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Identification of transcriptional programs
using dense vector representations defined
by mutual information with GeneVector

Nicholas Ceglia1 , Zachary Sethna1,2,3,9, Samuel S. Freeman1,9, Florian Uhlitz1,
Viktoria Bojilova1, Nicole Rusk 1, Bharat Burman4, Andrew Chow 5,
Sohrab Salehi1, Farhia Kabeer6,7, Samuel Aparicio6,7,
Benjamin D. Greenbaum 1,8, Sohrab P. Shah 1 & Andrew McPherson1

Deciphering individual cell phenotypes from cell-specific transcriptional pro-
cesses requires high dimensional single cell RNA sequencing. However, cur-
rent dimensionality reduction methods aggregate sparse gene information
across cells, without directly measuring the relationships that exist between
genes. By performing dimensionality reduction with respect to gene co-
expression, low-dimensional features can model these gene-specific relation-
ships and leverage shared signal to overcome sparsity. We describe Gene-
Vector, a scalable framework for dimensionality reduction implemented as a
vector space model using mutual information between gene expression.
Unlike other methods, including principal component analysis and variational
autoencoders, GeneVector uses latent space arithmetic in a lower dimensional
gene embedding to identify transcriptional programs and classify cell types. In
this work, we show in four single cell RNA-seq datasets that GeneVector was
able to capture phenotype-specific pathways, performbatch effect correction,
interactively annotate cell types, and identify pathway variationwith treatment
over time.

Maintenance of cell state and execution of cellular function are based
on coordinated activity within networks of related genes. To approx-
imate these connections, transcriptomic studies have conceptually
organized the transcriptome into sets of co-regulated genes, termed
gene programs1 or metagenes2. The first intuitive step to identify such
co-regulated genes is the reduction of dimensionality for sparse
expression measurements: high dimensional gene expression data is
compressed into a minimal set of explanatory features that highlight
similarities in cellular function. However, to map existing biological

knowledge to each cell, the derived features must be interpretable at
the gene level.

To find similarities in lower dimensions, biology can borrow from
the field of natural language processing (NLP). NLP commonly uses
dimensionality reduction to identify word associations within a body
of text3,4. To find contextually similarwords, NLPmethodsmake use of
vector space models to represent similarities in a lower dimensional
space. Similar methodology has been applied to bulk RNA-seq
expression for finding co-expression patterns5. Inspired by such
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work, we developed a tool that generates gene vectors based on single
cell RNA (scRNA)-seq expression data. While current methods reduce
dimensionality with respect to sparse expression across each cell, our
tool produces a lower dimensional embedding with respect to each
gene. The vectors derived from GeneVector provide a framework for
identifying metagenes within a gene co-expression graph and relating
these metagenes back to each cell using latent space arithmetic.

The most pervasive method for identifying the sources of varia-
tion in scRNA-seq studies is principal component analysis (PCA)6–8. The
relationship of principal components to gene expression is linear,
allowing lower dimensional structure to be directly related to variation
in expression. A PCA embedding is an ideal input for building a nearest
neighbor graph for unsupervised clustering algorithms9 and visuali-
zation methods including t-SNE10 and UMAP11. However, the assump-
tion of a continuous multivariate gaussian distribution creates
distortion in modeling read counts generated by a true distribution
that is over-dispersed, possibly zero-inflated12, with positive support
and mean close to zero2. Despite such issues, gene programs gener-
ated from PCA loadings have been used to generate metagenes that
explain each principal component13. While these loadings highlight
sets of genes that explain each orthogonal axis of variation, pathways
and cell type signatures can be conflated within a single axis.

In addition to PCA, more sophisticated methods have been devel-
oped to better handle the specific challenges of scRNA data. The single
cell variational inference (scVI) framework14 generates an embedding
using non-linear autoencoders that can be used in a range of analyses
including normalization, batch correction, gene-dropout correction,
and visualization. While scVI embeddings show improved performance
over traditional PCA-based analysis in these tasks, they have a non-linear
relationship to the original count matrix that may distort the link
between structure in the generated embedding and potentially identi-
fiable gene programs2. A subsequent method uses a linearly decoded
variational autoencoder (LDVAE), which combines a variational auto-
encoder with a factor model of negative binomial distributed read
counts to learn an interpretable linear embedding of cell expression
profiles2. However, the relationship between gene expression and cell
representation is still tied to correlated variation across cells, whichmay
confound co-varying pathway and phenotypic signatures.

Recognizing the importanceofmodeling the non-linearity of gene
expression and the complexity of statistical dependencies between
genes, several methods have adopted information theoretical
approaches. Many of these methods use mutual information (MI), an
information theoretic measure of the statistical dependence between
two variables. ARACNE15 uses MI to prune independent and indirectly
interacting genes during construction of a gene regulatory network
from microarray expression data. PIDC16 identifies regulatory rela-
tionships using partial information decomposition (PID), a measure of
the dependence between triples of variables. The authors apply PIDC
to relatively high-depth single-cell qPCR datasets and restrict their
analysis to on the order of hundreds of genes. More recently, IQCELL17

uses MAGIC18 to impute missing gene expression, builds a GRN from
pairwise MI between genes, and applies a series of filters to produce a
GRN composed of only functional relationships. The authors use
IQCELL to identify known causal gene interactions in scRNA-seq data
from mouse T-cell and red blood cell development experiments.
Because of the success of these methods, we hypothesized that MI
could be combinedwith vector spacemodels to produce ameaningful
low dimensional representation of genes from scRNA data.

In this work, we present GeneVector (Fig. 1) as a framework for
generating low dimensional embeddings constructed from themutual
information between genes. GeneVector summarizes co-expression of
genes as mutual information between the probability distribution of
read counts across cells. We showcase GeneVector on four scRNA
datasets produced from a diverse set of experiments: peripheral blood
mononuclear cells (PBMCs) subjected to interferon beta stimulation19,
the Tumor Immune Cell Atlas (TICA)20, treatment naive multi-site
samples from High Grade Serous Ovarian Cancers (HGSOC)21 and a
time series of cisplatin treatment in patient-derived xenografts (PDX)
of triple negative breast cancer (TNBC)22. We first confirm GeneVec-
tor’s ability to identify putatively co-regulated gene pairs from sparse
single cell expression measurements using the TICA and PBMC data-
sets. We demonstrate that latent space arithmetic can be used to
accurately label cell types in the TICA dataset and validate our cell type
predictions against published annotations. Next, we show that Gene-
Vector can identify metagenes corresponding to cell-specific tran-
scriptional processes in PBMCs, including interferon activated gene
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Fig. 1 | GeneVector Framework.Overview of GeneVector framework starting from
single cell read counts. Mutual information is computed on the joint probability
distribution of read counts for each gene pair. Each pair is used to train a single
layer neural network where the MSE loss is evaluated from the model output
(w1

Tw2) with the mutual information between genes. From the resulting weight

matrix, a gene embedding, cell embedding, and co-expression similarity graph are
constructed. Using vector space arithmetic, downstream analyses include identi-
fication of cell-specific metagenes, batch effect correction, and cell type
classification.
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expression (ISG). We use vector space arithmetic to directly map
metagenes to site specific changes in primary and metastatic sites in
the HGSOC dataset, capturing changes in MHC class I expression and
epithelial-mesenchymal transition (EMT). Finally, we showGeneVector
can identify cisplatin treatment dependent transcriptional programs
related to TGF-beta in TNBC PDXs.

Results
Defining the GeneVector framework
We trained a single layer neural network over all gene pairs to generate
low dimensional gene embeddings and identify metagenes from a co-
expression similarity graph. The inputweights (w1) and output weights
(w2) are updated with adaptive gradient descent (ADADELTA)23. Gene
co-expression relationships are defined using mutual information
(Methods: Mutual Information) computed from a joint probability
distribution of expression counts. Training loss is evaluated as the
mean squared error of mutual information with the model output,
defined asw1

Tw2. The final latent space is amatrix defined as a series of
vectors for each gene.

Gene vectors produced by the framework are useful for several
fundamental gene expression analyses. Gene vectors weighted by
expression in each cell are combined to generate the cell embedding
analysis of cell populations and their relationships to experimental
covariates. The cell embedding canbe batch corrected by using vector
arithmetic to identify vectors that represent batch effects and then
shift cells in the opposite direction (Methods: Batch correction). A co-
expression graph is constructed in which each node is defined as a
gene and each edge is weighted by cosine similarity. After generating
the co-expression graph, we use Leiden clustering9 to identify meta-
gene clusters. Further downstream analysis of the cell embedding
includes phenotype assignment based on sets of marker genes and
computation of the distances between cells and metagenes to high-
light changes related to experimental covariates (Fig. 1).

To perform cell type assignment, a set of known marker genes is
used to generate a representative vector for each cell type, where each
gene vector is weighted by the normalized and log-transformed gene
expression. The cosine similarity of each possible phenotype is com-
puted between the cell vector and the marker gene vector. SoftMax is
applied to cosine distances to obtain a pseudo-probability over each
phenotype (Methods: Cell type assignment). Discrete labels can be
assigned to cells by selecting the phenotype corresponding to the
maximum pseudo-probability. More generally, gene vectors can be
composed together to describe interesting gene expression features.
Cell or gene vectors can then be compared against these feature vec-
tors to evaluate the relevance of that feature to a given cell or gene
(Methods: Generation of Predictive Genes).

Robust inference of gene co-regulation with GeneVector
Our model relies on the advantages of mutual information to define
relationships between genes, as opposed to other distancemetrics. To
evaluate how MI contributes to the observed performance of the
model, we first validated that the vectors inferred by GeneVector
capture semantic qualities of genes including pathway memberships
and regulatory relationships. Specifically, we assessed the extent to
which pairs of genes within the same pathway, or expressed within the
same cell types, produced similar vector representations in the PBMC
dataset. As a ground truth we computed, for each gene pair, the
number of combined pathways from Reactome24 and MSigDB25,26 cell
type signatures (C8) for which both genes were members. In addition
to training GeneVector using raw read counts with an MI target, we
trained GeneVector using normalized and log-transformed read
counts on Pearson correlation coefficient to evaluate the relative
benefit of MI on the accuracy of the model output. For both the cor-
relation andMIbasedmodels, cosine similarities betweengene vectors
showed a stronger relationship with the number of shared pathways

and cell type signatures than randomly shuffled gene pairs (Fig. 2A, C).
Comparing the MI model and the correlation model directly, the MI
model produced a much stronger relationship than the correlation
basedmodel (r2 = 0.233 vs. r2 = 0.093, Fig. 2B, D). To provide a pathway
specific example, we found that the most similar genes by cosine
similarity to IFIT1 (a known interferon stimulated gene) using the
correlation objective were less coherent in terms of ISG pathway
membership signal (6 of 16 genes were in the Interferon Signaling
Reactome pathway R-HSA-913531) (Fig. 2E) than with mutual infor-
mation (12 of 16 genes) (Fig. 2F). The greater proportion of interferon
stimulated pathway genes with high similarity to IFIT1 using a mutual
information objective function (Fig. 2F vs. 2E) is consistent with the
improved correlation between pathway co-membership and cosine
similarity over the Pearson correlation coefficient objective (Fig. 2D
vs. 2FB).

Next, we sought to understand whether GeneVector was able to
capture relationships between genes with known interactions such as
transcription factors (TF) and their targets. GeneVector cosine simi-
larities of TF-target pairs annotated based on ChIP-Seq data27 were
significantly increased relative to un-annotated gene pairs in the TICA
dataset (Fig. 2G). We also considered literature annotated activator-
target and repressor-target TF-target gene pairs28. As expected,
activator-target pairs showed increased cosine similarity above unan-
notated pairs. Importantly, repressor-target pairs showed an equally
strong increase in cosine similarity above unannotated pairs high-
lighting GeneVector’s ability to identify a diversity of statistical
dependencies between co-regulated genes. By comparison, Pearson
correlation coefficients of ChIP-seq annotated TF-target pairswere not
significantly different from unannotated gene pairs (Fig. 2H). Both
activator-target and repressor-target pairs were significantly different
from unannotated pairs, though correlation was on-average positive
for both repressor-target and activator-target pairs (Fig. 2H). In fact,
while many repressor-target pairs had high cosine similarity indicative
of a meaningful regulatory relationship, their correlation coefficients,
computed with normalized and log-transformed counts, were always
positive (Fig. 2I). For example, SOCS3-STAT4 exhibited the lowest
correlation of annotated repressor-target pairs (r2 = 0.017) and aggre-
gating normalized and log-transformed expression across cell types
showed anabsence of any relationship between thesegenes (Fig. 2J). In
contrast, analysis of activator-target pair KLF4-THBD revealed a posi-
tive correlation driven by co-expression in myeloid cells and T cells
(Fig. 2K). This relationship is further evidenced when looking at the
expression in more detailed cell type annotations (Fig. 2L). Identifica-
tion of mutually exclusive expression is a theoretical benefit of
correlation-based similarity measures, however, the sparsity of scRNA
likely results in positive or low correlation even for known examples of
mutual exclusivity. In summary, the vector space produced by Gene-
Vector successfully recovers the latent similarities between function-
ally related genes, including negative regulators and their targets,
overcoming the sparsity of scRNA data that confounds simpler
approaches.

Fast and accurate cell type classification using GeneVector
Comparative analysis of gene expression programs across large
cohorts of patients can potentially identify transcriptional patterns in
common cell types shared between many cancers. However, classifi-
cation of cell types using methods such as CellAssign29 are computa-
tionally expensive. Furthermore, the large number of covariates in
these datasets makes disentangling patient-specific signals from dis-
ease and therapy difficult. GeneVector provides a fast and accurate
method of cell type classification. We perform cell type classification
on a subset of 23,764 cells from the Tumor Immune Cell Atlas (TICA)
composedof 181patients and 18 cancer types20. Thedatasetwas subset
to 2000 highly variable genes and the unnormalized read counts were
used train GeneVector. Cell vectors were generated by weighting each
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gene vector by the normalized and log-transformed expression per
cell. Cell types were summarized into three main immune cell types:
T cells, B/Plasma, and Myeloid cells (Fig. 3A) from the original anno-
tations (Fig. 3B). We selected a set of gene markers for each cell type
(T cells: CD3D, CD3G, CD3E, TRAC, IL32, CD2; B cells: CD79A, CD79B,
MZB1, CD19, BANK1; and Myeloid cells: LYZ, CST3, AIF1, CD68, C1QA,
C1QB, C1QC) based on signatures obtained from CellTypist30. For each
phenotype and each cell, we computed the cosine distance to the log-
normalized expression weighted average of the marker gene vectors.
The pseudo-probabilities for the three cell types are generated by
applying a SoftMax function to the set of cosine distances. The max-
imum pseudo-probability is used to classify each cell into T cell, B/
Plasma, or Myeloid (Fig. 3C).

To assess performance, we computed accuracy against the
coarse labels in a confusion matrix as the percentage of correctly
classified cells over the total number cells for each summarized cell
type. We found 97.1% of T cells, 95% of myeloid cells, and 94.3% of B/
Plasma cells were correctly classified with respect to the original
annotations (Fig. 3D). Additionally, we classified cells using the same
marker genes with CellAssign and found significantly decreased
performance in the classification of myeloid cells (85.6%) (Fig. 3E).

Overall, the percentage of cells misclassified using GeneVector
(3.977%) showed improvement over CellAssign (7.54%). Using the
pseudo-probabilities, GeneVector can highlight cells that share gene
signatures including plasmacytoid dendritic cells (pDCs), where cell
type definition is difficult31 (Fig. 3F). For each cell type, we validated
that the classified cells are indeed expressing the supplied markers
by showing the normalized and log-transformed expression for each
marker grouped by classified cell type (Fig. 3G). For those cells
GeneVector reassigned from the original annotations (Fig. 3H), we
examined the mean normalized and log-transformed expression per
marker gene and found that many of these cells appear misclassified
in original annotations (Fig. 3I). Cells originally annotated as T cells
that were reassigned as B/Plasma by GeneVector show high expres-
sion for only B/Plasma markers (CD19, BANK1, CD79A, and CD79B).
Additionally, there is evidence that many of these reassigned cells
may be doublets. B/Plasma cells reassigned to T or myeloid cells
show simultaneous expression of both gene markers. While any
computational cell type classification cannot be considered ground
truth, cell type assignment with GeneVector is an improvement over
CellAssign and demonstrates sensitivity to cells that express over-
lapping cell type transcriptional signatures.

Fig. 2 | Comparison of Results using Mutual Information. A–D Pathway co-
membership vs. cosine similarity between gene vectors for all gene pairs in PBMCs.
Each point represents one gene pair, and plots show the number of pathways
(combined Reactome and MSigDB cell type signatures [C8]) that contain both
genes (y-axis) and the cosine distance between the two genes (x-axis). The results
show both correlationA,B andMI (Mutual Information) C,D based GeneVector. In
addition to a standard set of results B, D, a baseline relationship between pathway
co-membership and cosine similarity is established by performing an identical
analysis over randomly shuffled gene A, C. E Top 16 most similar genes by cosine
similarity to IFIT1 using correlation coefficient. Genes in the interferon signaling
pathway are colored orange. F Top 16 most similar genes to IFIT1 after training
GeneVector using mutual information shows a higher number of interferon sig-
naling pathwaygenes.G,HCosine similarity and Pearson correlation coefficient for
un-annotated gene pairs (n = 314090), ChIP-Seq annotated TF-targets pairs
(n = 1275), and literature annotated activator (n = 26) or repressor (n = 26) TF-target

pairs. The center of theboxplot is denotedby themedian, a horizontal line dividing
the box into two equal halves. The bounds of the box are defined by the lower
quartile (25th percentile) and the upper quartile (75th percentile). The whiskers
extend from the box and represent the data points that fall within 1.5 times the
interquartile range (IQR) from the lower and upper quartiles. Any data point out-
side this range is considered an outlier and plotted individually. Significance
assessed using Mann-Whitney-Wilcoxon two-sided test. I Cosine similarity versus
correlationcoefficient for genepairs in theTICA (Tumor ImmuneCell Atlas) dataset
with TF-target gene pairs highlighted (blue) and colored by activator/repressor
status (green/orange respectively). J, K Linear regression of mean log-normalized
expression per cell type±95% confidence interval for repressor TF-target pair
SOCS3-STAT4 and activator TF-target pair KLF-THBD, respectively. L Mean log-
normalized expression for SOCS3-STAT4 and KLF4-THBD across annotated cell
types. Source data provided as a Source Data file.
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Next, we benchmarked GeneVector’s cell type assignment per-
formance with respect to four input types: raw read counts, log-
transformed raw counts, normalized total counts per cell, and nor-
malized total counts per cell with log-transformation. We evaluated
each approach on the original TICA dataset, in addition to a series of
datasets forwhichweartificially generated a library size batcheffectby
down sampling reads in subsets of cells (Supplementary Fig. 1A–E).
Performance was evaluated by calculating cell type assignment accu-
racy and by ranking gene pairs by cosine similarity for annotated co-
expressed and mutually exclusive gene pairs using CellTypist (Meth-
ods: Coexpressed and Mutually Exclusive Markers)30. Evaluating gene
pair rankings on repeat trainedmodels of the full TICA dataset, wefind
that all four preprocessing types show a similar ranking of co-
expressed gene pairs (Supplementary Fig. 1A, left). Interestingly, raw
counts produce significantly lower rankings for mutually exclusive
gene pairs (Supplementary Fig. 1A, right). When introducing an artifi-
cial batch effect, we find that raw counts generate significantly lower
rankings for mutually exclusive marker pairs (Supplementary Fig. 2B).
Next, we compared the cell type prediction accuracy between nor-
malization procedures using the same gene markers used to perform
cell type prediction in the main results section on both the full and
subset datasets with artificial batch effect. Raw counts significantly
outperformed all other preprocessing inputs by a large margin, with
both normalized and log-normalized showing very poor performance
(Supplementary Fig. 2C, D). Our results suggest that normalization
increases association between pairs of genes with mutually exclusive
expression, resulting in negative downstreamperformance of cell type
prediction. Cell typing appears to be sensitive to mutual exclusivity of
cell type markers, and normalization produces slight increases in

cosine similarity between gene vectors of mutually exclusive genes
resulting in poor cell typing accuracy.

After learning the gene embedding, GeneVector allows rapid
testing of different marker genes and phenotypes in exploratory ana-
lysis settings. Increased performance in classification is important
given the large variation of markers used to define the same pheno-
types across different studies. Cell type prediction can be recomputed
interactively within a Jupyter notebookwithin twenty seconds for even
large datasets onmostmachines (Supplementary Fig. 2). An additional
advantage of having a probability is the ability to map genes from
known pathways to a continuous value in each cell. In both phenotype
and pathway, demonstration of continuous gradients across cells
provides ameasure of change and activation that cannot be seen from
unsupervised clustering.

Comparison of Methods in Identification of Interferon Meta-
genes in 10k Human PBMCs
To identify cell-specific metagenes related to interferon beta stimula-
tion and compare with transcriptional programs identified by PCA and
LDVAE loadings, we trained GeneVector using peripheral blood
mononuclear cells (PBMCs) scRNA-seq data from 6855 quality control
filtered cells composed of an interferon beta stimulated sample and a
control sample19. The raw count matrix was subset to 1000 highly
variable genes using the Seurat V3 method32 as implemented in
Scanpy7. We used previously annotated cell types generated from
unsupervised clustering as ground truth labels33. The cell embedding
used for batch correction was generated by weighting gene vectors by
the normalized, log-transformed expression in each cell. A comparison
of the uncorrected UMAP embedding (Fig. 4A) and subsequent
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GeneVector-based batch correction (Fig. 4B) demonstrates correction
in the alignment of cell types between the two conditions. However, in
contrast to batch correction using Harmony34 (Fig. 4C), not all varia-
tion is lost between the interferon beta stimulated and control cells.
Specifically, GeneVector does not align myeloid cell types, suggesting
a larger effect of the interferon beta stimulation treatment in these
cells. Finally, we explored the impact of cell type composition onbatch
correction performance and found that CD14+ Monocytes had the
largest batch silhouette coefficient, indicating that stimulated and
control Monocytes differed the most across cell types (Supplemen-
tary Fig. 6G).

As a method of both validation and exploration, GeneVector
provides the ability to query similarity in genes. For a given target
gene, a list of the closest genes sorted by cosine similarity can be
generated. This is useful in both validating known markers and iden-
tifying the function of unfamiliar genes by context. The genes most
similar to IFIT1 (Fig. 4D) include a large proportion of genes found in
the Reactomepathway Interferon Signaling (R-I-913531) (Gillespie et al.
2022). After clustering gene vectors,we identify a singlemetagene that
includes these genes (IFIT1, IFIT2, IFIT3, ISG15, ISG20, TFGS10, RSAD2,
LYSE, OAS1, andMX1). The ISG metagene can be visualized on a UMAP
generated from the gene embedding, like the familiar cell-based
visualizations common in scRNA-seq studies (Fig. 4E). The mean and
scaled log-normalized expression of each gene identified in the ISG
metagene is significantly higher in interferonbeta stimulated cells over
control cells (Fig. 4F). Importantly, the increased expression is found in
each cell type, indicating a global relation to treatment.

To compare the ISG metagene with results generated from PCA
loadings, we performed PCA on the normalized and log-transformed

gene-by-cell expressionmatrix (Fig. 4G) and colored the embeddingby
cell type and treatment. After computing the PCA loadings using
Scanpy7, we identified the top genes by contribution score to variation
in the first and second principal components. The first principal
component (PC1) explains variation related to cell type and the dif-
ferences between myeloid (TYROBP, FCER1G, FTL, CST3) and T cells
(LTB, CCR7) (Fig. 4H). The second principal highlights the variation
related to interferon beta stimulation and includes the genes found in
the ISG metagene generated by GeneVector (Fig. 4I). However, the
increased effect of interferon stimulation in myeloid cells, conflates
myeloid specific ISGs with the interferon signature. One such gene is
CXCL10, which shows cell type specificity to myeloid cells (Fig. 4J) and
is not found in the interferon signaling Reactome pathways. Addi-
tionally, IFITM3 shows increased expression only in myeloid cells
within these PBMCs. In contrast, GeneVector produces a metagene
that groups myeloid specific genes into a single metagene including
CXCL10 and IFITM3. A full list ofmetagenes produced byGeneVector is
presented in Supplementary Fig. 3. Among these metagenes, we
identify transcriptional programs specific to each cell type and treat-
ment condition, including those found in the least represented cell
type Megakaryocytes (132 of 14,038 cells).

To compare the GeneVector ISG metagene with LDVAE, we
trained an LDVAE model using 10 latent dimensions for 250 epochs
with control and stimulated batch labels in the SCVI framework on the
unnormalized read counts. In contrast to the specificity of the Gene-
Vector ISG metagene that includes only interferon stimulated genes,
the nearest LDVAE loading mixes interferon-related genes with mar-
kers of T cell activation (PRF1) and T cell dysfunction (LAG3) (Fig. 4K).
With respect to PCA and LDVAE loadings, GeneVector identified an ISG
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metagene that is not confounded by cell type and includes only
interferon pathway related genes.

Metagenes changes between primary and metastatic site
in HGSOC
Studies with scRNA-seq data sampled from multiple tumor sites in
the same patient provide a wide picture of cancer progression and
spread. As these datasets grow larger and more complex, under-
standing the transcriptional changes that occur from primary to
metastatic sites can help identify mechanisms that aid in the process
of the invasion-metastasis cascade. GeneVector provides a frame-
work for asking such questions in the form of latent space arithmetic.
By defining the difference between two sites as a vector, where the
direction defines transcriptional change, we identify metagenes
associated with expression loss and gain between primary and
metastasis sites from six patients in the Memorial Sloan Kettering
Cancer Center SPECTRUM cohort of patients with high-grade serous
ovarian cancer (HGSOC)21.

A set of 270,833 cells quality control filtered cells from adnexa
(primary) and bowel (metastasis) samples were processed with Gene-
Vector (Fig. 5A). The unnormalized counts were subset to 2000 highly
variable genes were used as input to GeneVector and cells were clas-
sified to one of six cell types using gene markers curated for HGSOC
and two markers for cancer cells (EPCAM and CD24)21. We performed
cell type classification (Methods: Cell TypeAssignment) and compared
GeneVector accuracy to the original annotations generated from Cel-
lAssign for each cell type in a confusion matrix (Fig. 5B). Accuracy
reached 99.7% in three cell types with a minimum classification rate of
94.1%. In cells where GeneVector annotated differently than previous
annotations, there is evidence from the differentially expressed genes
that these cells may have been initially mislabeled. GeneVector reas-
signed a subset of cancer cells to fibroblast and the differentially
expressed genes between these cells and the cells annotated as cancer
by GeneVector highlighted fibroblast cell type markers including
COL1A1 (Supplementary Fig. 4A). In B/Plasma cells reassigned as
T cells, the differentially expressed genes highlight B cell receptor
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genes IGK and IGLC2 (Supplementary Fig. 4B). Finally, in B/Plasma cells
classified as myeloid, the top differentially expressed genes include
known canonical markers for macrophage/monocyte cells (TYROBP,
LYZ, CD4, and AIF1)30 (Supplementary Fig. 4C).

We recomputed the gene embedding and metagenes on only
those cells classified as cancer by GeneVector with both adnexa and
bowel samples. We found these cells exhibited large patient specific
batch effects (Fig. 5C) and applied GeneVector batch correction
(Fig. 5D, E). To understand the changes between primary and meta-
static sites, we computed an average vector for all cells from the
adnexa (Vadnexa) as the primary site and bowel (Vbowel) as the site of
metastasis. We mapped the top 30 most similar metagenes to vectors
representing expression gain in metastasis (Vadnexa - Vbowel) (Fig. 5F)
and expression loss (vbowel - vadnexa) (Fig. 5G). Gene Set Enrichment
Analysis (GSEA) using GSEAPY with Hallmark gene set annotations
from Enrichr35 was performed to assess whether metagenes were
enriched for genes fromknown pathways.Metagenes enriched for E2F
targets and Epithelial-to-Mesenchymal Transition (EMT) pathway
genes were found gained in metastasis. Conversely, the set of meta-
genes representative of loss fromadnexa to bowel includedMHCClass
I (HLA-A, HLA-B, HLA-C, HLA-E, and HLA-F) and the transcriptional
regulator B2M, suggesting a means of immune escape via loss of MHC
Class I expression and higher immune pressure inmetastatic sitesmay
increase the potential fitness benefit of MHC Class I loss. For both the
EMT and MHCI metagenes, pseudo-probabilities computed using
GeneVector highlight pathway activity in either site in the UMAP
embedding (Fig. 5H). Computing the gene module scoring on the
normalized, log-transformed expression36, we examined the change
between sites in each patient for the EMT and MHCI metagenes. We
found that the MHCI metagene is significantly downregulated in
metastatic sites in four of six patients (Fig. 5I). Conversely, the EMT
metagenewas significantly up regulated inmetastatic sites for three of
six patients (Fig. 5J). The ability to phrase questions about transcrip-
tional change as vector arithmetic provides a powerful platform for
more complex queries than can be performed with differential
expression analysis alone.

It is possible to perform latent space arithmetic operations on any
embedding that is computed from a linear transformation of the gene
space, including PCA. To assess the performance of latent space
arithmetic using GeneVector and the principal components of a PCA
decomposition of the gene expressionmatrix, we performed the same
analysis on the cell-by-gene matrix. After clustering the gene embed-
ding using the Leiden algorithm and we generated a list of candidate
metagenes. We recomputed a representative vector for changes from
bowel to adnexa by subtracting Vadnexa - Vbowel and selected the most
similar metagenes. Like the GeneVector analysis, we recovered a
metagene related to MHC Class I using the PCA embedding. However,
several of the genes within this metagene were not present in the
Reactome MHC Class I pathway (HSA-983169), in contrast to the
GeneVector results which found a metagene containing only HLA-A,
HLA-B,HLA-C, andB2M. To test if the unannotatedgenes definedby the
PCA embedding were members of any gene signatures which con-
tainedHLAgenes,wecalculated thepercentageof Reactomepathways
that include individual genepairs andplotted this as a heatmapover all
genes in the metagene (Supplementary Fig. 5A). The genes TMEM59,
SERINC2, FOLR1, and WFDC2 were not found as a pair within any
Reactome pathway. We concluded that the PCA embedding identified
an MHC Class I metagene that was less consistent with previously
annotated pathways than GeneVector.

Given that themetagenes are computed using Leiden clustering,
the resolution parameter affects the coarseness of the PCA embed-
ding. We performed a parameter sweep over resolution values and
found that the genes identified by the PCA analysis are robustly
clustered together over a wide range of resolutions (Supplementary
Fig. 5B). In comparison, GeneVector identifies a metagene containing

HLA-A, HLA-B, HLA-C, and B2M over a wide range of resolution
parameters (Supplementary Fig. 5C). The interval of values used for
the parameter sweep was selected to keep metagene membership
between three and 50 genes and represents the most reasonable
range of values for generating metagenes of this size. To understand
why non MHCI-annotated genes appear in the context of MHC genes
in the PCA embedding, we looked at differentially expressed genes
up-regulated in adnexa over bowel. We found that while these
genes do not appear in Reactome pathways together, they do appear
significantly differentially expressed between adnexa and bowel.
Here, we draw the conclusion that PCA combines multiple pathways
to explain as much variance as possible when constructing
successive orthogonal PCA components. As a result, PCA will
combine multiple underlying sources of variance such as
bowel/adnexa variation, and MHC I variation between cells. By con-
trast, GeneVector has no orthogonality constraints and is not con-
structed to maximize variance explained by individual vectors,
allowing GeneVector to decompose pathway specific metagenes in a
more flexible manner.

Metagenes associated with cisplatin treatment resistance
Understanding the transcriptional processes that generate resistance
to chemotherapies has immense clinical value. However, the tran-
scriptional organization of resistance is complex with many parallel
mechanisms contributing to cancer cell survival37. We analyzed long-
itudinal single cell RNA-seq collected from a triple negative breast
cancer patient-derived xenograft model (SA609 PDX) along a treated
and untreated time series22. Using a total of 19,799 cancer cells with
treatment and timepoint labels (Fig. 6A), GeneVectorwas trainedusing
unnormalized read counts to generate metagenes that identify pro-
grams potentially related to cisplatin resistance. For each metagene,
we computed gene module scores over normalized and log-
transformed expression36 over the four timepoint (X1, X2, X3, and
X4) within the treated and untreated cells. Using these scores, we
calculated linear regression coefficients over the four time points and
selected candidate chemotherapy resistant and untreated metagenes
(βtreated and βuntreated) over a coefficient threshold (βtreated >0.1 and
Bonferroni adjusted p =0.001) with an untreated coefficient less than
the treated coefficient (βtreated > βuntreated) (Fig. 6B). Mean log-
normalized expression per gene was computed for each timepoint in
five metagenes that were identified as treatment specific (Fig. 6C).

Pathway enrichment on each of the five metagenes using GSEAPY
with Hallmark gene set annotations from Enrichr35 showed that meta-
gene 24 was enriched for TGF-beta signaling (Fig. 6D), a pathway fre-
quently up-regulated during chemo-resistance38. This metagene
includes genes ID1, ID2, ID3, ID4, EPCAM, and FOXP1, all of which have
been found to be overexpressed in chemotherapy-resistant samples in
several cancer types39–41. GeneVector also identified these genes in
global expression differences between treated and untreated cells
from the set of most similar genes to vectors Vtreated and Vuntreated

(Fig. 6E). Several studies have implicated multiple resistance
mechanisms involving FOXP1 including transcriptional regulation,
immune response, and MAPK signaling42–44. Additionally, GeneVector
identifies EPCAM, whose high expression has been associated with
increased viability of cancer cells in diverse cancer types45. EPCAM has
been shown tohave a role in resistance to chemotherapy in bothbreast
and ovarian cancers through WNT signaling and Epithelial-
Mesenchymal Transition (EMT)46,47.

Discussion
In this paper we propose GeneVector, a method for building a latent
vector representation of scRNA expression capturing the relevant
statistical dependencies between genes. By borrowing expression
signal across genes, GeneVector overcomes sparsity and produces an
information dense representation of each gene. The resulting vectors
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can be used to generate a gene co-expression graph, and can be
clustered to predict transcriptional programs, or metagenes, in an
unsupervised fashion.Metagenes canbe related to a cell embedding to
identify transcriptional changes related to conditional labels or time
points. We show that gene vectors can be used to annotate cells with a
pseudo-probability, and that these labels are accurate with respect to
previously defined cell types.

We show that a single GeneVector embedding can be used for
many important downstream analyses. In interferon-stimulated
PBMCs, we identify a cell type independent ISG metagene that sum-
marizes interferon-stimulation across cell types and is not conflated
with cell type signature.Wedemonstrate accurate cell type assignment
across 18 different cancers in 181 patients described in the Tumor
Immune Cell Atlas (TICA). In high grade serous ovarian cancer, we
identifymetagenes thatdescribe transcriptional changes fromprimary
to metastatic sites. Our results implicate the loss of MHC class I gene
expression as a potential immune escapemechanism inovarian cancer
metastasis. In cisplatin treated TNBC PDXs, GeneVector uncovers
transcriptional signatures active in drug resistance, most notably
metagenes enriched in TGF-beta signaling. This signaling pathway is a
cornerstone in cancer progression since it promotes EMT transition
and invasion in advanced cancers; it is the target of various therapies,
but success has been mixed48 making it even more important to
employ tools that identify the multitude of players contributing to
therapy response.

GeneVector can produce an interpretable batch correction by
decomposing the derived correction vectors into transcriptional sig-
natures. Using both the full PBMC dataset and simulated mixtures of
CD14+ monocytes and CD4 T cells, we systematically evaluated the
quality of batch correction using a series of benchmarking metrics
(ARI, kBET, cLISI, and silhouette score)49,50 (Supplementary Fig. 6A–I).
For the interferonbeta stimulated PBMCdataset, we expect theproper
batch correction to include ISGs, and indeed the batch correction

vector had high cosine similarity to an ISG metagene. In simulated
mixtures of cell types, we found that the similarity of the batch cor-
rection vector to ISGs was highest when the ratio of cell types was
balanced in the unstimulated and stimulated batches, we obtained the
best batch correction performance for balanced batches (Supple-
mentary Fig. 6J). By contrast, when cell types were imbalanced, batch
correction vectors had high similarity to cell type specific vectors
(Supplementary Fig. 6K, L). Batch correction is challenging in the
presence of batch-specific differences in cell type composition. As
opposed to other batch correction methods, the GeneVector imple-
mentation is highly interpretable, so users can verify whether batch
correction vectors are similar to cell type signatures or other biologi-
cally relevant metagenes.

Identifying correlations across scRNA data is a fundamental ana-
lysis task, necessary for identifying cells with similar phenotype or
activity, or genes with similar pathways or functional relationships. As
has been shown by us and in previous work15,16,51, the sparsity and non-
linearity of scRNA data impact the performance of both standard
measures of correlations between variables and global analysis of
assumed linear correlations using PCA. While some methods tailor
complex custom probabilistic models to the specific properties of
scRNA data, GeneVector instead builds uponMI, a simple yet powerful
tool for calculating the amount of information shared between two
variables. We show that MI and the vector space trained from the MI
matrix both capture relevant gene pair relationships including
between TF activators and repressors and their targets. Nevertheless,
GeneVector is unable to discern repression from activation, as it builds
MI that is agnostic to the direction of the statistical dependency.
Pearson correlation, theoretically sensitive to the direction of a
dependency, also performs poorly. Due to the high-level of sparsity,
absence of expression is not a significant event and repressed
expression could just as easily be explained by under-sampling an
expressed gene. We suggest that identifying negative regulation and
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Fig. 6 | Analysis of Metagenes in Cisplatin-treated PDX Time Series. A UMAP of
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vectors. Source data provided as a Source Data file.
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mutually exclusive expression is one of the more difficult problems in
scRNA-seq analysis.

As shown with correlation, the objective function employed in
training GeneVector has a significant effect on the resulting gene
embedding. Mutual information calculated empirically from the his-
togram of binned expression counts for gene pairs is limited by the
available number of cells, fidelity of the counts, and discretization
strategy. By modeling the underlying distribution for each gene more
accurately, the joint probability distribution between genes can more
accurately reflect expression-based relationships and improve model
results. Additionally, while only a one-time cost, the MI calculation is
computationally expensive. By improving the calculation of mutual
information, others have achieved improved performance in related
tasks including the identification of GRNs52.

The high dimensionality of scRNA and the vast complexity of
biological systems to which it is applied necessitate analytical tools
that facilitate intuitive and efficient data exploration and produce
easily interpretable results. GeneVector performs upfront computa-
tion of a meaningful low dimensional representation, transforming
sparse and correlated expression measurements into a concise vector
space summarizing the underlying structure in the data. The resulting
vector space is amenable to intuitive vector arithmetic operations that
can be composed into higher level analyses including cell type classi-
fication, treatment related gene signaturediscovery, and identification
of functionally related genes. Importantly, the vector arithmetic
operations and higher-level analyses can be performed interactively,
allowing for faster iteration in developing cell type and context specific
gene signatures or testing hypotheses related to experimental cov-
ariates. GeneVector is implemented as a python package available on
GitHub (https://github.com/nceglia/genevector) and installable
via PIP.

Methods
Dataset preprocessing
Each single cell RNA-seq dataset in this study was processed using the
Scanpy python library7. All highly variable gene selection was per-
formed using the Seurat V36 method implemented in Scanpy. We
performed cell type classification on 23,764 cells from the Tumor
Immune Cell Atlas (TICA)20 using raw read counts from 2,000 highly
variable after removal of non-protein coding genes. We performed
analysis of 6,855 cells composed of an interferon beta stimulated
sample and a control sample using raw counts and cell type annota-
tions obtained from the SeuratData R package33 and subset to 1000
highly variable genes. The fitness PDX dataset22 consisted of raw
counts from 19,799 cancer cells with treatment and timepoint labels
subset to 2000 highly variable genes. Coefficients and p-values were
computed over gene module scores using the statsmodels python
package. Cell type classification and vector arithmetic for the changes
between metastatic and primary sites was performed on 270,833 cells
from adnexa (primary) and bowel (metastasis) samples using 2000
highly variable genes. Normalization comparisons were made using
the Scanpy normalize_total and log1p functions. All subsampling of
datasets for simulated batch effects was performed using the Scanpy
subsample function.

Gene expression mutual information
In NLP applications, vector space models are trained by defining an
association between words that appear in the same context. In single
cell RNA sequencing data, we can redefine this textual context as co-
expressionwithin a given cell andmutual information across cells. The
simplest metric to define association is the overall number of co-
expression events between genes. However, the expression profiles
over cells may differ due to both technical and biological factors. To
summarize the variability in this relationship, we generate a joint
probability distribution on the co-occurrence of read counts. The

ranges of eachbin are defined separately for eachgene based on a user
defined number of quantiles. By defining the bin ranges separately, the
lowest counts in one gene can be compared directly to the lowest
counts in another gene without need for further normalization. Using
the joint probability distribution, we compute the mutual information
between genes defined in Eq. 1. The mutual information value is sub-
sequently used as the target in training the model, allowing us to
highlight the relationship between genes as a single-valued quantity.

I Gi,Gj

� �
=
Xn

i

Xn

j

p Gi,Gj

� �
log

p
�
Gi,Gj

�

p Gi

� �
,p
�
Gj

�
 !

ð1Þ

Equation 1: Mutual information between Gi and Gj computed on
the empirical joint probability distribution over expression bins for Gi

and Gj.

Model training
A neural network is constructed from a single hidden layer corre-
sponding to the size of the latent space vectors. A set of independently
updated weights connects the one-hot encoded input and output
layers that are defined from each pair of genes. These weights,w1 and
w2, are matrices with dimensions equal to N expressed genes by I
hidden units. Initial values for w1 and w2 are generated uniformly on
the interval −1 to 1. The objective function, as a minimization of least
squares, is defined in Eq. 2. The final latent space, defined as the gene
embedding, is computed as the vector average of weights w1 and w2.
For NLP applications, this is a preferred approach over selecting either
weightmatrix4. Each co-expressed gene pair is used as a single training
example. The maximum number of examples for a full training epoch
is given by the total number of co-expressed gene pairs. Weights are
batch updated with adaptive gradient descent (ADADELTA)53. Training
is halted at either a maximum number of epochs, or when the change
in loss falls below a specified threshold. The results presented used
unnormalized integer read counts, but anymatrix can be used as input
to the model. The model is implemented in PyTorch.

J = wi
T ŵj � C*IðGi,GjÞ

� �2 ð2Þ

Equation 2: Objective function for weights corresponding to gene
Gi andGj, where IðGi,GjÞ is the mutual information and C is a constant.

Gene vectors
The cosine similarity function, defined in Eq. 3, is used to measure
similarity between vectors, defined as 1 - cosine distance or dot pro-
duct. Values closer to 1 indicate strong associationwithin the dataset. A
gene vector is defined as the learned weights in the gene embedding
for a particular gene. Vectors describing groups of cells are generated
by computing aweighted average vector, described in Eq. 4, from a set
of individual gene vectors.

cosinesimilarity= 1� A*B
∣∣A∣∣*∣∣B∣∣

ð3Þ

Equation 3: Cosine similarity as the dot-product between feature
vectors A and B.

To assign a vector to each cell, the average vector is computed
across the gene embedding weighted by the normalized, log-
transformed expression observed in each cell. The matrix of all cell
vectors in the dataset is defined as the cell embedding. This cell
embedding can be used in place of PCA or embeddings obtained with
variational auto-encoders. Each cell vector maintains a linear rela-
tionship with the gene embedding. The computation of vectors
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describing groups of cells is described in Eq. 4.

Ck =
Pn

i= 1wi*xiPn
i = 1wi

ð4Þ

Equation 4: Vector Ck defined as the k th component of the cell
embedding computed from the averagemean of vectors xi!n where n
is equal to the number of hidden units.

Co-expression similarity graph
A co-expression similarity graph is constructed from cosine similarity
between each pair of genes using Scanpy neighborhood function with
a default value for k of 15. A node in the graph represents a single gene
and edges are weighted by cosine similarity. To generate metagenes,
we apply Leiden clustering to the neighborhood graph with a user
defined resolution argument.We have found thatmetagene clustering
is robust to a range of resolution values ranging from 15 to 1000 when
assessing the identification of an MHCI-like metagene in a single
patient in the SPECTRUM cohort (Supplementary Fig. 5C).

Cell type assignment
Aset of cell typeswith user definedmarker genes are used toperforma
pseudo-probabilistic phenotype assignment in a single cell. A repre-
sentative vector for the cell type is computed from the user defined
marker genes weighted by the normalized and log-transformed
expression of the cell to be classified. The cosine distances of each
cell type vectorwith cell vector arepassed through a SoftMax function,
given in Eq. 5, to provide a pseudo-probability distribution for each
phenotype. The argument maximum of this distribution is used to
classify the most likely cell type for a given cell. This procedure is
repeated for every cell in the dataset.

σðzÞi =
eZiPn
j = 1eZi

ð5Þ

Equation 5: SoftMax function where z is the set of cosine simila-
rities for n cell types.

Generation of predictive genes
The method of phenotype assignment can be reversed to produce a
set of genes that are most similar, or predictive, to any group of cells.
The cell vectors belonging to this group can be averaged to generate a
group vector representing a label in the dataset. The transcriptional
signature associated with this group of cells can be computed using
vector arithmetic Vgroup – Vdataset, where Vdataset is the average vector
over all cells. Gene vectors are sorted by cosine similarity to the group
vector to produce a ranked list of candidate genes that are most like
the set of cells in the group.

Batch correction
Batch correction is applied to cells over a given set of batch labels with
the goal of correcting the differencebetween these batches and a user-
specified reference batch. With the set of cells labeled for a batch, we
can compute an average batch vector. A correction vector can then be
computed for each batch using vector arithmetic to describe the
direction and magnitude of the change from the batch to the refer-
ence. The correction vector is then added to each cell in the batch.
After computing the cell embedding, the following procedure is
applied to each batch label:
1. Compute the average vector Vbatch for a set of cells.
2. Compute the reference vector Vreference for cells in the

reference batch.
3. Compute a correction vector Vcorrection = Vreference – Vbatch.
4. For each cell in the batch, subtractVcorrection fromeach cell vector.
5. Repeat for all n batches.

Co-expressed and mutually exclusive markers
Cell type marker gene pairs used to benchmark normalization meth-
ods by identifying common differentially expressed genes in T cell, B
cell, and monocyte lineage cell types across multiple datasets and
extracting the top 10 markers of each cell type in each dataset. The
union of extracted marker genes over all cell types for a given lineage
(T cell, B cell, or monocyte) were ranked by the number of datasets
where that gene was a marker. All combinations of markers in the top
10 ranked genes that were unique to a cell typewere selected as the co-
expressed pairs for T cell, B cell, and monocyte lineages. Mutually
exclusive markers were defined as all combinations of gene pairs that
were not found together in a single lineage.

Time-series analysis of metagenes
Linear regression is applied to gene module scores computed over
normalized, log-transformed expression36 over a series of time points
for each metagene resulting in a p-value and slope coefficient from
each series. Metagenes with a Bonferroni adjusted p =0.001 and a
treated coefficient greater than the untreated coefficient, with a
minimum threshold of 0.1 were selected as treatment specific gene
programs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No novel sequencing data were generated for this current study. All
pre-processed single cell RNA-seq data analyzed in this study are
available in the Zenodo database here [https://doi.org/10.5281/
zenodo.8079610]54. The Tumor Immune Cell Atlas (TICA) processed
data can be accessed here [https://zenodo.org/record/4263972] and
the raw data has been deposited in the Gene Expression Ominibus
under the accession GSE158803. The PBMC dataset can be accessed
through SeuratData R package32,33 and has been deposited in the Gene
Expression Omnibus under the accession number GSE96583. The
SPECTRUM High Grade Serous Ovarian Cancer dataset can be acces-
sed here [https://cellxgene.cziscience.com/collections/4796c91c-
9d8f-4692-be43-347b1727f9d8]. Raw 10x sequencing for the Fitness
dataset is available from the European Genome-Phenome under study
ID EGAS00001004448. Source data are provided with this paper.

Code availability
The authors declare that the code needed to reproduce analysis and
findings of this study are available in the GitHub repository (https://
github.com/nceglia/genevector) and the GeneVector python package
can be installed directly from using the Python installer package (PIP).
Code released with this manuscript can be found at https://doi.org/10.
5281/zenodo.807988555.
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