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Genome-scale metabolic modeling of Asper-
gillus fumigatus strains reveals growth
dependencies on the lung microbiome

Mohammad H. Mirhakkak1,12, Xiuqiang Chen 1,12, Yueqiong Ni1,
Thorsten Heinekamp2, Tongta Sae-Ong 1, Lin-Lin Xu1, Oliver Kurzai3,4,5,
Amelia E. Barber6, Axel A. Brakhage 2,7, Sebastien Boutin8,9,
Sascha Schäuble 1 & Gianni Panagiotou1,10,11

Aspergillus fumigatus, an opportunistic human pathogen, frequently infects
the lungs of people with cystic fibrosis and is one of the most common causes
of infectious-disease death in immunocompromised patients. Here, we con-
struct 252 strain-specific, genome-scale metabolic models of this important
fungal pathogen to study and better understand the metabolic component of
its pathogenic versatility. The models show that 23.1% of A. fumigatus meta-
bolic reactions are not conserved across strains and aremainly associatedwith
amino acid, nucleotide, and nitrogen metabolism. Profiles of non-conserved
reactions and growth-supporting reaction fluxes are sufficient to differentiate
strains, for example by environmental or clinical origin. In addition, shotgun
metagenomics analysis of sputum from 40 cystic fibrosis patients (15 females,
25males) before and after diagnosiswith anA. fumigatus colonization suggests
that the fungus shapes the lung microbiome towards a more beneficial fungal
growth environment associated with aromatic amino acid availability and the
shikimate pathway. Our findings are starting points for the development of
drugs ormicrobiome intervention strategies targeting fungal metabolic needs
for survival and colonization in the non-native environment of the human lung.

Fungal infections are an emerging and costly concern for human
health and health care1,2. The common mold Aspergillus fumigatus is
essential for environmental decomposition but poses a serious
threat to hospitalized patients, particularly those who are

immunocompromised or have pulmonary diseases such as cystic
fibrosis3,4. Annually, more than 1 million people have invasive asper-
gillosis (IA), a systemic multi-organ affecting disease starting by A.
fumigatus infecting the lung, and 3 million have chronic pulmonary
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aspergillosis. Both conditions have high mortality rates and diagnosis
remains challenging (https://gaffi.org/why/fungal-disease-frequency/,
June 2022). In addition, A. fumigatus contributes substantially to fatal
disease progression in chronic obstructive pulmonary disease, which
appears to have a much higher prevalence than previously estimated5,
while A. fumigatus is related to as many as half of the worldwide cystic
fibrosis cases6.

The distinct characteristics that A. fumigatus isolates possess to
cope with external stresses or accessible nutrient profiles in challen-
ging environments such as the human lung remain largely unknown.
Recently, we explored the genetic diversity ofA. fumigatus and found a
remarkably low fraction of core genes shared by all members of the
species (69% of total genes identified)7. How the genetic diversity of A.
fumigatus influences phenotypic and metabolic heterogeneity, and
particularly the ability to thrive in the non-native niche of the human
lung, has not been addressed.

One promising approach to studying the metabolic capabilities
and growth dependencies of pathogens is genome-scale metabolic
model (GEM) reconstruction and analysis8.We previously applied GEM
analysis to reveal gut microbiome species that influence colonization
levels of the opportunistic fungal pathogen Candida albicans9. The
exponentially increasing number of available genome sequences
makes the reconstruction of multistrain GEMs possible. The first
multistrain-GEM collection of Escherichia coli enabled the definition of
strain-specific adaptation to nutrition availability and the prediction of
nutritional auxotrophies in some strains10. Protocols and databases
were consequently updated to allow for bacterial GEM reconstruction
at strain-level resolution11,12, although reconstructions of multistrain-
GEMs remain to be explored in eukaryotes.

In this study, we provide multistrain-GEM reconstruction using A.
fumigatus as a fungal model organism. By defining metabolic differ-
ences among 203 environmental and 49 clinical strain-specific GEMs
we identified metabolic reactions that differ between the two popu-
lations. Subsequently, we performed shotgun metagenomics on spu-
tum from 40 cystic fibrosis patients before and after they were
diagnosed with an A. fumigatus colonization. Based on computation-
ally definedmetabolic output of the lungmicrobiome,wepropose that
the presence of A. fumigatus shapes the metabolic landscape of the
lung microbiome to be favorable for fungal growth. Resolving the
impact of genetic diversity on A. fumigatusmetabolism is important to
extending our understanding of adaptation mechanisms that likely
involve aromatic amino acid metabolism and the shikimate pathway
for ultimately guiding the development of new antifungal therapies.

Results
Reconstruction of a comprehensive Aspergillus fumigatus
pan-GEM
To create a template for strain-specific GEM design, we generated a
comprehensive pan-GEM for A. fumigatus metabolism (Fig. 1a). To
start, wecombined two availabledraft reconstructions forA. fumigatus
with seven automatically derived draft reconstructions for different
Aspergillus species (seeMethods for details)13,14. This approach allowed
us to acquire as many Aspergillus-associated reactions as possible in
the core metabolism of A. fumigatus (i.e., metabolic reactions present
in all strains). It also allowed us to acquire a more comprehensive
catalog of optional accessory metabolic reactions by defining strain
subset diversity, which enabled subsequent strain-specific gap-filling
curation (Fig. 1a). The first draft model comprised 7606 reactions (of
which 3233 were responsible for metabolite exchange with the simu-
lated environment) and 3578 metabolites, which we reduced to 3621
(Fig. 1b) during the curation steps described further below.

Next, we adapted 62metabolic components based on fungal- and
A. fumigatus- specific literature to create the biomass objective func-
tion essential for simulatingA. fumigatus growth rates (Methods)15. The
largest fractions of the derived biomass function included

carbohydrates and proteins (43% and 30%, respectively). Additional
essential components included lipids, DNA, and energetic co-factors
(Fig. 1c, Supplementary Data S1).

Subsequently, we screened available A. fumigatus gene informa-
tion relevant for metabolism and added 1444 unique genes (Figs. 1b)
and 2003 corresponding gene-to-reaction rules for metabolic reac-
tions, as defined by KEGG (https://www.kegg.jp/) or MetaCyc (https://
metacyc.org/, Methods). The remaining 2370 metabolic reactions
(excluding exchange reactions) could not be mapped to any gene in
our pan-GEM draft model and were removed from the generic pan-
GEM. These reactions were retained for subsequent strain-specific
refinement steps, which require accessory information e.g., for gap-
filling of fragmented metabolic pathways (Fig. 1a). Concurrently, we
incorporated reaction-to-pathway association information from both
KEGG and MetaCyc. The largest pathway categories included amino
acids and carbohydrates (Fig. 1d). For the 2003 metabolic reactions
with gene annotation, we predicted nine compartments in our pan-
GEM using WoLF PSORT (Fig. 1e, Methods)16. In parallel, we identified
and resolved erroneous energy-generating cycles17 by correcting or
removing thermodynamically implausible reactions, for example, that
diminished free energy dissipation. After these steps, we analyzed
again the consistency in our pan-GEM and identified 210 blocked
reactions by flux variability analysis (FVA)18 based on relaxed flux
bounds of exchange reactions.

For the final curation of our pan-GEM, we generated phenotypic
growth data for A. fumigatus wild-type (Af293 strain) and four mutant
strains affecting nitrogen or carbon metabolic components, and
adapted themodel to publicly available gene essentiality information19

(Supplementary Data S2). The initial agreement of our pan-GEM to our
metabolite-specific growth data was at most 66% on average and
required improvement to enable accurate metabolic predictions
(Fig. 1f). To optimize the simulation accuracy of our pan-GEM, we
manually resolved incompatibilities among our growth data, available
gene essentiality data, and our in silico model predictions (Methods).
Of note, we did not observe lysine-dependent growth cessation with
our phenotypic microarray data of the lysF mutant strain (Supple-
mentaryData S2) suggesting amedia influence on the environment for
growth and virulence20. These curation efforts improved growth
simulation accuracy from 58% to 84% for all tested carbon sources and
improved nitrogen growth simulation accuracy from 55% to 85%
(Fig. 1f). The pan-GEM achieved 79% and 82% compatibility for,
respectively, the tested phosphorus and sulfur sources (Fig. 1f, Meth-
ods). This final model reached 75% agreement with the available gene
essentiality data (Fig. 1g). Our final A. fumigatus pan-GEM comprised
1,444 unique genes, 3,621 reactions, and 4,046metabolites distributed
across 9 compartments. Of these, 2,798metabolic reactions and 1,940
metabolites were unique in our pan-GEM across all 9 compart-
ments (Fig. 1b).

Finally, we tested how well our pan-GEM predicted oxygen-
dependent growth21. After calibrating our model to normoxic growth
conditions (0.013mmol/grams dryweight [grDW]/hr, Fig. 1h), wewere
able to accurately capture hypoxic growth (predicted 0.010 compared
to measured 0.011mmol/grDW/hr). The same model also predicted
the magnitude of experimentally derived secretion rates for acetate
(for predicted and measured values, respectively, 0.009 vs. 0.004 for
normoxic conditions; 0.020 vs. 0.015 for hypoxic conditions, all
mmol/grDW/hr). Measured ethanol and lactate levels were also very
low (0.003mmol/grDW/h or lower), while the predicted theoretical
yield by our simulations was 0.008mmol/grDW/h or lower (Supple-
mentaryData S2,Methods). In summary, our refinedpan-GEMwas able
to recapture experimentally assessed oxygen-dependent growth data
and predicted secretion rates of assessed metabolites that were
comparable to the publicly available growth data. For the remainder of
our analysis, we assumed normoxic growth conditions unless
otherwise noted.
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Fig. 1 | General reconstruction workflow and A. fumigatus pan-genome-scale
metabolicmodel (GEM) statistics. aWorkflow forA. fumigatus strain-specificGEM
reconstructions. Colors indicate strains and associated metabolic models.
b–g Characteristics of pan-GEM reconstruction for A. fumigatus. b Counts of pan-
GEMcomponents for included genes, reactions, andmetabolites. cContribution of
macromolecules in one unit of biomass (Supplementary Data S1). d Distribution of
pan-GEM reactions across major pathway categories (Supplementary Data S9).
e Distribution of pan-GEM reactions across nine compartments (Supplementary
Data S9). f Growth prediction accuracy of pan-GEM for A. fumigatus wild-type

(Af293) and four mutant strains using phenotypic microarray data (n = 5 in total,
bars showmean and standard error ofmean, SupplementaryData S2). C: carbon, N:
nitrogen, P: phosphorus, S: sulfur. g Confusion matrix of pan-GEM accuracy in
predicting the essentiality of 20 genes according to the literature (see Results and
Methods). h Experimental values compared to simulated growth rate values under
normoxic and hypoxic conditions (Supplementary Data S2 has experimental and
simulated secretion values). Source data for Fig. 1b–h are provided in the Source
Data file.
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A. fumigatus strains show notable accessory reaction content
Using a genomic dataset of 252 A. fumigatus strains from Germany
(203 environmental and 49 clinical strains) from our previous study
addressing the global diversity of A. fumigatus7, we mapped strain-
specific gene profiles to the reference pan-GEM and subsequently
derived strain-specific GEMs (Supplementary Data S3). For all strain-
specific GEMs, we ensured viable growth was predicted in minimal
media with glucose as the carbon source by identifying and resolving
minimal sets of essential reactions22 and crosschecking against
blocked reactions with FASTCC (Methods)23. Model size varied in the
different A. fumigatus strains from 1321 to 1402 reactions (mean 1361).

Although all strain-specific GEMs were derived from A. fumigatus,
we found a low number of core metabolic components shared by all
GEMs (Fig. 2a). In line with the considerably high genomic diversity of
this organism7, only 475 metabolic genes (61.7%) and 1108 metabolic
reactions (76.9%) were shared by all strain-specific GEMs, resulting in a
large degree of metabolic variation across all GEMs (296 accessory
genes and 338 accessory reactions). Most relevant accessory content
was involved in nucleotide, energy (including oxidative

phosphorylation and nitrogenmetabolism), and amino acidmetabolic
pathways (Fig. 2b). For all reactions in the strain-specific GEMs for
these pathways, conservation across all strainmodels was only 57% for
nucleotide, 65% for energy, and 68% for amino acid metabolism,
demonstrating considerable metabolic pathway variation among
strains (Fig. 2b). Themajority of the accessory content (60% for genes,
63% for reactions, Table 1, Fig. 2c) was shared by more than 80% of all
strain-specific GEMs. We previously observed that one genetic lineage
of A. fumigatus possessed significantly fewer accessory genes than the
others, including notably fewer metabolic accessory genes7 (Supple-
mentary Fig. S1). In contrast, metabolic reaction content in the strain-
specific GEMs did not show a reduced number of metabolic reactions
in this lineage, demonstrating the presence of redundancy among
metabolic accessory genes (Fig. 2c). Finally, a small, but notable
number of reactions appeared in 40% or fewer of all strain-specific
GEMs (Table 1, Fig. 2c), including mostly reactions of amino acid
metabolism, but also of lipid and nucleotide metabolism including
nitrogen-dependent chorismate pyruvate-lyase or nicotinamidase and
acyl-CoA-dependent acyltransferases. The large variability among

Fig. 2 | Core and accessory metabolic characteristics of A. fumigatus strain-
specific genome-scale metabolic models (GEMs). Core and accessory metabolic
content was determined for 252 unique A. fumigatus strains of environmental and
clinical origin. a Number of core and accessory genes, reactions (rxns), and meta-
bolites for reconstructed strain-specific GEMs. b Summary of the core and acces-
sory reactome for higher-level metabolic pathway categories. Pathway categories

are according to KEGG pathway definition (https://www.kegg.jp/kegg/pathway.
html). c Distribution of the accessory reactome across strain models. Indicated
percentage ranges correspond to accessory reaction presence across strain-
specific GEMs. Genetic relationship as originally published is indicated7. Source
data for Fig. 2 are provided in the Source Data file.
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strains in amino acid metabolism was confirmed by cultivation and
targeted metabolomics profiling of 20 A. fumigatus strains (Supple-
mentary Data S4).

Taken together, our 252 strain models showed notable accessory
content and therefore potential metabolic diversity among the strains
as well asmetabolic robustness despite reduced numbers of accessory
metabolically relevant genes. All GEMs of our strain collection are in
the BioModels repository (ID MODEL2211100001)24.

Metabolic activity of 21 reactions differentiates between envir-
onmental and clinical strain-specific GEMs
Calculating the pairwise Jaccard index showed that strain-specific
GEMs differed by 15% or less (Fig. 3a). Neither accessory reaction
information nor Jaccard distance discriminated between environ-
mental and clinical strains for metabolic capabilities (Figs. 2c, 3a).
However, we identified eight metabolic reactions present primarily in
either environmental or clinical strain-specific GEMs that, when con-
sideredwithout other reactions, were able to significantly differentiate
the two strain origins (Fisher’s exact test, p ≤0.05, Fig. 3b). In agree-
ment with the statistical significance of these eight reactions, decision
tree machine learning (ML) using the presence or absence of these
metabolic reactions, as well as the capability of the strains to grow on
different minimal media compositions, required only a few steps to
correctly categorize 216 of 252 strains (86%, Fig. 3c). Notably, the
presence of chorismate lyase alone allows to categorize 93% of all
strain-specific GEMs correctly. Chorismate lyase activity is linked to
differential activity in the shikimate pathway, which is associated with
virulence in A. fumigatus25,26. Combining the ability to convert chor-
ismate and glutamine to anthranilate, pyruvate, and glutamate, with
amino acid and energy metabolism-associated conversions of
methionine, succinate, or tryptamine, and the ability to take up and
grow on aspartic acid, appeared sufficient for strain origin classifica-
tion. Specifically, the ability to add sulfur to methionine as well as the
absence of the ability to convert selenocystathione to selenocysteine
or tryptamine to Indole-3-acetaldehyde appeared a characteristic of
environmental strains, which in part was not present in clinical strains
(Fig. 3c). This may hint to altered thioredoxin levels, which have been
linked to the fungus’ redox homeostasis before27. These reactions
yieldedmetabolic discriminators that were complementary to the sole
presence/absence statistical analysis of metabolic reactions in our
strain-specific GEM collection (Fig. 3a, b).

Given that only a few metabolic reactions were sufficient to dif-
ferentiate strains by clinical and environmental origin using statistical
and decision tree analysis, we explored whether reaction fluxes
between strain-specific GEMs could further improve strain origin dif-
ferentiation. We analyzed feasible reaction flux ranges for all strain-
specific GEMs by simulating each on minimal media including glucose
as a carbon source and calculating growth-supporting flux ranges

using FVA. Although flux balance analysis and FVA rely on a system
assumed at steady state without requiring knowledge of kinetic para-
meters, both are widely accepted techniques and contribute sub-
stantially to biomarker identification and mechanistic insights into
diseasemetabolism28,29. The derived flux ranges were used as the input
for ML-based classification (Methods). Using information from only 21
reactions, classifying environmental from clinical strains achieved an
area under the curve for precision over recall of 0.92 and an accuracy
of 0.79 (Fig. 3d, Supplementary Data S5). In addition to previously
highlighted chorismate-associated reactions, the ML model also
selected features associated with amino acid and energy pathways,
especially in the mitochondrial compartment. These included, for
example, homoserine succinate-lyase, ribulose-phosphate 3-epimer-
ase, and succinate:CoA ligase, suggesting the contribution of altered
amino acid and energy metabolism to differentiation of clinical and
environmental A. fumigatus strains.

We didnot observemajor differences in strain origin based on the
strain’s accessory gene or reaction content (Fig. 2c, Supplementary
Fig. S1) or complete metabolic reaction presence (Fig. 3a). In contrast,
we identified a small, defined set of reactions mainly associated with
amino acid, energy, and chorismate metabolic activity that were lar-
gely sufficient to differentiate clinical from environmental origin
(Fig. 3b–d).

Significant alterations in the structure of the lung microbiome
upon A. fumigatus colonization
To investigate the applicability of the clinical-strain GEMs for pre-
dicting metabolic components supporting A. fumigatus growth in the
human lung, we analyzed sputum samples from 40 cystic fibrosis
patients from Germany (see Methods for cohort description). For all
patients, we had an initial culture-negative sample and a subsequent
sample that was positive for A. fumigatus growth. To investigate
changes to the lung microbiota after A. fumigatus colonization, we
performed shotgun metagenomic sequencing for all 80 sputum sam-
ples (A. fumigatusnegative and positive), generating an average of 5.59
Gbp of sequencing data per sample (standard deviation 0.80 Gbp). By
combining Kraken 2 and raspir30 for taxonomic profiling, we identified
a total of 67 genera and 200 species. Although spontaneous expec-
toration of sputum is frequently used for sample acquisition31,32, this
practice may introduce contamination from oropharyngeal flora. By
applying FEAST33, which was developed to partitionmicrobial samples
into their source components facilitating the quantification of con-
tamination or other potential source environments, we found a
dominant source of our samples to be cystic fibrosis patients’ lung
microbiome and a significantly higher contribution of them than the
oral or clinical environment microbiome (Supplementary Fig. S2). Our
study lacked true negative controls, so to minimize the chances of
detecting false-positives species, we applied abundance and pre-
valence filters and compared detected genera and species using the
alternative tools KrakenUniq and Centrifuge34,35 to ensure robustness
in lung microbe detection. 198 out of 200 species were detected by at
least one of these two alternative tools (Supplementary Data S6).
Despite differences among the patient cohort, starting biomaterial,
and sequencing method, the taxonomic annotation of the 10 most
abundant genera (Fig. 4a, Supplementary Data S6) showed striking
similarities to two recent studies. In thosepapers, the lungmicrobiome
of A. fumigatus-infected and control patients was investigated using
16S rRNA sequencing of either sputum samples or bronchoalveolar
lavage36,37.

The prevalence of the most abundant genera was consistently
high (Fig. 4a, Supplementary Data S6). Notably, from the 10 most
abundant genera, Campylobacter and Capnocytophaga were highly
abundant in, respectively, 25 and 20 of 80 samples, (31.25% and 25%)
showing an uneven distribution in the population (Supplementary
Data S6). Similarly, the most prevalent species were present in most

Table 1 | Number of accessory genes and reactions across all
strain-specific GEMs

Genes Reactions

Occurrence (in %) Mean Standard
deviation

Mean Standard
deviation

[1–20] 1.9 1.8 4.7 7.7

[21–40] 6.9 2.5 1.3 1.2

[41–60] 16.7 3.2 17.4 6.0

[61–80] 17.8 2.4 20.2 6.3

[81–99] 296.9 8.1 219.3 6.8

Based on 338 accessory reactions, we categorized accessory genes and reactions by percen-
tage of occurrence across all strain-specific GEMs. For each range of percent (e.g., 1–20% of
strains), we show the predictedmean number of genes and reactions, with standard deviations.
Source data are provided in the Source Data file.
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Sample
origin

Fig. 3 | Differentiation by origin of all strain-specific GEMs. a Heatmap with
pairwise Jaccard distance values for isolated GEM pairs based on presence or
absence of metabolic reactions. b Selected metabolic reactions with the highest
statistical significance for differences in presence/absence by sample origin (Fisher
exact test, p ≤0.05). Presence frequency indicates the fraction of reaction presence
over all investigated strain-specific GEMs. c Decision tree optimized for separation
of clinical and environmental strain origin. The decision tree is basedon absence or

presence ofmetabolic reactions and growth capability on different nutrients for all
strain-specific GEMs. d Machine learning-derived mean area under the curve for
precision over recall based on 21 reactions identified by the model using biomass-
supporting flux ranges for all reactions determined with flux variability analysis to
classify clinical vs. environmental origin. Source data for Fig. 3 are provided in the
Source Data file.
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samples (≥ 80%) (Supplementary Data S6). Of these species, Strepto-
coccus mitis (65% occurrence in the 10 most abundant species), Hae-
mophilus parainfluenzae (61.25%), Rothia mucilaginosa (57.5%),
Prevotella melaninogenica (55%), and Staphylococcus aureus (52.5%)
were most frequently found among the 10 most abundant species
(Supplementary Data S6). Intriguingly, Pseudomonas aeruginosa was
among the 10 most abundant species in 11 samples before and
17 samples after A. fumigatus colonization in the same patients. This
species is commonly found in cystic fibrosis patients and co-occurs
frequently with A. fumigatus colonization38.

No statistically significant differences were seen in alpha or beta
diversity (Supplementary Fig. S3a, b), but species co-abundance net-
works revealed notable compositional changes in the lung micro-
biome structure following A. fumigatus colonization. Using differential
gene correlation analysis (DGCA), we generated networks from dif-
ferentially correlated microbial pairs in paired A. fumigatus-negative
versus A. fumigatus-positive samples from cystic fibrosis patients
(Fig. 4b). We analyzed the resulting networks using MEGENA39 and
identified fourmodules in the global network that contained 13 species
(orange in Fig. 4b)with differential abundance (metagenomeSeq, zero-
inflated gaussian mixture model, p ≤0.05) between A. fumigatus-
negative and subsequently positive patient samples. For the top 5

differentially abundant species (by p-value), existing edges (class +/0
in Fig. 4b, Supplementary Data S6) of Bibersteinia trehalosi, Neisseria
elongata and Methylibium petroleiphilum with Actinobacillus suis,
Bibersteinia trehalosi and Paraburkholderia hospita in A. fumigatus-
negative samples were lost upon colonization with A. fumigatus.
Similar patterns were observed with loss of negative associations
between Bibersteinia trehalosi with Xanthomonas vesicatoria, Xantho-
monas arboricola and Stenotrophomonas rhizophila, Campylobacter
gracilis with Pseudomonas resinovorans (−/0, cyan edges, Fig. 4b,
Supplementary Data S6). Additionally, 6 newly formed negative asso-
ciations (0/−) and 7 newly formed positive associations (0/+) were
observed for these species (Fig. 4b, Supplementary Data S6).

To evaluate the functional implications of microbiome restruc-
turing following A. fumigatus colonization, we performed KEGG
orthology enrichment analysis on the four identified modules of our
co-abundance networks (Methods). Interestingly, modules 3 and 4
were enriched in amino acid metabolism, for example, phenylalanine
and tryptophan, but also valine and (iso-)leucine. Further enrichments
included glycosaminoglycan and steroid biosynthesis (module 1),
glycan biosynthesis (module 2), propanoate and fatty acidmetabolism
(module 3), and flavonoid metabolism (module 4, Supplementary
Data S6). Additionally, we performed correlation analysis with clinical
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Fig. 4 | Metagenomics sequencing of 80 total paired sputum samples taken
from 40 cystic fibrosis patients before and after A. fumigatus colonization.
a Relative abundances of the 10 most abundant genera and species from all sam-
ples.X-axis is ordered by patient sample number.bDifferential correlation analysis
of species in A. fumigatus + (after colonization) relative to A. fumigatus - (before
colonization) showing changes in the lung microbiome interactome after A.
fumigatus colonization. Edge colors and class information indicate the direction of
correlation for A. fumigatus -/A. fumigatus+ . Associated count indicates the
number of species pairs in the network exhibiting this pattern of change. Only

species pairs with significant differential correlations were included (permutation
test, p ≤0.05). An orange node background indicates significant differential
abundance for species when comparing A. fumigatus - vs. A. fumigatus + samples
(metagenomeSeq, zero-inflated Gaussian mixture model, p ≤0.05, Supplementary
Data S6). Abbreviations: biosyn: biosynthesis; cys: cysteine; degr: degradation;
Isoleu: isoleucine; met: methionine; mb: metabolism; Leu: leucine; Phe: phenyla-
lanine; PAH: Polycyclic Aromatic Hydrocarbon; Try: tryptophan; Val: valine. Source
data for Fig. 4 are provided in the Source Data file.
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metadata on lung functional capacity as quantified by the forced
expiratory volume (FEV, Supplementary Data S7), Among other asso-
ciations, we found a significant association of FEV and species of
module 3 (permutation test, p ≤0.05) and positive correlations
between FEV and a number of amino acid-involving pathways includ-
ing biosynthesis of phenylalanine, tyrosine and tryptophan, and also
with glycolysis (Spearman’s correlation, p ≤0.05, Supplementary
Data S7). These data suggested a relationship between clinical mani-
festation during A. fumigatus colonization and the lung microbial
profile, possibly involvingmetabolic exchanges between the pathogen
and lung bacteria.

In summary, we identified a significant change in the structure of
the lung microbiome reflected in a distinct set of 319 species co-
abundance differences uponA. fumigatus colonization. The associated
metabolic functions enriched in differential correlation microbial
modules pointed again to amino acid pathways, particularly for aro-
matic amino acids, in addition to fatty acid, nitrogen, and sulfur
metabolic pathways, suggesting that lung microbiome metabolic
activity is reshaped in the presence of A. fumigatus.

Changes in the lungmicrobiomemetabolic output inducedbyA.
fumigatus colonization support pathogen growth
We subsequently investigated if changes in the lung microbial com-
munity triggered by the presence of A. fumigatus were accompanied
by changes in the metabolic output of the microbiome. Since an
experimental metabolomics analysis of the sputum samples would
reflect dietary molecules and the metabolic output of the host and
pathogen as well as the microbiome, we opted for an in silico predic-
tion. For this aim, we used theMAMBOalgorithm40 to predict themost
probable lung microbiome metabolic profile that supported the rela-
tive abundances of our identified metagenomics species. We found
near significant differences in the overall derived metabolite profiles
when comparing patient samples before and after A. fumigatus colo-
nization (Euclidean distance; PERMANOVA, p =0.074, Fig. 5a, Supple-
mentary Data S8) indicating that the changes in the lung microbiome
structure (Fig. 4b) likely had significant functional implications. Of
note, more than 86.8% of the variance could be explained by the first
50 dimensions of the principal component analysis. The first two
components explained fewer, albeit significant, changes inmetabolites
between patient samples before and after A. fumigatus colonization
despite the high complexity of these data.

We next quantified how the changes in the metabolic output of
the lung microbiome following A. fumigatus colonization might alter
the predicted growth of the clinical strain-specific GEMs. Using the
MAMBO-derived metabolite profiles present after A. fumigatus colo-
nization, we observed that the GEMs of the 49 clinical strains showed a
significant increase in the predicted growth rate compared to GEMs
simulated on the metabolic outputs from before A. fumigatus coloni-
zation (3.4% increase, Wilcoxon signed-rank test, p = 3.55e−15, Fig. 5b).
These results suggested that the changes induced by A. fumigatus in
the lungmicrobiome led to a nutritional profile that supported its own
growth. Notably, the achieved absolute growth rates were higher than
previously reported growth rates on, for example, minimal media21,
but nevertheless indicated beneficial growth after functional output
from the microbial community changed upon A. fumigatus
colonization.

To explore if we could identify a connection between the altered
lungmicrobiomeand theA. fumigatusmetabolic capacity, we analyzed
feasible flux ranges of reactions that were associated with enriched
metabolic subsystems that we identified in the A. fumigatus affected
lung microbiome (Fig. 4b, Supplementary Data S5). Using the A.
fumigatus clinical-GEMs simulated with FVA and MAMBO-derived
media from before, compared to after, A. fumigatus confirmed colo-
nization,we identified 77metabolic reactions that showed significantly
lower or upper flux ranges to support fungal growth (false discovery

rate [FDR] corrected paired Wilcoxon test, p ≤0.05, Fig. 5c, Supple-
mentary Data S8). Most filtered reactions showed significant differ-
ences in the upper range, suggesting increasedmetabolic activity of A.
fumigatus (Fig. 5c). Affected pathways mainly included amino acid
metabolism, primarily for aromatic amino acids, but also nitrogen,
sulfur, butanoate or steroid metabolic pathways (Supplementary
Data S8), the latter possibly due to antifungal treatments targeting
ergosterol biosynthesis41. Although A. fumigatus negative and positive
samples hadoverlappingpredictedflux ranges, the change indirection
wasmostly consistent on a per-strain GEM level (Fig. 5d). Interestingly,
we already identified the reactions of chorismate pyruvate-lyase
(EC4.1.3.27) and tryptamine:oxygen oxidoreductase (EC1.4.3.4) as
major discriminators between environmental and clinical strains
simulated on minimal media before (Fig. 3c, Supplementary Data S8).
Only 29 of 77 reactions showed significant differences in both lower
and upper flux bounds (Supplementary Data S8). These reactions
included those of L-arogenate hydro-lyase (EC4.2.1.51) and L-Phenyla-
lanine:2-oxoglutarate aminotransferase (EC2.6.1.1), which showed
notably constrained flux-bound variability across most simulated
strain GEMs (Fig. 5d, Supplementary Data S8) suggesting a role for
shikimate pathway-associated metabolites and thioredoxin in differ-
entiating A. fumigatus origin (Fig. 3c) and in determining colonization
status in cystic fibrosis.

To further explore the relevance of amino acid supplementation
as either carbon or nitrogen sources based on the predicted pathways,
we cultivated four clinical strains and used relative metabolic activity
and radial growth assays to test the metabolic benefit of supple-
menting with glutamine, glycine, phenylalanine, or tryptophan
(Methods). Relative metabolic activity and radial growth increases
based on minimal media were highest for glutamine (two-tailed t test,
adjusted p-value ≤0.05, Fig. 5e, Supplementary Data S4). Glycine also
led to a significant increase in relative activity but no growth
improvement in radial growth assays on minimal media. In contrast,
the addition of tryptophan or phenylalanine to Aspergillus minimal
media (AMM) decreased metabolic activity significantly (34% for
tryptophan and 84% for phenylalanine) and growth (0.91% and 0.93%,
respectively) on minimal media (Fig. 5e, Supplementary Data S4). On
cystic fibrosis-resembling media (SCFM2, Methods), supplementation
with the aromatic amino acids phenylalanine or tryptophan resulted in
a significant growth increase (4% for phenylalanine, 14% for trypto-
phan) across all four clinical strains, while adding glutamine or glycine
resulted in no significant or steady increase (Fig. 5e, Supplementary
Data S4). Our phenotypic microarray data also showed a positive
growth effect when most amino acids were tested as a carbon or
nitrogen source for the Af293 wild type strain (Supplementary
Data S2). Interestingly, phenylalanine provided a growth benefit
if provided as the carbon source, but not the nitrogen source in con-
trast to tryptophan, which provided a growth benefit as the nitrogen
source.With theMAMBOpredicted cystic fibrosis media composition,
we observed a slight, statistically insignificant increase for all four
amino acids in the A. fumigatus-positive samples (Supplementary
Data S8).

Taken together, our data and simulations suggest that aromatic
amino acids, in particular, provided by lung bacteria might have ben-
eficial growth implications for A. fumigatus in the context of cystic
fibrosis. Other amino acids such as glutamine serve as potential
nitrogen sources if the media are limited, but appeared not to impact
fungal growth in the context of cystic fibrosis. In addition to these
metabolites, intermediates such as chorismate, anthralinate, and
cholines appeared inmultipleML classificationmodels to differentiate
clinical from environmental strains in our study. Given that several of
our 53 reactions with predicted significant flux changes in cystic
fibrosis were related to the underlying shikimate pathway, our data
suggest that aromatic amino acids are of elevated importance for
fungal colonization and potentially the severity of this lung disease.
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Fig. 5 | MAMBO-derived metabolite profiles for samples from cystic fibrosis
patients. a Beta diversity (Euclidean distance) for MAMBO-derived media. PER-
MANOVA was used to assess the statistical significance of beta diversity compar-
isons. b Growth rate differences from genome-scale metabolic models
corresponding to clinical A. fumigatus strains based on MAMBO-derived media
compositions associated with samples from cystic fibrosis patients before and
afterA. fumigatus colonization (n = 49). P-value following two-tailedWilcoxon rank
sum test. c Significantly different flux ranges (in lower or upper bound) of clinical
strain GEMs simulated with flux variability analysis on MAMBO-derived media
before and after A. fumigatus colonization. Significance was determined by FDR-
adjusted paired Wilcoxon signed-rank test (p ≤0.05). d Three selected enzymatic
reactionswith significant flux bounddifferences for lower or upper bound as in (c).
Both bounds are indicated. P-value following two-tailed Wilcoxon rank sum test.

e Relative changes in metabolic activity or radial growth for four clinical strains
(Supplementary Data S3) on Aspergillus minimal (AMM) or cystic fibrosis media
(SCFM2) supplemented with four amino acids as indicated. The dashed line indi-
cates a neutral fold-change of 1. A higher value indicates positivemetabolic activity
or growth effect when the indicated amino acid was added. Statistical significance
was tested with a two-tailed t test (****p ≤0.0001, **p ≤0.01, *p ≤0.05, ns: not sig-
nificant). EC4.1.3.27: chorismate pyruvate-lyase; EC4.2.1.51: L-arogenate hydro-
lyase; EC2.6.1.1: L-Phenylalanine:2-oxoglutarate aminotransferase. A.f.+, A.
fumigatus positive, or A.f.-, A. fumigatus negative. Box-plot elements: center line:
median, lower/upper bound: 25th/75th percentile, whiskers: minimum and max-
imum values within 1.5 × interquartile range (IQR), outliers: points outside
±1.5 × IQR. Source data for Fig. 5 are provided in the Source Data file.
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Discussion
In this study, we built a suite of A. fumigatus genome-scale strain-
specific metabolic reconstructions originating from 252 environ-
mental and clinical isolates from Germany7. We (i) reconstructed a
comprehensive pan-GEM of A. fumigatus metabolism in a data-driven
manner, which we validated against phenotypic microarray and gene
essentiality data; (ii) derived 252 strain-specific GEMs from individual
genome assemblies and manually curated them towards growth fea-
sibility and minimal fractioned network topologies; and (iii) deter-
mined metabolic differences differentiating clinical from
environmental strains, such as metabolic reactions involving several
amino acids, particularly aromatic amino acids aswell as chorismate or
thioredoxin. Chorismate is an important precursor for aromatic amino
acids and is formed in the shikimate pathway. This seven-step pathway
is not present in animals and enables the synthesis of the aromatic
amino acids tyrosine, phenylalanine, and tryptophan. Thioredoxin is
an important factor for DNA synthesis and is associated with A. fumi-
gatus virulence27,42.

Multistrain-GEMs have been used to elucidate the metabolic
diversity of human-pathogenic bacteria. For example, they defined the
pan-metabolic capabilities of Pseudomonas putida43, loss of fitness-
relevant pathways for survival in the gastrointestinal environment in
extraintestinal Salmonella spp.44, and strain-specific metabolic cap-
abilities of Staphylococcus aureus linked to pathogenic traits and
virulence acquisitions45. Here, we applied this strategy to explore
metabolic diversity in a eukaryotic fungal pathogen. This strain-
specificA. fumigatusGEMs platform is publicly available (BioModels ID
MODEL2211100001) for investigating the metabolically relevant A.
fumigatus gene set and its impact on the metabolic diversity influen-
cing growth rate capabilities, metabolic adaptation, and pathogenicity
in this important human fungal pathogen.

As a proof-of-concept of the applicability of our fungal GEM col-
lection, we performed metagenomics sequencing analysis of sputum
samples from a cohort of 40 cystic fibrosis patients, with samples
before and after a confirmedA. fumigatus colonization. Clinical isolate-
specific simulations and analysis showed significantly increased
growth rates in the predicted lungmicroenvironment of cystic fibrosis
patients after a confirmed A. fumigatus colonization, suggesting that
the lung microbiome is remodeled to a state more favorable to fungal
growth. Our analysis predicted 77 metabolic reactions associated with
aromatic amino acid metabolism and the shikimate pathway would
have significantly different flux ranges after A. fumigatus colonization
of the lung. These reactions appear not only in aromatic amino acid
metabolism but also in sulfur, nitrogen, and lipidmetabolic pathways,
highlighting the advantage of including topological pathway infor-
mation when analyzing metabolic activity. Several of these reactions
are shown to be essential for the growth of the fungus in knockout
experiments, including knockouts for aroC, TrpC, and MET16, making
these genes potential targets against the fungus19,25. However, we
identified a challenge in drug design using potentially targetable bio-
markers originating from lethality data of in vitro gene deletions in A.
fumigatus. Our analyses using metabolic modeling coupled with
growth experiments suggest that A. fumigatus might be able to grow
without the function of targeted genes by obtaining the necessary
metabolites externally. This might occur in patients, for example, with
A. fumigatus acquiring metabolites generated by lung bacteria (Fig. 6),
as has been shown for tryptophan and A. fumigatuswith TrpC and TrpE
deletions25,46,47. Therefore, more sophisticated therapeutic approaches
targeting both these essential metabolic genes and specific transpor-
ters may be required to restrict the growth of this pathogen.

Limitations of our study include genomic and subsequently
metabolic differences between the clinical strain collection (isolated
mainly from patients with invasive aspergillosis) used to build the
strain-specific GEMs and the clinical strains in the cystic fibrosis
patients in our study. In our previous study, however, we showed that

genomic similarities of clinical strains are relatively high evenwhen the
strains originate from different countries7. We used the in silico
method MAMBO to disentangle the contribution of the microbiome
from the host and diet to generate the nutritional profile available for
A. fumigatus in the human lung, because of a lack of an experimental
method. MAMBO relies on the quality of the taxonomic species
annotation to infer the metabolic output of the bacterial community.
Since the human lung microbiome is much less studied than the
humangut48, the inclusion of false-positive species cannot be excluded
despite measures we implemented such as prevalence and abundance
filters, and multiple annotation tools.

Altogether, the presented analyses demonstrate that fungal,
genome-scale metabolic modeling is feasible at the strain level. The
results contribute towards a mechanistic understanding of the impact
of genome diversity on the metabolic phenotype of A. fumigatus and
its metabolic interdependencies with bacterial communities in the
human lung.

Methods
Biomass formulation
We generated a specific A. fumigatus biomass composition based on
several sources in the literature. First, we assigned proportions ofmain
biomass components, as described,49 as 38.8% carbohydrates, 9.9%
lipids, 30% proteins, 0.6% DNA, and 3.7% RNA. Since this resource
neglected polyols, we added 4% polyols as reported for Aspergillus
oryzae50 for a total of 42.8% carbohydrates. After adding 6.6% cofac-
tors, these main components made up the total biomass composition
together with the reported 6.4% ash fraction49. Next, we screened the
literature to specify fractions of carbohydrate subcategories, e.g.,
glucans or trehalose51–53; lipids including sterols; phospholipids; neu-
tral lipid and free fatty acid compositions54,55; amino acid composition
of the protein content56,57; and co-factor content including energy
carriers such as NADH and vitamins such as riboflavin58,59. After cal-
culating the mmol/g content of each fraction, we added ATP demand
according to models developed for Saccharomyces cerevisae and
Aspergillus niger60,61. Furthermore, we added a nongrowth-associated
ATP maintenance reaction and calibrated flux through it for reported
growth rates of the fungus in batch-fermentation process in hypoxic
and normoxic glucose-limited conditions (further description below,
Supplementary Data S1)21. Finally, we modified the proportion of all
components to resemble 1 g dry weight (Supplementary Data S1).

Pan-GEM reconstruction
All reconstruction and analysis efforts used COBRApy (v0.17.1)62 in
Python 3.6.8 and the academic version of the IBM CPLEX solver
(v12.8.0.0).

We gathered and combined information from automatically
generated draft reconstructions based on the CoRoCo pipeline13.
We downloaded the Aspergillus CoReCo model for A. fumigatus
(Biomodels ID MODEL1604280029) and further Aspergillus models
from the CoReCo repository including A. oryzae (Biomodels ID
MODEL1604280012), Aspergillus nidulans (Biomodels ID
MODEL1604280008), A. niger (Biomodels ID MODEL1604280021),
Aspergillus clavatus (Biomodels ID MODEL1604280016), Aspergillus
terreus (Biomodels ID MODEL1604280019), and Aspergillus gossypii
(Biomodels ID MODEL1604280044) from the BioModels repository
(https://www.ebi.ac.uk/biomodels/). In addition, we incorporated
metabolite and reaction information from a recently published A.
fumigatus central metabolism model14. This yielded a base model of
7,606 reactions (of which 3,233 were exchange reactions) and 3,578
metabolites. Of note, the high number of initial exchange reactions
originated from models created with the CoReCo pipeline, which
includes an exchange reaction for each defined metabolite by
default. All subsequent curation efforts aimed to keep only reactions
for which annotation information was available or that were
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necessary for model feasibility. Filtering duplicate reactions and
metabolites reduced the model by 73 reactions and 210 metabolites.
Filtering duplicate reactions was necessary because our initial merge
of metabolic information included reactions and converted meta-
bolites from different sources. Only when reactions or metabolites
had different naming conventions we reduced to a single naming
scheme. When different isozymes encoded the same metabolic
reaction, we included all alternative genes as OR relationships
(instead of AND) in the genes-to-protein rule of the affected meta-
bolic reaction and removed the duplicate reaction. The biomass
formation was modified based on the literature on A. fumigatus
metabolism and enriched with information from closely related
species if we did not find A. fumigatus-specific information (Biomass
formulation section).

Next, we screened the KEGG (https://www.kegg.jp/) and MetaCyc
(https://metacyc.org/) databases for gene annotation for A. fumigatus
metabolism and added 1444 genes to the model. When available, we
adopted AND and OR relationships for genes for metabolic reactions
and crosschecked with genes encoding reactions in the yeast

consensus model61. During this step, 2370 reactions could not be
mapped to any annotated gene and were removed from the template
model but kept for subsequent gap-filling procedures. Further cura-
tion efforts were run in parallel, since modifications influenced other
curation procedures. Curation included compartmentalization, resol-
ving erroneous energy generating cycles (EGCs)17 and gene essentiality
information19, and adaptation to phenotypic growth assays (Methods
section Biolog phenotypic microarray, Supplementary Data S2). To add
compartment information for all reactions, we applied subcellular
localization prediction using WoLF PSORT16. A reaction was allocated
to a particular compartment if more than 50% of the associated genes
were predicted to be located in that compartment withmore than 50%
probability. Reactions, including exchange reactions, were associated
with nine compartments: cytoplasm, mitochondrion, nucleus, per-
oxisome, endoplasmic reticulum, lipid particles, vacuole, golgi, and
extracellular space. When the prediction was ambiguous or precluded
a viable model as measured by biomass production based on defined
minimal media, we used concurrent alternative compartment locali-
zations, either as predicted by WoLF PSORT or from the curated

Fig. 6 | Workflow for strain-specific GEM generation, data acquisition to
translational implications. Beginning with isolating 252 A. fumigatus strains from
hospitals and soil, we generated a comprehensive pan-GEM for deriving 252 strain-
specific GEMs. By including lung microbiome analysis and simulating fungal-lung
microbiome interactions, we predicted and experimentally tested nutritional

environments for supporting lung bacteria that impact A. fumigatus growth. Both
lung bacterial communities and metabolites have the potential to affect A. fumi-
gatus growth and thus the effectiveness of drugs to treat infections by this
opportunistic fungal pathogen.
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S. cerevisae GEM61. Compartment-connecting transport reactions were
from the yeast consensus model61. A minimal set of additional neces-
sary transport reactions were added using gap-filling functionality
from COBRApy to allow biomass precursor production based on
minimal media with glucose.

In parallel, we resolved EGCs again17 and adapted our GEMmodel
using publicly available gene essentiality data19. EGCs are metabolic
reactions running in a potentially nontrivial circle without a net flux
except for generating energy carriers. ATP, CTP, GTP, UTP, ITP, NADH,
NADPH, FADH2, FMNH2, acetyl-CoA, L-glutamate, ubiquinol-8, deme-
thylmenaquinol-8, and menaquinol-8 were found in at least one EGC
(Supplementary Data S9). The directions of 44 reactions were refined
using reaction directionalities from the BiGG63 and BRENDA64 data-
bases and Gibbs free energy of the reactions from the MetaCyc
database65. Incompatible gene-essentiality information was resolved
by either correcting to a feasible thermodynamically reactiondirection
or removing erroneous reactions without gene annotation.

Next, we ran phenotypic microarrays with the A. fumigatus
reference strain Af293 and four mutant strains (experimental details
below). We considered 0.001mmol/grDW/h as an absolute minimum
for growth rate to account for reported low-oxygengrowth conditions,
e.g., in glucose-limited media21. We identified essential carbon, nitro-
gen, sulfur, and phosphorus components (Supplementary Data S2).
This step included plausible correction of reaction directions for
thermodynamically feasibility and removal of reactions without gene
annotation. When our data showed growth in a certain condition that
our pan-GEM could not predict, we investigated the direction of rela-
ted reactions, potential gaps in the metabolic network, and con-
nectivity of the involved compartments. When our data showed no
growth under a given condition but our GEM predicted a nonzero
growth rate, we investigated if the metabolic reactions in our initial,
draft pan-GEMwere not associated with the genome and needed to be
removed. We used similar curation efforts to resolve incompatibilities
in the gene-essentiality data. When incompatibilities could not be
resolved in this way, we screened our catalog of initially removed
reactions without gene annotation and used gap-filling procedures
from the COBRApy gap-fill functionality.

Next, we calibrated our pan-GEM to reflect experimental growth
and byproduct secretion rates in glucose-limited environments in
hypoxic and normoxic conditions. We retrieved published glucose,
acetate, ethanol, lactate, and cell dryweight concentration values from
Barker et al.21 and converted these values toplausible units (e.g.,mmol/
grDW/h for metabolites and 1/h for growth) for subsequent GEM
analysis (Fig. 1). We constrained our pan-GEM for the experimental
glucose consumption rates (i.e., fixed glucose uptake of 0.250mmol/
grDW/h for normoxic and 0.206mmol/grDW/h for hypoxic condi-
tions) and calibrated flux through the nongrowth-associated main-
tenance reaction with different O2 uptake rates resembling hypoxic to
normoxic conditions. The data fitted best when setting the flux
through the nongrowth-associated maintenance reaction of the pan-
GEM to 0.1mmol/grDW/h (Supplementary Data S9 and S10).

Next, we analyzed re-introduced non-genome annotated reac-
tions during curation to identify reactions that re-introduced meta-
bolic redundancy after all curation steps were done. We identified 609
putative transport reactions between compartments and 79 further
reactions occurring in only one compartment, which we analyzed
further. 210wereblockedbasedon analyzing relaxed influx through all
defined exchange reactions. The remainder of 478 reactions were
analyzed for essentiality, that is, identifying reactions that require
carrying flux to support a non-zero biomass value given relaxed
metabolite influx. Towards this goal, we conducted a minimal cut set
analysis22 assuming hypoxic or normoxic growth conditions and
otherwise again unconstrained exchange reaction fluxes. 314 reactions
were individually essential, or essential as a set of reactions identified
by MCS analysis. For 164 reactions the essentiality status remained

unknown with relaxed exchange flux bounds and biomass optimiza-
tion. In addition, we investigated the 79 non-transport reactions for
identity inmetabolite conversion except co-factors. We identified only
two pairs of reactions that differed in the use of co-factors NAD/NADH
or NADP/NADPH, but had different directionality due to curation of
energy-generating cycles. These were kept accordingly and we
removed the 210 blocked reactions from our generic draft pan-GEM.
We finally analyzed our pan-GEM for redundant reactions using
CHESHIRE66. We used the tool to identify 200 reactions based on
similarity score and identified only one further internal transport
redundancy for CoA, comprising two reactions with different direc-
tionality and resolved this by allowing bidirectional transport. No
further redundant reaction was identified by CHESHIRE, which con-
cluded our refinement efforts for our pan-GEM.

Last, we checked the compatibility of our model with metabolic
modeling standards by runningMEMOTE tests67. The overall MEMOTE
score we achieved was 73%, which is in the range reported for the
most-curated yeastGEM (https://sysbiochalmers.github.io/yeast-GEM/
release_report.html). Simulation scripts for all analyses are at Github:
https://github.com/mohammadmirhakkak/A_fumigatus_GEM/, which
also holds the MEMOTE report (Github folder: https://
mohammadmirhakkak.github.io/A_fumigatus_GEM/memote_report.
html). Simulation-specific constraints are in Supplementary Data S10.

Strain-specific GEM reconstruction and curation
Recently, the pan-genome of A. fumigatus was derived for 300 envir-
onmental and clinical strains with a global distribution7. By mapping
the genomes for 252 strains to the Af293 A. fumigatus reference gen-
ome annotation, we identified metabolically relevant genes by
requiring at least 95% sequence identity under the rationale that high
sequence identity preservesmetabolic function. Small deviations from
the chosen sequence identity threshold did not change the results. The
similarity analysis was done by BLAST analysis of protein sequences
using diamond (v0.9.24.125)68. The presence or absence of metabolic
reactions was deduced for each strain using the associated gene-
protein-reaction rules from the pan-GEM and the relevant identified
genes. The metabolic core comprised reactions and genes that
occurred in all strains with other reactions and genes defining,
respectively, the accessory reactome and genome. To ensure that all
strain-specific GEMs showed nonzero growth capability on minimal
media with glucose as the carbon source, we identified and resolved
minimal sets of essential reactions required to operate when adapted
to the minimal cut set concept22. Finally, we guaranteed a consistent
network property by identifying and discarding blocked reactions for
each isolate using FASTCC23. All models were deposited in BioModels24

and assigned the identifier MODEL2211100001.

Phenotypic microarrays
The fungal strains Af293 (wild type reference), CEA17 pyrG-, ΔlysF,
Δmet2, and ΔniaD were grown at 25 °C for 7 days before experimental
assays on malt agar supplemented with 5mM uracil. Uracil supple-
mentation was required for growth of the CEA17 pyrG- strain (a uridine
auxotroph) and was added to all media to ensure comparable growth.
Mature conidia were harvested by rubbing plates with sterile distilled
water and filtering the resulting solution through a 30-µm cell strainer
to remove mycelial fragments. Spore purity was assessed and con-
firmed by microscopy. Spore solutions were adjusted to a transmit-
tance of 75%. Phenotypic microarrays were performed using Biolog
Phenotypic Microarray plates PM1, PM2, PM3, and PM4 (Biolog Inc.,
Hayward, CA, USA) prepared following the manufacturer’s protocol
for filamentous fungi, including resuspending conidia in filamentous
fungi (FF) media and the addition of 0.16ml of Biolog Redox Dye D to
the master mix of each plate to quantify fungal metabolic activity. By
using PM1-PM4 we could investigate 379 different growth conditions
rather than only 95 as available with Biolog’s FF plate (Fungi
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Identification Test Panel). The plateswere incubated at 37 °C for 3 days
and metabolic activity was measured colorimetrically using an Omni-
Log microplate reader with readings taken every 15min. The incuba-
tion temperature was changed from the initial 25 °C to 37 °C for the
phenotypic microarray experiments to mimic the change in tempera-
ture that occurs in the transition from the environment to the human
host as used before69–71. Experiments were performed as biological
duplicates or triplicates (Supplementary Data S2). Phenotypic micro-
array results were analyzed in R, and statistical comparison used
Dunnett-type comparison of growth signals of negative controls
against all other wells in a plate. All wells with signals greater than the
negative control and p-value ≤0.05 were considered growth cases.

Cystic fibrosis sample acquisition
This study was approved by the Ethics Committee of the University of
Heidelberg and written informed consent was obtained from all
patients or their parents or legal guardians (S-370/2011). Patients were
treated according to the standard of care72. The diagnosis of cystic
fibrosis was verified by established diagnostic criteria73,74. Sponta-
neously expectorated sputum was collected during visits to the Cystic
Fibrosis Center at the University Hospital Heidelberg and frozen in
liquid nitrogen on the day of visit. Sputum samples were collected
from 40 cystic fibrosis patients before and after they had positive A.
fumigatus colonization. Samples were frozen within 24 h after recep-
tion at the microbiology department. The cohort for 80 total samples
was 15 females and 25 males aged 23.6 ± 4.96 years (mean± standard
deviation) before A. fumigatus colonization. Samples were taken dur-
ing visits from patients without exacerbation or intravenous antibiotic
treatment in the previous 3 months. Supplementary Data S7 has clin-
ical data on cysticfibrosispatients including age, bodymass index, sex,
forced expiratory volume-one second in pulmonary function testing
(PFTFEV1) and percent predicted PFTFEV1 (PFTFEV1pred). Sputum
samples were prepared for microscopy using lactophenol anilin blue
solution to detect fungi. In parallel, samples were plated on: Columbia
agar (with 5% sheep blood) (BD Diagnostic, Heidelberg, Germany),
chocolate agar (BioMérieux, Nürtingen, Germany), McConkey agar
(BioMérieux, Nürtingen, Germany), Burkholderia cepacia special agar
(7 days, 36 °C) (BD Diagnostic, Heidelberg, Germany), and Sabouraud
agar (7 days, 36 °C) (BD Diagnostic, Heidelberg, Germany). Two other
media were used for anaerobic isolation (36 °C): Schaedler agar (Bio-
Mérieux, Nürtingen, Germany) and kanamycin-vancomycin agar (BD
Diagnostic, Heidelberg, Germany). Colonization was defined as posi-
tive culture from a specimen from the sputum samples on at least one
of the agar plates.

DNA extraction and fragmentation
DNA extraction procedures followed the QIAampDNAMini and Blood
Mini Handbook. The QIAampl DNA minikit was used for DNA extrac-
tion. Sputum samples were placed in a 1.5mlmicrocentrifuge tube and
180μl Buffer ATL was added. Proteinase K (20μl) was added, and
samples were mixed by vortexing and incubated at 56 °C. After cen-
trifuging, 4μl RNase A (100mg/ml) was added, followed by mixing by
pulse-vortexing for 15 s, and incubating 2min at room temperature
(15–25 °C). After centrifuging to remove drops from inside the lid,
200μl Buffer ATL was added. Samples were mixed by pulse-vortexing
for 15 s and incubated at 70 °C for 10min. After briefly centrifuging,
200μl Buffer AL was added to samples, followed by mixing by pulse-
vortexing for 15 s, and incubating at 70 °C for 10min. After brief cen-
trifugation, 200μl ethanol (96–100%) was added and samples were
mixed by pulse-vortexing for 15 s. After brief centrifugation, QIAamp
Mini spin columns and 500μl Buffer AW1 were added before cen-
trifuging at 6000g (8000 rpm) for 1min. To QIAamp Mini spin col-
umns 500μl Buffer AW2 was added before centrifuging at full speed
(20,000g; 14,000 rpm) for 3min. To the QIAamp Minispin columns,
200μl Buffer AE or distilled water was added before incubating at

room temperature for 1min and centrifuging at 6000g (8000 rpm) for
1min. Genomic DNA was randomly fragmented by sonication.

Library preparation and DNA sequencing
DNA fragments were end-polished, A-tailed, and ligated with full-
length adapters for Illumina sequencing, followed by PCR amplifica-
tionwith P5 and indexed P7 oligos. PCRproducts for final construction
of libraries were purified with the AMPure XP system (Beckman, Kre-
feld, Germany). Libraries were checked for size distribution with an
Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA), and quan-
tified by real-time PCR to ensure an amount of at least 3 nM). Qualified
libraries were inserted into Illumina sequencers (MiSeq system). For
quality checking, 1 ethidium bromide negative control was added for
every 11 samples and treated with the same handling procedure as the
experimental samples.

Metagenomics and MAMBO analysis
Trimmomatic was used to clip adapter and low-quality bases (v0.36,
ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:1:TRUE, LEADING:3, TRAIL-
ING:3, SLIDINGWINDOW:4:15, MINLEN:30). Remaining reads shorter
than 30 base pairs were discarded. BWA (v07.17) was used to align
quality-filtered reads to the human reference genome (hg38) for the
removal of human-derived reads. From 1.9e +07 ± 2.7e + 06 (mean ±
standard deviation) metagenomic reads, 7.8e + 05 ± 8.9e +05
remained after preprocessing samples. To estimate the taxonomic
composition of the nonhuman reads, Kraken 2 (v2.0.7, default para-
meters) was used with its standard database as the reference. To fur-
ther control false positive rate, raspir (v1.0.2)30 wasused to supportour
Kraken 2 results. Only the species that can be detected in at least one
sample by raspir were kept (Supplementary Data S6). KrakenUniq
(v0.5.7, default parameters)34 and Centrifuge (v1.0.4, default
parameters)35 were also used to assess the reliability and for compar-
ison of Kraken 2 results. FEAST (v0.1.0, default parameters)33 was used
to check for possible contamination and to estimate the contribution
of potential source environments using the cystic fibrosis lung
microbiome dataset from three published studies (European Nucleo-
tide Archive [ENA] project IDs PRJEB38221, PRJNA316588,
PRJEB32062)75–77, an oral microbiome dataset (ENA project ID
PRJEB28422)78 and a clinical environmental dataset (ENA project ID
PRJNA376580)79. Taxonomic assignment of the datasets followed the
same pipeline used for our dataset. FEAST results (Supplementary
Fig. S2) indicated a dominant source of our samples was the lung
microbiome of cystic fibrosis patients with a significantly higher con-
tribution from them than from the oral microbiome and clinical
environment. We applied EukDetect (v1.3)80 to test and confirm that
patient samples contained no other fungi such as Scedosporium that
may be clinically relevant to A. fumigatus-associated disease pheno-
types such as allergic bronchopulmonary aspergillosis. For functional
composition annotation, the MG-RAST (v4.0.3) pipeline was used to
assign nonhuman reads to KEGG pathways. R packages vegan (v2.5)
and picante (v1.8.2) were used to calculate alpha diversity with a
Shannon and phylogenetic diversity index for each sample using the
read counts of species. Statistical differences between samples before
(A. fumigatus -) and after (A. fumigatus +) colonization with A. fumi-
gatuswereobtainedbyWilcoxon signed-rank test. For beta diversity, R
package coda.base (v0.3.1)was used to calculate thepairwiseAitchison
distance for samples using the relative abundance of species. Statis-
tical differences between samples before and after colonizationwithA.
fumigatus were calculated by PERMANOVA.

The co-abundance networkwas constructed based on the relative
abundance values of species (prevalence filter: 10%). DGCA (v2.0.0)
was used to construct the network from differentially correlated
microbial pairs in paired cystic fibrosis samples, comparing before to
after A. fumigatus colonization (empirical p-value ≤0.05). Subse-
quently, MEGENA (v1.3.7) was used to identify co-expressed modules
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(modulep-value ≤0.05) in the constructednetwork using differentially
correlated microbial pairs. To identify molecular functions, we inves-
tigated the enrichment of KEGG pathway information (https://www.
genome.jp/kegg/pathway.html) by permutation testing todetermine if
correlations betweenmodules and KEGG orthologies were possible by
chance81. First, for a given module, all correlation coefficients and
p-values for a KEGG orthology and all species in the module were
obtainedusing the Spearman correlationmethod. The sumof absolute
correlation coefficients in the module was then calculated. Following
that, a random set of species of the same size as any givenmodule was
chosen 1000 times from all species, calculating the sum of absolute
correlation coefficients each time. Finally, the sum of correlation
values for each module was evaluated. If higher than 95% of the sums
of correlation values in the 1000 repeats of randomly selected species,
we inferred a significant correlation between modules and KEGG
orthologies.

To determine the most likely metabolite abundance profiles
associated with our metagenomic samples, we applied the MAMBO
algorithm40. In brief, MAMBO optimizes a highly correlated metabolic
profile with a given relative abundance profile using growth rate
simulations of bacterial GEMs associated with a particular metage-
nomic sample. For 200 raspir-confirmed bacterial species, we down-
loaded 143 matching bacterial GEMs from the AGORA2 (https://vmh.
life/files/reconstructions/AGORA2/version2.01/)82 and CarveMe col-
lection (https://github.com/cdanielmachado/embl_gems/tree/master/
models)83. Optimizations were run in a python environment (v3.7)
using a high-performance cluster (192 cores, 1 TB RAM). Finally, 929
metabolites were obtained using MAMBO (Supplementary Data S8).
For imputation of metabolites, only the metabolites that appeared in
less than80%of the sampleswere kept.Missingmetabolite abundance
values in any remaining samples were imputed with MICE (miceR-
anger, v1.4.0 with m= 1 and maxiter = 50).84–86

Machine learning
Unless otherwise noted, we used the following ML methodology.
When group sizes were unbalanced (e.g., unequal numbers with
environmental and clinical labels), we randomly sampled 50% of the
majority group and oversampled the minority group using ADASYN
implemented in R package imbalance (v1.0.2.1). Subsequent feature
selection used Boruta (v7.0.0), VSURF (v1.1.0), MUVR (v0.0.973), and
sPLS-DA (mixOmics, v6.16.0). These steps were repeated 50 times and
selected features and their selection frequency were recorded. Finally,
the Extra Trees algorithm from PyCaret (v2.3.2) was run for the feature
sets, scanning frequency cutoffs to optimize the cutoff value for ML
performance. Thebest hyperparameters of the ExtraTreesmodelwere
automatically selected by scikit-optimize (v0.8.1, Bayesian
optimization).

Metabolic and radial growth assays
For conidia production, A. fumigatus was cultivated on Aspergillus
minimalmedium (AMM)84 agar plates for 5 days at 37 °C. Conidia were
harvested with sterile phosphate buffered saline containing 0.01 % (v/
v) Tween 80 and filtered through a 40-µm pore-size cell strainer (BD
Biosciences, Germany). Conidia numbers were determined using a
CASY cell counter (Roche Innovatis, Germany). Spore purity was
assessed and confirmed by microscopy.

Metabolic activity was determined based on a resazurin assay as
described85. In brief, in a 96-well cell culture microplate (F-bottom,
clear) 190 µl AMM/resazurin containing, when indicated, 5mM glu-
tamine, glycine, phenylalanine or tryptophan, was inoculated with
10 µl of conidial suspension at 12 different concentrations, for 1.6 ×
106 to 0.78 × 103 conidia per well. After 18 h, resazurin reduction was
measured as fluorescence using a microplate reader (Tecan Infinite
M200 Pro) at wavelengths 570 nm (excitation) and 615 nm (emis-
sion). Relative metabolic activity was determined as the number of

conidia needed as inoculum to reach a fluorescence of 5000 at
an optimal gain.

Radial growth was determined with 5 µl conidial suspension (106

conidia ml−1) point-inoculated on AMM or cystic fibrosis media
(SCFM2)86 agar plates supplemented with 5mM glutamine, glycine,
phenylalanine or tryptophan, when indicated. Radial colony growth of
A. fumigatus cultures at 37 °Cwasdetermined after 24 husing a caliper.

Targeted metabolomics
A. fumigatus conidia from 10clinical and 10 environmental strainswere
cultured in AMM at 3 × 106 per ml for 24 h at 37 °C on a rotary shaker.
Aliquots of the sterile,filteredmediawere frozen in liquid nitrogen and
stored at −80 °C until analysis. To adjust for differences in the growth
rates of A. fumigatus strains, mycelium dry mass was determined for
each sample after lyophilization.

Sample analysis was performed byMS-Omics (Vedbæk, Denmark)
as follows. Samples were derivatized with methylchloroformate using
a slightly modified version of the Smart et al. protocol87. Samples were
analyzed in random order by gas chromatography (7890B, Agilent)
coupled with a quadropole detector (5977B, Agilent) controlled by
ChemStation (Agilent). Raw data were converted to netCDF format
using Chemstation (Agilent), before data were imported and pro-
cessed inMatlab R2018b (Mathworks, Inc.) using PARADISe software88.

Statistics and reproducibility
All statistical test procedures are described in the respective meth-
ods sections. No statistical method was used to predetermine
the sample size. No data were excluded from the analyses. Testing
group differences included two-tailed Wilcoxon or t test using a p-
value cutoff of 0.05. Multiple test correction as described by
Benjamini–Hochberg was applied when appropriate. Gaussian mix-
ture model was used to identify significantly abundant lung species.
Functional enrichment of KEGG terms was done using over-
representation analysis. Spearman correlation was applied to report
correlation of KEGGmodules with forced expiratory volume of cystic
fibrosis patients (uncorrected p ≤0.05). All codes and data to
reproduce the presented results are described in the code and data
availability section of this manuscript and are stored in zenodo,
github, BioModels and ENA repositories.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its Supplementary Information files.
Information on metabolic models generated in this study is provided
in Supplementary Data S1 and S9. All metabolic models are available at
the BioModels repository (ID MODEL2211100001). Information on
phenotypic growth assays generated in this study is provided in Sup-
plementary Data S2. Information on experimental data including
metabolomics, radial growth and metabolic activity generated in this
study is provided in Supplementary Data S4. Information on metage-
nomics of cystic fibrosis samples generated in this study is provided in
Supplementary Data S6 and S7. All shotgun metagenomics of sputum
from 40 cystic fibrosis patients are available at the European Nucleo-
tide Archive (project ID PRJEB54014). External microbiome datasets
analyzed in this study were retrieved from the European Nucleotide
Archive (project URLs: https://www.ebi.ac.uk/ena/browser/view/
PRJEB38221, https://www.ebi.ac.uk/ena/browser/view/PRJNA316588,
https://www.ebi.ac.uk/ena/browser/view/PRJEB32062, https://www.
ebi.ac.uk/ena/browser/view/PRJEB28422, https://www.ebi.ac.uk/ena/
browser/view/PRJNA376580). Source data are provided with
this paper.
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Code availability
The source code and necessary data for results generated in this
manuscript are available at zenodo: https://zenodo.org/record/
8034128 and github: https://github.com/mohammadmirhakkak/A_
fumigatus_GEM/.
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