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Sulfate triple-oxygen-isotope evidence
confirming oceanic oxygenation 570 million
years ago

Haiyang Wang 1,2,3, Yongbo Peng 1,4 , Chao Li 2,3,5 , Xiaobin Cao1,4,
Meng Cheng2,3,5 & Huiming Bao 1,4

The largest negative inorganic carbon isotope excursion in Earth’s history,
namely the Ediacaran Shuram Excursion (SE), closely followed by early animal
radiation, has been widely interpreted as a consequence of oceanic oxidation.
However, the primary nature of the signature, source of oxidants, and tempo
of the event remain contested. Here, we show that carbonate-associated sul-
fate (CAS) from three different paleocontinents all have conspicuous negative
17O anomalies (Δ′17OCAS values down to −0.53‰) during the SE. Furthermore,
the Δ′17OCAS varies in correlation with its corresponding δ34SCAS and δ18OCAS as
well as the carbonate δ13Ccarb, decreasing initially followed by a recovery over
the ~7-Myr SE duration. In a box-model examination, we argue for a period of
sustained water-column ventilation and consequently enhanced sulfur oxida-
tion in the SE ocean. Our findings reveal a direct involvement of mass-
anomalously 17O-depleted atmospheric O2 in marine sulfate formation and
thus a primary global oceanic oxygenation event during the SE.

The Ediacaran Period (635-539Ma) witnessed the largest negative
carbonate carbon isotope (δ13Ccarb) excursion in Earth’s history, known
as the Shuram Excursion (SE, or Wonoka/DOUNCE/EN3) between
574.0 ± 4.7 and 567.3 ± 3.0Ma1–4. Typically, the SE is characterized by a
dramatic drop in the δ13Ccarb from as high as +5‰ to as low as −12‰
globally. The difficulty in explaining the large shift in the global carbon
cycle and the often-positive correlation between δ13Ccarb and δ18Ocarb

have led some researchers to argue that the SE is a product of later
diagenesis (e.g., meteoric alteration5,6 or burial diagenesis7). But diag-
enesis is inherently a local process and seems inconsistent with the
global occurrence of the SE1,3,4. Supportive evidence for the primary
nature of the SE comes frompetrography8, organic geochemistry9, and
high-spatial-resolution isotope analysis10,11. Consequently, the SE is
interpreted as a result of enhanced oxidation of 13C-depleted organic
carbon reservoirs, such as the dissolved organic carbon (DOC) in

seawater12–14, fossil organic matter exposed on land15, hydrocarbon-
rich fluids from the subsurface9, and/or methane emitted from the
sediments16. The onset of the SE is closely followed by the first
appearance of large, unambiguous metazoan fossils17. Thus, con-
straining the origin of the SE can help elucidate the interaction
between Earth system oxygenation and the radiation of early animals.

A sustained oxidation of organics over ~7 million years (Myrs)2,18

during the SE requires a consistent supply of oxidant, if it is indeed an
oceanic oxygenation event.Multiple lines of evidence, including S-U-Tl
isotope compositions of carbonate or shale13–15,19–21 and iron speciation
in shale22, have supported an increased oceanic ventilation, i.e., rising
marine concentrations of dissolved O2 and/or sulfate during the SE,
although a numerical model has argued that seawater oxidants would
not be sufficient in driving a global carbon perturbation formillions of
years23. The dissolution of older continental evaporite may provide
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additional oxidant24, and/or the oxidation of DOC could be spatially
heterogeneous due to local oxygenic photosynthesis25. Nevertheless,
the oxidants available for organic matter remineralization during the
SE are, (1) dissolved O2 in the ocean supplied from atmosphere and/or
local photosynthesis, (2) newly formed sulfate from sulfide/sulfur
oxidation on the continents and/or in ocean basins, and/or (3)
weathered sulfate from the dissolution of older evaporite deposits on
the continents. Regardless of whether O2 played a direct or indirect
role in oxidizing organics, the role of sulfate as an oxidant of organics
could be significantly enhanced due to a rising O2 concentration. This
may occur through enhanced oxidative weathering of sulfide minerals
on the continents26,27 or ventilation of deeper sulfidic seawater.
Therefore, the origin of the sulfate is key for understanding the nature
of the SE as an oceanic oxygenation event.

Sulfur and triple oxygen isotope compositions (i.e., δ34S,

δ18O, and δ17O), especially 17O anomalies [i.e.,Δ017O � ðln δ17O+ 1000
1000 �

0:5305× ln δ18O+ 1000
1000 Þ× 1000m], provide a powerful tool to disen-

tangle the origin of sulfate28. If atmospheric O2 was indeed the main
oxidant responsible for the SE, an increase in sulfate concentration
during the SE would occur through enhanced sulfide/sulfur oxida-
tion as a result of a deep-water invasion of atmospheric O2 or an
expansion of ventilated ocean volume. Importantly, the increased
sulfate would be accompanied by a negative shift in the sulfate Δ′17O
value of the ocean because newly-formed sulfate would inherit the
atmospheric O2 signature that bears a unique mass-independent 17O
depletion28–35. We note that such a negative shift in sulfateΔ′17O value
is unlikely to be generated by diagenesis, as no diagenetic process
has been found to be capable of bringing more atmospheric O2 into
the sediments or rocks. In contrast, if the dominant oxidant is eva-
porite sulfate dissolved from the continents24, it would be highly
unlikely to detect distinctly negative Δ′17O values for sulfate extrac-
ted from the SE carbonates because most of the pre-Ediacaran eva-
porites do not exhibit large 17O depletion31,32. Sulfate generated from
sulfide/sulfur oxidation by photosynthetic O2 in the water column at
local photic zones would also not have significantly negative 17O
anomalies36. Moreover, further insights into the trigger and dynamics
of the SE oxygenation event can be obtained when the temporal
trends and spatial heterogeneity of sulfate’s sulfur and triple oxygen
isotope compositions are combined with associated carbon isotope
trends.

To test the hypotheses above, we selected SE-containing units
from three paleogeographically different continents1,3: the Doush-
antuo Formation of South China, the Wonoka Formation of South
Australia, and the Shuiquan Formation of Tarim, all of which have well-
constrained carbon isotope records (Fig. 1; Supplementary Discus-
sion), and we extracted carbonate-associated sulfate (CAS) and ana-
lyzed the NaCl-leached and the HCl-leached fractions for their
respective δ34S, δ18O, and Δ′17O values (see Methods).

Results and discussion
Sulfur and triple oxygen isotope data
The Δ′17O values of the HCl-leached CAS range from −0.53 to −0.14‰,
−0.51 to−0.07‰, and −0.35 to +0.06‰ in SouthChina, SouthAustralia,
and Tarim, respectively (see Supplementary Data 1). The Δ′17O nadirs
are distinctly lower than −0.07 ±0.09 ‰ (1σ), the average value for
modern and Phanerozoic sulfate minerals (also see compiled data in
refs. 31,37). Moreover, the Δ′17O records in all three paleocontinents
examined display a remarkably similar stratigraphic trend, with an
initial decrease followed by a recovery over the SE intervals (Fig. 1).
This trend is also observed for their corresponding δ34S, δ18O, and
δ13Ccarb records. The δ34S values of the HCl-leached CAS range from
16.3 to 42.0‰, 15.2 to 29.1‰, and 10.2 to 18.4‰ and their corre-
sponding δ18O values from 8.0 to 23.1‰, 8.8 to 15.3‰, and 10.4 to
15.0‰ in South China, South Australia, and Tarim, respectively.

Sulfate 17O anomaly in geological records for tracking paleoat-
mospheric O2

The 17O anomaly signals found in geological sulfate minerals are a
powerful tool to investigate biogeochemical cycles of carbon, sulfur
and oxygen over Earth’s history, especially with regard to processes
related directly to atmospheric O2

28–33. Atmospheric O2 is the only
known source compound that bears a negative Δ′17O value, which
originates from mass-independent fractionation during photo-
chemical reactions involving O2, O3, and CO2 in the stratosphere34,35.
The Δ′17O value of atmospheric O2 is primarily determined by pO2/
pCO2 ratios and the rates of gross primary production34,38. Lower pO2/
pCO2 ratios or lower gross primary production would lead to more
17O-depleted atmospheric O2

38. The 17O anomaly in atmospheric O2

could be passed onto newly formed sulfate through sulfide/sulfur
oxidation, as demonstrated by laboratory experiments in which
approximately 8 to 30% of the oxygen atoms in the produced sulfate
originated fromO2

39,40. However, the 17O anomaly formed in the sulfate
canpotentially be erased by sulfur redoxprocesses, as these processes
enable sulfate to exchange oxygen atoms with the surrounding water
through a backward exchange between sulfite and sulfate41 and/or via
anaerobic oxidation of H2S/S

0 by nitrate or Fe(III) in water or
sediments42. Nevertheless, the preserved 17O anomaly signals in geo-
logical sulfate minerals establish a direct association between the
isotopic compositionof sedimentary sulfate andpaleoatmosphericO2.
Significantly negative Δ′17O values in geological sulfate provide strong
evidence for the partial incorporation of paleoatmospheric O2 into
sulfate, usually through sulfide/sulfur oxidation28–33.

Evaluating the extracted CAS
Extracted CAS from carbonate outcrops could be contaminated by
present-dayatmospheric sulfate43 and/or newly generated sulfate from
pyrite oxidation during outcrop weathering or laboratory
experiments44,45. Prior to the HCl-solution extraction, repeated NaCl-
solution leaching can effectively remove most, if not all, of the syn-
sedimentary evaporites (if present), sulfate generated by post-
depositional processes (e.g., diagenesis, laboratory treatment), and
modern atmospheric deposition. Often, sulfate produced via the oxi-
dation of sulfide minerals has lower δ34S and δ18O values than the
original seawater sulfate45,46.

To evaluate the degree of contamination of the non-original
sulfate in the HCl-leached sulfate, we compared the sulfur and oxy-
gen isotope compositions of the NaCl-leached and the HCl-leached
sulfate. The Δ′17O values of the HCl-leached sulfate are more negative
(i.e., more distinct) than those of the corresponding NaCl-leached
sulfate, while both the δ34S and δ18O values of the HCl-leached sulfate
are generally higher than those of the NaCl-leached ones (Fig. 2,
Supplementary Figs. 1, 2). This pattern holds true for samples from all
three paleocontinents. Meanwhile, the stratigraphic trends of these
S- and O-isotopes are drastically different between the HCl-leached
and the NaCl-leached sulfate (Supplementary Fig. 2). These obser-
vations indicate that the NaCl-leached fraction contains a significant
amount of sulfate originating from post-depositional oxidation of
sulfide minerals due to their low δ34S and low δ18O values, and/or of
present-day atmospheric sulfate due to the positive Δ′17O values (up
to +0.51‰)35,47,48. In contrast, the presence of non-original sulfate in
the HCl-leached CAS is minimal. It is notable that the Tarim CAS may
still have small fractions of the present-day atmospheric sulfate, as
indicated by their slightly positive Δ′17O values (up to +0.06‰). Thus,
the Δ′17O values of the original sulfate during the SE in Tarim should
be more negative than the data shown here. Nevertheless, the mag-
nitudes of the Δ′17O negative shift of −0.39‰, −0.44‰, and −0.41‰ in
the HCl-leached CAS during the SE in South China, South Australia,
and Tarim, respectively, are almost identical, strongly favoring the
observed sulfate Δ′17O negative shifts being a credible primary and
global signature (Fig. 1).
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Depending on the formation condition, the original sulfate
residing asHCl-leachedCAS can be entirely of seawater sulfate origin if
the carbonate rocks were precipitated from seawater and had a neg-
ligible contribution from carbonate cements formed during early
diagenesis. The SE carbonates were most likely precipitated in the
water column or at the sediment–water interface, as independently
supported by their calcium and magnesium isotope composition49,50.
Furthermore, the SE is recorded in a variety of depositional facies,
ranging from shallow water peritidal to open deep slope settings1,3.
Therefore, the HCl-leached CAS we measured primarily reflects sea-
water sulfate of the SE if later diagenetic alteration is excluded (see
discussion followed).

Evaluation of diagenetic alteration
In addition to the near-identical sulfate Δ′17O negative shift in the three
separate paleocontinents, our data display tight stratigraphic co-
variations of their C–S–O isotope composition (Fig. 1), supporting an
original, coupled perturbation to marine carbon and sulfur cycling
during the SE. Indeed, no diagenetic processes have been found to

yield significantly negative Δ′17O values in sulfate, a signal unique to
sulfate that carries atmospheric O2 signature of geological times28–32.

Hypothetically, O2-richmeteoric water circulating through pyrite-
rich carbonates may oxidize the pyrite to form sulfate with potentially
negative Δ′17O values if the O2 had a negative Δ′17O value. Such a sce-
nario would result in the redistribution of sulfate in these carbonates
and a homogenized CASmulti-isotope range in the stratigraphic level,
which is not observed. In fact, a consistent C–S–O isotope variation is
observed within tens of meters of carbonate formations and across
three separate paleocontinents (Fig. 1). In addition, if the CAS origi-
nated from pyrite oxidation, the δ34S value of the CAS would be close
to that of co-existing pyrite in carbonates, and its δ18O value would be
much lower, often close to that of the solution water51. However, nei-
ther scenario is observed13,14,20,52. For example, the average δ34S value of
the HCl-leached CAS from South China is ~22.8‰, substantially higher
than themean value of −7.4‰ in the co-existing pyrite20. Theδ18O value
of themeteoric water ismost likely lower than0‰53, but themeasured
CAS exhibits significantly higher δ18O values, averaging 12.2–12.4‰
(Fig. 2, Supplementary Table 1).
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Some researchers argue in favor of a diagenetic origin of the SE,
primarily based on the co-variation between δ13Ccarb and δ18Ocarb in
carbonates5,7, which is commonly observed in typical SE sections
(although not universally1,3). While late meteoric diagenesis can gen-
erate a positive correlation between δ13Ccarb and δ18Ocarb, the existence
of this correlation does not necessarily confirm meteoric diagenesis.
The δ18Ocarb is sensitive to changes in ambient temperature, the δ18O of
solution water, or late diagenesis4,11. Often, the δ18Ocarb is more sus-
ceptible to resetting than the correspondingδ13Ccarb due to the greater
abundance of external oxygen compared to carbon during later fluid-
rock interactions3. Therefore, theδ13Ccarb could beof primary origin, as
supported by our data, even if the δ18Ocarb is influenced by diagenesis.
Furthermore, recent studies, based on in-situ carbon isotope
analysis10,11, Ca and Mg isotopes and carbonate-associated phosphate
concentrations over different SE sections49,50,54, and other geochemical
and stratigraphicobservations1,8,9, have argued againstmeteoricor late
burial diagenesis as the cause of the SE. Our results cannot rule out the
possibility of a diagenetic origin for the δ18Ocarb in the SE carbonates,

thus the discussion will primarily focus on sulfate multi-isotopes and
their relationships with the δ13Ccarb values.

Marine sulfate evolution
The spatial heterogeneity of sulfur and oxygen isotope compositions
of the pre- and post-SE sulfate supports a scenario of low and fluctu-
atingmarine sulfate concentration. The δ34S and δ18O values of the pre-
SE HCl-leached CAS from different paleocontinents vary widely, with
average values ranging from 12.3 to 38.8‰ and from 14.2 to 19.3‰ (the
South Australia section lacks a pre-SE record), respectively, whereas
those during the SE cluster around 13.8–22.8‰ and 12.2–12.4‰,
respectively (Fig. 2; Supplementary Table 1). These patterns are con-
sistent with a lowmarine sulfate concentration preceding the SE when
the sulfur and oxygen isotope compositions were susceptible to local
perturbations, while during the SE an enhanced sulfate flux was sup-
plied to continental shelves. The added sulfate appears to have the
same origin worldwide and was overwhelming in quantity because its
sulfur and oxygen isotope compositions are converging to the same
set of values across three different continental shelves (Fig. 2).

What then, is the source of the enhanced sulfate flux? Our CAS
data from three examined paleocontinents all show distinctly negative
Δ′17O values and similar δ34S and δ18O values during the SE. This
observation argues against evaporite dissolution being the main
source of the added sulfate input, as contribution from evaporite
dissolution should be local and it is unlikely that evaporites with the
same multi-isotope composition would exist on different continents.
The cross-plots of Δ′17O and δ18O show that the pre-Ediacaran eva-
porites do not fall on the mixing lines and are therefore unlikely a
component of the SE sulfate (see Supplementary Fig. 3). In addition,
pre-Ediacaran evaporites are found in small scales, with the current
volumeof ~4.7 × 105 km3 in total55. If being all gypsum and all dissolved,
they could only supply ~0.6Myr of the sulfate flux (i.e.,
~1 × 1013 mol yr−1) needed in Shields et al’s model estimate24. Even
considering dissolution of pre-Ediacaran evaporites after deposition,
these numbers require an unreasonably large volume of evaporites
exposed during pre-Ediacaran time, and no evidence for massive pre-
Ediacaran evaporite dissolution was found.

Instead, theremust be an enhanced influx of sulfate derived from
sulfide/sulfur oxidation via atmospheric O2 during the SE. However,
the sulfate source could come from either pyrite weathering on the
continents15,25 or oxidation of sulfur compounds (e.g., H2S and S0) in
the deeper ocean. While the latter is less known, H2S and S0 can be
oxidized directly by O2

56,57, and this process may occur in natural
environments where both H2S and O2 are present58–60. The two cases
depict different scenarios of the SE oxygenation event. The former
may suggest that the threshold of atmospheric pO2 (i.e., ~0.4% of the
present-day27) for the sensitivity of oxidative pyriteweathering had not
been reached in the Ediacaran, or therewas an increase in the exposed
surface area of sulfide-rich sediments on the continents during the SE15.
The latter requires the ventilation of a deeper, sulfide-rich marine
water body and ocean itself being a source of sulfate via sulfur oxi-
dation. To determine the plausibility of each hypothesis, we resort to
quantitative modeling.

Marine S-cycle modeling and the origin of the 17O-depleted
sulfate
The continued stratigraphic sulfate S–O isotope records, along with
the duration constrained by high-quality geochronological ages2,18,
provide an unparalleled opportunity to place quantitative constraints
on sulfur geochemical dynamics. Here we used a non-steady-state box
model of global sulfur cycle to estimate the source and flux of the
enhanced sulfate during the SE (see Supplementary Discussion for a
full description of the model and Table 2 for all parameters used).
Whereas such a model has been well developed for exploring sulfur
cycling in ancient oceans61,62, this is the first time that the Δ′17O
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parameter has been incorporated into the model, which constrains
processes such as H2S/S

0 oxidation specifically.
Assuming that all of the increased sulfate was sourced frompyrite

weathering on the continents, we adopted initial steady states (see
Supplementary Table 3) established based on the pre-SE’s data of
South China (δ34S ~ 40‰, δ18O ~ 20‰, and Δ′17O ~ −0.17‰) to drive
changes and fit the observed temporal isotope trends. We selected
SouthChinadata asa typical case formodelingbecauseof its complete
and continuous stratigraphic records, as well as its likely limited con-
tamination to its S- andO-isotope compositionswhen compared to the
other two sections. Our modeling results show that a rise in pyrite
weathering flux (Fwp) alone cannot simultaneously reproduce the
observed shifts in sulfur and oxygen isotope compositions
(δ34S ~ 20‰, δ18O ~ 12‰, and Δ′17O ~ −0.5‰) during the SE (Supple-
mentary Fig. 4a). The magnitude of the δ34S shift is much larger than
that of the δ18O, which is likely due to (1) a buffering effect from the
intense oxygen isotope exchange between intermediate sulfur species
and the ambient H2O during microbial sulfate reduction (MSR) in
seawater41,42, and (2) the significantly greater difference in δ34S ( − 17‰

vs. 40‰) than that of the δ18O (0‰ vs. 20‰) between the pyrite-
derived and the pre-existing sulfate.

If we were to reproduce the full δ18O shift using only pyrite
weathering, it would require an unrealistic increase of two orders of
magnitude in its flux, as well as an additional condition that the δ34S of
the pyrite-derived sulfate needs to be around 18‰ (Supplementary
Fig. 4b), which is unreasonably higher than the sulfate δ34S (close to
4.8‰63) inmodernglobal riverine systems. Furthermore, if this process
were to last for ~7 Myrs, it would result in an unrealistic increase of
more than two orders of magnitude in marine sulfate concentration
(reaching up to ~300mM; Supplementary Fig. 4b), which is much
higher than themodern value of 28mM42. Therefore, we conclude that
a flux increase in the 17O-anomalous riverine sulfate alone cannot rea-
sonably explain the temporal sulfate isotope trends during the SE.

Alternatively, an increased oxidation of reduced sulfur species in
seawater linked to water-column ventilation may play a vital role in
controlling the observed temporal multi-isotope trends. On one
hand, water-column ventilation could increase the fraction of extra-
cellular aerobic H2S reoxidation (i.e., higher freo and freo-aerobic)
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pool. Model results: e seawater sulfate δ34S, f seawater sulfate δ18O, g seawater
sulfate Δ′17O, and h seawater sulfate concentration. The initial steady states with
sulfate concentration of 0.5mM (SS4-2, see Supplementary Table 3) and 1.1mM
(SS8-2) were adopted as suggested72,73.
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during the course of MSR64; on the other, as the concentration of
dissolved O2 increases, it would become the dominant oxidant in
organic matter remineralization, suppressing MSR in the water col-
umn (i.e., lower kmsr)

65. These two processes both contribute to the
decreases in sulfate sulfur and oxygen isotope compositions (Sup-
plementary Fig. 4c–e). However, even when using parameters
representing a well-oxygenated condition, i.e., a near-zero MSR flux
in the water column (kmsr = 0; Fig. 3a) and a high fraction of aerobic
H2S reoxidation (freo = 0.9; freo-aerobic = 0.95; Fig. 3b, c), the model still
cannot reproduce the observed decreases in δ18O and Δ′17O during
the SE (Fig. 3f, g), suggesting that other factors must be at play.

Sulfidic water was expected in the shelf areas preceding the SE66,
and this condition could contribute to organic carbon accumulation
and provide a stable dissolved organic sulfur reservoir in the ocean
through DOC sulfurization67. An enhanced oxidation of these pre-
existing sulfur species (i.e., H2S and S0) could provide an additional
sulfate source with lower δ18O and Δ′17O values (Fig. 4). When we also
factor in the oxidation of the pre-existing sulfur species, the model is
capable of reproducing all of the observed S–O isotope compositions
and their temporal changes (Fig. 3d-g; Supplementary Figs. 5-7). The
optimum condition requires the δ34S of the pre-existing H2S/S

0 reser-
voir to be in the range of 16–25‰ [note that the pre-SE pyrite δ34S
averages 18.7 ± 8.7 ‰ (1σ) in South China14], and the δ18O and Δ′17O
values of its derived sulfate to be at 0–4‰ and −0.7 to −0.8‰,
respectively. Additionally, the added sulfate flux from the oxidation of
the pre-existing sulfur species needs to occur as a pulse of
1–2.5 × 1013mol yr−1, with a duration of 1.5 Myrs (Fig. 3d). This scenario
corresponds to an increase in the marine sulfate concentration from
~0.5–1mM to ~20mM (Fig. 3h).

The sulfate 17O-depletion during the SE occurred ~60 Myrs after
the basal Ediacaran 17O-depletion event2,68. This raises the question of if
atmosphere O2 was consistently depleted in 17O throughout the Edia-
caran Period and the high sulfate concentrations at the aftermath of

Marinoan Snowball Earth and during the SE merely facilitated the
preservation of the sulfate 17O record, or if atmospheric O2 was dis-
tinctly depleted in 17O only during these two episodes. A wider geo-
graphic coverage of a similar dataset is needed to further answer this
question. Additionally, further research efforts are required to validate
if sulfate derived from H2S oxidation in natural water bodies indeed
incorporates the Δ′17O signal of atmospheric O2.

Conclusions and implications for the SE event
Taken together, our sulfate S-O isotope data and modeling results
support water-column ventilation during the SE, which led to
enhanced sulfur oxidation by mass-anomalously 17O-depleted O2 dis-
solved in the oceans (Fig. 4). The positive co-variations of the C–S–O
isotope compositions observed in three separate paleocontinents
imply that the processes discussed above also apply to the carbon
isotope records. It could be either an increase in atmospheric O2

concentration or increased ventilation of the deep oceans that facili-
tated the oxidation of marine organics, thus contributing to the
negative carbon isotope excursion. In summary, our findings confirm
the SE as a primary oceanic oxygenation event, rather than of a late
diagenetic origin, and provide direct evidence for paleoatmospheric
O2 being ultimately responsible for the oxidation of reduced sulfur and
organics in the oceans. This resolves the long-standing debate on the
origin of the largest negative C-isotope excursion in Earth’s history and
establishes a link between environmental oxygenation and the rise of
early animals.

Methods
Sampling
We targeted the Ediacaran carbonates from three different paleo-
continents which have recorded the Shuram Excursion (Fig. 1; Sup-
plementary Discussion). A total of 117 samples were collected,
including 51 samples from the Jiulongwan section (30°47′51″N, 110°59′
32″E) in South China, 28 samples from the Parachilna Gorge section
(31°9′51.6″S, 138°31′43.2″E) in South Australia, and 38 samples from the
Mochia-Khutuk section (41°26′29″N, 87°51′47″E) in Tarim. Samples
were cut, cleaned, and ground to ca. 200 mesh for bulk geochemical
analyses. Stratigraphic details for these sections can be found in
refs. 14,20,69,70.

CAS extraction and purification
Approximately 50g sample powder was immersed in a 10% NaCl
solution at least 4 times, with each immersion lasting at least 12-h. This
process yielded NaCl-leached sulfate. After the final NaCl-leaching, a
saturated BaCl2 solution was added to the filtered and acidified solu-
tion to check if there is BaSO4 precipitating. If precipitates are visible,
one more NaCl leaching was conducted. Next, 4M HCl solution was
added to the NaCl-leached sample residue and let it sit in room tem-
perature for less than 1 hour, resulting in HCl-leached sulfate. A frac-
tion of the BaSO4 precipitate was purified using the DDARP method
(DTPA dissolution and re-precipitation) for triple oxygen isotope
measurement. Detailed processing protocols can be found in
refs. 43,45,71. Pre-treatment experiments were conducted at both
Louisiana State University and China University of Geos-
ciences (Wuhan).

Isotope measurements
Sulfate δ34S was measured through in-line combustion of ~0.3mg of
powdered BaSO4 mixed with ~1.0mg of V2O5 in a Flash elemental
analyzer coupled to a Thermo Fisher Scientific Delta V Plus isotope-
ratio mass spectrometer. Sulfate δ18O was measured via CO gas con-
verted from ~0.20mg of BaSO4 powder using a Thermal Conversion
Elemental Analyzer at 1410 °C coupled to a Thermo Fisher Scientific
Delta V Plus isotope-ratio mass spectrometer in continuous-flow
mode. Sulfate Δ′17O was determined using a Thermo MAT253 Plus
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Fig. 4 | Schematic presentation of the origin of the 17O-depleted sulfate during
the Shuram Excursion. Mass-independently 17O-depleted O2, generated during
photochemical reactions of O2, O3 and CO2 in the stratosphere, mixes into the
ocean through gas exchange between stratosphere and troposphere, and between
atmosphere and ocean. The newly formed sulfate inherits the 17O-depleted sig-
nature from atmospheric O2 through oxidation of the reduced sulfur species in the
ocean and on land. See text for more details. DOC dissolved organic carbon, DOS
dissolved organic sulfur.
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isotope-ratio mass spectrometer in dual-inlet mode via measuring O2

generated offline from ~8 to 12mg of pure BaSO4 powder reactingwith
BrF5, utilizing a CO2 laser-fluorination system (further details refer to
descriptions provided in refs. 32,47). The sulfur and oxygen isotope
compositions are reported in δ-notation as per mil (‰) relative to
Vienna Cañon Diablo Troilite (V-CDT) and Vienna Standard Mean
Ocean Water (V-SMOW), respectively. The δ34S was calibrated using
standards of two international (NBS127, 20.3‰, IAEA-SO-5, 0.5‰) and
one inter-laboratory (OASIC-S, 14.5‰), while the δ18O using standards
of one international (NBS127, 8.6‰) and one inter-laboratory (OASIC-
O, 12.3‰). The analytical uncertainties (1σ) werebetter than±0.1‰ and
±0.3‰ for δ34S and δ18O, respectively. The standard deviation (1σ) for
the Δ′17O is ±0.02‰ based on multiple runs (N = 4) of the same BaSO4

sample. All isotope analyses were conducted in the International
Center for Isotope Effects Research (ICIER) at Nanjing University.

Data availability
All data generated or analysed during this study are included in this
published article and its supplementary information files.
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