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A general model-based causal inference
method overcomes the curse of synchrony
and indirect effect

Se Ho Park1,2, Seokmin Ha2,3 & Jae Kyoung Kim 2,3

To identify causation,model-free inferencemethods, such asGrangerCausality,
have been widely used due to their flexibility. However, they have difficulty
distinguishing synchrony and indirect effects from direct causation, leading to
false predictions. To overcome this, model-based inference methods that test
the reproducibility of data with a specific mechanistic model to infer causality
were developed. However, they can only be applied to systems described by a
specific model, greatly limiting their applicability. Here, we address this lim-
itation by deriving an easily testable condition for a general monotonic ODE
model to reproduce time-series data. We built a user-friendly computational
package, General ODE-Based Inference (GOBI), which is applicable to nearly any
monotonic system with positive and negative regulations described by ODE.
GOBI successfully inferred positive and negative regulations in various net-
works at both the molecular and population levels, unlike existing model-free
methods. Thus, this accurate and broadly applicable inference method is a
powerful tool for understanding complex dynamical systems.

Identifying causal interaction is crucial to understand the underlying
mechanism of systems in nature. A recent surge in time-series data
collection with advanced technology offers opportunities to compu-
tationally uncover causation1. Various model-free methods, such as
Granger causality (GC)2 and convergent cross mapping (CCM)3, have
been widely used to infer causation from time-series data. Although
they are easy to implement and broadly applicable4–10, they usually
struggle to differentiate generalized synchrony (i.e., similar periods
among components) versus causality11–15 and distinguish between
direct and indirect causation16–20. For instance, when oscillatory time-
series data is given, nearly all-to-all connected networks are inferred12.
To prevent such false positive predictions, model-free methods have
been improved (e.g., partial cross mapping (PCM)20), but further
investigation is needed to show their universal validity.

Alternatively, model-based methods infer causality by testing the
reproducibility of time-series data with mechanistic models using
various methods such as simulated annealing21 and the Kalman
Filter22,23. Although testing the reproducibility is computationally
expensive, as long as the underlying model is accurate, the model-

based inference method is accurate even in the presence of general-
ized synchrony in time series and indirect effect21–29. However, the
inference results strongly depend on the choice of model, and inac-
curate model imposition can result in false positive predictions, lim-
iting their applicability. To overcome this limit, inference methods
using flexible models were developed30–39. In particular, the most
recent method, ION12, infers causation from X to Y described by the
general monotonic ODE model between two components, i.e.,
dY
dt = f ðX ,Y Þ. However, ION is applicable only when every component is
affected by at most one another component.

Here, we develop a model-based method that infers interactions
amongmultiple components describedby the generalmonotonicODE
model:

dY
dt

= f ðXÞ= f ðX 1,X2, � � � ,XNÞ, ð1Þ

where f can be any smooth and monotonic increasing or decreasing
functions of Xi and XN is Y in the presence of self-regulation. Thus, our
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approach considerably resolves the fundamental limit of model-
based inference: strong dependence on a chosen model. Further-
more, we derive a simple condition for the reproducibility of time
series with Eq. (1), which does not require computationally expensive
fitting, unlike previous model-based approaches. To facilitate our
approach, we develop a user-friendly computational package, GOBI
(General ODE-Based Inference). GOBI successfully infers causal
relationships in gene regulatory networks, ecological systems, and
cardiovascular disease caused by air pollution from synchronous
time-series data, with which popular model-free methods fail at
inference. Furthermore, GOBI can also distinguish between direct
and indirect causation, even from noisy time-series data. Because
GOBI is both accurate and broadly applicable, which had not been
achieved by previousmodel-free or model-based inferencemethods,
it can be a powerful tool in understanding complex dynamical
systems.

Results
Inferring regulation types from time series
We first illustrate the common properties of time series generated by
either positive or negative regulation with simple examples. When the

input signal X positively regulates Y (X→ Y) (Fig. 1a), _Y increases
whenever X increases. Thus, for any pair of time points t and t* with
which Xd(t, t*)≔ X(t) − X(t*) > 0, _Y

dðt,t*Þ : = _Y ðtÞ � _Y ðt*Þ>0. Similarly,
when X negatively regulates Y (X ⊣ Y) (Fig. 1c left), if Xd(t, t*) < 0, then
_Y
dðt,t*Þ>0. Thus, in the presence of either positive (σ = + ) or negative

(σ = − ) regulation, the following regulation-detection function is always
positive (Fig. 1b, c):

IYXσ ðt,t*Þ : = σXdðt,t*Þ � _Ydðt,t*Þ ð2Þ

defined on (t, t*) such that σXd(t, t*) > 0.
This idea can be extended to a case with multiple causes. For

instance, when X1 and X2 positively regulate Y together (Fig. 1d), if both

Xd
1 > 0 and Xd

2 >0, then _Y
d
>0. This leads to the positivity of the

regulation-detection function for
X 1 !
X2 !Y , IYX +

1 X +
2
ðt,t*Þ : =Xd

1 ðt,t*Þ�

Xd
2 ðt,t*Þ � _Y

dðt,t*Þ, defined for (t, t*) such thatXd
1 ðt,t*Þ>0 and Xd

2 ðt,t*Þ>0
(Fig. 1e). Similarly, if X1 and X2 positively and negatively regulate Y,

respectively (
X 1 !
X2 a Y ) (Fig. 1g), the regulation-detection function for
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Fig. 1 | Inferring regulation types using regulation-detection functions and
scores. a Because X positively regulates Y, as X increases, _Y increases. Thus,
whenever Xd(t, t*) = X(t) − X(t*) > 0, _Y

d ðt,t*Þ= _Y ðtÞ � _Y ðt*Þ>0. b Therefore, when
Xd(t, t*) > 0, the regulation-detection function IYX + ðt,t*Þ : =Xd ðt,t*Þ � _Ydðt,t*Þ is always
positive. Here, I is in the range [−1, 1] since all the time series are normalized. c If X
negatively regulates Y, IYX� : = ð�XdÞ � _Yd

is always positive when Xd(t, t*) < 0. d–i
WhenX1 andX2 positively regulate Y, asX1 andX2 increase (X

d
1 >0,X

d
2>0), _Y increases

( _Y
d
>0) (d). Thus, when Xd

1 ðt,t*Þ>0 and Xd
2 ðt,t*Þ>0, IYX +

1 X +
2
: =Xd

1 � Xd
2 � _Yd

is positive

(e). When X1 and X2 positively and negatively regulate Y, respectively (g), IYX +
1 X�

2
:

=Xd
1 � ð�Xd

2 Þ � _Y
d
is always positive when Xd

1 ðt,t*Þ>0 and Xd
2 ðt,t*Þ<0 (i). Such posi-

tivity disappears for the regulation-detection functions, which do not match with
the actual regulation type (f, h). j–lWhen X1 positively regulates Y and X2 does not
regulate Y (j), both IYX +

1 X +
2
: =Xd

1 � Xd
2 � _Yd

(k) and IYX +
1 X�

2
: =Xd

1 � ð�Xd
2 Þ � _Y

d
(l) are

positive because the regulation type of X2 does not matter. Here, we use
X 1ðtÞ= cosð2πtÞ and X2ðtÞ= sinð2πtÞ as the input signal and Y(0) = 0 for simulation
on [0, 1]. Source data are provided as a Source Data file.
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X 1 !
X2 a Y , IYX +

1 X�
2
ðt,t*Þ : =Xd

1 ðt,t*Þ � ð�Xd
2 ðt,t*ÞÞ � _Y

dðt,t*Þ, is positive for

(t, t*) such that Xd
1 ðt,t*Þ>0 and Xd

2 ðt,t*Þ<0 (Fig. 1i). Note that unlike IYX +
1 X +

2

(IYX +
1 X�

2
), IYX +

1 X�
2

(IYX +
1 X +

2
) is not always positive for

X 1 !
X2 !Y (

X 1 !
X2 a Y )

(Fig. 1f, h). See Supplementary Fig. 1 for other types of 2D regulations.

In the presence ofmonotonic regulation, the regulation-detection
function IYXσ is positive. The positivity of the IYXσ can be quantified with
its normalized integral, regulation-detection score SYXσ (Eq. (4)). Thus,
SYXσ = 1 in the presence of regulation type σ since the regulation-
detection function is positive (see Supplementary Information for
details). However, even in the absence of regulation type σ, SYXσ can
often be one. For instance, when X1 positively regulates Y and X2 does
not regulate Y (Fig. 1j), _Y increases whenever X1 increases regardless
of X2. Thus, both IYX +

1 X +
2

and IYX +
1 X�

2
are positive (Fig. 1k, l). Here,

SYX +
1 X +

2
= SYX +

1 X�
2
= 1 reflects that X2 does not affect the regulation X1→ Y.

Thus, to quantify the effect of a new component (e.g.,X2) on anexisting
regulation (e.g., X1→ Y), we develop a regulation-delta function Δ:

ΔY
X +
1
ðX2Þ : = SYX +

1 X +
2
� SYX +

1 X�
2
: ð3Þ

If ΔY
X +
1
ðX2Þ=0, SYX +

1 X +
2
= 1 (SYX +

1 X�
2
= 1) does not indicate the presence of

X 1 !
X2 ! Y (

X 1 !
X2 a Y ).

Inferring regulatory network structures
SYXσ = 1 together with Δ ≠0 can be used as an indicator of regulation
type σ from X to Y. Based on this, we construct a framework for
inferring a regulatory network from time-series data (Fig. 2a). To
illustrate this, we obtain multiple time-series data simulated with ran-
dom input signal A and different initial conditions of B and C randomly
selected from [−1, 1].

From each time series, the regulation-detection score SYXσ is cal-
culated for every type of 1D regulation σ from X to Y (X, Y= A, B, or C)

(Step 1). Because only A ⊣ B satisfies the criteria SYXσ = 1 for every time
series, only A ⊣ B is inferred as 1D regulation. Note that even for the

other regulations, SYXσ = 1 can occur for a few time series, leading to a
false positive prediction. This can be prevented by usingmultiple time

series. Next, SYXσ is calculated for every 2D regulation type σ (Step 2).

Three types of regulation (
A a
C !B,

A a
C aB, and

A !
B !C) satisfy the cri-

teria SYXσ = 1 for every time series. Among these, we can identify false
positive regulations by using a regulation-delta function (Step 3).

ΔB
A� ðCÞ is equal to zero for every time series, indicating that

A a
C !B and

A a
C aB are false positive regulations. Thus,

A !
B !C is the only inferred

2D regulation as it satisfies the criteria for the regulation-delta function

(ΔC
A + ðBÞ≠0 and ΔC

B + ðAÞ≠0). By merging the inferred 1D and 2D regula-
tions, the regulatory network is successfully inferred. Here, note that
regulation A→C is not detected by the 1D regulation–detection score
since C has multiple causes. However, the 2D regulation-detection

score detects
A !
B !C, which contains A→C. This demonstrates the

need for multi-dimensional inferences, as the 1D criteria alone would
not have been sufficient to fully capture the regulatory relationships in
the network. Since this system has three components, we infer up to
2D regulations. If there are N components in the system, we go up to
(N − 1)D regulations (Supplementary Fig. 2).

We apply the framework to infer regulatory networks from simu-
lated time-series data of various biological models. In thesemodels, the
degradation rates of molecules increase as their concentrations
increase, like inmost biological systems (i.e., self-regulation is negative).

Such prior information, including the types of self-regulation, can be
incorporated into our framework. For example, to incorporate negative
self-regulation, when detecting ND regulation, one can use the (N+ 1)D
regulation-detection function and score that include negative self-
regulation. Specifically, when inferring 1D positive regulation from X to
Y, the criterion SYX + Y� = 1 is used. To illustrate this, we assume the
negative self-regulation to infer the network structures of biological
models (see below for details). Note that this assumption is optional for
inference (see Supplementary Information for details).

Fromthe time series simulatedwith theKim-Forgermodel (Fig. 2b
left), describing the negative feedback loop of the mammalian circa-

dian clock40, using the criteria SYXσY� = 1, two positive 1D regulations
(M→ PC and PC→ P) and one negative 1D regulation (P⊣M) are inferred
(Fig. 2b middle). Among the six different types of 2D regulations

(
M !
P ! PC ,

M !
P a PC ,

PC !
M ! P,

PC !
M a P,

P a
PC !M, and

P a
PC aM) satisfying

the criteria SYXσY� = 1 for all the time series, none of thempass theΔ test

(i.e., ΔPC

M + ðPÞ= ΔP
P +
C
ðMÞ= ΔM

P� ðPC Þ =0) (Fig. 2b middle). Thus, no 2D reg-

ulation is inferred. By merging the three inferred 1D regulations, the
negative feedback loop structure is recovered (Fig. 2b right). Our
method also successfully infers the negative feedback loop structure
of Frzilator41 (Fig. 2c) and the 4-state Goodwin oscillator42 (Fig. 2d).
Furthermore, our framework correctly infers systems having 2D reg-
ulations: the Goldbeter model describing the Drosophila circadian
clock43 (Fig. 2e) and the regulatory network of the cAMP oscillator of
Dictyostelium44 (Fig. 2f) (see Supplementary Information for the
equations and parameters of themodels and Supplementary Data 1 for
detailed inference results). Here, assuming negative self-regulation
allows us to reduce ND regulation to (N − 1)D regulation. This simpli-
fication is important for accurate inference when data is limited (Sup-
plementary Fig. 3). Moreover, it should be noted that when the
assumptions about the types of self-regulation are not met, only the
links that violate these assumptions become untrustworthy, while the
other inference results are not affected (Supplementary Fig. 3). Taken
together, our method successfully infers regulatory networks from
various in silico systems regardless of their explicit forms of ODE by
assuming a general monotonic ODE (Eq. (1)). Unlike our approach,
model-based methods that require specifying the model equations
produce inaccurate inferences if inappropriate functional bases are
chosen (Supplementary Fig. 4).

Inference with noisy time series
In the presence of noise in the time-series data, the regulation-
detection score (SYXσ ) is perturbed. Thus, SYXσ may not be one even if
there is a regulation type σ from X to Y. For example, in the case of an
Incoherent Feed-forward Loop (IFL) which contains A ⊣B (Fig. 3a), SBA�

is always one in the absenceof noise (Fig. 2a Step 1, blue), but not in the
presence of noise (Fig. 3b blue). Thus, for noisy data, we need to relax
the criteria SYXσ = 1 to SYXσ>Sthres where Sthres<1 is a threshold. Because
SBA� gets farther away fromone as thenoise level increases,Sthres should
also be decreased accordingly. We choose Sthres as 0.9 −0.005 × (noise
level) with which true and false regulations can be distinguished in the
majority of cases for our previous in silico examples (Fig. 3b and
Supplementary Fig. 5e). For instance, Sthres (green dashed line, Fig. 3b)
overall separates true regulation (Fig. 3b blue) and false regulation
(Fig. 3b red). Here we choose A→C, which has the highest regulation-
detection score among all false positive 1D regulations (Fig. 2a
Step 1, red).

We found that the fraction of time-series data satisfying SYXσ>Sthres,
whichwe refer to as the Total Regulation Score (TRS) (Fig. 3c left), more
clearly distinguishes the true (Fig. 3c right blue) and false (Fig. 3c right
red) regulations. Thus, we use the criteria TRSYXσ>TRSthres to infer the
regulation. Similar to Sthres, TRSthres also decreases as the noise level
increases. Specifically, we use TRSthres =0:9� 0:01 × (noise level) ,
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which successfully distinguishes between the true and false regula-
tions of IFL (Fig. 3c right) and in silico systems investigated in the
previous section (Supplementary Fig. 5f). See Methods and Supple-
mentary Information for how to quantify the noise level. Note that
TRSYXσ is the measure that integrates the weight given on the
regulation–detection score reflecting the size of the domain of the
regulation-detection function (see Supplementary Information for
details).

Next, we investigate whether the Δ test can distinguish direct and
indirect regulations using examples of the coherent feed-forward loop
(CFL, Fig. 3d) and a single feed-forward loop (SFL, Fig. 3e). In CFL,
direct negative regulation fromA toC exists.On the other hand, in SFL,
only indirect negative regulation from A to C, induced from a reg-
ulatory chain A ⊣B→C, exists.

In the presence of noise, the regulation-delta function often
fails to distinguish these direct and indirect regulations from A to
C in CFL and SFL. Specifically, for both CFL and SFL with 20%

multiplicative noise, SCA�B + is larger than Sthres and ΔC
B + ðAÞ is strictly

negative (Fig. 3f, g) for most of the cases. Here, the sign of Δ is
quantified by using a one-tailed Wilcoxon signed rank test (Sup-

plementary Fig. 6a). Thus, the regulation
A a
B !C is inferred not

only from CFL but also SFL. This indicates that in the presence of
noise, the regulation-delta function can be skewed to the specific
type of regulation, even for indirect regulation. To prevent such
false positive predictions, we develop another criterion. Specifi-
cally, we use a surrogate time series of A (Ashuffled, Fig. 3h) to
destroy the dependence of C on A in the presence of direct
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Fig. 2 | Framework for inferring regulatory networks. aWithODE describing the
network (left), various time series are simulated with different initial conditions
(middle). Then, from each time series, the regulation-detection score SYXσ is calcu-
lated for every 1D regulation type σ (Step 1). The criteria SYXσ = 1 infers A ⊣ B. Next,
SYXσ is calculated for every 2D regulation type σ (Step 2). Among the three types of
regulations with SYXσ = 1, only one passes theΔ test (Step 3). Bymerging the inferred
2D regulation with the 1D regulation from Step 1, the regulatory network is suc-
cessfully inferred. Here, data are presented as box plots (n = 100), in which the box

bounds the IQR divided by the median, and whiskers extend to a maximum of 1.5×
IQR beyond the box. b–f This framework successfully infers the network structures
of the Kim–Forger model (b), Frzilator (c), the 4-state Goodwin oscillator (d), the
Goldbeter model for the Drosophila circadian clock (e), and the cAMP oscillator of
Dictyostelium (f). For each model, 100 time-series data are simulated from ran-
domly selected initial conditions, which lie in the range of the original limit cycle.
Source data are provided as a Source Data file.
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regulation (A ⊣ C). As a result, the regulation–detection score

SCA�
shuffledB

+ is significantly reduced compared to SCA�B+ (Fig. 3i top).

On the other hand, if A does not directly regulate C, then the

regulation-detection score SCA�
shuffledB

+ does not decrease much

(Fig. 3i bottom), and SCA�B+ is not significantly larger than SCA�
shuffledB

+ .

When multiple time series are given, we calculate the p-values for
each data and integrate them using Fisher’s method. The criteria

(the combined p-value < combining p = 0.001 for every data)
successfully distinguishes between direct and indirect regulation
even when the noise level varies (Supplementary Fig. 6b).

From the noisy time series, using the criteria TRSYXσ>TRSthres, all
potential 1D (Fig. 3h upper-left) and 2D (Fig. 3h upper-right) regula-
tions are inferred. Then, among the inferred regulations, we need to
identify indirect regulations. Unlike IFL, CFL and SFL have a potential
indirect regulation. That is, A ⊣ C has the potential to be indirect since

Fig. 3 | Extended framework for inferring a regulatorynetwork fromnoisydata.
aA regulatory networkwith 1D regulation fromA to B and 2D regulation fromA and
B to C. b The threshold for the regulation-detection score
(Sthres = 0:9� 0:005× ðnoise level Þ, green dashed line) distinguishes true (A ⊣ B)
and false regulation (A→C). c The fraction of data satisfying SYXσ>Sthres, total reg-
ulation score (TRSYXσ ), is used to infer the regulation. Specifically, TRSYXσ>TRSthres is
used where TRSthres = 0:9� 0:01× (noise level) (green dashed line). Here, data are
presented as box plots (n = 100), in which the box bounds the IQR divided by the
median, and whiskers extend to a maximum of 1.5 × IQR beyond the box. d In CFL,
direct negative regulation from A to C exists. e On the other hand, in SFL, the
regulatory chain A ⊣ B→C induces an indirect negative regulation from A to C.
f, g ΔC

B + ðAÞ cannot distinguish between the direct and indirect regulations in the

presence of noise because SCA�B + >SCA+ B+ for both CFL and SFL, indicating the pre-
sence of regulation

A a
B !C. h, i SCA�

shuffledB
+ with the surrogate time series of A can be

used to distinguish between the indirect and direct regulations. To disrupt the
information of A, the time series of A is shuffled (h). In the presence of direct
regulation (CFL), but not indirect regulation (SFL), SCA�

shuffledB
+ is significantly smaller

than the original SCA�B+ (p-value < 0.001). j By including the surrogate test, our
extended framework can successfully infer IFL, CFL, and SFL even from noisy time
series. k F2 score of our inferencemethod when the level of noise increases from 0
to 20%. Here, the mean of the F2 score for 10 data sets is calculated. Each data set
consists of 100 time series, which are simulated with different initial conditions.
Source data are provided as a Source Data file.
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there is a regulatory chain A ⊣ B→C. In this case, we use a surrogate
time series of a potential source of indirect regulation (A) to test

whether SCA�B+ is significantly larger than SCA�
shuffledB

+ . This reveals that

A ⊣ C is a direct regulation for CFL, but not SFL. Then, merging 1D and
2D results successfully recovers the network structure of IFL, CFL, and
SFL even from noisy time series (Fig. 3j). Since our method involves
multi-dimensional inferences, in the presence of noise, various
dimensional regulations for a single target can be detected. In this
case, only the regulation with the highest value of TRS is inferred. In
the example of CFL, our 1D framework infers B→C and 2D framework

infers
A a
B !C. Since TRSCA�B+ is higher than TRSCB+ , only 2D regulation

A a
B !C is inferred (Fig. 3j).

Based on TRS and post-filtering tests (Δ test and surrogate test),
we develop a user-friendly computational package, GOBI, which canbe
used to infer regulations for systems described by Eq. (1) (see README
file on Github45 and Supplementary Information for manuals). GOBI
successfully infers regulatory networks from simulated time series
using ODE models (Fig. 2b–f) in the presence of multiplicative noise
(Fig. 3k) and other types of noise (Supplementary Fig. 7a). Here, the F2
score, the weighted harmonic mean of precision and recall, is nearly
one, indicating that GOBI is able to recover all regulations almost
perfectly. However, it should be noted that noise types that sig-
nificantly affect the shapes of trajectories can result in the decreased
performance of GOBI, which uses time series shape information for
inference (Supplementary Fig. 7b).

Successful network inferences from experimentally measured
time series
When the proposed thresholds for the regulation-detection score
(Fig. 3b) and Total Regulation Score (Fig. 3c) and two critical values of
significance (i.e., p-value = 0.01 for the Δ test and p-value = 0.001 for
the surrogate test) are used, GOBI successfully infers the regulatory
networks from in silico time series. Here, we use GOBI with these
default hyperparameters to infer regulatory networks from experi-
mentally measured time series. From the population data of two uni-
cellular ciliates Paramecium aurelia (P) and Didinium nasutum (D)3,46

(Fig. 4a left), the network between the prey (P) and predator (D) is
successfully inferred (Fig. 4a and Supplementary Fig. 9a).

Next, we apply GOBI to the time series of the synthetic genetic
oscillator, which consists of Tetracycline repressor (TetR) and RNA
polymerase sigma factor (σ28)47 (Fig. 4b left). While the time series are
measured under different conditions after adding purified TetR or
inactivating intrinsic TetR, our method consistently infers the negative
feedback loop, including negative self-regulation based on two direct
regulations σ28→TetR and TetR ⊣ σ28 for all cases (Fig. 4b middle and
Supplementary Fig. 9b). This indicates that our method can infer reg-
ulations even when the data are achieved from different conditions
sincewedonot specify the specific equationswith parameters in Eq. (1).

We next investigate the time-series data from a slightly more
complex synthetic oscillator, the three-gene repressilator48 (Fig. 4c left).
As the amount of data is greatly reduced compared to the synthetic
genetic oscillator (Fig. 4b), we assume negative self-regulation. Then,
the criteria TRSYXσY�>TRSthres infers three negative 1D regulations and
three 2D regulations (Fig. 4c middle). Among the 2D regulations, posi-
tive regulations are inferred as indirect as theydonotpass the surrogate
test (Fig. 4c middle, dashed arrow). Thus, among the inferred 2D reg-
ulations, only the negative regulations, consistent with the inferred 1D
regulations, are inferred as direct regulations. Gathering these results,
GOBI successfully infers the network structure of the repressilator
(Fig. 4c right and Supplementary Fig. 9c). Note that although our
method infers the regulations among proteins as direct, in fact, mRNA
exists as an intermediate step between the negative regulations among
the proteins. This happens due to the short translation time in

Escherichia coli49,which causes themRNAandprotein profiles to exhibit
similar shapes andphases. This indicates thatourmethod infers indirect
regulations with a short intermediate step as direct regulations. Fur-
thermore, compared to the synthetic genetic oscillator (Fig. 4b), the
amount of data is small, and the number of components is large; thus, it
is essential to assume negative self-regulation for correct inference, i.e.,
without the assumption, the available data is insufficient to fill the space
of the regulation–detection function, making it difficult to detect 2D
regulations.

We apply GOBI to the time series measuring the amounts of four
cofactors present at the estrogen-sensitive pS2 promoter after treat-
ment with estradiol50,51(Fig. 4d left). As all components are expected to
decay in proportion to their own concentrations, negative self-
regulations are assumed, which is critical due to the small amount of
data. GOBI infers five 1D regulations (HDAC ⊣ hER, TRIP1 ⊣ hER,
hER→ POLII, TRIP1 ⊣ POLII, and HDAC ⊣ POLII) that satisfy the criteria

TRSYXσY�>TRSthres. However, we exclude them because hER and POLII
have two and three causes, forming 2Dand 3D regulations, respectively,
although the 1D criteria assumes a single cause (Fig. 4d middle, dashed
box). If all of these regulations are effective, they will be identified as 2D
and 3D regulations. Indeed, among the 11 candidates for 2D regulations,
most of them include the five inferred 1D regulations. Via Δ test and
surrogate test, indirect regulations are identified among inferred 2D
regulations (Supplementary Fig. 9d). For example, 2D regulation
hER !
HDAC aPOLII satisfies the criteria TRSYXσY�>TRSthres. Among twocausal

variables (i.e., hER andHDAC), only positive regulation fromhER passes
the post-filtering test, i.e., only 1D regulation hER→ POLII, but not
HDAC ⊣ POLII is inferred as a direct regulation. Consequently, after
excluding all the indirect regulations, two 1D regulations (hER→ POLII

and HDAC ⊣ hER) and one 2D regulation (
POLII !
TRIP1 !HDAC) are inferred

(Supplementary Fig. 9d). While we are not able to further infer 3D
regulations due to the limited amount of data, the inferred regulations
are supportedby the experiments. That is, estradiol triggers thebinding
of hER to the pS2 promoter to recruit POLII50, supporting hER→ POLII.
Also, inhibition of POLII phosphorylation blocks the recruitment of
HDAC but does not affect the APIS engagement at the pS2 promoter50,
supporting POLII→HDAC and no regulation from POLII to TRIP1, which
is a surrogate measure of APIS. Without inhibition of POLII, HDAC is
recruited after the APIS engagement, and when the HDAC has max-
imum occupation, then the pS2 promoter becomes refractory to hER50,
supporting TRIP1→HDAC ⊣ hER. Interestingly, the inferred network
contains a negative feedback loop, which is required to generate sus-
tained oscillations52.

Finally, we investigate five-time series of air pollutants and cardi-
ovascular disease occurrence in Hong Kong from 1994 to 199753 (Fig. 4e
left). Since our goal is to identify which pollutants cause cardiovascular
disease, we fix the disease as a target. Also, we assume the negative self-
regulation of disease, reflecting death. While two positive causal links
from NO2 and respirable suspended particulates (Rspar) to the disease
are identified as 1D regulations (Fig. 4e middle), we exclude them
because they share the same target (Fig. 4e middle, dashed box).
Among two inferred 2D regulations, onepasses theΔ test and surrogate
test (Fig. 4d middle). Furthermore, no 3D and 4D regulation is inferred
(Supplementary Fig. 9e). The inferred network indicates that both
NO2 and Rspar are major causes of cardiovascular diseases (Fig. 4e
right). Indeed, it was reported that NO2 and Rspar are associated with
hospital admissions and mortality due to cardiovascular disease,
respectively54.

Comparison between our framework and other model-free
inference methods
Here, we compare our framework with popular model-free methods,
i.e., GC, CCM, and PCM, by using the experimental time-series data in

Article https://doi.org/10.1038/s41467-023-39983-4

Nature Communications |         (2023) 14:4287 6

https://github.com/Mathbiomed/GOBI


the previous section (Fig. 4a–e). Unlike our method, the model-free
methods can only infer the presence of regulation and not its type (i.e.,
positive and negative). Thus, the arrows represent inferred regula-
tions, which could be either positive or negative.

For the prey–predator system and the genetic oscillator (Fig. 4a,
b),wemerge them to create amore challenging case. Specifically, from
the set of eight different time-series data of a genetic oscillator mea-
sured under different conditions, we select one that has a similar phase
to the time series of the prey–predator system (Fig. 4b panel at the 2nd
rowand 2nd column). Then,wemerge the selected time serieswith the
time series of the prey–predator system. While GOBI and PCM suc-
cessfully detect two independent feedback loops (Fig. 5a), CCM and
GC infer false positive predictions (e.g., P to σ28 in Fig. 5a) because they
usually misidentify synchrony as causality. Furthermore, when we
reduce the sampling rate by half, the accuracy of PCM dramatically
drops, whereas GOBI can still infer the true network structure (Sup-
plementary Fig. 10).

For a similar reason, synchrony obscures the inference of the
model-free methods for the repressilator (Fig. 5b). Moreover, the
model-free methods fail to distinguish between direct and indirect
regulations. For example, they infer the indirect regulation TetR→ λcl

induced by the regulatory chain TetR ⊣ LacI ⊣ λcl, unlike our method.
Similarly, due to synchrony and indirect effect, for the system of
cofactors at the pS2 promoter, model-free methods infer an almost
fully connected causal network, unlike our method (Fig. 5c).

Whenweuse 3 years of data (full-lengthdata) on air pollutants and
cardiovascular disease, PCM infers the same structure as GOBI infers,
i.e., only NO2 and Rspar cause the disease (Fig. 5d gray)20. On the other
hand, when a subset of the data (i.e., two years of data) is used, only
GOBI infers the same structure (Fig. 5d purple). This indicates that
GOBI is more reliable and accurate than the model-free methods.

Discussion
We develop an inference method that considerably resolves the
weakness of model-free and model-based inference methods. We
derive the conditions for interactions satisfying the generalmonotonic
ODE (Eq. (1)). As this allows us to easily check the reproducibility of
given time-series data with the general monotonic ODE (i.e., the exis-
tence of ODE satisfying given time-series data) without fitting, the
computational cost is dramatically reduced compared to the previous
model-based approaches. Importantly, as our method can be applied
to any system described by general monotonic ODE (Eq. (1)), it
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Fig. 4 | Inferring regulatory networks from experimental data. a GOBI suc-
cessfully infers predatory interaction from a 30-day abundance time-series data of
two unicellular ciliates Paramecium aurelia and Didinium nasutum (data is taken
from refs. 3, 46). b GOBI successfully infers the negative feedback loop including
negative self-regulations of the synthetic geneticoscillator consistingof a repressor
TetR and activator σ28 (data is taken from ref. 47). c From time-series data of a three-
gene repressilator (data is taken from ref. 48), GOBI successfully infers the
underlying network. Three direct negative 1D regulations are inferred. Among
the three 2D regulations having high TRS, only negative regulations pass the Δ test

and surrogate test. d From time series measuring the number of cofactors
present at the estrogen-sensitive pS2 promoter after treatment with estradiol (data
is taken from ref. 50), five 1D regulations have high TRS. However, they are not
inferred because they share a common target (dashed box). Among 11 regulations
having high TRS, one 2D regulation and two 1D regulations are inferred, passing the
Δ test and surrogate test. e From 1000-day time-series data of daily air pollutants
and cardiovascular disease occurrence in the city of Hong Kong (data is taken
from ref. 20), GOBI finds direct positive causal links from NO2 and Rspar to the
disease. Source data are provided as a Source Data file.
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significantly addresses the fundamental limit of the model-based
approach (i.e., the requirement of a priori model accurately describing
the system) (Supplementary Fig. 4). In addition, our method also does
not run the serious risk of misidentifying generalized synchrony as
causality, unlike the previous model-free approaches. Please note that
our approach still cannot deal with completely synchronized system.
Furthermore, our method successfully distinguishes direct causal
relations from indirect causal relations by adopting the surrogate test
(Fig. 3). In this way, our framework dramatically reduces the false
positive predictions, which are the inherent flaw of the model-free
inferencemethod (Fig. 5). Taken together, we develop an accurate and
broadly applicable inference method that can uncover unknown
functional relationships underlying the system from their output time-
series data (Fig. 4).

Despite these advantages, our method has some limitations that
should be addressed. First, our framework assumes thatwhen X causes
Y, X causes Y either positively or negatively. Thus, GOBI cannot capture
the regulation when X causes Y both positively and negatively or when
the type of regulation changes over time. However, GOBI can be
potentially extended to detect temporal-structured models, including
non-monotonic regulation (Supplementary Fig. 11). It would be

interesting in future work to investigate the extended framework
thoroughly under diverse circumstances. Additionally, while we have
considered the general formofmonotonic ODE (Eq. (1)), GOBI can also
be extended to describe interactions, including time delays (Supple-
mentary Fig. 12). This will be an interesting future direction to make
GOBImore broadly applicable. Also another limitation is thepossibility
of false positive predictions. This occurs because ourmethod tests the
reproducibility of time-series data using necessary conditions. Speci-
fically, the regulation-detection score can be one even in the absence
of regulation. To resolve this, we use multiple time-series data and
perform post-filtering tests (i.e., Δ test and surrogate test). None-
theless, it should be noted that inferring high-dimensional regulations
requires a large amount of data (Supplementary Fig. 13). To address
this challenge, we can use prior knowledge about the system. For
example, in biological systems, negative self-regulation can be
assumed as the degradation rates of molecules increase as their con-
centrations increase. By assuming negative self-regulation, we are able
to reduce the ND regulation to (N − 1)D regulation, which allows us to
successfully infer the network structure even with a small amount of
experimental data (Fig. 4c). Note that when a priori assumption (e.g.,
the types of self-regulation) is not met, only the links that violate the

Fig. 5 |Model-freemethods,but notourmethod,makea falsepredictiondue to
the presence of synchrony and indirect effect. a–d We apply our method and
popular model-free methods (i.e., GC, CCM, and PCM) to various experimental
time-series data obtained from the prey–predator systemmerged with the genetic

oscillator (a); repressilator (b); cofactors at the pS2 promoter (c); and air pollutants
and cardiovascular disease (d). For the air pollutants and cardiovascular disease
data, we test the methods on three years of data (d gray) and on two years of data
(d purple). Source data are provided as a Source Data file.
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assumptions are not trustable, i.e., the other inference results are not
affected (Supplementary Fig. 3).

To use GOBI, we need to choose hyper-parameters. When apply-
ing GOBI to noisy data, users must choose thresholds for the
regulation-detection region, regulation-detection function, and
total regulation score, as well as two critical values of significance (i.e.,
p-values for Δ test and surrogate test). In this study, we determine
these values by using noisy simulated data of various examples (Fig. 3
and Supplementary Fig. 5). Nevertheless, these values are effective
when they are applied to experimental time-series data (Figs. 4 and 5).
Thus, we have set those values of hyper-parameters as the default
values of GOBI. However, the optimal threshold may vary depending
on the data characteristics, and users may need to adjust the thresh-
olds based on the importance of avoiding false positive or false nega-
tive predictions. Another hyper-parameter that requires consideration
is the choice of the sampling rate. In this study, we use a sampling rate
of 100 points per period after evaluating the trade-off between com-
putational cost and accuracy. However, users can decrease or increase
the sampling rate if the computation speed is too slow or if a higher
level of accuracy is required, respectively.

Methods
Computational package for inferring regulatory network
Here, we describe the key steps of our computational package, GOBI
(https://github.com/Mathbiomed/GOBI)45. For the experimental time-
series data X(t) = (X1(t), X2(t),⋯ , XN(t)), X(t) can be interpolated with
either the ‘spline’or ‘fourier’method, chosenby theuser. For the spline
interpolation, we use the MATLAB function ‘interp1’ with the option
‘spline’, and for the Fourier interpolation, we use theMATLAB function
‘fit’ with the option ‘fourier1–8’. After the interpolation, the derivative
of X(t) is computed using the MATLAB function ‘gradient’ to compute
the regulation–detection score.

Regulation–detection region. For the ND regulation (Eq. (1)) with
regulation type σ, the regulation-detection region (RXσ ) is defined as

the set of (t, t*) on the domain of time series 0,τ½ Þ2 satisfying

σðiÞXd
i ðt,t*Þ>0 for all i = 1, 2,⋯ ,N. For example, with the positive 1D

regulation X→ Y (σ = + ), RX + is the set of (t, t*) where Xd > 0. For the 2D

regulation
X 1 !
X2 a Y (σ = (+, −)), RX +

1 X�
2
is the set of (t, t*) satisfying both

Xd
1 >0 and Xd

2<0. The size of the regulation-detection region

(sizeðRXσ Þ) is the fraction of RXσ over the domain 0,τ½ Þ2. In the pre-
sence of noise, we only consider a region which is not small (i.e.,

sizeðRXσ Þ>Rthres) to avoid an error from the noise. The value of Rthres

can be chosen from 0 to 0.1, and the choice of Rthres does not sig-
nificantly affect the results (Supplementary Fig. 5a). However, a small

value of Rthres is recommended for inferring high-dimensional reg-
ulations since the average of sizeðRXσ Þ decreases exponentially as
dimension increases (see Supplementary Information for details).

Regulation–detection function and score. When the regulation type
σ from X = (X1, X2,⋯ , XN) to Y exists, the following regulation-
detection function (IYXσ ) defined on regulation–detection region RXσ

is always positive.

IYXσ : = _Y
d �

YN

i= 1

σðiÞXd
i :

Thus, the following regulation-detection score (SYXσ ) is one:

SYXσ : =

RR
RXσ

IYXσ ðt,t*Þdtdt*
RR

RXσ
∣IYXσ ðt,t*Þ∣dtdt*

ð4Þ

(see Supplementary Information for details). However, this is not true
anymore in the presence of noise. Thus, we relax the criteria from SYXσ = 1
to SYXσ>Sthres. Among the data which has nonempty RXσ (i.e., RXσ>Rthres),
the fraction of data satisfying the criteria SYXσ>Sthres is called the total
regulation score (TRSYXσ ). Finally,we infer the regulation fromnoisy time-
series data using the criteria TRSYXσ>TRSthres for noisy time-series
data. Sthres = 0:9� 0:005× ðnoise level Þ and TRSthres =0:9� 0:01 ×
ðnoise level Þ are used (Fig. 3a–c and Supplementary Fig. 5). The noise
level of the time series is approximated using the mean square of the
residual between the noisy and fitted time series (Supplementary Fig. 8).

Δ test. When we add any regulation to existing true regulation, the
regulation-detection score is always one (Fig. 1j-l). Thus, to test whether
the additional regulation is effective, we consider ΔY

Xσ ðXnewÞ= SYXσX +
new

�
SYXσX�

new
, where SYXσX +

new
(SYXσX�

new
) is the regulation-detection score when

the new component (Xnew) is positively (negatively) added to the
existing regulation type σ. Because ΔY

Xσ ðXnewÞ=0 reflects that the new
component (Xnew) does not have any regulatory role, the newly added
regulation is inferred only when ΔY

Xσ ðXnewÞ≠0 for some data. In parti-
cular, Δ >0 (Δ<0) represents that the new component adds positive
(negative) regulation. In the presence of noise, the positive (negative)
regulation is inferred ifΔ ≥0 (Δ≤0) consistently for all time series. If the
number of time series is greater than 25, the sign of Δ is quantified by a
one-tailed Wilcoxon signed rank test. We set the critical value of sig-
nificance as 0.01, but it can be chosen by the user.

Surrogate test. Indirect regulation is induced by the chain of direct
regulations. For example, in SFL (Fig. 3e), regulatory chain A ⊣ B→C
induces the indirect negative regulationA⊣C. In the presenceof noise,
the Δ test sometimes fails to distinguish between direct and indirect
regulations (Fig. 3d–g). Thus, after the Δ test, if the inferred regulation
has the potential to be indirect, we additionally perform the surrogate
test to determine whether the inferred regulation is direct or indirect.
Specifically, for each candidate of indirect regulation, we shuffle the
time series of the cause using the MATLAB function ‘perm’ and then
calculate the regulation–detection scores. Then, we test whether the
original regulation-detection score is significantly larger than the
shuffled ones by using a one-tailed Z test. In the presence of the k
number of time-series data, we can get the k number of p-values
(pi, i = 1, 2,⋯ , k). Thus, we combine them into one test statistic (χ2)
using Fisher’s method, χ22k ∼ � 2

Pk
i = 1 logðpiÞ. We set the critical value

of the significance of Fisher’s method by combining pi =0.001 for all
the data, but it can also be chosen by the user.

Model-freemethods. For CCM3 and PCM20, we choose an appropriate
embedding dimension using the false nearest neighbor algorithm.
Also, we select a time lag producing the first minimum of delayed
mutual information. To select the threshold value ‘T’ in PCM, we use k-
means clustering as suggested in20. We run CCM using ‘skccm’ and
PCM using the code provided in20. For GC2, we run the code provided
in55, specifying the order of AR processes of the first minimum of
delayed mutual information as we choose a max delay with the CCM
and PCM. Also, we reject the null hypothesis that Y does not Granger
cause X, and thereby inferred direct regulations by using the F statistic
with a significance level of 95%2. Specifically, we use embedding
dimension 2 for the prey-predator, genetic oscillator, and estradiol
data sets; and 3 for the repressilator and air pollutants and cardio-
vascular disease data sets. Also, we used time lag 2 for prey–predator;
3 ~ 10 for the genetic oscillator (there are eight different time-series
data sets); 10 for the repressilator; 15 for the estradiol data set; and 3
for the air pollutants and cardiovascular disease data set.

in silico time-series data
With the ODE describing the system, we simulate the time-series data
using the MATLAB function ‘ode45’. The sampling rate is 100 points
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per period for all the examples (Figs. 1, 2, and 3). For themultiple time-
series data (Figs. 2 and 3), we generate 100 different time series with
different initial conditions. Then, before applying our method, we
normalize each time series by re-scaling to have minimum 0 and
maximum 1. To introduce measurement noise in time series, we
introduce multiplicative noise sampled randomly from a normal dis-
tribution with mean 0 and standard deviation given by the noise level.
For example, for 10% multiplicative noise, we add the noise X(ti) ⋅ ε to
X(ti), where ε ~N(0, 0. 12). Before applying our method, all the simu-
lated noisy time series are fitted using theMATLAB function ‘fourier4’.
However, if the noise level is too high, ‘fourier4’ tends to overfit and
capture the noise. Thus, in the presence of a high level of noise,
‘fourier2’ is recommended for smoothing.

Experimental time-series data
For the experimental data,wefirst calculate the periodofdata by using
the first peak of auto-correlation. Then, we cut the time series into
periods (Fig. 4a, b). Specifically, we cut the prey-predator time series
every five days to generate seven different time series (Fig. 4a). When
the number of cycles in the data is low (<5), to generate enough mul-
tiple time series (Fig. 4c–e), we cut the data using the moving-window
technique. That is, we choose the window whose size is the period of
the time series. Then, along the time series, wemove the window until
the next window overlaps with the current window by 90%. Then, the
time series in every window is used for our approach. We employ this
approach for the repressilator (Fig. 4c); estradiol data set (Fig. 4d); and
air pollution and cardiovascular disease data (Fig. 4e). For instance, we
use time-series data of air pollutants and cardiovascular disease with a
window size of one year and an overlap of 11 months (i.e., move the
window for a month) to generate 23 data sets. Before this, the time
series of disease admissions are smoothed using a simple moving
average with a window width of seven days to avoid the effect of days
of the week. Each time series is interpolated using the MATLAB func-
tion ‘spline’ (Fig. 4a–d) or ‘fourier2’ (Fig. 4e), depending on the noise
level of the time-series data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data sets generated in this study are publicly available on Github45.
The references for the public data sets used and analyzed during this
study can be found in the “Results” section3,20,46–48,50. Source data are
provided in this paper.

Code availability
The codes for the GOBI package, including all the figures presented in
this article, are publicly available on Github45.
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