, gene expression, genetic
mutation, copy number variation, tumor mutation burden, micro-
satellite instability), various signatures (COSMIC, ISG, EMT, mRNAsi,
GSEAhallmark), drug sensitivity and cancer types with those of the rest
cell lines. A detailed description of the code’s functionality can be
found on its tutorial page (https://seanchen607.github.io/deplink.
html). The Stemness feature associated with oncogenic dedifferentia-
tion was measured by mRNA stemness index (mRNAsi) which was
calculated using the established approach82. Dependency score for
eachmodule was calculated as the opposite number of themean value
of the gene effect values of members in this module. The complete
output of analysis using Deplink is provided in figshare (https://doi.
org/10.6084/m9.figshare.21708425.v1) and can be queried via a
searchable database (http://www.chaolulab-database.com/).

Cell lines and cell culture
Human DLBCL cell lines KARPAS-422, DB, SuDHL-10, Farage, HBL-1,
SuDHL-4 and SuDHL-5 (a gift from Jennifer E. Amengual), human leu-
kemia cell line K562 (ATCC, #CCL-243) and humanMM cell line RPMI-
8226 (a gift from High-Throughput Screening Facility at the JP Sulz-
berger Columbia Genome Center) were maintained in RPMI1640
Medium (Gibco, #21875034) with 10% FBS (Corning, #35-010-CV).
Human MM cell lines MM.1S (a gift from Selina Chen-Kiang) was
maintained in RPMI1640 Medium (Gibco, #21875034) with 10% FBS
(Corning, #35-010-CV), 1% MEM Non-essential amino acids (Thermo
Fisher Scientific, #11140-050), 1% Penn/Strep (ThermoFisher Scientific,
#15140-122), 0.4% 1M HEPES (Thermo Fisher Scientific, #15630-080),
1% 200mM L-glutamine (Thermo Fisher Scientific, #25030081),
0.00035% 2-Mercaptoethanol (SIGMA, #M3148), and 0.015% 10N
NaOH (SIGMA, #SX0607N). HEK293T (ATCC, #CRL-11268) and HeLa
cells (a gift from Alberto Ciccia) were maintained in DMEM GlutaMAX
from Gibco with 10% FBS (Corning, #35-010-CV), and 1% Penn/Strep
(ThermoFisher Scientific, #15140-122). None of the cell lines usedwere
authenticated. All cells were supplied with 1X Penicillin-Streptomycin
(Sigma-Aldrich) and kept at 37 °C in a 5% CO2 atmosphere. All cell lines
were routinely tested for mycoplasma contamination.

Lentivirus transduction
Lentivirus packaging was performed in HEK293T cells using Lipo-
fectamine 2000 reagent (Invitrogen) in accordance with the manu-
facturer’s instructions. The medium-containing virus was
concentrated using PEG-it Virus Precipitation Solution (System Bios-
ciences). Spin infectionwasperformed at 1500 rpm at 33 °C for 90min
and transduced cell populations were usually selected or sorted 48 h
after infection.

Chromatin-focused CRISPR-Cas9 genetic screening and data
analysis
Chromatin-focused CRISPR screening was performed as previously
described53. Barcoded PCR products were gel purified and sequenced
using the Illumina NextSeq500 instrument. FASTQ files were pro-
cessed and trimmed to retrieve sgRNA target sequences using cuta-
dapt (v4.2). Sequencing reads were aligned to the reference sgRNA
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library file and counted at the gene level per sample using MAGeCK
(v0.5.9.5). The beta score values were used for the final visualization.

CRISPR-Cas9-mediated knockout
To generate the indicated knockout cell lines, cells were first trans-
duced with LentiCas9-Blast construct (Addgene #52962) and selected
with blasticidin. Guide RNAs againstMEN1 (gRNA sequences indicated
in Supplementary Data 15) were cloned into pUiSEPR-puroR-RFP con-
struct and introduced into target cells using lentiviral infection. Pur-
omycin (1μg/mL) was used to select gRNA+ cells.

Functional assays
For the competitive proliferation assays using sgRNAs, the percen-
tage of sgRNA-expressing cells (RFP+) was measured over time using
flow cytometry and normalized to the starting time point (3 days after
infection). Data were acquired on LSR Fortessa (BD). Flow cytometry
data were analyzed using FlowJo software (V10). For proliferation
assay, cell lineswereplated in triplicate in 96-well plates at lowdensity
(10,000 cells per well) for each condition. Cells were treated using
EZH2 inhibitor EPZ-6438 (MedChemExpress, #HY-13803) and MEN1
inhibitorMI-503 (MedChemExpress, #HY-16925) solubilized in DMSO
with indicated concentration for various time points. Following drug
treatment, cell viability was determined using Cell Counting Kit-8 for
Cell Proliferation and Cytotoxicity Assay (Dojindo Molecular Tech-
nologies, #DJDB4000X) according to manufacturer’s guidelines.

Immunoblotting and mass spectrometry
Western blot was performed as previously described83. Antibodies
used include anti-MEN1 (Bethyl, Cat#A300-105A, Lot#11, 1:2000 dilu-
tion), anti-MLL1 (Bethyl, Cat#A300-086A, Lot#6, 1:2000dilution), anti-
H3K27me3 (Cell Signaling, Cat#9733, Clone C36B11, Lot#19, 1:1000
dilution), anti-INTS13 (Bethyl, Cat#A303-575A, 1:1000 dilution), anti-
INTS14 (Bethyl, Cat#A303-576A, 1:1000 dilution), anti-Phospho-S6
(Cell Signaling, Cat#4858, Clone D57.2.2E, 1:2000 dilution), anti-S6
(Cell Signaling, Cat#2317, Clone 54D2, 1:1000 dilution), anti-TSC1 (Cell
Signaling, Cat#6935, Clone D43E2, 1:1000 dilution), anti-H3 (Abcam,
Cat#ab1791, 1:10,000 dilution), and anti-Beta-actin (Abcam,
Cat#ab8224, 1:2000 dilution). Antibodies were all validated by Wes-
ternblot using themanufacturer’s data associatedwith antibodies, and
their authentication data. For Immunoprecipitation-based mass spec-
trometry, 2*107 parental HeLa cells or C7orf26-FLAG-expressing HeLa
cells were lysed with HS lysis buffer (50mM Tris–HCl pH 7.9, 500mM
NaCl, 1% NP-40, 20% Glycerol, 0.5mM PMSF, 5mM β-mercaptoetha-
nol) on ice for 30min followedby centrifugation atmax g for 20min in
4 °C centrifuge. Soluble extracts were diluted with BC-300 buffer
(20mM Tris–HCl pH 7.9, 300mM KCl, 20% Glycerol, 0.1mM EDTA,
0.5mM PMSF, 5mM β-mercaptoethanol) and incubated with 37μL
ANTI-FLAG®M2Affinity Gel (Sigma, Cat#A2220) overnight at 4 °Cwith
rotation. Beads were washed five times with BC-300 buffer + 0.1% NP-
40 and one time with BC-100 buffer (20mM Tris–HCl pH 7.9, 100mM
KCl, 20% glycerol, 0.1mM EDTA, 0.5mM PMSF, 5mM β-mercap-
toethanol) + 0.1% NP-40. 8M Urea in 20mMTris–HCl pH 8.0 was used
for elution. Mass spectrometry for protein identification was per-
formed at Columbia University Herbert Irving Comprehensive Cancer
Center (HICCC) Proteomics Core. Data analysis was performed with
Scaffold Proteome Software.

Xenograft studies
Animal experiments were conducted in accordance with and with the
approval of, the ColumbiaUniversity Institutional Animal Care andUse
Committee (IACUC). All mice were housed under specific-pathogen-
free (SPF) conditions under controlled temperature (20–26 °C) and
humidity (40–70%) with a 12 h/12 h light/dark cycle, following the
guideline of the Columbia University animal facility. For the SuDHL-4
xenograft study, ten million SuDHL-4 cells expressing Cas9 and either

control or MEN1 sgRNA were mixed with Matrigel and inoculated
subcutaneously into the flank of 6–8 weeks old male athymic nu/nu
mice purchased from Jackson Lab. The incidence of xenograft tumor
formation wasmonitored and counted until animals were sacrificed at
day 90 post-inoculation. For the SuDHL-10 xenograft study, 6-week-
old female NOD-scid IL2Rgammanull (NSG) mice were purchased from
The Jackson Laboratory. Five million SuDHL-10 cells were sub-
cutaneously injected into the right flank. Tumor growth wasmeasured
twice a week after tumor formation. Tumor volume was calculated by
volume= (width2 × length)/2. Vehicle, 125mg/kg EPZ-6438 (0.5%
NaCMC and 0.1% Tween 80), 20mg/kg VTP50469 (5% DMSO, 40%
PEG400, 5% Tween 80 and 50% Saline) or combo were administrated
to mice via oral gavage twice a day for 28 days. Mice were sacrificed
when tumor size reached 2000mm3. All mice were humanely eutha-
nized by carbon dioxide inhalation, followed by cervical dislocation.
Tumor growth curves and survival curves were generated with
GraphPad Prism 9. Log-rank (Mantel–Cox) test was used to calculate
statistical significance.

RNA extraction and sequencing
RNA was harvested using a Trizol reagent. Illumina TruSeq RNA Sam-
ple Prep Kit (Cat#FC-122-1001) was used with 1μg of total RNA for the
construction of sequencing libraries. RNA libraries were prepared with
ribosomal RNA depletion according to instructions from the manu-
facturer (NEB). Paired-end sequencing was performed on the Illumina
NextSeq 550 sequencer.

CUT&Tag experiment and sequencing
CUT&Tag was performed as described previously84. In brief, 1 × 105

cells were washed with 1ml of wash buffer (20mM HEPES pH 7.5,
150mM NaCl, 0.5mM Spermidine (Sigma-Aldrich), 1× Protease inhi-
bitor cocktail (Roche) once. Concanavalin A-coated magnetic beads
(Bangs Laboratories) were washed twice with binding buffer (20mM
HEPES pH 7.5, 10mM KCl, 1mM MnCl2, 1mM CaCl2). 10μL/sample of
beads were added to cells and incubated at room temperature for
15min. Beads-bound cells were resuspended in 100μL of antibody
buffer (20mMHEPES pH 7.5, 150mMNaCl, 0.5mMSpermidine, 0.05%
Digitonin (Sigma-Aldrich), 2mMEDTA, 0.1% BSA, 1× Protease inhibitor
cocktail) and incubated with anti-MEN1 (Bethyl, Cat#A300-105A,
Lot#11, 1:50 dilution), anti-MLL1 (Bethyl, Cat#A300-086A, Lot#6, 1:50
dilution), anti-H3K27me3 (Cell Signaling, Cat#9733, Clone C36B11,
Lot#19, 1:100 dilution), or normal rabbit IgG (Cell Signaling, Cat#2792,
Lot#9, 1:100 dilution) at 4 °C overnight on nutator. After being washed
once with Dig-wash buffer (20mM HEPES pH 7.5, 150mM NaCl,
0.5mM Spermidine, 0.05% Digitonin, 1× Protease inhibitor cocktail),
beads-bound cells were incubated with 1μL Guinea pig anti-rabbit
secondary antibody (Antibodies Online) and 2μL Hyperactive pA-Tn5
Transposase adapter complexmade in-house in 100μL Dig-300 buffer
(20mM HEPES pH 7.5, 0.5mM Spermidine, 1× Protease inhibitor
cocktail, 300mM NaCl, 0.01% Digitonin) at room temperature for 1 h.
Cells werewashed three timeswithDig-300buffer to removeunbound
antibody and Tn5 and then resuspended in 300μL of tagmentation
buffer (20mMHEPESpH7.5, 0.5mMSpermidine, 1× Protease inhibitor
cocktail, 300mMNaCl, 0.01% Digitonin, 10mMMgCl2) and incubated
at 37 °C for 1 h. 10μL of 0.5M EDTA, 3μL of 10% SDS, and 5μL of
10mgmL−1 Proteinase K were added to each sample and incubated at
50 °C for 1 h to terminate tagmentation. DNA was purified using a PCR
purification kit (QIAGEN) and eluted with 25μL ddH2O. For library
amplification, 21μL of DNA was mixed with 2 µL of 10 µM Nextera i5
unique index primer (Illumina), 2 µL of 10 µM Illumina Nextera i7
unique index primer (Illumina), and 25 µL NEBNext 2× PCR mix (NEB)
and subjected to the following PCR program with lid heat on in a
Thermocycler: 72 °C, 5min; 98 °C, 30 s; 13 cycles of 98 °C, 10 s and
63 °C, 10 s; 72 °C, 1min and hold at 10 °C. To purify the PCR products,
1.1× volumesof pre-warmedAmpureXPbeads (BeckmanCoulter)were
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added and incubated at room temperature for 10min. Libraries were
washed twicewith 80% ethanol and eluted in 20μL of 10mMTris–HCl,
pH 8. Paired-end sequencing was performed on the Illumina NextSeq
550 sequencer.

RNA-seq data analysis
RNA-seq reads were mapped to the human genome assembly hg38
using HISAT2 (v2.1.0). The mapped reads count of each gene was
measured by featureCounts (v1.6.1). The differential gene expression
was calculated and visualized by the R packages DESeq2 (v1.28.0) and
ggplot2 (v3.2.1), respectively. We performed hierarchical clustering on
gene expression profiles of samples using the R package pheatmap
(Pretty Heatmaps v1.0.10, parameters: clustering_method = ‘ward.D’,
clustering_distance_cols = ‘euclidean’, and cutree_cols = 2). Gene set
enrichment analyses (GSEA) were performed by using GSEA software
(v4.1.0). Pathway enrichment analysis based on The Molecular Sig-
natures Database (MSigDB) hallmark gene set collection was per-
formed using Enrichr (https://maayanlab.cloud/Enrichr).

CUT&Tag data analysis
CUT&Tag reads were mapped to the human genome assembly hg38
using HISAT2 (v2.1.0). Potential PCR duplicates were removed by the
function “MarkDuplicates” (parameter: REMOVE_DUPLICATES = true)
of Picard (v2.23.1). Broad H3K27me3 peaks were called using SICER2
(parameters: -w 10000 -g 30000 -fdr 0.01) with IgG input as control.
Narrow MEN1 and MLL1 binding peaks were called using macs2
(parameters: -q 1e-4 --max-gap 2000 --keep-dup 1) and SICER2 (para-
meters: -w 100 -g 300). The peaks are annotated using an R package
“ChIPseeker”. The overlap between called peaks was identified by the
function “map” of bedtools (v2.27.1). The CUT&Tag read counts in
promoter regions were measured by featureCounts (v1.6.1). Genomic
enrichment of CUT&Tag signals was visualized using IGV. We per-
formed hierarchical clustering on promoter signal enrichment of
samples using the R package pheatmap (Pretty Heatmaps v1.0.10,
parameters: clustering_method = ‘ward.D’, clustering_distance_cols = ‘

euclidean’, and cutree_cols = 2). The signal distribution near promoter
regions was measured and visualized by the functions “computeMa-
trix” and “plotProfile” of deepTools (v 3.3.2).

Statistical analysis
Statistical analysis was performed using Student’s t-test (two-sample
equal variance; unpaired; two-tailed distribution) unless stated
otherwise.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The publicly available gene effect dataset of CRISPR-Cas9 essentiality
screens in 1086 pan-cancer cell lines (gene effect scores derived from
CRISPR knockout screens published by Broad’s Achilles and Sanger’s
SCORE projects, release 2022q2) used in this study is available in the
Cancer Dependency Map portal (DepMap) [https://depmap.org/
portal]77–79. The publicly available human core complexes data used
in this study are available in the CORUM database [https://mips.
helmholtz-muenchen.de/corum]35. The publicly available genetic or
physical interaction data used in this study are available in the BioGRID
database [https://downloads.thebiogrid.org/BioGRID]81. The pan-
cancer genetic co-dependency networks built from CRISPR-Cas9-
based screening datasets in recent studies are publicly available in
their supplementary materials and figshare [https://figshare.com/s/
35a82ed1e48d0ec4e9e4]29–31,65. The publicly available genome-wide
bindingdata of INO80complex andvarious chromatin features used in
this study are available in theNCBIGEOdatabase under accession code

GSE9741140. The publicly available survival information and gene
expression data of a DLBCL patient cohort are available in the sup-
plementary materials of a previous report and GDC Data Portal
[https://gdc.cancer.gov/about-data/publications/DLBCL-2018]60. The
complete output of analysis using Deplink is provided in figshare
[https://doi.org/10.6084/m9.figshare.21708425.v1] and can be queried
via a searchable database (http://www.chaolulab-database.com). The
raw sequencing data generated in this study (CUT&Tag, RNA-seq, and
CRISPR-Cas9 genetic screening) are available in the NCBI GEO data-
base under accession code GSE183487. The mass spectrometry raw
data generated in this study are available in the ProteomeXchange
member PRIDE database under accession code PXD033140. Source
data are provided with this paper.

Code availability
A custom R package ‘deplink’ dedicated to the association of genetic
dependency with various cell line molecular features, as well as
example data are accessible via GitHub at the following address:
https://github.com/seanchen607/deplink, including a readme.txt file
providing instructions for installing and running the software. A
detailed tutorial for software’s installing, running, and the expected
output is exhibited on a GitHub page (https://seanchen607.github.io/
deplink.html).

References
1. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic

control. Nat. Rev. Genet. 17, 487–500 (2016).
2. Valencia, A.M. &Kadoch,C.Chromatin regulatorymechanisms and

therapeutic opportunities in cancer. Nat. Cell Biol. 21, 152 (2019).
3. Fischle,W.,Wang, Y. & Allis, C. D. Histone and chromatin cross-talk.

Curr. Opin. Cell Biol. 15, 172–183 (2003).
4. Suganuma, T. & Workman, J. L. Crosstalk among histone mod-

ifications. Cell 135, 604–607 (2008).
5. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNAmethylation

pathways and their crosstalk with histone methylation. Nat. Rev.
Mol. Cell Biol. 16, 519–532 (2015).

6. Lee, J.-S., Smith, E. & Shilatifard, A. The language of histone
crosstalk. Cell 142, 682–685 (2010).

7. Ooi, S. K. T. et al. DNMT3L connects unmethylated lysine 4 of his-
toneH3 todenovomethylation ofDNA.Nature448, 714–717 (2007).

8. Baubec, T. et al. Genomic profiling of DNA methyltransferases
reveals a role for DNMT3B in genic methylation. Nature 520,
243–247 (2015).

9. Weinberg, D.N. et al. ThehistonemarkH3K36me2 recruits DNMT3A
and shapes the intergenic DNAmethylation landscape.Nature 573,
281–286 (2019).

10. Weinberg, D. N. et al. Two competing mechanisms of DNMT3A
recruitment regulate the dynamics of de novo DNA methylation at
PRC1-targeted CpG islands. Nat. Genet. 53, 794–800 (2021).

11. Li, Y., Chen, X. & Lu, C. The interplay between DNA and histone
methylation: molecular mechanisms and disease implications.
EMBO Rep. 22, e51803 (2021).

12. Blackledge, N. P. & Klose, R. J. The molecular principles of gene
regulation by Polycomb repressive complexes. Nat. Rev. Mol. Cell
Biol. https://doi.org/10.1038/s41580-021-00398-y (2021).

13. Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated
H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011).

14. Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by
active chromatin marks. Mol. Cell 42, 330–341 (2011).

15. Wilson, B. G. et al. Epigenetic antagonism between polycomb and
SWI/SNF complexes during oncogenic transformation. Cancer Cell
18, 316–328 (2010).

16. Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/
SNFmediates polycombeviction andepigenetic reprogrammingof
the INK4b-ARF-INK4a locus. Mol. Cell. Biol. 28, 3457–3464 (2008).

Article https://doi.org/10.1038/s41467-023-39990-5

Nature Communications |         (2023) 14:4259 14

https://maayanlab.cloud/Enrichr
https://depmap.org/portal
https://depmap.org/portal
https://mips.helmholtz-muenchen.de/corum
https://mips.helmholtz-muenchen.de/corum
https://downloads.thebiogrid.org/BioGRID
https://figshare.com/s/35a82ed1e48d0ec4e9e4
https://figshare.com/s/35a82ed1e48d0ec4e9e4
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97411
https://gdc.cancer.gov/about-data/publications/DLBCL-2018
https://doi.org/10.6084/m9.figshare.21708425.v1
http://www.chaolulab-database.com
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183487
https://dx.doi.org/10.6019/PXD033140
https://github.com/seanchen607/deplink
https://seanchen607.github.io/deplink.html
https://seanchen607.github.io/deplink.html
https://doi.org/10.1038/s41580-021-00398-y


17. Papillon-Cavanagh, S. et al. Impaired H3K36 methylation defines a
subset of head andneck squamous cell carcinomas.Nat. Genet.49,
180–185 (2017).

18. Streubel, G. et al. The H3K36me2 methyltransferase Nsd1 demar-
cates PRC2-mediated H3K27me2 and H3K27me3 domains in
embryonic stem cells. Mol. Cell 70, 371–379.e5 (2018).

19. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and
non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

20. Gounder, M. et al. Tazemetostat in advanced epithelioid sarcoma
with loss of INI1/SMARCB1: an international, open-label, phase 2
basket study. Lancet Oncol. 21, 1423–1432 (2020).

21. Kwok, H. S. et al. Drug addiction unveils a repressive methylation
ceiling in EZH2-mutant lymphoma. Nat. Chem. Biol. (2023).

22. Briggs, S. D. et al. Trans-histone regulatory pathway in chromatin:
gene silencing. Nature 418, 498–498 (2002).

23. McGinty, R. K., Kim, J., Chatterjee, C., Roeder, R. G. & Muir, T. W.
Chemically ubiquitylated histone H2B stimulates hDot1L-mediated
intranucleosomal methylation. Nature 453, 812–816 (2008).

24. Costanzo, M., Baryshnikova, A., Myers, C. L., Andrews, B. & Boone,
C. Charting the genetic interaction map of a cell. Curr. Opin. Bio-
technol. 22, 66–74 (2011).

25. Baryshnikova, A. et al. Quantitative analysis of fitness and genetic
interactions in yeast on a genome scale. Nat. Methods 7,
1017–1024 (2010).

26. Costanzo, M. et al. A global genetic interaction network maps a
wiring diagram of cellular function. Science 353, aaf1420
(2016).

27. Braberg, H. et al. Genetic interaction mapping informs integrative
structure determination of protein complexes. Science 370,
eaaz4910 (2020).

28. Horlbeck, M. A. et al. Mapping the genetic landscape of human
cells. Cell 174, 953–967.e22 (2018).

29. Wainberg, M. et al. A genome-wide atlas of co-essential modules
assigns function to uncharacterized genes. Nat. Genet. 53,
638–649 (2021).

30. Pan, J. et al. Interrogation ofmammalianprotein complex structure,
function, and membership using genome-scale fitness screens.
Cell Syst. 6, 555–568.e7 (2018).

31. Kim, E. et al. A network of human functional gene interactions from
knockout fitness screens in cancer cells. Life Sci. Alliance 2,
e201800278 (2019).

32. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170,
564–576.e16 (2017).

33. Behan, F. M. et al. Prioritization of cancer therapeutic targets using
CRISPR-Cas9 screens. Nature 568, 511–516 (2019).

34. Ghandi, M. et al. Next-generation characterization of the Cancer
Cell Line Encyclopedia. Nature 569, 503–508 (2019).

35. Giurgiu, M. et al. CORUM: the comprehensive resource of mam-
malian protein complexes-2019. Nucleic Acids Res. 47,
D559–D563 (2019).

36. Blyth, K., Cameron, E. R. &Neil, J. C. The RUNXgenes: gain or loss of
function in cancer. Nat. Rev. Cancer 5, 376–387 (2005).

37. Shaffer, A. L. et al. IRF4 addiction in multiplemyeloma. Nature 454,
226–231 (2008).

38. Garraway, L. A. et al. Integrative genomic analyses identifyMITF as a
lineage survival oncogene amplified in malignant melanoma. Nat-
ure 436, 117–122 (2005).

39. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in
cancer. Nucleic Acids Res. 47, D941–D947 (2019).

40. Runge, J. S., Raab, J. R. &Magnuson, T. Identification of two distinct
classes of the human INO80 complex genome-wide.G3 (Bethesda)
8, 1095–1102 (2018).

41. Seachrist, D. D., Anstine, L. J. & Keri, R. A. FOXA1: a pioneer of
nuclear receptor action in breast cancer. Cancers (Basel) 13,
5205 (2021).

42. Ng, C. S., Kasumba, D. M., Fujita, T. & Luo, H. Spatio-temporal
characterization of the antiviral activity of the XRN1-DCP1/2 aggre-
gation against cytoplasmic RNA viruses to prevent cell death. Cell
Death Differ. 27, 2363–2382 (2020).

43. Lamers, M. M., van den Hoogen, B. G. & Haagmans, B. L. ADAR1:
‘Editor-in-Chief’ of cytoplasmic innate immunity. Front. Immunol.
10, 1763 (2019).

44. Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a
resource for therapeutic biomarker discovery in cancer cells.
Nucleic Acids Res. 41, D955–D961 (2013).

45. Guarducci, C. et al. Cyclin E1 andRbmodulation as common events
at time of resistance to palbociclib in hormone receptor-positive
breast cancer. NPJ Breast Cancer 4, 38 (2018).

46. Min, A. et al. Cyclin E overexpression confers resistance to the
CDK4/6 specific inhibitor palbociclib in gastric cancer cells.Cancer
Lett. 430, 123–132 (2018).

47. Adams, M. K. et al. Differential complex formation via paralogs in
the human Sin3 protein interaction network.Mol. Cell. Proteom. 19,
1468–1484 (2020).

48. Matsumura, Y. et al. Spatiotemporal dynamics of SETD5-containing
NCoR-HDAC3 complex determines enhancer activation for adipo-
genesis. Nat. Commun. 12, 7045 (2021).

49. Wang, Z. et al. SETD5-coordinated chromatin reprogramming reg-
ulates adaptive resistance to targeted pancreatic cancer therapy.
Cancer Cell 37, 834–849.e13 (2020).

50. Nakagawa, T. et al. The autism-related protein SETD5 controls
neural cell proliferation through epigenetic regulation of rDNA
expression. iScience 23, 101030 (2020).

51. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in fol-
licular and diffuse large B-cell lymphomas of germinal-center ori-
gin. Nat. Genet. 42, 181–185 (2010).

52. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for
lymphoma with EZH2-activating mutations. Nature 492,
108–112 (2012).

53. Soto-Feliciano, Y. M. et al. Amolecular switch betweenmammalian
MLL complexes dictates response to Menin–MLL inhibition. Cancer
Discov. 13, 146–169 (2023).

54. Borkin, D. et al. Pharmacologic inhibition of the Menin–MLL inter-
action blocks progression of MLL leukemia in vivo. Cancer Cell 27,
589–602 (2015).

55. Ezponda, T. et al. UTX/KDM6A loss enhances the malignant phe-
notype of multiple myeloma and sensitizes cells to EZH2 inhibition.
Cell Rep. 21, 628–640 (2017).

56. Ren, Z. et al. PHF19 promotes multiple myeloma tumorigenicity
through PRC2 activation and broad H3K27me3 domain formation.
Blood 134, 1176–1189 (2019).

57. Hernando, H. et al. EZH2 inhibition blocks multiple myeloma cell
growth through upregulation of epithelial tumor suppressor genes.
Mol. Cancer Ther. 15, 287–298 (2016).

58. Krivtsov, A. V. et al. A Menin–MLL inhibitor induces specific chro-
matin changes and eradicates disease inmodels ofMLL-rearranged
leukemia. Cancer Cell 36, 660–673.e11 (2019).

59. Béguelin, W. et al. EZH2 is required for germinal center formation
and somatic EZH2 mutations promote lymphoid transformation.
Cancer Cell 23, 677–692 (2013).

60. Schmitz, R. et al. Genetics and pathogenesis of diffuse large b-cell
lymphoma. N. Engl. J. Med. 378, 1396–1407 (2018).

61. Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or
refractory B-cell non-Hodgkin lymphoma and advanced solid
tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol.
19, 649–659 (2018).

62. Ribrag, V. et al. Interim results from an ongoing Phase 2Multicenter
Study of Tazemetostat, an EZH2 inhibitor, in patients with relapsed
or refractory (R/R) diffuse large B-cell lymphoma (DLBCL). Blood
132, 4196–4196 (2018).

Article https://doi.org/10.1038/s41467-023-39990-5

Nature Communications |         (2023) 14:4259 15



63. Bayraktar, E. C. et al. Metabolic coessentiality mapping identifies
C12orf49 as a regulator of SREBP processing and cholesterol
metabolism. Nat. Metab. 2, 487–498 (2020).

64. Pan, J. et al. Sparse dictionary learning recovers pleiotropy from
human cell fitness screens. Cell Syst. S2405-4712(21)00488–9
(2022) https://doi.org/10.1016/j.cels.2021.12.005.

65. Boyle, E. A., Pritchard, J. K. & Greenleaf, W. J. High-resolution
mapping of cancer cell networks using co-functional interactions.
Mol. Syst. Biol. 14, e8594 (2018).

66. Sabath, K. et al. INTS10-INTS13-INTS14 form a functional module of
Integrator that binds nucleic acids and the cleavage module. Nat.
Commun. 11, 3422 (2020).

67. Pfleiderer, M. M. & Galej, W. P. Structure of the catalytic core of the
Integrator complex. Mol. Cell 81, 1246–1259.e8 (2021).

68. Replogle, J. M. et al. Mapping information-rich genotype-pheno-
type landscapes with genome-scale Perturb-seq. Cell 185,
2559–2575.e28 (2022).

69. Beckwith, S. L. et al. The INO80 chromatin remodeler sustains
metabolic stability by promoting TOR signaling and regulating
histone acetylation. PLoS Genet. 14, e1007216 (2018).

70. Hemming, M. L. et al. MOZ and Menin–MLL complexes are com-
plementary regulators of chromatin association and transcriptional
output in gastrointestinal stromal tumor. Cancer Discov. 12,
1804–1823 (2022).

71. Neff, T. et al. Polycomb repressive complex 2 is required for MLL-
AF9 leukemia. Proc. Natl Acad. Sci. USA 109, 5028–5033 (2012).

72. Shi, J. et al. The Polycomb complex PRC2 supports aberrant self-
renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid
leukemia. Oncogene 32, 930–938 (2013).

73. Burr, M. L. et al. An evolutionarily conserved function of polycomb
silences theMHCClass I antigen presentation pathway and enables
immune evasion in cancer. Cancer Cell 36, 385–401.e8 (2019).

74. Schuettengruber, B., Bourbon, H.-M., Di Croce, L. & Cavalli, G.
Genome regulation by polycomb and trithorax: 70 years and
counting. Cell 171, 34–57 (2017).

75. Oricchio, E. et al. Genetic and epigenetic inactivation of SESTRIN1
controls mTORC1 and response to EZH2 inhibition in follicular
lymphoma. Sci. Transl. Med. 9, eaak9969 (2017).

76. Sparbier, C. E. et al. Targeting Menin disrupts the KMT2A/B and
polycomb balance to paradoxically activate bivalent genes. Nat.
Cell Biol. 25, 258–272 (2023).

77. Meyers, R.M. et al. Computational correctionof copynumber effect
improves specificity of CRISPR-Cas9 essentiality screens in cancer
cells. Nat. Genet. 49, 1779–1784 (2017).

78. Pacini, C. et al. Integrated cross-study datasets of genetic depen-
dencies in cancer. Nat. Commun. 12, 1661 (2021).

79. Dempster, J. M. et al. Chronos: a cell population dynamicsmodel of
CRISPR experiments that improves inference of gene fitness
effects. Genome Biol. 22, 343 (2021).

80. Li, T. et al. GeNets: a unified web platform for network-based
genomic analyses. Nat. Methods 15, 543–546 (2018).

81. Oughtred, R. et al. The BioGRID interaction database: 2019 update.
Nucleic Acids Res. 47, D529–D541 (2019).

82. Malta, T. M. et al. Machine learning identifies stemness features
associated with oncogenic dedifferentiation. Cell 173,
338–354.e15 (2018).

83. Lu, C. et al. Histone H3K36 mutations promote sarcomagenesis
through altered histone methylation landscape. Science 352,
844–849 (2016).

84. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of
small samples and single cells. Nat. Commun. 10, 1930 (2019).

Acknowledgements
We thank Giuseppe Leuzzi, Lei Ding, Liling Wan, and Tahir Sheikh for
technical help, and William Seong for experimental support. A sche-
matic diagramof the currentmodel was created using BioRender. These
studies were supported by the Columbia Velocity Award (to J.E.A. and
C.L.), the Pew-Stewart Scholars for Cancer Research (to C.L.), the V
Scholar Grant funded by the V Foundation (to C.L.), and NIH grants
(R35GM138181 and R01DE031873 to C.L.; R01CA197774 to A.C.;
R01CA172492 to L.P.). F.J.S.R. is an HHMI Hanna Gray Fellow and was
supported by the V Foundation for Cancer Research (V2022-028), NCI
Cancer Center Support Grant P30-CA1405, the Ludwig Center at MIT
(2036636), Koch Institute Frontier Awards (2036648 and 2036642), and
theMITResearchSupportCommittee (3189800). These studies used the
resources of the Columbia flow cytometry shared resource and the
Judith P. Sulzberger Columbia Genome Center, funded in part through
NCI Cancer Center Support Grant P30CA013696.

Author contributions
Conceptualization, X.C., A.C., and C.L.; Methodology, X.C., A.C., and
C.L.; Formal Analyses, X.C., Y.L., X.X., F.Z., B.E., M.A.P., J.T.M., D.K., V.S.,
M.M., C.S., F.J.S.R., Y.M.S.; Investigation, X.C.; Writing—original draft,
X.C. and C.L.; Writing—review & editing, X.C., Y.L., F.Z., D.K., A.C., J.E.A.,
L.P., and C.L.; Supervision, A.C., J.E.A., L.P., and C.L.; Funding acquisi-
tion, A.C., J.E.A., L.P., F.J.S.R., and C.L.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39990-5.

Correspondence and requests for materials should be addressed to
Chao Lu.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39990-5

Nature Communications |         (2023) 14:4259 16

https://doi.org/10.1016/j.cels.2021.12.005
https://doi.org/10.1038/s41467-023-39990-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA. 2Union Hospital Cancer Center, Tongji
Medical College, Huazhong University of Science and Technology, 430022Wuhan, China. 3Division of Hematology and Oncology, Department of Medicine,
Columbia University Irving Medical Center, New York, NY 10032, USA. 4Institute for Cancer Genetics, Columbia University Irving Medical Center, New York,
NY 10032,USA. 5Department of Pathology andCell Biology,ColumbiaUniversity IrvingMedical Center, NewYork, NY 10032,USA. 6DavidH. Koch Institute for
Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. 7Department of Biology, Massachusetts Institute of
Technology, Cambridge, MA 02142, USA. 8Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032,
USA. 9Present address: Marine College, Shandong University, 264209 Weihai, China. 10These authors contributed equally: Xiao Chen, Yinglu Li.

e-mail: cl3684@cumc.columbia.edu

Article https://doi.org/10.1038/s41467-023-39990-5

Nature Communications |         (2023) 14:4259 17

mailto:cl3684@cumc.columbia.edu

	Context-defined cancer co-dependency mapping identifies a functional interplay between PRC2 and MLL-MEN1 complex in lymphoma
	Results
	Developing the genetic dependency correlation network (DCN)
	Deplink: an integrative analysis of context-specific genetic dependency
	Cancer type
	Mutational signature
	Chromatin modification
	Transcriptome signature
	Drug response
	DCN reveals novel insights into composition of chromatin complexes
	Functional interplay between MLL–MEN1 complex and PRC2 complexes
	EZH2 mutant DLBCL cells display preferential dependency on MLL-MEN1
	Expansion of H3K27me3 domains drives redistribution of MLL–MEN1 complex
	EZH2 mutant lymphoma cells are addicted to MLL–MEN1 target genes
	MEN1 inhibitor synergizes with Tazemetostat in inhibiting growth of EZH2 mutant DLBCL

	Discussion
	Methods
	Dependency correlation network analysis
	Deplink
	Cell lines and cell culture
	Lentivirus transduction
	Chromatin-focused CRISPR-Cas9 genetic screening and data analysis
	CRISPR-Cas9-mediated knockout
	Functional assays
	Immunoblotting and mass spectrometry
	Xenograft studies
	RNA extraction and sequencing
	CUT&Tag experiment and sequencing
	RNA-seq data analysis
	CUT&Tag data analysis
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




