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Proteogenomics of clear cell renal cell
carcinoma response to tyrosine kinase
inhibitor

Hailiang Zhang 1,2,6, Lin Bai 1,6, Xin-QiangWu1,2,6, Xi Tian1,2,6, Jinwen Feng 1,6,
Xiaohui Wu 1,6, Guo-Hai Shi1,2,6, Xiaoru Pei1,6, Jiacheng Lyu1,6, Guojian Yang1,
Yang Liu 1, Wenhao Xu1,2, Aihetaimujiang Anwaier1,2, Yu Zhu1,2, Da-Long Cao1,2,
Fujiang Xu 1, Yue Wang1,2, Hua-Lei Gan2,3, Meng-Hong Sun2,3,
Jian-Yuan Zhao 4,5 , Yuanyuan Qu1,2 , Dingwei Ye 1,2 & Chen Ding 1

The tyrosine kinase inhibitor (TKI) Sunitinib is one the therapies approved for
advanced renal cell carcinoma.Here,weundertakeproteogenomicprofiling of
115 tumors from patients with clear cell renal cell carcinoma (ccRCC) under-
going Sunitinib treatment and reveal themolecular basis of differential clinical
outcomes with TKI therapy. We find that chromosome 7q gain-inducedmTOR
signaling activation is associated with poor therapeutic outcomes with Suni-
tinib treatment, whereas the aristolochic acid signature and VHL mutation
synergistically caused enhanced glycolysis is correlated with better prognosis.
The proteomic and phosphoproteomic analysis further highlights the
responsibility of mTOR signaling for non-response to Sunitinib. Immune
landscape characterization reveals diverse tumor microenvironment subsets
in ccRCC. Finally, we construct a multi-omics classifier that can detect
responder and non-responder patients (receiver operating characteristic–area
under the curve, 0.98). Our study highlights associations between ccRCC
molecular characteristics and the response to TKI, which can facilitate future
improvement of therapeutic responses.

In 2020, 431,288peoplewerenewly diagnosedwith kidney tumors and
179,368 patients with kidney tumors died worldwide1. Clear cell renal
cell carcinoma (ccRCC) represents approximately 70%of kidney tumor
cases in adults2. Analyses of The Cancer Genome Atlas (TCGA) and the
Clinical Proteomics Tumor Analysis Consortium (CPTAC) indicate that
chromosome 3p loss, chromosome 5q gain, and chromosome 7 gain
are the main copy number alterations of ccRCC3,4. Functional loss of

von Hippel Lindau (VHL) (located in chromosome 3p) in ccRCC results
in the accumulation of hypoxia-inducible factor (HIF)5, which results in
the upregulation of vascular endothelial growth factor (VEGF) and
platelet-derived growth factor (PDGF). Many studies have further
revealed that ccRCC is a hyper-angiogenic tumor due to VHL
inactivation-induced overexpression of VEGF. Based on this molecular
mechanism, tyrosine kinase inhibitors (TKIs) targeting the VEGF
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signaling pathway have been broadly used to treat metastatic and
recurrent RCC, and have significantly prolonged the overall survival
(OS) and progression-free survival (PFS) of patients6. However, not all
patients do respond to TKI therapy or benefit from these treatments,
and most patients finally develop resistance. It is thus necessary to
further clarify the association between TKI efficacy andVHLmutations.

Memorial Sloan Kettering Cancer Center (MSKCC) risk and
International Metastatic RCC Database Consortium (IMDC) risk mod-
els, based on clinical features, have been applied for the prognostic
prediction of advanced RCC in the last decade7,8. However, at the
molecular level, the impact of these risk categories on prognosis
remains unclear. Beyond these, many studies have explored the pre-
dictive responsemarkers andunraveling resistancemechanismsof TKI
therapy, predominantly using genomic and transcriptional
approaches9–12. Clinical feature-based prognostic models and omics
studies have been conducted inWesternpopulations; however, similar
research is lacking in Chinese populations, and there are rare studies
using comprehensive proteogenomic characterization to investigate
biomarkers for predicting TKI treatment response.

Aristolochic acid (AA) is prevalently used in traditional herbal
medicine in Asia13–15; AA exposure may cause mutagenesis character-
istic of predominant T > A transversions, which match COSMIC
SBS2216–19. Several studies have demonstrated the potential association
between AA exposure and ccRCC oncogenesis20,21. Thus, exploring the
influence of AA exposure on TKI efficacy in ccRCC might be beneficial
for Asian patients.

In this study, comprehensive proteogenomic characterization of
treatment-naïve tumors and paired normal adjacent tissues is per-
formed to elucidate the associationbetween clinical features, genomic
alterations, proteomic features, and TKI therapeutic efficacy in a Chi-
nese population. We also elucidate the associations of clinical features
with tumor molecular phenotypes and patient prognosis. Meanwhile,
we find that mTOR signaling and inflammatory response were the
prevalent features correlated with Sunitinib resistance. A robust
response classifier is constructed based on multi-omics data and its
stability is validated in another cohort. Our findings shed light on
personalized therapy in metastatic ccRCC.

Results
Proteogenomic analysis of ccRCC response to sunitinib
We retrospectively collected paired tumor and tumor-adjacent ccRCC
samples based on strict criteria from 115 Chinese patients treated with
Sunitinib, comprising 68 advanced and 47 recurrent tumors for pro-
teogenomic analysis (Fig. 1a). The 47 recurrent cases were localized
ccRCC at the time of surgery and were enrolled due to the subsequent
development of metastatic disease. Pathological examinations were
performed to determine the tumor and tumor-adjacent tissue regions
(Methods). Comprehensive clinicopathologic data were available for
the patients (Fig. 1b and Supplementary Data 1). We divided the
patients into responders (complete response [CR] andpartial response
[PR], n = 27) and non-responders (stable disease [SD] and progressive
disease [PD], n = 88), based on the response evaluation criteria in solid
tumors (RECIST). Examination of patients’ clinical parameters showed
that responders and non-responders presented highly significant dif-
ferences in both progression-free survival (Fig. 1c, log-rank p <0.0001)
and overall survival (Fig. 1c, log-rank p <0.0001). The fresh frozen
tissues were then dissected, used for sample preparation, and sub-
mitted for whole exome sequencing (WES) (n = 113), transcriptome
sequencing (n = 94), proteome (n = 115), and phosphoproteome
(n = 66) identification (Fig. 1a).

For genomic analysis, 6487 somaticmutationswere identified by
comparison of the tumors with tumor-adjacent samples (Supple-
mentary Data 2). Among 113 patients, 19 significantly mutated genes
were identified, including the most frequently mutated genes, VHL
(65%), PBRM1 (35%), BAP1 (16%), and SETD2 (14%) (Supplementary

Fig. 1a). We compared the mutation frequencies of frequently
mutated genes in ccRCC in eight ccRCC datasets, including this
study, another two Chinese cohort22,23, Japanese cohort24, JAVELIN
Renal 101 cohort25, IMmotion151 cohort12, European cohort26 and
TCGA cohort3 (Fig. 1d). The results showed that the mutation fre-
quencies of these genes were similar in three Chinses cohorts, while
TCGA cohort and Japanese cohort had relatively lower mutation
frequencies of these genes.

As for the transcriptome, we identified 12,276 protein-coding
genes with median fragments per kilobase of transcript per million
fragments mapped (FPKM) of more than 1 (Supplementary Data 3).
Label-free proteomics identified 12,310 proteins with an average of
6585 proteins in the tumor samples and 5753 proteins in the tumor-
adjacent tissues (Supplementary Fig. 1b). The transcriptome and pro-
teome showed moderate correlation with sample-wise median Spear-
man’s correlation coefficient (SCC) of 0.39 in this study
(Supplementary Fig. 1c), consistent with the previous study27. There
was no obvious difference in the proteomic coverage between the
responders and non-responders. In total, 9641 proteins were identified
in both responders and non-responders, and 442 and 2226 proteins
were identified specifically in the non-responders and responders,
respectively (Supplementary Fig. 1d). Proteins were identified in at
least 25% of the samples were used for analysis (Supplementary
Data 4). Proteins exclusively detected in responders and non-
responders failed to pass the criterion of 25% cut-off, and were not
included in the further analysis. We identified 4862 phosphosites in
each sample on average, and 37,055 phosphosites in total, corre-
sponding to 7502 phosphoproteins (Supplementary Fig. 1e). Among
these phosphosites, 6749 phosphosites were identified in more than
25% of samples was used for further analysis. In addition, to evaluate
whether the associations of protein abundances and prognosis were
independent of therapy, we collected 37 cases of advanced ccRCC
samples who have not received any treatment after surgery, as control
(Supplementary Data 4). The expression levels of 270 proteins were
significantly associated with patient survival in the Sunitinib treatment
cohort, and the expression levels of 630 proteins were significantly
associated with patient survival in the non-treated control group.
Compared to these 630 prognostic markers in a non-treated group
with 270 prognostic markers in the Sunitinib treatment group, only 19
proteins were found in both groups (Supplementary Fig. 1f), indicating
the prognostic values of protein expression levels were profoundly
dependent on whether the patients have ever been prescribed Suni-
tinib treatment after surgery.

The clinical features associated with sunitinib treatment
outcomes
We first conducted a differential analysis of clinical baseline features
between responders and non-responders. It was observed that the
tumor, nodes, and metastasis (TNM) stage (stage I-III were recurrent
RCCs, stage IV were metastatic RCCs) and International Society of
Urologic Pathologists (ISUP) grade and tumor size did not show any
significant difference between responders and non-responders (Sup-
plementary Fig. 2a). Other clinical information, including chronic dis-
ease status such as hypertension, diabetes, Karnofsky performance
score (KPS, a clinical assessment tool used to assess the overall health
of patients, Methods), neutrophilic granulocyte (GRAN) count, lym-
phocyte (LYM) count, eosinophil (ESO) count, platelet (PLT) level,
hemoglobin (Hb) level, serum lactate dehydrogenase (LDH) level,
serum calcium (Ca) level, serum creatinine (CRE) level, blood urea
nitrogen (BUN) level, urine protein state, estimated glomerular filtra-
tion rate (eGFR) (Methods) were also collected. None of these clinical
parameterswas significantlydifferent between the responder and non-
responder groups (Supplementary Fig. 2b, c). However, we found that
tumor size was differentially distributed in the responder and non-
responder groups (Supplementary Fig. 2d). There were more
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responders compared to non-responders when the tumor size was
smaller than 5 cm, whereas there were more non-responders than
responders when the tumor size was larger than 9 cm (Supplementary
Fig. 2d). Therefore, we divided the patients into three groups based on
tumor size: small (tumor size <5 cm; n = 16), median (tumor size >5 cm
and <9 cm; n = 61), and large (tumor size >9 cm; n = 38) (Supplemen-
tary Fig. 2e). Interestingly, the distribution of different tumor size
groups was significantly different in responders and non-responders
(Chi-square test, p =0.007) (Supplementary Fig. 2e). Moreover, the
PFS of three tumor size groups was significantly different (p =0.006),
among which large tumors showed significantly poor prognosis
(Supplementary Fig. 2f).

Univariate analysis based on PFS and OS was performed, to
explore the associations between other clinical features and patient
clinical outcomes. We found that tumor size, PLT level, and LDH level
were significantly correlated with PFS/OS (Supplementary Data 1). To
elucidate the biological basis, we calculated SCC between clinical
features and the ssGSEA score of gene sets (Hallmark, KEGG, and
Reactome databases). As a result, the proteomic pathways, comple-
ment and coagulation cascades (SCC =0.24, p =0.01), epithelial-
mesenchymal transition (SCC =0.23, p =0.01), and inflammatory

response (SCC=0.21, p = 0.02) were positively correlated with tumor
size. An inflammatory response (SCC=0.22, p =0.02), innate immune
system (SCC=0.27, p <0.01), neutrophil degranulation (SCC =0.27,
p <0.01), and RAB regulation of trafficking (SCC =0.25, p <0.01) were
positively correlated with the PLT level. Energy-dependent regulation
of mTOR by LKB-AMPK (SCC=0.24, p < 0.01), and fatty acid metabo-
lism (SCC =0.24, p <0.01) were positively correlated with the LDH
level (Supplementary Fig. 3a). As a complementary approach, we built
a network of proteins with significant correlations of these clinical
features (Supplementary Fig. 3b). The defining proteomic pathway,
positively correlated with tumor size, was complement cascades.
Vesicle-mediated transport was recurrently identified as a positively
correlated pathway with plasma PLT levels (Supplementary Fig. 3b).
Tumor size-related proteins were involved in angiogenesis (VCAN,
VTN, NRP1), EMT (FN1, CD44, THBS2), and translation (EIF1AX, EIF5),
further indicating the biological basis of ccRCC growth (Supplemen-
tary Fig. 3c). In addition, acute phase proteins (ORM1, CRP, SAA1) and
complement cascade components (SERPINA1, C5, FGA) showed an
obviously significant correlation with tumor size, reflecting a positive
connection between inflammatory response and tumor size (Supple-
mentary Fig. 3a, d).
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Fig. 1 | Proteogenomic analysis of ccRCC response to sunitinib. a Schematic
representation of the multi-omics analyses of ccRCC, including sample prepara-
tion, protein identification,WES, and function verification.bThe cohort includes 27
responders and 88 non-responders undergoing sunitinib treatment. Their clinical
parameters are shown in the heatmap. c Kaplan–Meier curves of progression-free

survival (PFS) and overall (OS) for patients with distinct clinical responses (two-
sided log-rank test). P values were described in the figure. d Comparison of fre-
quently mutated genes among ccRCC cohorts. Source data are provided as a
Source Data file.
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Furthermore, we found that CRP abundance was significantly
correlated with inflammatory response scores (SCC =0.31, p = 8.1E-4)
and could act as a prognostic indicator in Sunitinib treatment (log-rank
test, p = 0.021) (Supplementary Fig. 3e, f). Consistently, CRP abun-
dance in the non-responders was significantly higher than those in the
responders (Supplementary Fig. 3g). Although the LDH levels of the
responder and non-responder groups showed no significant differ-
ences, higher LDH levels were associated with poor prognosis (Sup-
plementary Data 5). Higher LDH levels were associated with a higher
level of fatty aciddegradation (ACOT4, ECHS1) andOXPHOS (NDUFB5,
NUDFS2, SDHB) (Supplementary Fig. 3h). Interestingly, abundances of
CD8A and CD274 (PD-L1) were significantly correlated with the LDH
level (Supplementary Fig. 3i), suggesting enhanced immune evasion in
ccRCC patients with high LDH levels. To test whether the plasma LDH
levels were associated with the potential immune evasion of ccRCC
tumors, we collected 72 ccRCC tumor samples and conducted PD-L1
immunohistochemistry. Comparing the preoperative plasma LDH
level between PD-L1 positive and negative patients, we found that PD-
L1 positive patients had higher plasma LDH levels (Supplementary
Fig. 3j), further supporting the association between plasma LDH level
and the potential immune evasion of ccRCC tumors. Further, higher
expression of CD274 was associated with poor prognosis in Sunitinib
treatment (log-rank test, p = 0.005) (Supplementary Fig. 3k), con-
sistent with a previous report28. Based on these results, we considered
that patients with high LDH levels might not benefit from sunitinib
therapy, but could benefit from immune checkpoint blockade (ICB)
therapy.

MSKCCand IMDC riskmodels to prognosticate in advancedRCC
MSKCC and IMDC risk models were frequently used for prognosis
prediction of advanced RCC. Despite there was no significant differ-
ence in MSKCC risk and IMDC risk between Responders and Non-
Responders, MSKCC risk and IMDC risk were significantly associated
with patient survival (Supplementary Fig. 4a). Gene set enrichment
analysis (GSEA) revealed that poor MSKCC risk patients showed
upregulation of complement cascade and lipoprotein assembly, and
downregulation of collagen formation and glycolysis compared to
intermediate-risk patients (Supplementary Fig. 4b). Similarly, upregu-
lated complement cascade and lipoprotein assembly and down-
regulated glycolysis and apoptosis were observed in poor IMDC risk
patients (Supplementary Fig. 4c). Leibovich scoring system was also
widely applied to predict patient prognosis with clear cell metastatic
renal cell carcinoma29. The results showed that Non-Responders had
higher Leibovich scores than Responders (Supplementary Fig. 4d). In
addition, the Leibovich scoring system could predict patients’ prog-
nosis in this cohort, and a higher score was significantly associated
with worse OS and PFS (Supplementary Fig. 4e).

Impacts of mutation signatures on sunitinib therapeutic
outcomes
Mutational spectra revealed that the frequency of T > A transversions
was higher in the non-responder group than in the responder group
(14.4 vs. 20.3%) (Supplementary Fig. 5a). AA exposure may cause
mutagenesis characteristic of predominant T >A transversions16,18,
whichmatched the Catalog of Somatic Mutations in Cancer (COSMIC)
SBS22. Thus we further decomposed the mutation spectra using the
COSMIC database30. The results showed that Responder and Non-
Responder groups had similar single-base substitution (SBS) signature
(SBS1, SBS5, SBS22, and SBS40) distribution (Supplementary Fig. 5b).
Interestingly, patients with SBS22, were associated with aristolochic
acid (AA) exposure, showed better survival in Sunitinib treatment (GB-
Wilcoxon test, p =0.038) (Fig. 2a). Consistently, compared with the
non-AA group, patients with the AA signature showed smaller tumor
size (t-test, p =0.0062) (Fig. 2b), suggesting the specificmechanismof
AA exposure.

Further investigation of the proteomic impact of AA signature
showed that, compared with the patients without AA signature, pro-
teins involved in the immune system (MRC1, CSK), focal adhesion-
PI3K-AKT-mTOR-signaling pathway (ITGB2, RPTOR), DNA replication
(MCM5,MCM6), and pentose phosphatemetabolism (TKT, PGD) were
significantly downregulated, whereas the proteins functioning in bio-
logical oxidation (MAT2A) and glycolysis (PGAM2, PFKM) were upre-
gulated inpatientswithAA signature (Fig. 2c). ThedownregulatedDNA
replication might account for the smaller tumor size of patients with
AA signature. Interestingly, we found that the enhanced glycolysis and
attenuated pentose phosphate pathway (PPP) in patients with AA sig-
nature, manifested as upregulation of PFKP, PFKL, GPI (t-test, p < 0.05)
and downregulation of G6PD, PGD, TKT (t-test, p <0.05) both on
proteome and transcriptome level (Fig. 2d). Further, low expression of
PGDandTKTwasassociatedwith better survival in Sunitinib treatment
group, which was not observed in the non-treated control group
(Supplementary Fig. 5c, d). Thus, we supposed that AA improved the
prognosis of ccRCC patients under Sunitinib treatment by down-
regulation PPP.

To further validate the impacts of AA on Sunitinib therapy, we
performed in vitro experiments in 786-O and ACHN cells. We found
that in vitro treatment of ccRCC cells with proper concentration of AA
had no direct effect on the proliferation of ccRCC cells, but could
enhance the inhibitory effect of sunitinib on ccRCC cells (Fig. 2e, f,
Methods). The transwell assay showed that AA treatment did not
impact cell invasiveness directly, but enhanced the inhibition of
Sunitinib to cell invasiveness (Supplementary Fig. 5e). Moreover, we
verified that treating 786-O, and ACHN cells with AA caused notably
decreased PPP enzymes (G6PD, PGD, and TKT) in time- and dose-
dependent manners (Fig. 2g, h). The levels of ribose-5-phosphate,
which is an important product in both oxidative and non-oxidative
PPP, decreased notably in AA-treated cells (Fig. 2i).

We next investigated how AA inhibited the expressions of those
genes, by predicting the potential transcriptional factors (TFs) which
were involved in the regulation of the transcription of G6PD, PGD, and
TKT. We obtained 84 TFs that can bind to G6PD, PGD, and TKT gene
promoter regions by the JASPAR31 database and 200 potential TFs by
the ChEA332 database (Methods). To improve the confidence of pre-
dicted TFs, we take the intersection of the 84 TFs in JASPAR and 200
TFs inChEA3databases. Ultimately, weobtained 18TFs includingTFE3,
SP1, SPI1, GATA1, NR2C1, KLF4, TCF3, TEAD4, TFAP2A, KLF5, GATA3,
SMAD4, ISX, YY1, SNAI3, SREBF2, MEF2A, and VDR. In this study, there
were 8 out of 18 TFs identified in this ccRCC cohort. As the bioinfor-
matic analysis showed the inhibition of AA on the pentose phosphate
pathway (PPP), we hypothesized the expression level of TFs that
regulated PPP affected by AA was downregulated in tumor tissue.
Therefore, we assessed the expression of these 8 TFs in RCC, the
results showed four out of eight TFs were lower expressed, including
SP1, YY1, SREBF2, and SMAD4 (Supplementary Fig. 5f). Hence, we
selected these four TFs for further in vitro experiments. By knocking
down these four candidate transcriptional factors using siRNA in cul-
tured ccRCC cancer cells (Supplementary Fig. 5g–k), we found the
mRNA levels of G6PD and PGD decreased in SP1 knocking down cells
(Supplementary Fig. 5g). However, decreasedmRNA levels of SMAD4,
YY1, and SREBF2, did not affect the transcription of G6PD, PGD, and
TKT (Supplementary Fig. 5h–j). Consistently, we observed the
downregulation of G6PD and PGD proteins in SP1 knocking down
cells (Fig. 2j, k). Furthermore, we overexpressed SP1 in cultured cells
and found SP1 overexpression led to increased levels of mRNA of
G6PD, PGD, and TKT (Supplementary Fig. 5k) and protein levels of
G6PD and PGD (Fig. 2j, k). When treated with AA, we found that the
SP1 mRNA level was not changed, but the SP1 protein level was
downregulated, indicating AA might lead to SP1 degradation in the
post-translation stage (Fig. 2l, m). We verified this result by the
reduction of SP1, which was caused by AA exposure, was blocked by
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the proteasome inhibitor MG132 (Fig. 2n). We used the target genes
of SP1 from DoRothEA33 to infer the SP1 activities in ccRCC tumor
using VIPER34. To evaluate the SP1 signature between responder (R)
and non-responder (NR), we split all samples into two groups by the
median score of SP1 signature (SP1 signature (high) and SP1 signature
(low)) and performed the Fisher exact test. The results showed
there’s no significant difference between R and NR, but a significantly

different between AA and non-AA, which indicated the association
between SP1 and AA signature (Supplementary Fig. 5l). Taken toge-
ther, these results indicated that there were linkages among AA
exposure, Sunitinib treatment outcome, and the downregulation of
pentose phosphate pathway. More importantly, we verified that SP1
was the key transcription factor of AA regulating the pentose phos-
phate pathway (Fig. 2o).
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The impacts of copy number alterations on sunitinib ther-
apeutic outcomes
Somatic copy number alterations (SCNAs) in ccRCC were identified
using GISTIC35 (Supplementary Data 2). The most frequently deleted
chromosomal regions in the Chinese cohort were 3p (75%), 14q (45%),
9p (44%), and 9q (44%). Themost frequently amplified regions were 5q
(44%), 7q (32%), 7p (29%), and 20q (28%). Comparing the responder
group with the non-responder group, there was no significant differ-
ence in significant arm-level events (Supplementary Data 2).WhenCox
regression analysis was used to determine the correlation between
arm-level CNAs and clinical outcomes, we found that gains of 3q
(HR = 1.8, p =0.025), 7p (HR = 2, p = 2.48E-3), 7q (HR = 2.1, p = 7.12E-4),
and 8q (HR = 1.7,p = 0.031) were associatedwith poor survival (Fig. 3a).
We performedmultivariate analysis using 3q gain, 7p gain, 7q gain, and
8q gain as covariates. We found the co-occurrence of these four CNA
events (gains of 3q, 7p, 7q, and 8q). Notably, 7p gain and 7q gain were
even totally overlapped (Supplementary Fig. 6a). We calculated var-
iance inflation factors (VIFs) of these four covariates to assess multi-
collinearity. The results showed that there wasmulticollinearity in this
model (7p gain, VIF = 9.276; 7q gain, VIF = 9.826) (Supplementary
Data 2). Therefore, we performed amultivariate analysis of 3q gain, 8q
gain, and 7p or 7q gain. The results showed 7p gain (HR= 1.71,
p =0.045) and 7q gain (HR = 1.91, p =0.015) were the dominant arm-
level CNA events associated with patient survival (Supplemen-
tary Fig. 6b).

Comparing the CNA landscape at the gene level between the
responder and non-responder groups, we found that genes, more
frequently amplified in the non-responder group than in the responder
group,were located in 7q (Fisher’s exact test,p < 0.05) (Fig. 3b). Tofind
out the effects of 7q copy number (CN) on sunitinib therapy at the
proteome level, we calculated the SCC between 7q CN and proteome
data. Totally, there were 485 proteins that showed significant positive
correlations with the 7q CN (SCC>0, p <0.05). As shown in Fig. 3c,
these proteins were mainly enriched in pathways including lysosome
(LARP1. LARP2), innate immune system (PTGES), mTOR signaling
(RRAGB, RRAGD, LAMTOR2, LAMTOR4, MLST8), TCA Cycle (CS,
SDHA,MDH2), oxidative phosphorylation (COX6C,NDUFS6), and fatty
acid biosynthesis (ACACA, MCAT) (Fig. 3c and Supplementary Fig. 6c).
Notably, there were 29 out of 485 proteins encoded by 7q genes.
Genomic alterations that affect gene expression levels at the same
locus are defined to act in cis, whereas the impacts of another locus are
defined as a trans effect36,37. The diagonal patterns in Supplementary
Fig. 6d represent the cis effects of CNAs, whereas vertical patterns
indicate the trans effects. We observed 3 (LAMTOR4, MDH2, CALU)
out of 29 proteins showed cis effects both on proteome and tran-
scriptome levels with their encoding genes on 7q (Fig. 3d), in which
LAMTOR4, participating mTOR signaling, showed themost significant
cis effects on 7q (p = 1.88E-4).

To further validate the impacts of chromosome 7q gain on
Sunitinib therapy, we overexpressed five cis-regulated genes

including LAMTOR4, MDH2, CALU, and two other random genes,
TBL2 and POR2, as a control to mimic chromosome 7q gain in the
in vitro cell experiments, respectively (Fig. 3e and Supplementary
Fig. 6e). We found overexpressed LAMTOR4, MDH2, and CALU,
rather than TBL2 and POR2, increased the phosphorylation level of
S6K in the 786-O cell line, indicating activation of mTORC1 (Fig. 3e
and Supplementary Fig. 6e). We investigated the TCGA ccRCC data
and found that 7q gain tumors had a higher level of pS6K (P70S6KP
T389, Wilcoxon rank-sum test, p = 0.03) and mTOR signaling scores
than 7q WT tumors (Wilcoxon rank-sum test, p < 0.01) (Supplemen-
tary Fig. 6f). These results indicated the 7q gain was associated with
the activation of mTOR signaling in ccRCC patients. We also per-
formed immunohistochemical (IHC) staining for pS6K in responders
and non-responders. The results showed that non-responders
expressed higher levels of pS6K than responders (Fig. 3f). Next, we
treated the candidate genes overexpressed cells and normal cells
with or without Sunitinib (Methods) in 786-O and 769-P cell lines,
respectively. By monitoring the cell proliferation rate and transwell
assay, we found increased expression of LAMTOR4, MDH2, or CALU
abrogated the effects of Sunitinib, while TBL2 and POR2 not (Fig. 3g
and Supplementary Fig. 7a–c). In conclusion, chromosome 7q gain
would activate mTOR signaling and link to the poor sunitinib treat-
ment effectiveness (Fig. 3h).

Gene mutation in responders and non-responders associated
with therapy outcomes
In total, we identified ten genes (VHL, KMT2C, SFT2D1, COL5A3,
DYNC2H1, EYS, STAG3, HEATR1, PABPC5, and HLA-B) (Supplementary
Data 2) that were significantly differentially mutated between the
responder and non-responder groups (Fisher’s exact test, p < 0.05)
(Fig. 4a). Interestingly, all ten genes showed higher mutation rates in
the responders than in the non-responders. Further, we investigated
the impact of mutations on the OS in our cohort. Mutations of eight
genes with a mutation frequency >2% (VHL, BAP1, ACAN, CNTNAP4,
HUWE1, ZNF236, ZMYM4, and MYH1) were associated with prognosis
(log-rank test, p <0.05). Among them, BAP1mutations were associated
with poor survival in both the TCGA cohort and this study (Fig. 4b). In
contrast, the association of VHL, ACAN, CNTNAP4, HUWE1, ZNF236,
ZMYM4, andMYH1mutationswith overall survivalwas only observed in
our cohort (Fig. 4b). Notably, we found that VHLmutation, considered
as a truncal genetic alteration event3, was significantly associated with
good prognostic outcomes (log-rank test, p =0.0135, HR =0.58) in
sunitinib treatment (Fig. 4c). To prove the correlation between VHL
mutation and sunitinib treatment outcomes, we surveyed the data
from IMmotion15112. Consistently, it was observed responders were
significantly overrepresented in patients with VHL mutations (Fisher’s
exact test, p =0.013) (Supplementary Fig. 8a), and patients with VHL
mutation have longer PFS than patients without VHL mutation (log-
rank test, p =0.012) in the IMmotion151 study (patients not evaluated
were not included) (Supplementary Fig. 8b). We also found that

Fig. 2 | Impacts of AA exposure on sunitinib therapeutic outcomes.
a Kaplan–Meier curves of progression-free survival (PFS) for patients with (n = 19)
or without (n = 94) the AA signature (two-sided GB-Wilcoxon test). b Comparisons
of tumor size between patients with (n = 19) or without (n = 94) the AA signature
(two-sided t-test). Data were shown as mean ± SD. c Pathways enriched by differ-
entially expressed proteins between patients with or without the AA signature.
d Left panel: heatmap showed the expression of glycolysis-related and PPP-related
proteins at the transcriptome and proteome levels, respectively. The values were
transformed by z-score. Right panel: Glucose metabolism alteration caused by the
AA signature. e, f Proliferation of 786O and ACHN cells was detected by CCK-8
assay (AA-100μM, Sunitinib-200 nM, n = 9 independent experiments, two-sided t-
test). P valuesweredescribed in thefigure. ns not significant. Shown are the average
valueswith SD. g, h AA treatment inhibited the expressions of G6PD, PGD, and TKT
in 786O and ACHN cells in time-and dose-dependent manners. Numerical values

below the gels indicate the quantification of the bands relative to the control
(hereinafter). i Ribose-5-phosphate concentrations in cells treated with AA or not
(n = 3 independent experiments, two-sided t-test). Datawere shownasmean ± SD. P
values were described in the figure. J, k Left panel, SP1 knockdown downregulated
PPP enzymes at the protein level. Right panel, SP1 overexpression upregulated PPP
enzymes at the protein level, in 786O and ACHN cells, respectively. Numerical
valuesbelow thegels indicate thequantificationof thebands relative to the control.
l,mAA treatment did not affect the transcription of SP1 in the 786-O cell andACHN
cell, respectively (n = 3 independent experiments). Data were shown as mean ± SD.
(AA-100 μM, 24h). n MG132 abrogated the AA-mediated PPP enzymes down-
regulation by inhibiting the degradation of SP1. (AA-100 μM, 24h). Numerical
valuesbelow thegels indicate thequantificationof thebands relative to the control.
o Schematic diagram showing AA regulated the pentose phosphate pathway.
Source data are provided as a Source Data file.
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tumors with VHL mutation were significantly smaller (t-test,
p =0.0039) (Supplementary Fig. 8c).

To further investigate the impacts of VHL mutations on protein
expressions and related biological functions, we examined the sig-
nificantly alteredproteins in patientswith orwithoutVHLmutation (FC
>1.5, p <0.05) both on proteome and transcriptome level (Fig. 4d and
Supplementary Fig. 8d). Proteins in pathways such as glycolysis/

gluconeogenesis (ENO1, PGK1, and ALDOC), HIF-1 signaling (CA9,
PLIN2), Ras signaling (RASAL1, RALB), and necroptosis and apoptosis
(BCAP31, DFFB), were found to be elevated in patients with VHL
mutation (Fig. 4e). VHL is an important tumor suppressor that is lost in
the majority of ccRCC cases, acting as a component of E3 ligase
mediating HIF degradation38. In VHL mutation tumors, accumulated
HIF led to upregulation of glycolysis and downregulation of oxidative
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phosphorylation (OXPHOS), indicating activation of the Warburg
effect (Fig. 4e, f). Moreover, to provide experimental evidence, we
knocked down VHL in ACHN cells (80% knockdown efficiency, Sup-
plementary Fig. 8e), which belong to VHL-proficient cells, mimicking
VHL loss-of-function mutations. We tested the glycolysis levels by
monitoring lactate production. The results showed that lactate levels
increased in VHL deficiency cells (Fig. 4g), suggesting that VHL loss-of-
function mutations caused enhanced glycolysis. In addition, through
the transwell assay and cell proliferation assay, we found that VHL
knockdown distinctly enhanced the inhibition of cell proliferation and
invasiveness of Sunitinib to cancer cells (Fig. 4h and Supplementary
Fig. 8f). These results indicated that the VHL mutation, leading to
Warburg effect, increased the vulnerability to Sunitinib treatment
in ccRCC.

KMT2C was another differentially mutated gene between the
Responders and Non-Responders (Fig. 4a). Further evaluation of the
proteomic impacts of KMT2C mutations showed that 922 proteins
impacted by KMT2Cmutation were downregulated (p < 0.05) (Fig. 4i),
enriched in platelet aggregation (ITIH3, APBB1IP), signaling by VEGF
(SRC, NCF4), vesicle-mediated transport (SEC23IP, VPS37B), and
apoptosis through dr3/4/5 death receptors (RIPK1, DFFB) (Fig. 4j).
Based on the mutation status of VHL and KMT2C, we divided patients
into four genotypes (VHLMut/KMT2CMut, VHLMut/KMT2CWT, VHLWT/
KMT2CMut, and VHLWT/KMT2CWT). Notably, the different genotypes
showed different tumor sizes (Supplementary Fig. 8g) and distinct
clinical outcomes (Fig. 4k, l). VHLMut/KMT2CMut had the highest pro-
portion of responders (83.33%) (Fig. 4k) and the best survival among
these four genotypes (log-rank test, p =0.0158) (Fig. 4l). Conversely, all
the VHLWT/KMT2CMut cases were non-responders (Fig. 4k). Analysis of
differentially expressed proteins comparing the four genotypes
showed that proteins involved in PI3K-AKT-mTOR pathway (RRAGB,
EIF4E2) and apoptosis (CASP3, CASP7) were downregulated in the VHL
and KMT2C co-mutation group (Fig. 4m, n), suggesting that the PI3K-
AKT-mTOR pathway was a resistance pathway in Sunitinib treatment
(Fig. 4m, n).

Considering the latent impact of the interactions of genetic
alterations on the prognosis of Sunitinib therapy, we comprehensively
analyzed themutational signatures, CNAs, and somaticmutations. The
integrative analysis revealed a co-occurrence of the AA signature, 3p
loss, andVHLmutation (Supplementary Fig. 8h). To further explore the
interactions of these genetic alterations, we divided our cohort into 5
groups based their alteration status (Group1: AA/3p loss/VHLMut;
Group2: AA/3p loss/VHLWT; Group3: non-AA/3p loss/VHLWT; Group4:
non-AA/3p loss or VHLMut; Group5: non-AA/non-3p loss/VHLWT) (Sup-
plementary Fig. 8h). Significantly, these five groups were different in
tumor size, among which Group1 showed the smallest tumor burden
(Supplementary Fig. 8i). Further, the five types were significantly
associated with prognosis and showed an ascending trend in PFS from
Group1 to Group5 (log-rank for trend, p = 0.031) (Supplementary
Fig. 8j). These results suggested that the AA signature, 3p loss, andVHL
mutation were functionally superimposed. Differentially expressed

protein analysis among thefive types of events showed the attenuation
of glycolysis (PFKL, LDHA) and HIF pathways (VEGFA), and enhance-
ment of pathways such as glucose transport (SLC2A3), the pentose
phosphate pathway (TKT, PGD), and inflammatory response (C1QC,
C9, S100A8) from Group1 to Group5 (Supplementary Fig. 8k). Single-
sample gene set enrichment analysis (ssGSEA) complementarily cor-
related genomic alteration groups with these pathways (Supplemen-
tary Fig. 8l). To validate whether AA could enhance 3p loss and VHL
mutations caused enhanced glycolysis flux, we measured the intra-
cellular lactate when treated with AA in VHLKD ACHN cells. The results
showed that AA treatment significantly upregulated the VHL
deficiency-caused lactate increase (Fig. 4g). Overall, the integrated
proteogenomic analysis demonstrated that AA signature was con-
tributed to 3p loss and VHL mutation caused enhanced glycolysis,
which associated with sunitinib therapeutic response.

Differential analysis between sunitinib therapeutic responders
and non-responders at proteome and phosphoproteome levels
As FLT1, FLT3, FLT4, KDR, KIT, PDGFRA, and PDGFRB were targets of
Sunitinib, we surveyed their abundances in the responder and non-
responder groups and found no significant difference between the two
groups (Fig. 5a).We further evaluated the global activities of Sunitinib-
targeted receptor tyrosine kinases (RTK), by comparing the phos-
phorylation levels of all substrates of these kinases. We found that the
global activities of sunitinib-targeted RTKs also showed no significant
differences between responders and non-responders (Fig. 5b). These
results suggested that the abundances and activities of the targeted
proteins might not be effective indicators for the TKI response.

Next, we used GSEA to compare the proteome of the responder
and non-responder groups. It was observed that G2M checkpoint,
antigen processing and presentation, Th17 cell differentiation, and NF-
kappa B signaling pathway were enhanced in the responders, while
mTOR signaling pathway, neutrophil degranulation, and platelet acti-
vation signaling, and aggregation were upregulated in the non-
responders (Fig. 5c). The differentially expressed proteins (t-test
<0.05, FC >1.5) between responder and non-responder groups in
tumor tissues were shown in the Supplementary Fig. 9a (Supplemen-
tary Data 5).

Kinase-substrate enrichment analysis (KSEA) was conducted to
probe the differentially activated kinases between responders and
non-responders (Supplementary Data 5). We found that MAP2K1
(MEK1) and MTOR were activated in non-responders, while CDK1/2
were activated in responders (Fig. 5d). Notably, both MTOR and
CDK2’s protein expression level were no significant difference
between Responders and non-responders (Supplementary Fig. 9b).
Evaluation of kinase activities by single-sample gene set enrichment
analysis (ssGSEA) further confirmed that MTOR was activated in non-
responders while CDK2 was activated in Responders (Fig. 5e). The
activity of MAP2K1 was significantly associated with poorer survival
(Fig. 5f). Further investigating the differentially expressed phospho-
sites between responders and non-responders, we found that mTOR

Fig. 3 | Impacts of copy number alterations on sunitinib therapeutic outcomes.
a Cox regression analysis of significant arm-level CNA events, based on the PFS.
b Comparison of gene-level CNAs between Responders and Non-Responder in this
cohort. The upper plot illustrates the frequency of CNA events and the lower plot
illustrates the −log10 (p value) of each gene for the comparison of Responders and
Non-Responder (two-sided Fisher’s exact test). c Heatmap depicting the protein
expression levels positively correlated with the Chromosome 7q copy number.
Two-sided Spearman’s correlations are shown in the right panel. The values were
transformed by z-score. d Boxplots depicted the expression of LAMTOR4 (pro-
teome level: 7q gain n = 30, non-7q gain n = 55; transcriptome level: 7q gain n = 31,
non-7q gain n = 62), MDH2 (proteome level: 7q gain n = 31, non-7q gain n = 62;
transcriptome level: 7q gain n = 31, non-7q gain n = 62), and CALU (proteome level:
7q gain n = 31, non-7q gain n = 62; transcriptome level: 7q gain n = 31, non-7q gain

n = 62) between 7q gain and non-7q gain cohort at transcriptome and proteome
level, separately (two-sidedWilcoxon rank-sum test). The line represents the mean
with SEM and upper and lower quartiles, respectively. P values were described in
the figure. e Overexpression of LAMTOR4, MDH2, and CALU increased the phos-
phorylation of S6K. Numerical values below the gels indicate quantification of the
bands relative to control. f The immunohistochemical (IHC) for pS6K in the tumor
and tumor-adjacent tissue of responders and non-responders (analyzed patients:
n = 3). The scale bar indicates 80μm. g CCK-8 detected the effect of LAMTOR4,
MDH2, and CALU overexpression and Sunitinib treatment on cell proliferation.
(Sunitinib-200 nM, n = 9 independent experiments, two-sided t-test). Data were
presented as mean values ± SD. P values were described in the figure. ns not sig-
nificant. h Proposed model explaining the 7q gain-induced Sunitinib treatment
non-response. Source data are provided as a Source Data file.
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and MAPK signaling pathways associated substrates phosphorylation
were elevated in non-reponders, such as DEPTOR at S265, MAP-
K1(ERK2) at Y187, whlie SNRNP70 at S226 involved in RNA splicing was
increased in reponders (Supplementary Fig. 9c). Consistantly, abu-
dances of phosphosites DEPTOR pS265, MAPK1 pY187, and SNRNP70
pS226 were significantly correlated with MTOR, MAP2K1, and CDK2
activities, respectively (Fig. 5g). Previous studies reported that suniti-
nib treatment did not affect the phosphorylation of ERK39 and MEK
inhibition abrogated Sunitinib resistance in RCC PDX-xenograft
model40, which provided supports for our findings. In conclusion,
our phosphoproteome data demonstrated that the activation of

mTOR and MAPK signaling pathways was associated with Sunitinib
treatment resistance.

Associations between tumor heterogeneity and immune infil-
tration of ccRCC and therapy outcomes
We performed the consensus clustering algorithm to identify three
proteomic subtypes with distinct features, containing 51, 37, and 27
patients, respectively (Supplementary Fig. 10a), reflecting the inter-
tumoral heterogeneity of ccRCC. Notably, the different subtypes
showed different proportions of Responders and Non-Responders,
and tumor subtypes significantly differed in PFS (Supplementary
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Fig. 10b). Subtype3 had the highest proportion of non-responders
(96%) (Fisher’s exact test, p =0.004) and the worst survival among the
three subtypes (Supplementary Fig. 10b, c), while Subtype1 had the
best survival (log-rank test, p = 0.037) (Supplementary Fig. 10b). After
performing GSEA, Subtype1 was characterized by the upregulation of
spliceosome and metabolism pathways including in glycolysis and
valine/leucine/isoleucine degradation. The Subtype2 exhibited
enrichment of MYC targets, antigen processing and presentation, and
MTORC1 signaling. Subtype3 showed the upregulation of complement
cascade, angiogenesis, and EMT (Supplementary. Fig. 10d).

We used xCell41 to perform cell type deconvolution analysis,
inferring the relative abundance of different cell types in the tumor
microenvironment (TME), and performed ESTIMATE analysis42 to
determine the immune and stromal scores (Fig. 6a). Consensus clus-
tering based on the inferred cell proportion identified three sets of
tumors defined as T-cell infiltrated, cold, and progenitor-cell infil-
trated, comprising 45, 40, and 30 cases respectively (Fig. 6a and
Supplementary Fig. 10e). Notably, the immune clusters differed sig-
nificantly in PFS (log-rank test, p =0.027, Fig. 6b). Moreover, among
the three subtypes, we observed higher responder proportions in the
T-cell infiltrated the group and lower responder proportions in the
progenitor-cell infiltrated group (Fig. 6c), which could be leveraged to
predict therapeutic response.

The T-cell infiltrated group was characterized by high degrees of
CD8+ and CD4 + T-cell infiltration (Kruskal–Wallis test, p < 0.05)
(Fig. 6a). The progenitor-cell infiltrated group contained the lowest
responder proportion and the lowest frequency of chromosome 3p
loss and VHL mutation (Fig. 6d), further emphasizing the importance
of pVHL inactivation in sunitinib therapy. Proteomic analysis showed
upregulation of proteins involved in inflammasomes and the intrinsic
apoptosis pathway in the T-cell infiltrated tumors (Kruskal–Wallis test,
p <0.05) (Fig. 6e). The cold cluster was named so due to the lowest
immune, stromal scores (Kruskal–Wallis test, p < 0.05) (Supplemen-
tary Fig. 10f, g). Compared with other tumors, the cold group showed
the activation of the FGFR signaling and the Citrate cycle/TCA cycle
(Kruskal–Wallis test, p <0.05) (Fig. 6e).

The progenitor-cell infiltrated group was characterized by the
progenitors of multiple types of immune cells, including common
myeloid progenitor (CMP) cells and multipotent progenitor (MPP)
cells (Fig. 6a),manifesting as the upregulationof platelet aggregation
formation, the intrinsic pathway of fibrin clot formation, formation
of fibrin clotting cascade, and complement cascade at the proteome
level (Kruskal–Wallis test, p < 0.05) (Fig. 6e). Consistently, we found
that patients in the progenitor-cell infiltrated group showed the
highest expression of platelet marker CD321 (Kruskal–Wallis test,
p < 0.01) (Supplementary Fig. 10h) and an elevated level of plasma
PLT (Wilcoxon rank-sum test, p = 0.033) (Fig. 6f). These results
revealed the connection of platelet activation with TME-mediated
sunitinib resistance. Consistently, almost all patients with thrombo-
cytosis (PLT count > normal upper limit) were non-responders

(Fisher’s exact test, p = 0.023) (Fig. 6g). Commonmyeloid progenitor
(CMP) cells are platelet precursors, which produce platelets due to
the requirements for coagulation, showed significantly elevated
levels in the progenitor-cell infiltrated group (Kruskal–Wallis test,
p = 6.6e-11) (Fig. 6h). Indeed, CMP cells showed the highest correla-
tion with platelet aggregate (plug formation) among all the xCell
inferred cell types (SCC = 0.53, p = 1.49E-09) (Fig. 6i). To further
explore the influence of TME of Progenitor-cell infiltrated tumors, we
evaluated the differentially expressed proteins among three clusters,
especially those involved in platelet aggregate and coagulation
(Fig. 6j). Abundance of transforming growth factor beta 1 (TGFB1), a
growth factor associated with multiple oncogenic pathways such as
tumor proliferation, EMT, angiogenesis, immune evasion, and
metastasis, was elevated in the Progenitor-cell infiltrated cluster and
well-correlated with the Sunitinib response (Fig. 6k). We observed
that TGFB1 was co-expressed with proteins involved in angiogenesis
and tumor immune escape in ccRCC (Fig. 6l), indicating that the
alternative angiogenesis driven by TGFB1 resulted in Sunitinib
resistance. Moreover, by adding TGFB1 in the culture medium to
simulate the impact of TME-derived TGFB1 on cancer cells, we found
that TGFB1 could enhance the invasiveness and cell proliferation of
ccRCC cancer cell (786-O cell and ACHN cell) and abrogate the
impact of Sunitinib on ccRCC cancer cells (Fig. 6m, n and Supple-
mentary Fig. 10i). In summary, we considered that the connection of
platelet activation with TME, comprising abundant progenitors,
which might lead to insufficient sunitinib therapy response.

Construction of a response classifier based on proteome data
Above, we identified the clinical, genomic, transcriptomic, proteomic,
and phosphoproteomic features that are associated with response to
TKI therapy. This motivated the use of a machine learning framework
(Fig. 7a) to integrate all the features into a predictive model of the
response.

For the feature selection, based on the model construction pipe-
line (Methods), the F test and chi-square test were performed to select
the features. As a result, 18 proteins that showed robust performance
were selected for the predictive model construction including
CCDC132, COTL1, EIF3C, EPB41L3, GPR89C, HEATR3, HNRNPH3,
HNRNPU, HOGA1, LAMTOR4, NBEAL2, NPM1, PMM1, RPS7, SMARCA5,
SNRPE, TNS1, and TRIO. Next, we used the ensemble random forest
(RF) model algorithm to build the predictive model with the above 18
proteins as the input features. As shown in Fig. 7b, the RF model
showed goodperformancewith receiver operating characteristic–area
under the curve (ROC-AUC) = 0.85 on the training cohort.

It had ROC-AUC=0.85, specificity = 0.85, and sensitivity = 0.75 on
the test cohort (Fig. 7e and Supplementary Fig. 11a). Furthermore, we
calculated the feature importance for this RF model (Supplementary
Fig. 11b).

To construct an advanced classifier for improving the predicted
performance, we enrolled the multi-omics features rather than the

Fig. 4 | Gene mutation in responders and non-responders associated with
therapy outcomes. a Significant differentially alteredmutated genes in responder
and non-responder groups (from left to right, the p values are: 0.0201, 0.0486,
0.0097, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0111, and 0.0111; two-sided
Fisher’s exact test). P values were described in the figure. b Comparison of the
effect of mutations on the OS among this study and TCGA cohorts (log-rank test).
c Kaplan–Meier curves of overall survival (OS) for patients with or without VHL
mutations (log-rank test).d, eDifferentially expressed proteins in theVHLmutation
and WT groups and their associated biological pathways. The values were trans-
formedby z-score. fAbriefmodel depicting the functional impactofVHLmutation.
g The impact of VHL knockdown and AA treatment on intracellular lactate (n = 5
independent experiments, data were presented as mean values ± SD, two-sided t-
test, AA-100μM). P values were described in the figure. h Cell proliferation assay

detected the effect ofVHL knockdown and Sunitinib treatment on cell proliferation
in ACHN cells. (Sunitinib-200 nM, two-sided t-test). Shown are the average values
with ±SD. P values were described in the figure. ns not significant. i, j Differentially
expressed proteins in the KMT2Cmutation and WT groups and their associated
biological pathways. The values were transformed by z-score. k Kaplan–Meier
curves of PFS for patients with different genotypes of VHL and KMT2C (log-Prank
test). l Pie charts representing the distribution of different genotypes in the
responder and non-responder groups. m Heatmap of protein expression abun-
dances of PI3K-AKT-mTOR pathway and apoptosis pathway among the four gen-
otypes. The values were transformed by z-score. n A brief model depicting the
functional impact of VHL and KMT2C co-mutation. *p <0.05, **p <0.01. Source data
are provided as a Source Data file.
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only proteome features and built the RF-based classifier (Fig. 7a). In
detail, clinical features (LDH, tumor size, and PLT), mutation features
(VHL and KMT2C), mutational signatures (AA signature), copy number
alteration features (7q, 3p), transcriptome features (MIR3939,
ALDH1A3, LPAR1, FBLN5, and C7), and proteome features (same as the
proteome-based model) were selected for the multi-omics classifier
construction. As shown in Fig. 7c, the multi-omics classifier showed
ROC-AUC=0.86 for the repeated cross-validation on the training
cohort. The sensitivity and specificity of the test cohort were 1 and
0.86, with a great improvement to the proteome-based model
(Fig. 7d). Compared to the proteome-based RFmodel, themulti-omics
RF model showed better performance with ROC-AUC =0.98 on the
test cohort (Fig. 7e). Furthermore,we evaluated thebalanced accuracy,

precision, recall, and F1 score on the test cohort and observed good
generalized performance on the test cohort (Supplementary Fig. 11c).
Proteomic and transcriptomic features, i.e., protein/phosphoprotein
abundance and gene expression levels, contributemost to the success
of the predictionmodel, as revealedby the feature importanceanalysis
included in Fig. 7f.

In summary, we used an ensemble approach that input multi-
omics features to derive predictors of the TKI Responders. The pre-
dictivemodel offers anopportunity to expedite the translation of basic
research to more precise diagnosis and treatment in the clinic. In
addition, this framework highlights the importance of data integration
in machine learning models for response prediction and could be
utilized in other cancers.
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Fig. 5 | Proteomic and clinical features associated with sunitinib therapeutic
outcomes. a Abundance of sunitinib targets in responders (n = 27) and non-
responders (n = 88). P values are derived from the two-sided Wilcoxon rank-sum
test. Boxplots show the median (central line), the 25–75% IQR (box limits), and the
±1.5×IQR (whiskers). b Boxplot showing the inferred Sunitinib-targeted RTK activ-
ities between responders (n = 17) and non-responders (n = 49). P values are derived
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in pathways correlated with sunitinib response. d Differential analysis of kinase

activities by KSEA between responders and non-responders. e, Comparison of
inferred kinase activities ofMTORandCDK2 between Responders (n = 17) andNon-
Responders (n = 49) (two-sided Wilcoxon rank-sum test). Boxplots show the med-
ian (central line), the 25–75% IQR (box limits), and the ±1.5×IQR (whiskers). P values
weredescribed in the figure. fKaplan–Meier curvesofOS for patientswith different
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(two-sided Spearman’s correlation test). P values were described in the figure.
Source data are provided as a Source Data file.
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Discussion
In this study, we established a comprehensive landscape of Sunitinib
drug response in ccRCC patients at both the genome and proteome
levels. Mutation signatures revealed that the AA signature was asso-
ciated with smaller tumors and better survival. The results showed
strong regional characteristics, indicating the necessity of considering
the life habits and environmental factors of the Chinese population in

ccRCC treatment. It is well-established that AA exposure impacts the
mutagenesis characteristic of predominant T > A transversions. Here,
based on themulti-omicsdata and bioinformatical analysis, in addition
to the genomic impact of AA, we described the proteomic differences
between AA patients and non-AA patients, and observed attenuated
pentose phosphate pathway and enhanced glycolysis alteration, which
connected to the Sunitinib treatment. The changes of proteomic level
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Fig. 6 | Associations between immune infiltration of ccRCC and therapy out-
comes. a Heatmap of immune signatures in three ccRCC immune clusters.
bKaplan–Meier curves of PFS for the three immune clusters (log-rank test). P values
were described in the figure. c Proportions of responders and non-responders
among the three clusters. d Proportions of VHLmutation and chromosome 3p loss
in immune groups. e Pathways enriched in the three immune subtypes.
f Comparison of plasma PLT counts among three immune subtypes (n (T-cell
infiltrated cluster) = 51, n (Cold cluster) = 37, n (Progenitor-cell infiltrated clus-
ter) = 27 biologically independent samples examined). P values are derived from
the two-sidedWilcoxon rank-sum test. Boxplots show themedian (central line), the
25–75% IQR (box limits), and the ±1.5×IQR (whiskers). g Distribution of thrombo-
cytosis in responders and non-responders (two side Fisher’s exact test). P values
were described in the figure. h Comparison of CMP scores among three immune
subtypes (n (T-cell infiltrated cluster) = 51, n (Cold cluster) = 37, n (Progenitor-cell

infiltrated cluster) = 27 biologically independent samples examined). P values are
derived from Kruskal–Wallis test. Boxplots show the median (central line), the
25–75% IQR (box limits), and the ±1.5×IQR (whiskers). i Correlations between pla-
telet aggregate (plug formation) scores and xCell inferred cell components (two-
sided Spearman’s correlation test). j Heatmap of proteins involved in platelet
aggregate and coagulation in the three subtypes. k Responders and non-
responders include different proportions of high (n = 57) or low (n = 58) expression
of TGFB1 (two-sided Fisher’s exact test). P values were described in the figure.
l Proteins involved in tumor immune escape and angiogenesis were co-expressed
with TGFB1. m, n CCK-8 detected the effect of TGFB1 intervention and sunitinib
treatment on cell proliferation in 786-O and ACHN cells, respectively. (sunitinib-
200 nM, **p <0.01, two-sided t-test). Shown are the average valueswith SD. P values
were described in the figure. ns not significant. Source data are provided as a
Source Data file.
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Fig. 7 | Proteomic classifier to predict sunitinib response. a Machine learning-
based model construction pipeline for the TKI treatment response, including
classification target, feature selection, model construction, model performance
evaluation, and model performance validation. b, c The five repeatedly cross-
validatedROC-AUCon the train cohort for proteome-based random forest (RF) and
multi-omics-base RF, separately. d The confusion matrix of test cohort for multi-

omics-base RF. e The comparison of ROC-AUC on the test cohort for proteome-
based RF and multi-omics-base RF. f The feature importance of multi-omics-based
RF model. The blue, orange, green, and red rectangles indicated proteome, tran-
scriptome, clinical, and genomic features, respectively. g Summary of clinical and
molecular characteristics in sunitinib responders and non-responders. Source data
are provided as a Source Data file.
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caused by AA signature still needs further investigation using experi-
mental models or in clinical practice. However, the presence of an AA
mutation signature does not necessarily mean that the patients have
significant AA levels in their plasma during sunitinib treatment. Our
study is retrospective and the tissue samples from patients we used in
the current study are collected in the past several years. Therefore, we
cannot quantify the concentration of AA in the blood of our cohort of
patients, which is really a regret of this research. Further studies with
AA close tophysiological concentration in animal primary cells need to
be conducted in the future.

In this cohort, 19 out of 115 patients were found to carry the AA
signature. We compared the frequency of T > A transversions between
tumor and tumor-adjacent tissues. The data showed that themutation
signatures of tumor tissues were higher than the mutation signatures
of tumor-adjacent tissues, demonstrating the strong mutagenic effect
of AA in tumor tissues. Besides, in our cohort, there were 15 out of 19
patients also carried T > A transversions in their normal tissue; the
frequencyof T > A transversions ranged from0–11 in thenormal tissue,
which was far lower than the 238–5802 in the tumor tissue. These
results indicated that AA signature might also affect the tumor-
adjacent tissue to a certain extent, which was consistent with Li et al.
study43 reported that AA signatures were found in normal human tis-
sues. Overall, although the number of mutations in normal tissues was
far less than in the tumor tissues, it is necessary to study the somatic
mutation accumulation in normal cells, which is essential for under-
standing tumorigenesis and development.

We identified ten significantly differentially altered genes in the
responders and non-responders in our cohort. Notably, VHL muta-
tions, the most frequent mutation events in ccRCC3,4, occurred more
frequently in Responders and were associated with improved survival
in Sunitinib treatment. This finding was also validated in the
IMmotion151 study12. We validated that VHL deficiency cells showed
increased glycolysis and were more vulnerable to sunitinib treatment.
It was noted that VHLmutation frequencies varied in different studies,
based on different populations (Fig. 1a). There might be two reasons
for the lowerVHLmutation frequencies in TCGA and Japanese cohorts.
One was differences across regions and ethnic backgrounds, and the
other was insufficient sequencing depth. The genetic ancestry analysis
of the TCGA cohort found there were racial differences in ccRCC, with
lower levels of VHL and PBRM1 mutations in tumors from African
versus European patients44. The higher depth of the sequencing
increased the chance to detect the mutations45. Advances in sequen-
cing technology and reduction in cost improved sequencing output,
resulting in a higher probability to detect the VHL mutation.

Proteins overexpressed in VHL mutant tumors were enriched in
the HIF1A transcription factor network and glycolysis/gluconeogen-
esis, consistent with the expectation of pVHL inactivation. We further
found the co-occurrence of AA signature, 3p loss, and VHL mutations
and that the AA signature could enhance 3p loss/VHL mutation-
induced enhanced glycolysis flux. This phenomenon indicated that
glucose metabolism in RCC was vulnerable and associated with the
response to anti-angiogenesis therapy. The divergent mutational
effect of KMT2C was also observed. Co-mutation of VHL and KMT2C
was associated with a better response to Sunitinib. Further, an asso-
ciation of copy number amplifications in 3q, 7p, 7q, and 8p with poor
survival was observed in this sunitinib treatment cohort but not in the
all-stage ccRCC cohort, indicating that the association depended on
sunitinib therapy. The comparison of CNAs in the responder and non-
responder groups revealed the importance of 7q amplification in the
sunitinib therapy response.

LAMTOR4, MDH2, and CALU on 7q showed a cis effect in our
cohort. In the in vitro validation experiments, we found that over-
expressed LAMTOR4,MDH2, andCALU increased thephosphorylation
of S6K, indicating activation of mTORC134. LAMTOR4, as a part of the
Ragulator complex46, is directly involved in amino acid sensing and

activation of mTORC1. MDH2, utilizing the NAD/NADH cofactor sys-
tem in the citric acid cycle, participates in mitochondrial metabolism.
Mitochondrial metabolism is closely related to the mTOR pathway47.
We found MDH2 cis-regulated by 7q gain in our cohort and over-
expression of MDH2 increased the phosphorylation of S6K. Based on
the published studies and the experiment results, we speculate MDH2
might participate in mTOR signaling activation by mitochondrial
metabolism. The product of CALU is a calcium-binding protein loca-
lized in the endoplasmic reticulum (ER) and is involved in such ER
functions as protein folding and sorting. It is rarely reported that CALU
is directly connected to mTOR signaling in the previously published
study. The specific mechanism needs further research in the future.
Overall, the 7q amplification was confirmed to upregulate mTOR sig-
naling pathways and amino acid turnover in ccRCC. This result sup-
ported mTOR inhibitors, such as Everolimus, as the second-line
treatment after sunitinib failure, especially in patients with 7q gain. In
conclusion,metabolic reprogramming inducedbygenomicalterations
in ccRCC impacted the anti-angiogenesis therapy. sunitinib-resistant
ccRCC was less dependent on the nutrients provided by angiogenesis.

The high tumor purity (more than 90%) and a relatively broad
range of variant allele frequency (VAF) indicated a high intra-
heterogeneity of a tumor. In our study, by applying the NMF algo-
rithm on the mutation spectrum based on the COSMIC, we identified
different mutation signatures and found the characteristics of geno-
mic signatures were distinctive from each other. Furthermore, con-
sensus clustering identified three ccRCC proteomic subtypes with
distinct features. Moreover, immune landscape characterization also
revealed diverse tumor microenvironment subsets in ccRCC patients.
In summary, the high tumor purity and a relatively broad range of VAF
are possibly induced by the heterogeneity of tumor gene variation.

Sensitivity and resistance to sunitinib therapy were influenced
bymany factors and showed diversity and heterogeneity. As proteins
are direct executors of biological functions, it is necessary to illu-
minate the biological basis underlying the differential TKI response
in the proteome context. Our study revealed RNA splicing and anti-
gen presentation-related proteins were associated with Sunitinib
response, whereas proteins involved in complement cascades and
the mTOR signaling pathway were associated with Sunitinib resis-
tance. We also indicated that the association of RNA splicing and
T-cell response might be a potential way to make anti-angiogenesis
therapy more effective48. More interestingly, we found that the LDH
level was positively correlated with the abundance of CD8A and PD-
L1, indicating that patients with high-level LDH might benefit from
ICB therapy.

In recent years, studies on TKIs combined with immune check-
point inhibitors for advanced RCC have made great breakthroughs,
improving the objective response rate to 50–60%. The success of
combination therapy has suggested that TME greatly affects anti-
angiogenesis therapy. Wang et al.49 established an inflamed pan-RCC
subtype (IS), characterized by infiltration of large amounts of immune
cells, including NK cells, B cells, and CD8+ T cells, and found IS was a
strong predictor of poor survival. Coincidentally, Hakimi et al.10 also
identified four subsets of ccRCC, among which a cluster characterized
by high immune infiltration was associated with poor response to
Sunitinib. By investigating the proteomic profiles of tumors, we pro-
posed a rational stratification of ccRCC patients based on immune
signatures as T-cell infiltrated, cold, and progenitor-cell infiltrated. The
progenitor-cell infiltrated group exhibited upregulation of the platelet
aggregate formation pathway and complement cascades, and high
expression of the platelet marker CD321, suggesting that the platelets
in the TME were responsible for sunitinib failure. Higher PLT counts
were associated with poorer survival and thrombocytosis was asso-
ciated with sunitinib resistance, further supporting this finding. Fur-
ther, we found that TGFB1, overexpressed in a progenitor-cell
infiltrated group, was an important component for alternative

Article https://doi.org/10.1038/s41467-023-39981-6

Nature Communications |         (2023) 14:4274 14



angiogenic signaling in ccRCC, indicating that TGFB1 inhibitors might
increase the sunitinib response.

Functional studies have confirmed that miRNA dysregulation is
causal in many cases of cancer50. Insights into the roles of miRNAs in
development and disease, particularly in cancer, have made miRNAs
attractive tools and targets for novel therapeutic approaches. In our
study, we analyzed the miRNAs which might regulate the proteins
associated with the response to sunitinib. Based on the transcriptome
sequencing data in our cohort, we identified 348 miRNAs in this
cohort, among which four miRNAs showed significant differences
between responders and non-responders. Specifically, MIR3939,
MIR4635, andMIR578 showed higher expression levels in Responders,
while MIR27A was higher in non-responders (Supplementary Fig. 12).

As previously reported, models for predicting the response of
TKIs9,10 or combination therapy12 were almost constructed based on
genome and transcriptome data, constructing a classifier to predict
the drug response based on multi-omics data provides an alternative
perspective. Our research provided a model for predicting Sunitinib
response and could facilitate the precise use of sunitinib. The multi-
omics or even the multimodal data could provide different informa-
tion for one topic. Hence, for the machine learning model, integrating
the multi-omics features could improve the model performance in a
feature-distribution-orthogonal manner, which would benefit preci-
sion medicine development. However, this single-center study was
retrospective, and was subject to the inherent limitations associated
with retrospective analyses. Thus, prospective studies are still needed
to confirm our findings.

In conclusion,wefirst delineated the proteogenomic landscape of
Sunitinib response in Chinese patients with ccRCC.We found that VHL
mutation and the AA signature synergistically improved the clinical
outcomes of sunitinib treatment in Chinese patients with ccRCC.
Multiple results repetitively showed that mTOR signaling was an
intrinsic pathway for sunitinib resistance. Our study further defined
three immune subsets as T-cell infiltrated, cold, and progenitor-cell
infiltrated, and showed that the progenitor-cell infiltrated cluster was
significantly correlatedwith Sunitinib resistance, whichmay be caused
by activation of platelet signaling and secretion of TGFB1. We sum-
marized the features of responders in multi-dimension (Fig. 7g). We
also constructed a model for predicting the sunitinib response and
validated the robustness of the predictive model in an independent
dataset. Overall, ourmulti-level omics analysis identified themolecular
mechanisms underlying the sunitinib response and defined the geno-
mic, proteomic, and immune signatures to stratify patientswith ccRCC
to develop more rational therapeutic interventions.

Methods
Clinical sample collection
The study was compliant with the ethical standards of Helsinki
Declaration II and was approved by the institutional review board of
Fudan University Shanghai Cancer Center (FUSCC) (050432-4-1911D).
Written informed consent was obtained from each patient before any
study-specific investigation was conducted.

This study included 115 patients with advanced ccRCC, who were
treated with TKIs at the Department of Urology of FUSCC from Jan
2008 to Dec 2019. All electronic medical records were screened ret-
rospectively. Among the 115 cases, 47 cases were localized ccRCC at
the time of surgery and were included due to the subsequent devel-
opment of metastatic disease. The median follow-up was 28.4 months
(range, 4.2–127.5 months). At the last follow-up, 102 patients (88.7%)
had progressive disease and 84 patients (73.0%) had died of ccRCC. To
evaluate whether prognostic markers are associated with survival
independently of therapy, we collected another independent cohort
with 37 cases of ccRCC patients, who were not received any treatment
after surgery. These 37 cases had complete follow-up information
(Supplementary Data 4).

Clinicopathological indicators, including clinical manifestations,
laterality, tumor size, chronic disease status, TNM stage (stage at the
time of surgery), and ISUP grade, are summarized in Supplementary
Data 1. All samples were collected during radical nephrectomy and all
patients were treatment-naïve before surgery and received Sunitinib
treatment after surgery. The initial dose of Sunitinib was the same
between patients and adjusted according to side effects and the
intervention was set as 50mg orally taken daily for 4 weeks and off
treatment for 2 weeks until progression or unacceptable toxicity.

Tumor and adjacent non-tumor tissue samples were available
from the FUSCC tissue bank. The specimens were collected according
to the following criteria: (1) tumor-adjacent tissues were collected at a
distance of >2 cm from the tumor margin; (2) each tumor/adjacent
sample was checked by an expert pathologist to confirm sample
quality. We use the matched tumor-adjacent tissue DNA as the back-
ground to call the somatic mutations and copy number alteration;
therefore, the samples with tumor cells in the adjacent tissues were
excluded from this study. Tumor and paired tumor-adjacent tissues
were collected within 30min after resection, immediately transferred
into sterile freezing vials, and snap frozen in liquid nitrogen, cut into
~0.5 cm3 pieces under −40 °C, then split and stored at −80 °C until
being used. H&E-stained sections were reviewed by an experienced
genitourinary pathologist to determine the ISUP grade, and frozen
sections were reviewed to determine the tumor cell rate of the ccRCC
tissues.

DNA extraction and WES. WES was conducted at Life Healthcare
Clinical Laboratory (China). DNA isolated from frozen tumor tissue
samples was used for WES, and matched germline DNA was obtained
from tumor-adjacent tissues. DNAwas isolated from fresh frozen using
DNeasy Blood & Tissue Kit (Qiagen, 69504) according to the manu-
facturer’s instructions. Purified DNA was quantified using a Qubit 3.0
Fluorometer (Life Technologies). For matched tumor and tumor-
adjacent tissues, 100 ngofDNAwas sheared to 200–300-bp fragments
using a Covaris M220 system. Tumor and matched tumor-adjacent
DNA librarieswere constructed usingAccel-NGS2 SHYBDNALIBRARY
KIT (Swift Biosciences, 23096) and Accel-NGS 2 S MID S1-S4 (Swift
Biosciences, 279384). xGen Exome Research Panel v1.0 (IDT, 1056115)
and xGen Lockdown reagents (IDT, 1072281) were used for exome
enrichment. Dynabeads M-270 Streptavidin (Thermo Fisher, 65306)
was used for library purification, P5/P7 primers (Nanodigmbio,
ND10010), and HotStart ReadyMix (KAPA, KK2612) were used for
library amplification. The amplified libraries were purified using
SPRISELECT (Beckman, B23319). DNA quality was assessed using a
Bioanalyzer High Sensitivity DNA Analysis kit (Agilent Technologies,
5067-4626). Samples underwent paired-end sequencing on a Nextseq
CN500 platform (Illumina), with a 150-bp read length. The WES target
region was 39M. Detailed information on the number of reads per
sample, and coverages of exomes are also provided in Supplemen-
tary Data 2.

Somatic variant detection
Read-depth statistics were calculated using the DepthOfCoverage
function in theGenomeAnalysis Toolkit (GATK v3.8.1.0)51. Paired-end
reads in the Fastq format were aligned to a reference human
genome52 (UCSC Genome Browser, hg38) using Burrows–Wheeler
Aligner. Variant calling was conducted following the GATK best
practices. Somatic single-nucleotide variations and small insertions
anddeletionswere detected usingMuTect2 (GATK v4.1.2.0) andwere
annotated using ANNOVAR53 based on UCSC known genes. The two
longest genes, TTN and MUC16, were excluded as they tended to
acquire numerous chance mutations in large-scale genome/exome
sequencing experiments. The Maftools R package54 was used to dis-
play mutant genes with non-synonymous mutations (Supplemen-
tary Fig. 1d).
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Mutational signature
SBSs aredefined as the replacement of a certain nucleotide base. There
are six possible substitutions: C >A, C >G, C > T, T >A, T >C, and T >G.
Considering the nucleotide context, these SBS classes can be further
expanded to 96 possible mutation types. The frequencies of these 96
mutation types were estimated for each sample. The non-negative
matrix factorization algorithm of SigProfiler55 was used to estimate the
minimal components that couldexplain themaximumvarianceamong
samples. De novo mutation signatures were decomposed using COS-
MIC v330. After decomposing a matrix of the 96 substitution classes of
the samples into five signatures, the contribution of each signature in
each sample was estimated.

CNA calling
CNAs were called following the somatic CNA best practice, using the
CalculateTargetCoverage function in GATK (v4.1.2.0). We applied
Genomic Identification of Significant Targets in Cancer (GISTIC2.0)35

to identify significantly amplified or deleted focal-level and arm-level
events, with q < 0.05 considered significant. The following parameters
were used: amplification threshold = 0.1; deletion threshold = 0.1; cap
value = 1.5; broad length cut-off = 0.90; remove X-chromosome=0;
confidence level = 0.95; join segment size = 4; arm-level peel off = 1;
maximum sample segments = 2000; gene GISTIC = 1. Each gene in
each sample was assigned a threshold (0.1) copy number that reflects
themagnitude of its deletion or amplification. (SupplementaryData 2).

RNA extraction and RNA-seq
Total RNA from each tissue sample was isolated using TRIzol Reagent
(Invitrogen). All RNA samples were assayed for RNA purity and integ-
rity. After RNA samples were qualified, the RNA was reverse-transcript
into cDNA and constructed library, and conducted sequencing. The
clustering of the index-coded samples was performed on a cBot
Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS
(Illumina), according to the manufacturer’s instructions. After cluster
generation, the libraries were sequenced on an Illumina HiSeq 4000
platform and 125 bp paired-end reads were generated. After trimming
the adapters and removing low-quality tags, sequencing reads were
mapped onto the hg19. The mapped reads were assembled into tran-
scripts or genes by using StringTie software (v2.1.4)56. For quantifica-
tion purposes, the relative abundance of the transcript or gene was
measured by a normalized metric, FPKM (Fragments Per Kilobase of
transcript per Million mapped reads). Transcripts with median FPKM
>1 were retained (Supplementary Data 3).

Protein extraction and trypsin digestion
Sampleswereminced and lysed in lysis buffer (8M urea, 100mMTris
hydrochloride, pH 8.0) containing protease and phosphatase inhi-
bitors (Thermo Scientific) and then sonicated for 1min (3 s on and 3 s
off, amplitude 25%, SONICS, VCX130). The lysateswere centrifuged at
14,000×g for 10min and supernatants were collected as whole-tissue
extracts. Protein concentrationswere determinedusing the Bradford
protein assay (TaKaRa, T9310A). Extracts (50 μg protein) were
reduced with 10mM dithiothreitol at 56 °C for 30min and alkylated
with 10mM iodoacetamide at room temperature in the dark for
30min. The samples were digested with trypsin using a filter-aided
sample preparationmethod57. Tryptic peptides were separated using
a home-made reverse-phase C18 column. Peptides were eluted,
vacuum-dried (Concentrator Plus, Eppendorf), and analyzed by
liquid chromatography-tandem MS (LC-MS/MS).

Enrichment of phosphopeptides
Phosphopeptides were enriched by High-Select™ Fe-NTA Phospho-
peptide Enrichment Kit (Thermo Fisher, A32992), according to the
manufacturer’s instruction. Briefly, 1mgpeptides were resuspended in
200μL binding/wash buffer and loaded to the equilibrated spin

column with Fe-NTA resin. The samples were mixed with resin by
gently tapping and then incubated for 30min. The mixture was cen-
trifuged at 1000×g for 30 s to discard the flowthrough and then
washed with 200μL of binding/wash buffer three times and washed
with 200μL of LC-MS grade water for one additional time. The enri-
ched phosphopeptides in NTA resin were eluted by adding 100μL of
elution buffer and centrifuged at 1000×g for 30 s for two times and
vacuum-dried.

LC-MS/MS
Samples were analysed on a Q Exactive HF-X mass spectrometer
(Thermo Fisher Scientific, Rockford, IL, USA) coupled with a high-
performance liquid chromatograph (EASY-nLC 1200 System, Thermo
Fisher). Dried peptide sampleswere dissolved in solvent A (0.1% formic
acid in water) and loaded onto a trap column (100μm×2 cm, home-
made; particle size, 3μm; pore size, 120 Å; SunChrom) with a max-
imumpressure of 280 bar using solvent A, andwere then separated on
a home-made 150μm× 12 cm silicamicrocolumn (particle size, 1.9μm;
pore size, 120 Å; SunChrom) with a gradient of 5–35% mobile phase B
(acetonitrile and 0.1% formic acid) at a flow rate of 600 nL/min for
75min. MS analysis was conducted with one full scan (300–1400m/z,
R = 120,000 at 200m/z) at an automatic gain control (AGC) target of
3e6 ions, followed by up to 20 data-dependent MS/MS scans with
higher-energy collision dissociation (target 5e4 ions, max injection
time 20ms, isolation window 1.6m/z, normalized collision energy of
27%). Detection was performed using Orbitrap (Q Exactive HF-X mass
spectrometer, Thermo Fisher Scientific) and data were acquired using
Xcalibur software (Thermo Fischer Scientific).

Proteome identification and quantification
Raw files were processed in Firmiana58 and searched against the
National Centre for Biotechnology Information (NCBI) RefSeq human
protein database (updated on 04-07-2013, 32,015 entries) using the
Mascot 2.4 search engine (Matrix Science Inc).Mass toleranceswere 20
ppm for the precursor and 50mmu for product ions. Up to twomissed
cleavages were allowed. Cysteine carbamidomethylation was set as a
fixed modification, with methionine N-acetylation and oxidation as
variable modifications. For phosphoproteomic samples, phosphoryla-
tion at Ser/Thr/Tyr was set as an additional variable modification.
Precursor ion score charges were limited to +2, +3, and +4. The data
were also searched against a decoy database so that peptide and pro-
tein identifications were accepted at an FDR of 1%. Label-free protein
quantifications were calculated using the intensity-based absolute
quantification (iBAQ) approach59.Matching between runs60was used to
improve the parallelism between tumor/adjacent samples. Specifically,
we built a dynamic regression function based on those commonly
identified peptides in grouping experiments. According to correlation
value R2, Firmiana will choose a linear or quadratic function for
regression to calculate the RT of corresponding hidden peptides, and
check the existence of the extracting ion current (XIC) based on them/
z and calculated RT. Finally, the program could evaluate the peak area
values of those existed XICs. These peak area values should be con-
sidered as parts of corresponding proteins. The scripts were uploaded
to GitHub: https://github.com/FirmianaPlatform/SourceCode/blob/
master/Firmiana%20Frontend/gardener/views.py (line 3948- line
4588). The same MBR strategy was also implemented in the published
study61,62.

The FOT was used to represent the normalized abundance of
proteins across samples. FOT was defined as a protein’s iBAQ divided
by the total iBAQ of all proteins identified in each sample. FOT values
weremultipliedby 105 for easeof presentationandmissing valueswere
assigned n.a (Supplementary Data 4). The abundances of phosphosites
were appliedwith themedian centroid correction to adjust for sample-
specific biases. Phosphosites with amissing value of less than 25%were
selected, and missing values were then imputed with the K-nearest
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neighbor (KNN) algorithm using the R package DreamAI63 (Supple-
mentary Data 4).

Protein and pathway alterations in responders vs. non-
responders
In total, 7451 proteins identified in >25% of tumor samples were used
for subsequent analysis. Volcano plots were used to display DEPs in
responders and non-responders by applying the thresholds of fold
change >1.5 and p <0.05. Among the DEPs, 97 proteins were sig-
nificantly upregulated and 105 proteins were significantly down-
regulated in the responders. The DEPs were then subjected to
overrepresentation analysis in ConsensusPathDB (http://cpdb.molgen.
mpg.de/)64.

GSEA
GSEA was conducted using the GSEA 4.0.3 software (http://software.
broadinstitute.org/gsea/index.jsp)65. KEGG, Reactome, and HALL-
MARK gene sets downloaded from the MSigDB v7.1 were set as the
background. P value <0.05 was used as the cut-off.

Immune, stromal, and pathway scores
Immune and stromal scores were inferred using the R package, ESTI-
MATE v1.0.1142. Although the ESTIMATE algorithm was designed to
analyze transcriptome data, some studies have used it for proteome
analysis4,66. These results indicate the feasibility of evaluating the
engagement of each subtype of immune cells. Pathway gene sets were
obtained from MSigDB (MSigDB v7.1, http://software.broadinstitute.
org/gsea/msigdb/index.jsp) and pathway scores were computed using
single-sample GSEA (ssGSEA)67.

Associations between clinical characteristics and the ccRCC
proteome
The specific clinical information is presented in Supplementary Data 1.
Only variables associatedwith prognosis were included in the analysis.
Categorical variables, including MSKCC risk and IMDC risk, were ana-
lyzed using GSEA. Spearman’s correlation was conducted on con-
tinuous variables, including tumor size, PLT level, and LDH level.
Proteins significantly (p value <0.05) associated with these clinical
characteristics were subjected to overrepresentation analysis using
ConsensusPathDB (http://cpdb.molgen.mpg.de/)64. The clinical
characteristic-associated pathways are listed in Supplementary Data 5.

Effects of CNAs
Spearman’s correlations between CNA values (gene level and arm
level) and protein abundances were calculated using 12,310 genes
quantified at both CNA and proteome levels. CNAs with a significant
correlation with proteins were selected based on p values <0.05.
Correlations were visualized using the R package multiOmicsViz.
Genomic alterations that affect gene expression at the same locus are
said to act in cis (vertical patterns in Supplementary Fig. 6d), whereas
the impact of other locus was defined as a trans effect (diagonal pat-
terns in Supplementary Fig. 6d).

Survival analysis
The Kaplan–Meier method was used for survival analysis, and groups
were compared using the log-rank test. Progression-free survival was
analysed first, followed by overall survival. The R survival package 3.2-
368 and Survminer 0.4.8were used for statistical tests and visualization.
The hazard ratio was calculated by Cox proportional hazards regres-
sion analysis.

Immune subtype identification
To evaluate the impact of the tumor immune microenvironment on
TKI therapy, the abundanceof 64different cell typeswas computed via
xCell, based on the tumor proteomic profiles (Supplementary Data 6).

Consensus clustering was performed using the R package Consensu-
sClusterPlus based on the z-score normalized Raw enrichment scores
of tumor samples. Specifically, 80% of the original ccRCC tumor
samples were randomly subsampled without replacement and were
partitioned into 3 major clusters using the Partitioning Around
Medoids (PAM) algorithm, which was repeated 2000 times.

Prediction of TFs
We obtained TFs that can bind to target gene promoter regions by
JASPAR (http://jaspar.genereg.net) database and ChEA332 database.

Cell culture
HumanACHN (ATCC, CRL-1611; RRID: CVCL_1067) cell were cultured in
high-glucose Dulbecco’s modified Eagle’s medium (DMEM; HyClone)
supplemented with 10% fetal bovine serum (FBS; Invitrogen), 100
units/mL penicillin (Invitrogen), and 100μg/mL streptomycin (Invi-
trogen). 769-P (ATCC, CRL-1933; RRID: CVCL_1050) and 786-O cells
(ATCC, CRL-1932; RRID: CVCL_1051) were maintained in RPMI 1640
medium (Invitrogen) containing 10% FBS. Cells were incubated in 5%
CO2 at 37 °C. Cells were transfected using Lipofectamine 2000
(Invitrogen).

AA concentration used in vitro assay
To determine the optimal concentration of AA in vitro experiments,
based on the product manual, a gradient of AA (including 0, 5, 25, and
100μM) in the in vitro experimentswas performedwith renal cell lines.
When the concentration of AA was set as 100μM, we observed the
dramatic inhibition effect of the protein expression. Once the con-
centration exceeds 100μM, it will adversely impact the cell state.
Hence, the concentration of AA in our experiment was set as 100μM
and this AA concentration is consistentwith the previous study69 about
the AA on renal epithelial cells.

Sunitinib concentration used in vitro assay
According to the in vitro cell assay experimental concentration
recommended by the product manual (1–500nM), the doses of suni-
tinib we used in treating cells were 200 nM. Specifically, to determine
the optimal concentration of sunitinib in the in vitro experiments,
basedon the productmanual andprevious studies, wedid the gradient
experiments (including 0, 100, 200, and 300nM). When the con-
centration of sunitinib was set to 300nM, it can cause great damage to
the cells. Finally, the concentration of Sunitinib in our experiment was
set as 200nM, which was consistent with the previous studies70.

Plasmid transfection
The overexpression plasmid of SP1 was purchased from GeneChem,
and overexpression plasmids of LAMTOR4, CALU, MDH2, TBL2, and
POR were purchased from Tsingke Biotechnology. For transient
transfection, 1μg of eachplasmidwas transfected using Lipofectamine
2000 (Invitrogen) according to the manufacturer’s instructions.

RNA interference
Synthetic oligos were used for siRNA-mediated silencing of SP1 (5′-
CCAGGUGCAAACCAACAGAUU-3′), YY1 (5′- CGAUGGUUGUAAUAAGA
AGUU −3′), SMAD4 (5′- UACCAUACAGAGAACAUUGGA −3′), SREBF2
(5′- CCUGAGUUUCUCUCUCCUGAA −3′), VHL (5′- GCUCUACGAAGAU
CUGGAATT −3′; 5′- GGCUCAACUUCGACGGCGA −3′; 5′- CUGCCAGUG
UAUACUCUGA −3′), and scramble siRNA was used as a control. Cells
were transfected with siRNAs using Lipofectamine 2000 according to
the manufacturer’s protocol. Knockdown efficiency was verified by
qRT-PCR or western blotting.

Transwell assay
Before the experiment, the matrigel matrix (BD, #356234) was melted
overnight at 4 °C. The pipette tips were precooled on ice for 30min,
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and the matrigel matrix was diluted to a working concentration of
300μg/mL with precooled serum-free medium. The diluted matrigel
matrix was added into transwell chambers (Corning, #3422) and
incubated in an incubator at 37 °C for 1 h. The pretreated cells were
digestedwith trypsin, resuspendedwith serum-freemedium, counted,
and concentrated to 2.5 × 105 cells/mL. Take out the transwell chamber
where the basementmembranehasbeen formed, suckout the residual
liquid in the chamber, add medium containing 20% FBS to the lower
chamber of the chamber, and add cell suspension with different pre-
treatment to the upper transwell chamber. Then it was incubated in a
cell incubator at 37 °C and 5% CO2 for 24 h. Take out the chamber and
wash it three times with PBS. Each chamber was fixed with 100%
methanol at room temperature for 30min and then stained with 0.1%
crystal violet (Solarbio, #G1063) at room temperature for 20min. Rub
gently with a cotton ball to remove non-invasive cells from the upper
compartment. Cells were observed in random five fields under a
microscope, counted, and analyzed.

Cell proliferation assay
Cell proliferation was assessed using the Cell Counting Kit-8 (Dojindo
Laboratories). In brief, cells were seeded in a 96-well plate at 4 × 103

cells/well and allowed to adhere. Cell Counting Kit-8 solution (10μL)
was added to eachwell, and the cells were incubated in 5%CO2 at 37 °C
for 2 h. Cell proliferation was determined by measuring the absor-
bance at 450nm.

Western blot analysis
Cultured cells were lysed with 0.5% NP-40 buffer containing 50mM
Tris-HCl (pH 7.5), 150mM NaCl, 0.5% Nonidet P-40, and a mixture of
protease inhibitors (Sigma-Aldrich). After centrifugation at 13,80×g
and 4 °C for 15min, supernatants were collected for western blotting
according to standardprocedures. Antibodies againstG6PD (#25413-1-
AP, 1:1000), PGD (#14718-1-AP, 1:1000) were purchased from Pro-
teintech. Antibodies against TKT (#PA5-56165, 1:1000), LAMTOR4
(#PA5-54301, 1:1000) were purchased from Invitrogen. Antibodies
against MDH2 (#A13516, 1:1000), CALU (#A6538, 1:1000) were pur-
chased from Abclonal. Antibodies against S6K (#5707, 1:1000) and
pS6K (#9209, 1:1000)werepurchased fromCell Signaling Technology.
Antibody against VHL was purchased from Abcam (#ab270968,
1:5000). Antibody against Actin was purchased from Genscript
(#A00702, 1: 800). Chemiluminescence was measured on a Typhoon
FLA 9500 instrument (GE Healthcare). Uncropped and unprocessed
scans of all the blots in this paperwereprovided in the SourceDatafile.

IHC
We randomly collected three non-responders and three responder
samples for pS6K IHC validation additionally. Sections of ccRCC and
adjacent tissues were obtained from formalin-fixed, paraffin-embedded
tissue blocks (not enrolled in the proteogenomic cohort). Immunos-
taining was carried out as reported previously71,72. Immunohistochem-
istry staining was performed using the avidin-biotin-peroxidase
technique. The 4-μm-thick sections from representative FFPE blocks
were deparaffinized in a series of xylene and rehydrated in a graded
series of ethanol solutions. Endogenous peroxidasewas quenched in 3%
hydrogen peroxide in absolute methanol for 15minutes at 37 °C Heat-
induced antigen retrieval was carried out in 10mM citrate buffer solu-
tion (pH 6.0) and then incubated with the primary antibody at 4 °C
overnight. The following primary antibodies was assayed: rabbit anti-
phospho-p70 S6 Kinase monoclonal antibody (Abclonal, #AP0502,
1:100). Immunostainingwasperformedwith the EnVision system (Dako,
Cytomation, Glostrup, Denmark). All slides were counterstained with
hematoxylin, dehydrated, and mounted. Immunostaining was quanti-
fied based on the number of immunoreactive cells (quantity score) and
the staining intensity (intensity score), as reported71,72.

Lactate measurement
Cultured cells were collected and washed with PBS. Add homo-
genization medium to the cells according to the ratio of 500μL/106

cells, andmechanically homogenize the cells to fully break. Centrifuge
at 4 °C, 1000×g for 10min, and collect the supernatant. The lactate
concentration in the supernatant was determined utilizing the L-lactic
acid/lactate (LA) Colorimetric Assay Kit (Elabscience, #E-BC-K044-S),
according to the manufacturer’s instructions.

eGFR measurement
CKD-EPI equation73 was used to estimate the eGFR and the equation is
listed as below: eGFR = 141 ×min(Cr/κ,1)α × (max(Cr/κ,1)−1.209) ×
(0.993Age) × 1.018 [if female] × 1.159 [if black]. Cr is serum creatinine in
mg/dL, κ is 0.7 for females and 0.9 for males, α is −0.329 for females
and −0.411 formales, min indicates theminimumof Cr/κ or 1, andmax
indicates the maximum of Cr/κ or 1.

Karnofsky performance score (KPS)
Karnofsky performance score (KPS) is a clinical assessment tool used
to assess the overall health of patients. KPS assesses an individual’s
overall functional status on an 11-point scale, in increments of 10,
where a scoreof0 for death and 100 for normal function, higher scores
signified better functional status74. KPS of patients in this cohort range
from 70 to 100. A score of 70 shows patients who, despite the inability
to normal activity, can take care of themselves; a score of 80 shows
patients who are able to carry on normal activity with effort, and have
some signs or symptoms of disease; a score of 90 shows patients who
are able to carry on normal activity and haveminor signs or symptoms;
the score 100 shows patients who are no complaints and no evidence
of disease.

Classifier construction
The machine learning framework was built on Python (version 3.9.0)
using the following libraries: scikit-learn (version 1.2.1), numpy (version
1.16.4), scipy (version 1.3), and pandas (version 1.5.2).

Feature selection
For the feature selection of the predictive model, we applied the fol-
lowing pipeline: the first step removed all features with a mutual
Pearson correlation above 0.8, retaining only the one with the highest
correlation with the response variable. The second step used the chi-
square test and F test, which is embedded in SelectKBest function of
scikit-learn library to select the best proteome features. The third step
applied z-score scaling to the remaining features.

Model construction
Considering the model’s complexity and interpretability, we chose
the random forest model to construct the predictive model.
We split the dataset into the train cohort (70%) and test cohort
(30%). Hyperparameters were optimized using fivefold cross-
validation in the training set to maximize the area under the recei-
ver operating characteristic (AUC ROC) curve. As for the proteome-
based model, after applying the model construction pipeline, the
Random forest model was implemented with class_weight was
balanced, max_features was 1, min_samples_leaf was 14, min_sam-
ples_split was 14, n_estimators was 150. As for themulti-omics-based
random forest model class_weight was balanced, max_features
was 2, min_samples_leaf was 8, min_samples_split was 5, and n_esti-
mators was 90.

Model performance evaluation
The model performance was evaluated by the different evaluation
scores, including precision, recall, ROC-AUC, F1 score, and balanced
accuracy for the classification.
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Statistical analysis
Quantification methods and statistical analysis methods for pro-
teomic and integrated analyses were mainly described and refer-
enced in the respective Method Details subsections. Additionally,
standard statistical tests were used to analyze the clinical data,
including but not limited to the Wilcoxon rank-sum test, Fisher’s
exact test, Kruskal–Wallis test, and log-rank test. Statistical sig-
nificance was considered when p value <0.05. Kaplan–Meier plots
(log-rank test) were used to describe survival. Variables associated
with overall survival were identified using univariate Cox propor-
tional hazards regression models. Significant factors in univariate
analysis were further subjected to a multivariate Cox regression
analysis. All the analyses of clinical data were performed in R, Python,
and GraphPad Prism.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The proteome and phosphoproteome raw datasets have been depos-
ited to the ProteomeXchange Consortium (dataset identifier:
PXD042844) via the iProXpartner repository (https://www.iprox.cn/)75

under Project ID: IPX0002932000. The raw WES and RNA data are
available in the Genome Sequence Archive (GSA) under restricted
access HRA003490. The raw sequencing data are available under
controlled access due to data privacy laws related to patient consent
for data sharing and the data should be used for research purposes
only. According to the guidelines of GSA-human, all non-profit
researchers are allowed access to the data, and the Principal Investi-
gator of any research group can apply for Controlled-access of the
data. The user can register and log in to the GSA database website
(https://ngdc.cncb.ac.cn/gsa-human/) and follow the guidance of
“Request Data” to request the data step by step. The approximate
response time for accession requests is about 2 weeks. The access
authority can be obtained for Research Use Only. The user can also
contact the corresponding author directly. Once access has been
granted, the data will be available to download for 3 months. The
remaining data are available within the Article, Supplementary Infor-
mation, or Source Data file. Source data are provided with this paper.

Code availability
No special code was used in this study, and code for all figures in the
study are available for research purposes from the corresponding
authors on request.
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