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Instabilities of heavy magnons in an
anisotropic magnet

Xiaojian Bai 1,2,3,8 , Shang-Shun Zhang4,8 , Hao Zhang 4,5, Zhiling Dun2,
W. Adam Phelan6, V. Ovidiu Garlea 1, Martin Mourigal 2 &
Cristian D. Batista 4,7

The search for new elementary particles is one of the most basic pursuits in
physics, spanning from subatomic physics to quantummaterials.Magnons are
the ubiquitous elementary quasiparticle to describe the excitations of fully-
ordered magnetic systems. But other possibilities exist, including fractional
and multipolar excitations. Here, we demonstrate that strong quantum inter-
actions exist between three flavors of elementary quasiparticles in the uniaxial
spin-one magnet FeI2. Using neutron scattering in an applied magnetic field,
weobserve spontaneous decay between conventional andheavymagnons and
the recombinationof these quasiparticles into a super-heavy bound-state. Akin
to other contemporary problems in quantummaterials, themicroscopic origin
for unusual physics in FeI2 is the quasi-flat nature of excitation bands and the
presence of Kitaev anisotropic magnetic exchange interactions.

The concept of quasiparticles is central to understand and predict
the properties of condensed matter. For example, the quantization
of collective atomic vibrations and spin precessions in long-range
ordered solids1 leads to the familiar concepts of phonons and
magnons. When motion is harmonic, these bosonic excitations are
free2 and manifest in spectroscopic measurements as bands with
well-defined energy-momentum dispersion. Interactions between
phonons underpin many basic phenomena ranging from the
anharmonic behavior of crystals and the lattice conductivity of
thermoelectrics3 to the rich excitation spectrum of liquid 4He4. In
magnetism, interactions betweenmagnons5 can yield finite lifetimes
by spontaneous (non-thermal) decay into multi-magnon states6,
resulting in incoherent excitation bands. Magnon decay is reminis-
cent of elementary particle decay, a ubiquitous quantum phenom-
enon of the Standard Model of subatomic physics. Although
magnon instabilities are expected for a broad class of models7–9,
their experimental observation is rare and so far limited to a handful
of quantum paramagnets10,11 and non-collinear spin systems12–16. As

the search for quantum spin-liquids and their fractional excitations
intensifies17, achieving a quantitative understanding of magnon
interactions is a pressing issue18,19.

Unlike the Standard Model, where all elementary particles
emerge from a single vacuum, a rich quasiparticle landscape20 arises
from distinct vacua (ground states) in the innumerable magnetic
solids. In this context, it is surprising that decay instabilities have
only been investigated in detail when magnon quasiparticles and
their decay products carry the same fundamental quantum spin
number: ΔSz = ± 1 about the local quantization axis imposed by the
underlying magnetic order. A counter-intuitive framework to realize
strong magnon interactions is a system with large spin (S ≥ 1) and
strong single-ion and magnetic exchange anisotropies. We illustrate
this concept in Fig. 1 using a ferromagnetic spin array. A S = 1/2
system (Fig. 1a) only admits single magnons (SMs) as elementary
excitations, which carry a dipolar quantum number ∣ΔSz∣ = 1. Com-
posite excitations of multiple (free or bound) SMs are possible, but
they are not elementary; understanding their interactions often
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requires a non-perturbative treatment. To date, the vast majority of
magnon decay studies have focused on the interactions between
SMs and their multi-particle states. For a S = 1 system (Fig. 1b), the
enlarged local Hilbert space yields a second type of on-site excita-
tion where the same spin is flipped twice, from Sz = + 1 to − 1. This
excitation is known as “single-ion bound-state” (SIBS) and becomes a

distinct elementary quasiparticle, with quantum number ∣ΔSz∣ = 2,
for strongly uniaxial systems21,22. Naturally, composite excitations
formed by multiple SMs and/or SIBSs are also possible, for instance
four-magnon bound-states (4MBS) comprising two SIBS bound by
short-range ferromagnetic exchange interactions (see Fig. 1b-right).
SIBS and their composite excitations are fundamentally different

Fig. 1 | Magnon hybridization, binding and field-induced decay in a uniaxial
spin-1 system. a The elementary excitations of a ferromagnetic array of S = 1/
2 spins are single-magnon (SM) modes carrying a ΔSz = − 1 quantum number. b For
S = 1 spins with uniaxial anisotropy, elementary SM excitations coexist with a dis-
tinct quasiparticle called single-ion bound-state (SIBS) carryingΔSz = − 2. ForD≫ ∣J∣,
the SIBS is an infinitely lived elementary excitation as the continuum of two free
SMs is unstable. In that sense, the SIBS has a two-magnon character. The two
quasiparticles sector comprises all possible combinations of free SM and SIBS
elementary excitations and their non-perturbative bound states stabilized by short-
range ferromagnetic interactions. This leads to a long-lived four-magnon bound-
state (4MBS). c In FeI2, at least three flavors of excitations overlap in momentum-
energy space: dispersing SM and quasi-flat SIBS and 4MBS excitations. Spin non-
conserving exchange interactions hybridize these excitations, giving rise to
renormalized dispersion curves: SM form wide bands, SIBS narrow bands, and
4MBS are quasi-flat; hence the names of light, heavy and super-heavy

quasiparticles, respectively. d All possible cubic interaction vertices between initial
one-quasiparticle and final two-quasiparticle states for a S = 1 system. The green,
single lines (red, double lines) represent propagators for the SM and SIBS,
respectively. The processes highlighted are the relevant magnon decay channels
here. e Magnetic structure of FeI2. f Effect of a magnetic field on the kinematic
condition for decay. The Zeeman shift of a given state α depends on the total spin
quantum number ½ΔSz �α as EαðHÞ= � gμBμ0H½ΔSz �α where g = 3.8(5). Decays are
kinematically allowed if Efinal(H) − Einital(H) ≤0. For interactions that conserve spin
states, such as Heisenberg exchange, a magnetic field cannot change the net
kinematic balance if decay conditions are not met in zero field. In contrast, spin
non-conserving exchange interactions couple initial and final states with different
quantum spin numbers. The positive energy offset in zero magnetic field,
Efinal(0) − Einital(0) ≡ E0 can be compensated by the differential Zeeman shift infinite
fields, thereby activating spontaneous decay above a threshold field.
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from SMs as they carry a multipolar quantum number
∣ΔSz∣ = 2, 3, 4,… and form quasi-flat bands that are in principle invi-
sible to spectroscopic tools restricted by the dipole selection rule.
An opportunity to observe these excitations, however, stems from
their possible hybridization with conventional quasiparticles such as
phonons or (single) magnons. The former mechanism is realized in
UO2

23, while the latter was recently uncovered and understood for
FeI2

24, which is the subject of this work.
FeI2 is a quasi-2D Van der Waals material that comprises perfect

ab-plane triangular layers of Fe2+ ions surrounded by I− ligands (see
“Methods” for a detailed description). At low temperature, the Fe2+ ions
bear effective Seff = 1 magnetic moments with an easy-axis anisotropy
D ≈ 2meV25 along the crystallographic c axis. Magnetic exchange inter-
actions are frustrated26 with a ferromagnetic nearest-neighbor coupling
J1≈ −0.1D competing with weaker antiferromagnetic further-neighbor
exchanges within and between the triangular planes24 (see Supple-
mentary Fig. 1). This competition stabilizes a striped antiferromagnetic
(AF) order below TN = 9.5 K26,27, with rows of ferromagnetically aligned
spins arranged in↑↑↓↓ domains within the triangular layers, each with
four magnetic sublattices (see Fig. 1e and Supplementary Fig. 2). At
T = 1.8 K, the AF phase is stable up to a magnetic field of μ0H1 = 4.8 T
before evolving into a complex sequenceof ferrimagnetic phases below
magnetic saturation at μ0Hsat = 12.5 T

26. Early neutron spectroscopy
experiments28 in the AF phase of FeI2 elucidated that SIBS excitations,
previously identified by infrared spectroscopy29, form quasi-flat bands
that lie below SM branches throughout the Brillouin zone. Recent
quantitative studies24,30 have demonstrated that off-diagonal compo-
nents of the nearest-neighbor exchange interaction are responsible for
the high degree of hybridization between overlapping dipolar (SM) and
multipolar (SIBS, 4MBS, …) excitations. These interactions can be
parameterized using the spin-non-conserving terms Szi S

+
j and S+

i S
+
j of

energy scale J z± ≈ 1.1J1 and J±±≈0.7J1, respectively, or using an extended
Kitaev-Heisenberg model31. In this context, all observed magnetic
excitations in FeI2 are hybrid between dipolar and multipolar
quasiparticles; for simplicity, we will refer to them according to the
character of their dominant quasiparticle.

Results
The delicate balance of microscopic interactions and anisotropies in
FeI2 leads to a unique situation where distinct elementary quasi-
particles, and their bound-states, overlap in momentum-energy space
and strongly hybridize. This renormalizes their dispersion curves
producing light (wide band) and heavy (narrow-band) quasiparticles
(Fig. 1c). Given the regime of strong quantum interactions in FeI2, it is
natural to wonder if spontaneous decays are also possible. The most
straightforward mechanism is through the spin-non-conserving
exchange interactions because these activate cubic decay processes
(Fig. 1d). For example, the J ± ± S+

i S
+
j term connects initial and final

states whose quantum spin numbers differ by two. But two additional
conditions are necessary to observe spontaneous decay. First, the six
decay vertices of Fig. 1dmust connect initial one-quasiparticle states to
final two-quasiparticle states with a non-zero matrix element. As two
(resp. three) combinations of quasiparticles exist for the initial (resp.
final) states, this opens up many distinct decay channels. Second,
decays must obey the conservation of total energy and crystal
momentum. The fulfillment of these kinematic conditions depends on
details of the excitation spectra amenable to external control, for
instance,with amagneticfield. Kinematic decay conditions arenotmet
in FeI2 in the absence of a magnetic field as all multi-particle continua
are just above the dominant excitation branches. However, the relative
Zeeman shift between initial and final states with different quantum
spin numbers can, as we will observe below, overcome this dis-
crepancy and activate decay processes for an adequate magnetic field
range (Fig. 1f).

To search for quasiparticle decay in FeI2, we apply amagnetic field
perpendicular to the triangular planes to tune the relative position of
magnetic excitations within the AF phase (Fig. 1f) and examine the
resulting momentum- and energy-resolved response using inelastic
neutron scattering (see Methods). A slight misalignment between the
magnetic field direction and the c-axis of our high-quality multi-gram
crystal selects a single magnetic domain (see Supplementary Fig. 3,
which dramatically simplifies interpretation of our results. In Fig. 2, we
compare neutron-scattering data for μ0H = 0, 1, 2, 3 and 4 Twith SU(3)-
generalized linear spin-wave (GLSW) calculations32 for the exchange
interactions of ref. 24 and g = 3.8(5) (see Table 1). For μ0H ≤ 2 T, the
number, dispersion, intensity, linewidth, and field-dependence of all
the observedmodes are in excellent agreementwithGLSWpredictions
for all measured momenta (Fig. 2a, see also Supplementary Figs. 4–5
for more cuts). These spectra reflect the magnetic field evolution of
eightmodes: a SM and a SIBS for each of the fourmagnetic sublattices.
Half of themodes haveweak intensity for themomenta shown in Fig. 2.
Excitations of the spin-down ferromagnetic stripes, corresponding to
ΔSz = + 1 and + 2, experience a negative Zeeman shift
ΔEZeeman = − gμBμ0HΔSz, and vice-verse for excitations of the spin-up
stripes. The enhanced splitting of the ΔSz = ± 2 magnon bound-states
enables their unambiguous spectroscopic identification33,34, see arrows
on Fig. 2a, b.

While all excitation branches are sharp below μ0H ≤ 3 T, a striking
deviation from GLSW predictions is observed at μ0H = 4 T where the
single-ion bound-state (SIBS) broadens considerably in the middle of
the Brillouin zone, see yellow box in Fig. 2b. The line cut in Fig. 2c
confirms the significant energy broadening of the SIBS peak at
3.76(1)meVwith a full-width at half maximum (FWHM) of 0.38(1) meV,
and reveals an anomalous energy width of 0.57(1) meV for the prox-
imate single-magnon excitation at 4.41(3) meV, see Supplementary
Table 1 for fit results. In line cuts for other momenta and fields, all
branches appear resolution-limited with a FWHM of ≈0.20meV. We
tentatively ascribe these characteristic features to the activation of
decay processes for both the SM and SIBS quasiparticles.

Further evidence for strong magnon interactions in FeI2 comes
from the observation of four-magnon (4MBS) and six-magnon
bound-states (6MBS) in magneto-optics30. These higher-order
exchange bound-states are stabilized by the narrow-band of the
system and the presence of ferromagnetic interactions at short
distances in a given stripe of the underlying magnetic structure
(Fig. 1e). 4MBS excitations are clearly visible in our neutron-
scattering data at μ0H = 3 T as weak and non-dispersing modes,
unaccounted for by GLSW. Of particular interest is the 2.5meVmode
indicated by a white arrow in Fig. 2b: it lies below the SM branch
observed at 3.0meV in Fig. 2c but predicted by GLSW at 2.8meV,
indicative of mode repulsion (see Supplementary Fig. 4 for more
examples of this behavior). At μ0H = 4 T, the 4MBS excitation moves
down in energy but the shift of the SM peak persists. In spite of their
hexadecapolar nature (ΔSz = 4), 4MBS excitations are detected in our
experiment because of their strong hybridization to dipolar
fluctuations30: given their impact on the SM branch they must be
treated on equal footing as a distinct quasiparticle flavor.

To explain the anomalous mode broadening uncovered by our
experiments in finite magnetic field, we refine our previous SU(3)-
generalized spin-wave theory using a perturbative expansion that
accounts for quasiparticle interactions at the one-loop level. To cap-
ture the hybridization, energy renormalization, and decay rate of the
SM and SIBS excitations, it is sufficient to retain cubic interaction
vertices that couple the one- and two-quasiparticle sectors, i.e., we
drop the negligible contribution from quartic vertices, see Methods
for full details. The essential results of these non-linear calculations
(GNLSW) are shown for μ0H = 3 T and 4 T in Fig. 3a, b. The gray and
colored regions indicate the continua of allowed energies and
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momenta for each possible combination of two unbound SM or SIBS
quasiparticles. Decays are kinematically allowed where a given exci-
tation branch overlaps with one or several of these shaded regions,
with the larger decay rates (red shading in Fig. 3a, b central panels)
originating from the colored continua.

For μ0H = 4 T, Fig. 3b, our GNLSW calculations predict large
decay rates for the top of the E4 and E6 bands (see band labeling in

Fig. 3). This yields a broadened neutron-scattering response high-
lighted by the dashed yellow box in Fig. 3b, in excellent agreement
with our experimental observations. While the hybrid character of
all the bands is fully accounted for in our quantitative decay rate
calculations, it is instructive to focus on their dominant character at
a given wave-vector to elucidate their decay mechanism. The
broadening of band E4 around 3.8meV stems from the emission of a
ΔSz = + 2 SIBS on branch E2 by a ΔSz = + 1 SM that correspondingly
looses energy andmomentum. The broadening observed around 4.4
meV for band E6, corresponds to a ΔSz = − 2 SIBS decaying into two
SM excitations: one at the bottom of the E2 band with ΔSz = + 1 and
one at a different wave-vector of the E6 band where the ΔSz = − 1
character dominates. These decay processes correspond to the
spontaneous creation and annihilation of a single-ion bound-state
through a net change of two units of angular momentum, implying
that the relevant interaction vertices are mediated by the

Table 1 | Hamiltonian parameters of FeI2 (meV)

Nearest-neighbor Further neighbor Single-ion

J ±1 J± ±
1 Jz ±1 J ±2 J ±3 J0±0 J0±1 J0±2a –

−0.236 −0.161 −0.261 0.026 0.166 0.037 0.013 0.068 –

Jzz1 – – Jzz2 Jzz3 J0zz0 J0zz1 J0zz2a D

−0.236 – – 0.113 0.211 −0.036 0.051 0.073 2.165

Data GLSW    k = 0.5

SIBS

3 T

4MBS

SM

b

decay

Data GLSW    k = 0.54 T

SIBS
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SM
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h in (h, −0.5h, 0)
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Fig. 2 | Field-inducedmagnon instabilities inneutron-scattering spectra ofFeI2.
a Momentum- and energy-resolved neutron-scattering spectra of FeI2 at T = 1.8 K
(AF phase, single-domain) and μ0H =0, 1, and 2 T (below all decay threshold) with
excellentmatch to generalized linear spin-wave (GLSW) predictions accounting for
excitations with both single-magnon (SM, solid green arrows) and single-ion
bound-states (SIBS, dashed red arrows) dominant character. The intensity scale is in
arbitrary units. The momentum direction corresponds to Q = (h, 1/2 − h/2, 0) with
perpendicular directions integrated over ∣Δk, ℓ∣≤0.05 r.l.u. b Momentum-energy
slices for μ0H = 3 and 4T (above decay threshold) revealing deviations from GLSW
predictions. The white double-sided arrow signals the presence of an additional

excitation at 3 T, consistent with a 4-magnon bound-state (4MBS, black arrow). The
yellow dashed box highlights a considerable energy broadening for otherwise
sharp excitations at 4 T, the hallmark of spontaneous magnon decay. c Energy
lineshape for selected excitations from constant-Q cuts through the above data
(open symbols) integrated over ∣Δh∣≤0.1 r.l.u., see the white dashed regions in
panels a and b. Errorbars correspond to one standard deviation. Lorentzian peak
fits (black curves for overall fits and colored shaded areas for individual peaks) at
various magnetic fields highlighting departure from the resolution limit (red bars,
FWHM≈0.2meV, obtained from fits at μ0H = 1 T), i.e., field-inducedmagnon decay.
Fit results are reported in Supplementary Table 1 and Supplementary Fig. 6.
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anisotropic, spin-non-conserving term J ± ± S+
i S

+
j , see vertices with a

gray background in Fig. 1d. Although this mechanism produces a
finite lifetime for all excitation branches in the AF phase of FeI2, the
broadening only becomes visible in experiments when the decay
rate exceeds the FWHM instrumental energy-resolution of around
0.2 meV, see Fig. 3d, Supplementary Fig. 6, and Supplementary
Table 1. Thus spontaneous decays are only visible in our experiment
in a narrow field range around μ0H = 4 T, due to the narrow band-
width of the lowest-energy branch essential to the decay processes.

Surprisingly, a qualitatively different phenomenon occurs for
μ0H = 3 T, Fig. 3a. While our GNSLW calculations predict strong
decay for excitations at the bottom of the E4 band, no visible
broadening is observed in the experimental results of Fig. 2b, c.
Instead, the putative unstable branch lies proximate to the 4MBS
excitation discussed previously. Including this composite quasi-
particle in our GNLSW calculations is impractical as it requires to
sum ladder diagrams to infinite order in a perturbative loop
expansion. We avoid this problem by performing an exact diag-
onalization (ED) of the SU(3) spin-wave Hamiltonian at quartic order
on a finite lattice. Truncating the Hilbert space to only include up to
two (free or bound) composite quasiparticles allows to reach ade-
quate system sizes (see Methods). The quartic term is essential to

form a 4MBS from the continuum of two free SIBSs. Results without
and with quartic vertices, Fig. 3c, explain the strong suppression of
decays observed in our experiments as stemming from the finite
probability of decay products to form a 4MBS instead of propagat-
ing independently in the system. At the microscopic level, this non-
perturbative phenomenon, which we observe and understand for
the first time, comes from the unique interplay between heavy SIBS
quasiparticles, attractive (ferromagnetic) interaction at short dis-
tances, and spin-non-conserving terms.

Discussion
Our neutron-scattering experiments on FeI2 reveal a rich and field-
tunable quantum many-body physics phenomenology that is quan-
titatively explained by our theory. We observe three distinct flavors
of quasiparticles: light dipolar SM fluctuations, heavy quadrupolar
SIBS quasiparticles, and super-heavy hexadecapolar 4MBS excita-
tions (Fig. 1b) stabilized by attractive short-range interactions. These
quasiparticles mix, decay and pair onto each other in a way remi-
niscent of high-energy particle physics. Our observations of spon-
taneous emission of a heavy quasiparticle by a magnon, the decay of
the former into two free magnons, and the suppression of decay
channels by the non-perturbative recombination of decay products

h in (h, −0.5h, 0)

a
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d

k = 0.5, h = − 0.8

µ0H (T)

c

decay

k = 0.4, h = − 0.8
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decay 

suppressed

4MBS

ED with 4MBS

µ0H (T)

k = 0.4, h = − 0.8

Fig. 3 | Quantummagnondynamics capturedby one-loop expansion and exact
diagonalization. a, b Predictions from SU(3)-generalized non-linear spin-wave
theory with one-loop order corrections (GNLSW) for the Hamiltonian of FeI2 along
the experimental momentum-energy slices of Fig. 2 at 3 T and 4T, respectively.
Each panel shows in turn (left to right): kinematic conditions for decay, predicted
decay rate, and realistic neutron-scattering intensity. For a single-domain of the AF
structure, eight hybridized bands (En) are present: one SM and one SIBS for each of
the four magnetic sublattices. These bands are numbered and color-coded to
reflect their ΔSz value, which changes as a function of momentum transfer. Shaded
regions indicate the extent of the two-quasiparticle continua that can be con-
structed from these eight quasiparticles, with a color shade (resp. gray shade) for
states which do (resp. do not) yield significant decay rates. For instance, the cyan

region corresponds to a 2-selection among branches E1 and/or E2. For the chosen
cut direction, branches with large decay rates (red shading) may not have large
spectral weight to be apparent in the calculated neutron-scattering intensity.
cMagneticfieldevolutionof excitations calculated fromExactDiagonalization (ED)
for the Hamiltonian of FeI2 on a finite cluster of 5 × 5 × 5 unit cells (500 spins) with a
Hilbert space truncated to include (bottom) or not include (top) up to 4-magnon
excitations. The finite-size calculation restricts the set of accessible momenta such
that EDplots are for amomentumproximate to that of Fig. 2c, and slightlymodifies
the kinematic decay conditions compared toGNLSWcalculations.dMagnetic field-
dependence of the GNLSW decay rate (Lorentzian half-width at half maximum) for
various branches at selected momenta.
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into super-heavy bound-states, are observed for the first time in the
realm of condensed-matter systems. Within magnetism, our work
challenges the conventional view that compounds with large spin
and large uniaxial anisotropy behave classically. In fact, in FeI2, this
combination produces unique quantum magnon dynamics brought
to light by spin-non-conserving off-diagonal exchange interactions.
As such interactions are also essential to stablize quantum spin-
liquids and their fractionalized excitations in Kitaev magnets18, our
work considerably broadens the range of quasiparticle phenomena
expected in these spin-orbit coupled quantum magnets. The theo-
retical tools we have developed to understand FeI2 apply to many
other materials16 and may be used in the future to sharpen our
general understanding of large-spin magnets.

Methods
Crystal growth
Starting materials of Iron (≥99.98% purity from Alfa Aesar) and
Iodine (≥99.99% purity from Alfa Aesar) were sealed in evacuated
quartz tubes. The first synthesis step consists in a chemical vapor
transport growth using a tube furnace (School of Physics, Georgia
Tech) with the hot end at 570 °C and the cold end at room
temperature35 forming a collection of mm-size FeI2 crystals. After
grinding into fine powders in a glove boxwithwater content ≤2 ppm,
the crystal structure was checked using a PANAnalytical Empyrean
Cu-Kα diffractometer (Materials Characterization Facility, Georgia
Tech) with samples loaded in an air-tight domed holder in the glove
box. This confirmed the expected crystal structure and was con-
sistent with results reported in ref. 24. Around 10 grams of the
polycrystalline sample was sealed in a quartz tube under vacuum.
The ampule was then placed in a graphite crucible attached to a
rotator in a Ultrahigh Temperature Midscale Induction Bridgman/
CZ Furnace (PARADIM facility, Johns Hopkins University). The cru-
cible was passed through a hot zone of ≈ 600 °C with rotating speed
20 RPM/min and lowering rate 10mm/hr. The growth yielded a large
boule from which a 4.53 g high-quality crystal was extracted with
clear c-axis facet. The resulting crystal wasmounted on an aluminum
sample holder sealed in a Helium-filled glove box. The holder was
designed to keep the sample from moisture and oxygen con-
tamination and had a small enough diameter to fit in the⊘32mm
diameter of a cryomagnet. The mosaic of the crystal was checked
with neutrons to be around ≤3°.

Thermo-magnetic properties of FeI2
FeI2 crystallizes in the space-group P�3m1 with lattice parameters
a = 4.05 Å and c = 6.75Å at T = 300 K36. FeI2 comprises triangular
layers of Fe2+ ions with magnetic interactions mediated by direct
exchanges and super-exchanges through the I− ligands above and
below the triangular plane. The combination of crystal-field and
spin-orbit coupling effects on the Fe2+ ions leads to effective S = 1
magnetic moments with an easy-axis anisotropy along the c-axis and
several transitions to higher-energy multiplets above 25meV37. In
zeromagnetic field, FeI2 displays a long-rangemagnetic order below
TN = 9.5 K26,27 through a first order transition with no apparent lattice
distortion27,38. The magnetic structure is described by a propagation
vector kAF = (0, 1/4, 1/4) and the phase referred to as the “AF" phase
given the absence of net magnetization. Within the triangular plane,
the system forms a up-up-down-down stripe order shown in Sup-
plementary Fig. 2.

Three types of magnetic domains are typically stabilized in zero
magnetic field, related by 120° rotations24 with propagation vectors
kð1Þ
AF = ð0,1=4,1=4Þ, kð2Þ

AF = ð�1=4,0,1=4Þ and kð3Þ
AF = ð1=4,� 1=4,1=4Þ. When a

magnetic field is applied along the crystallographic c-axis, a series of
meta-magnetic transitions were observed in bulk magnetization
measurements39,40. Associated magnetic structures were investigated
using neutron diffraction26 below the saturation magnetic field of

μ0Hs ≈ 12.5 T39. BelowT ≈ 2 K, thefirstmagnetic transitionoccurs above
μ0H1≥ 4.5 T. The results presented here are restricted to magnetic
fields μ0H ≤ 4 T and temperatures T ≤ 2 K, such that the underlying
magnetic structure for FeI2 is AF. As explained in the main text and
shown in Supplementary Fig. 3, this was checked by taking elastic cuts
through the neutron-scattering data, which also revealed that a pre-
dominantly single-domain magnetic state, corresponding to kð1Þ

AF, was
stabilized in the sample.

Neutron-scattering measurements
Inelastic neutron-scattering experiments were performed on the
HYSPEC spectrometer at the Spallation Neutron Source (SNS), Oak
Ridge National Laboratory (ORNL), USA41. The sample was mounted
on a stick inserted in a μ0Hmax = 8 T vertical-field self-shielded
superconducting magnet reaching a base temperature around
T = 1.8 K. The sample was rotated around its c-axis over a range of
360° degrees in steps of 1° degree allowing a complete mapping of
excitations in the scattering plane. The narrow out-of-plane cover-
age of ± 7° degrees of the magnet restricts the momentum transfer
in the out-of-plane direction. All measurements were performed in
unpolarized mode with an incoming neutron energy of Ei = 9meV
and Fermi choppers speed of 420Hz yielding an elastic full-width at
half-maximum energy-resolution on the sample of 0.20meV. The
center detector bank was positioned at a 2θ angle of − 35°. Five
magnetic field configurations were used corresponding to
μ0H = 0, 1, 2, 3, and 4 T. When theoretical calculations are com-
pared to experiments, the computed dynamical structure factors
take into account all relevant experimental effects including mag-
netic form factor and neutron dipole factor.

Data analysis
Data was reduced and analyzed in MANTID42 on the SNS analysis
cluster atORNL. Symmetryoperations that preserve the single-domain
magnetic structure were applied to the data to increase statistics.
Throughout the manuscript, the scattering intensity is measured as a
function of energy transfer E and momentum transfer
Q = ha* + kb* + lc* ≡ (h, k, l)where a*,b* and c* are theprimitive vectors of
the triangular-lattice reciprocal space and (h, k, l) are Miller indices in
reciprocal lattice units. The usual convention that a* and b* make an
60° angle is used, see Supplementary Fig. 1.

Model Hamiltonian
All theoretical calculations were performed using the zero-field
exchange Hamiltonian obtained in ref. 24 including an uniaxial
single-ion anisotropy �D

P
iðSzi Þ

2 and exchange interactions up to
third-neighbors in plane (J1 to J3) and out-of-plane (J00 to J02) as defined
on Supplementary Figure 1. For nearest-neighbor bonds, all symmetry
alloweddiagonal andoff-diagonal exchange interactions are taken into
account, which yields the Hamiltonian

Hn:n: =
X
hi,ji

Jzz1 Szi S
z
j +

1
2
J ±1 S +

i S
�
j + S�i S

+
j

� �
+
1
2
J ± ±
1 γijS

+
i S

+
j + γ*ijS

�
i S

�
j

� ��

� iJz ±1
2

γ*ijS
+
i � γijS

�
i

� �
Szj + S

z
i γ*ijS

+
j � γijS

�
j

� �h i�
,

where γij = e
iθij are bond-dependent phase factors with

θij =θji =0, +
2
3 ,� 2

3 depending on the direction of the bond of the
triangular lattice31.

For further-neighbor bonds, only diagonal anisotropy is con-
sidered, which yields the Hamiltonian

Hf:n: =
X
ði,jÞ

Jzzf.n.S
z
i S

z
j +

1
2
J ±f.n. S+

i S
�
j + S�i S

+
j

� �� �

for bonds J2,J3,J
0
0,J

0
1 and J02.
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In this work, we adopt the representative values of exchanges
interactions for FeI2 obtained in ref. 24 by joint fits to the zero
magnetic-field energy-integrated data in the paramagnetic phase and
the energy-resolved data in the magnetically ordered phase.

Although we will not use this notation in the present manuscript,
we note that, alternatively, the nearest-neighbor exchange matrix for
FeI2 can be recast as an extended Kitaev-Heisenberg (K–J) model31

Hn:n: =
X
hijiγ

J1Si � Sj +K1S
γ
i S

γ
j + Γ1 Sαi S

β
j + S

β
i S

α
j

� �h

+ Γ01 Sγi S
α
j + S

γ
i S

β
j + S

α
i S

γ
j + S

β
i S

γ
j

� �i
,

with J1 = −0.41meV, K1 = 0.53meV, Γ1 = −0.02meV, and Γ01 = 0:01 meV.
Finally, a Zeeman term HZeeman = � gμBμ0HS is included to

account for the effect of magnetic field. The g-factor is obtained from
GLSW fitting to the neutron-scattering data at low fields (μ0H ≤ 2T)
with all exchange and single-ion parameters fixed, yielding a value
of 3.8(5).

Loop expansion
In zero field, FeI2 has been successfully modeled by a SU(3) GLSW
theory24. To explain the field-induced effects studied in this work,
onemust go beyond the GLSW and consider the interaction between
the quasiparticles. Explicitly, we perform a systematic perturbation
theory that corresponds to an expansion in the parameter 1/M,
where M is the total number of SU(N) bosons per site. Note that this
expansion coincides with the well-known 1/S expansion for the
particular case N = 2 (M = 2S for N = 2). As will be shown below, the
order of a given Feynman diagramof the expansion is determined by
the number of independent loops, i.e., of closed lines of SU(N) boson
propagators.

To count theorder of a given Feynmandiagram, it is convenient to
rescale the SU(N) boson operator by a factor 1=

ffiffiffiffiffi
M

p
, namely

βi,m =β0
i,m=

ffiffiffiffiffi
M

p
(see the next section for explicit definition),

m = 1, 2,…,N. Consequently, M becomes an overall prefactor of the
rescaled Hamiltonian, H =H0=M. Since the original interaction vertices
V(n)(n ≥ 3), the coefficients of a triple product of the boson operators,
scale as M2−n/2, all vertices of the rescaled Hamiltonian H0 becomes of
order M, while the propagator of a boson is still of order 1/M. There-
fore, the order p of a particular one-particle irreducible diagram con-
structed by V vertices and I internal lines is V − I (note that the
frequencyω is of orderM0). Since thenumber of loops is L = I − V + 1, we
obtain that the power p = 1 − L is only determined by the number of
loops in a particular Feynman diagram.

Cubic vertex and self-energy
FeI2 is described by an effective S = 1 spin model,

H=
X
hiji

X
μν

Ŝ
μ

i J μν
ij Ŝ

ν

j � D
X
i

Qzz
i �

X
i

hμSμi , ð1Þ

where Ŝ
μ

i ,μ= x,y,z is the spin-1 operator and the single-ion aniso-
tropy term is proportional to the (zz) component of quadrupolar
moment Qμν

i = ðŜμi Ŝ
ν

i + Ŝ
ν

i Ŝ
μ

i Þ=2� 2=3 (symmetric traceless compo-
nents of Ŝi � Ŝi). The spin-exchange tensor J μν

ij is described in the
main text.

To describe the magnetically ordered phase, it is convenient to
work in the local reference frame defined by the SU(3) rotation

βi, + 1

βi,0

βi,�1

0
B@

1
CA=Uy

i

bi"
bi0

bi#

0
B@

1
CA, ð2Þ

where Ui∈ SU(3). Themagnetic order corresponds to amacroscopic
occupation of the βi,+1 boson hβi, + 1i= hβy

i, + 1i ’
ffiffiffiffiffi
M

p
and M = 1 for the

case under consideration. Because of the strong single-ion aniso-
tropy, we can safely assume that

P
m≠1hβy

i,mβi,mi≪M. This assumption
justifies the 1/M expansion that was discussed in the previous
section:

βi, + 1,β
y
i, + 1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � βy

i,0βi,0 � βy
i,�1βi,�1

q

’
ffiffiffiffiffi
M

p
1� 1

2M

X
m≠1

βy
i,mβi,m � 1

8M2

X
m≠1

βy
i,mβi,m

� �2
+O 1

M3

� �" #
:

ð3Þ

The corresponding semi-classical expansion of the dipolar and
quadrupolar operators are

Ŝ
μ

i = MSμ
c ðiÞ+

ffiffiffiffiffi
M

p X
m≠1

Sμ
1mðiÞβi,m +h:c:

	 

+
X
m,n≠1

Sμ
mnðiÞβy

i,mβi,n

� 1

2
ffiffiffiffiffi
M

p
X
m,n≠1

Sμ
1mðiÞβ

y
i,nβi,nβi,m +h:c:

� �
+O 1

M3=2

� �
,

ð4Þ

Qzz
i = MQzz

c ðiÞ+
ffiffiffiffiffi
M

p X
m≠1

Qzz
1mðiÞβi,m +h:c:

	 

+
X
m,n≠1

Qzz
mnðiÞβy

i,mβi,n

� 1

2
ffiffiffiffiffi
M

p
X
m,n≠1

Qzz
1mðiÞβy

i,nβi,nβi,m +h:c:
� �

+O 1

M3=2

� �
,

ð5Þ

where

Sμ
c ðiÞ = ~L

μ

11ðiÞ, Sμ
1mðiÞ= ~L

μ

1mðiÞ, Sμ
mnðiÞ= ~L

μ

mnðiÞ � ~L
μ

11ðiÞδmn,

Qzz
c ðiÞ = ~O

zz
11 ðiÞ, Qzz

1mðiÞ= ~O
zz
1mðiÞ, Qzz

mnðiÞ= ~O
zz
mnðiÞ � ~O

zz
11 ðiÞδmn,

ð6Þ

and ~L
μðiÞ=Uy

i L
μUi,~O

zzðiÞ=Uy
i ðLzÞ

2Ui with the matrices Lμ are the gen-
erators of the SO(3) group. The variables defined in Eq. (6) dependonly
on the sublattice index because of the translational symmetry of the
magnetic structure.

By using the expansions (4) and (5), we obtain a generalized semi-
classical expansion of the spin Hamiltonian

H= Eð0Þ +Hð2Þ +Hð3Þ +OðM0Þ, ð7Þ

where Eð0Þ and Hð2Þ have been computed explicitly before24. We note
that Eð0Þ / M2 and Hð2Þ / M according to the series expansion of the
spin and quadrupole operators in Eqs. (4) and (5). Here, we will focus
on the cubic term,Hð3Þ, which is ofOð

ffiffiffiffiffi
M

p
Þ. The one-loop contributions

from the quartic term,Hð4Þ, correspond to a simple renormalization of
the single-modedispersion relation (realpartof the self-energy), that is
obtained by expressing Hð4Þ in normal ordering. The corresponding
one-loop Feynmandiagrams involving quartic vertexes that contribute
to the single-particle self-energy are:

where the lines represent the propagators of the original bosons
(beforeperforming theBogoliubov transformation).Wenote here that
we have neglected these quartic contributions to the self-energy
because they turn out to be very small (10−3J, where J represents the
energy scale of the dominant exchange interaction) due the the large
single-ion anisotropy.
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The cubic interaction term is:

Hð3Þ =
X
hiji

ffiffiffiffiffi
M

p X
m,n≠1

Vm
1 ði, jÞβy

j,nβj,nβj,m +Vm
1 ð j,iÞβy

i,nβi,nβi,m +h:c:
� �"

+
X

l,m,n≠1

Vlmn
2 ði, jÞβy

j,mβj,nβi,l +V
lmn
2 ð j,iÞβy

i,mβi,nβj,l +h:c:
� �#

+
1

2
ffiffiffiffiffi
M

p
X
i

X
m,n≠1

DQzz
1mðiÞ+hμSμ

1mðiÞ
	 


βy
i,nβi,nβi,m +h:c:

� �
,

ð8Þ

where Vm
1 ði, jÞ= � 1

2Sμ
c ðiÞJ μν

ij Sν
1mð jÞ, Vlmn

2 ði, jÞ=Sμ
1lðiÞJ μν

ij Sν
mnðjÞ. Trans-

lational invariance implies that Vm
1 ði, jÞ � Vm

1 ðαi,δhijiÞ and Vlmn
2 ði, jÞ �

Vlmn
2 ðαi,δhijiÞ are functions of sublattice and bond. Here, αi is the sub-

lattice index of site i, while δ〈ij〉 the vector that connects sites i and j.
After performing the Fourier transform

βðα,qÞσ =N
�1=2
uc

X
r

e�iq�rβðα,rÞσ , ð9Þ

where (α, r) denotes the lattice site with coordinate r that belongs to
sublattice α and Nuc the total number of the magnetic unit cells, we
obtain

Hð3Þ =
1ffiffiffiffiffiffiffiffi
Nuc

p X
αa,qa 2 BZ

σa≠1

δ
X
a

qa � G

 !
Vσ1σ2σ3

α1,α2,α3
ðq1,q2,q3Þβy

ðα1,�q1Þ,σ1
βðα2,q2Þ,σ2

βðα3,q3Þ,σ3
+ H.c. ,

ð10Þ

with

Vσ1σ2σ3
α1 ,α2,α3

ðq1,q2,q3Þ=
X
hiji0

~V hiji0 ð1,2,3Þ+
X
α

~Vαð1,2,3Þ, ð11Þ

where 1≤a≤ 3,
P

hiji0 sums over translationally inequivalent bonds. The
first term of Eq. (11) includes the off-site or bond contributions to the
cubic vertex that arise from the exchange interactions. The corre-
sponding vertex function is

~V hiji0 ð1,2,3Þ =
ffiffiffiffiffi
M

p
Vσ3

1 ðαi,δhijiÞδα1αj
δα2αj

δα3αj
δσ1σ2

h
+V σ3

1 ðαj ,
�δhijiÞδα1αi

δα2αi
δα3αi

δσ1σ2

+V σ3σ1σ2
2 ðαi,δhijiÞe�iq3 �δijδα1αj

δα2αj
δα3αi

+V σ3σ1σ2
2 ðαj,

�δhijiÞeiq3 �δijδα1αi
δα2αi

δα3αj

i
ð12Þ

where δij= rj − ri and �δij � �δij refer to the bond vectors. The second
term of Eq. (11) includes the on-site contributions to the cubic vertex
that arise from the single-ion anisotropy and the Zeeman term. The
corresponding vertex function is

~Vαð1,2,3Þ=
1

2
ffiffiffiffiffi
M

p DQμ
1σ3

ðαiÞ+hSμ
1σ3

ðαiÞ
� �

δα1α
δα2α

δα3α
δσ1σ2

, ð13Þ

The quasiparticle modes are obtained by performing a Bogoliu-
bov transformation

βðα,qÞ,σ

βy
ðα,�qÞ,σ

 !
=

W 11
ðα,σÞ,nðqÞ W 12

ðα,σÞ,nðqÞ
W 21

ðα,σÞ,nðqÞ W 22
ðα,σÞ,nðqÞ

 !
γn,q

γyn,�q

 !
, ð14Þ

that diagonalizes the linear spin-wave Hamiltonian Hð2ÞðqÞ. Note that
this transformation is redundant for ± q, implying that

W 11
ðα,σÞ,nð�qÞ=W 22*

ðα,σÞ,nðqÞ, W 12
ðα,σÞ,nð�qÞ=W 21*

ðα,σÞ,nðqÞ, ð15Þ

W 21
ðα,σÞ,nð�qÞ=W 12*

ðα,σÞ,nðqÞ, W 22
ðα,σÞ,nð�qÞ=W 11*

ðα,σÞ,nðqÞ: ð16Þ

The triple product of bosonic operators in Eq. (10) becomes

βy
ðα1 ,�q1Þ,σ1

βðα2,q2Þ,σ2
βðα3,q3Þ,σ3

=
X

n1 ,n2,n3

W 21
ðα1 ,σ1Þ,n1

ðq1ÞW 11
ðα2,σ2Þ,n2

ðq2ÞW 11
ðα3,σ3Þ,n3

ðq3Þγn1 ,q1
γn2,q2

γn3,q3

+W 21
ðα1 ,σ1Þ,n1

ðq1ÞW 12
ðα2,σ2Þ,n2

ðq2ÞW 11
ðα3,σ3Þ,n3

ðq3Þγn1 ,q1
γyn2,�q2

γn3,q3

+W 21
ðα1 ,σ1Þ,n1

ðq1ÞW 11
ðα2,σ2Þ,n2

ðq2ÞW 12
ðα3,σ3Þ,n3

ðq3Þγn1 ,q1
γn2,q2

γyn3,�q3

+W 21
ðα1 ,σ1Þ,n1

ðq1ÞW 12
ðα2,σ2Þ,n2

ðq2ÞW 12
ðα3,σ3Þ,n3

ðq3Þγn1 ,q1
γyn2,�q2

γyn3,�q3

+W 22
ðα1 ,σ1Þ,n1

ðq1ÞW 11
ðα2,σ2Þ,n2

ðq2ÞW 11
ðα3,σ3Þ,n3

ðq3Þγyn1 ,�q1
γn2,q2

γn3,q3

+W 22
ðα1 ,σ1Þ,n1

ðq1ÞW 12
ðα2,σ2Þ,n2

ðq2ÞW 11
ðα3,σ3Þ,n3

ðq3Þγyn1 ,�q1
γyn2,�q2

γn3,q3

+W 22
ðα1 ,σ1Þ,n1

ðq1ÞW 11
ðα2,σ2Þ,n2

ðq2ÞW 12
ðα3,σ3Þ,n3

ðq3Þγyn1 ,�q1
γn2,q2

γyn3,�q3

+W 22
ðα1 ,σ1Þ,n1

ðq1ÞW 12
ðα2,σ2Þ,n2

ðq2ÞW 12
ðα3,σ3Þ,n3

ðq3Þγyn1 ,�q1
γyn2,�q2

γyn3,�q3
:

ð17Þ
After putting the γ operators in normal ordering and ignoring the

linear terms that arise from this process, which is justified because of
the strong easy-axis anisotropy, we obtain

Vσ1σ2σ3
α1,α2,α3

ðq1,q2,q3Þβy
ðα1,�q1Þ,σ1

βðα2,q2Þ,σ2
βðα3,q3Þ,σ3

+ H.c.

=
X
fnig

~V
ð1Þ
n1n2n3

ðq1,q2,q3Þγyn1,�q1
γn2,q2

γn3,q3
+
X
fnig

~V
ð2Þ
n1n2n3

ðq1,q2,q3Þγyn1,�q1
γyn2,�q2

γyn3,�q3
+ H.c. ,

ð18Þ

where

~V
ð1Þ
n1n2n3

ðq1,q2,q3Þ
=
X
fαi ,σig

V σ1σ2σ3
α1 ,α2,α3

ðq1,q2,q3ÞW 22
ðα1 ,σ1Þ,n1

ðq1ÞW 11
ðα2,σ2Þ,n2

ðq2ÞW 11
ðα3,σ3Þ,n3

ðq3Þ

+V σ1σ2σ3
α1 ,α2,α3

ðq3,q2,q1ÞW 21
ðα1 ,σ1Þ,n3

ðq3ÞW 11
ðα2,σ2Þ,n2

ðq2ÞW 12
ðα3,σ3Þ,n1

ðq1Þ
+V σ1σ2σ3

α1 ,α2,α3
ðq2,q1,q3ÞW 21

ðα1 ,σ1Þ,n2
ðq2ÞW 12

ðα2,σ2Þ,n1
ðq1ÞW 11

ðα3,σ3Þ,n3
ðq3Þ

+V σ1σ2σ3*
α1 ,α2,α3

ð�q1,�q2,�q3ÞW 21*
ðα1 ,σ1Þ,n1

ð�q1ÞW 12*
ðα2,σ2Þ,n2

ð�q2ÞW 12*
ðα3,σ3Þ,n3

ð�q3Þ
+V σ1σ2σ3*

α1 ,α2,α3
ð�q3,�q2,�q1ÞW 22*

ðα1 ,σ1Þ,n3
ð�q3ÞW 12*

ðα2,σ2Þ,n2
ð�q2ÞW 11*

ðα3,σ3Þ,n1
ð�q1Þ

+V σ1σ2σ3*
α1 ,α2,α3

ð�q3,�q1,�q2ÞW 22*
ðα1 ,σ1Þ,n3

ð�q3ÞW 11*
ðα2,σ2Þ,n1

ð�q1ÞW 12*
ðα3,σ3Þ,n2

ð�q2Þ,

and

~V
ð2Þ
n1n2n3

ðq1,q2,q3Þ =
X
fαi ,σ ig

V σ1σ2σ3
α1 ,α2,α3

ðq1,q2,q3ÞW 22
ðα1 ,σ1Þ,n1

ðq1ÞW 12
ðα2,σ2Þ,n2

ðq2ÞW 12
ðα3,σ3Þ,n3

ðq3Þ

+V σ1σ2σ3*
α1 ,α2,α3

ð�q3,�q2,�q1ÞW 21*
ðα1 ,σ1Þ,n3

ð�q3ÞW 11*
ðα2,σ2Þ,n2

ð�q2ÞW 11*
ðα3,σ3Þ,n1

ð�q1Þ:
ð19Þ

The final form of the cubic interaction is obtained after symme-
trization of the vertex:

Hð3Þ =
1ffiffiffiffiffiffiffiffi
Nuc

p X
αa,qa 2 BZ

σa≠1

δ
X
a

qa � G

 !
1
2!
V ðS1Þ

n1n2n3
ðq1,q2,q3Þγyn1 ,�q1

γn2,q2
γn3,q3

�

+
1
3!

X
fni ,qig

~V
ðS2Þ
n1n2n3

ðq1,q2,q3Þγyn1 ,�q1
γyn2,�q2

γyn3,�q3

#
+ H.c. ,

ð20Þ
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where

~V
ðS1Þ
n1n2n3

ðq1,q2,q3Þ =
X
Pð2,3Þ

~V
ð1Þ
n1n2n3

ðq1,q2,q3Þ,

~V
ðS2Þ
n1n2n3

ðq1,q2,q3Þ =
X

Pð1,2,3Þ
~V
ð2Þ
n1n2n3

ðq1,q2,q3Þ,
ð21Þ

and P the permutation operator.
To compare with the inelastic neutron-scattering data, we com-

pute the dynamical spin structure factor at zero temperature,
Sμνðq,ωÞ= 2ΘðωÞχ 00μνðq,ωÞ, where Θ(ω) is the Heaviside step function
and χ 00μνðq,ωÞ is the imaginary part of the dynamical spin susceptibility

iχμνðq,ωÞ=
1
4

X
αβ

Z 1

0
dteiωt Sμα,qðtÞ,Sνβ,�qð0Þ

h iD E
, ð22Þ

where Sμα,q =N
�1=2
uc

P
re

�iq�rSμα,r . χμν(q,ω) was evaluated at zero mag-
netic field before24 at the linear level, i. e., without including the
effect of the interaction term Hð3Þ in Eq. (7). We note that the
longitudinal channel of the spin structure factor has only con-
tributions from the two-magnon continuum, which are negligibly
small for FeI2 because of the strong single-ion anisotropy. We
will then focus on the transverse response and on the effects
produced by the interactions between quasiparticles. The key
observation is that the kinematic conditions for magnon decay
become satisfied for certain ranges of magnetic field values, giving
rise to an intrinsic broadening or finite lifetime of the correspond-
ing quasiparticle.

To leading order in 1/M, the dynamical spin susceptibility is given
by

χμναβðq,ωÞ=M
X
mn

Sμ
1mðαÞ

Sμ
m1ðαÞ

 !T G0ðq,ωÞ �Gðq,ωÞ
Ĝðq,ωÞ G00ðq,ωÞ

 !
ðα,mÞðβ,nÞ

Sν
n1ðβÞ

Sν
1nðβÞ

� �
,

ð23Þ

where the 2 × 2 block matrix Gðq,ωÞ is the interacting single-particle
Green’s function determined by the Dyson equation

G�1ðq,ωÞ=G�1
0 ðq,ωÞ � Σðq,ωÞ: ð24Þ

The non-interacting single-particle Green’s function G0ðq,ωÞ is
given by

G0
0ðq,ωÞ �G0ðq,ωÞ

Ĝ0ðq,ωÞ G00
0ðq,ωÞ

 !
= �ðω+ i0+ ÞA+Hð2Þ	 
�1

, ð25Þ

where

A=
I8×8 0

0 �I8×8

� �
ð26Þ

and I8×8 is the 8 × 8 identity matrix. Given that Hð2Þ is of order M
and the energy scale of interest is ω ∝ (M)1, we obtain that G0 is
of order M−1, as it was mentioned in the previous section. The
single-particle self-energy, Σ(q,ω), is given by the two one-loop
diagrams:

that correspond to the self-energy corrections:

ΣðaÞ
n1
ðq,ωÞ = 1

2Nuc

X
k,n2n3

∣~V
ðS1Þ
n1n2n3

ð�q,k,q � kÞ∣
2

ω� εn2,k
� εn3,q�k + i0

+ , ð27Þ

and

ΣðbÞ
n1
ðq,ωÞ = � 1

2Nuc

X
k,n2n3

∣~V
ðS2Þ
n1n2n3

ð�q,k,q � kÞ∣
2

ω+ εn2,k
+ εn3,q�k � i0+ , ð28Þ

where εn,k is the linear spin-wave dispersion. Since we are working to
the leading order in 1/M, it is enough to just consider diagonal
elements where the initial and the final boson belong to the same
single-particle band. For each band, the self-energy is evaluated in the
on-shell approximation: ω= εn1 ,q

.

Diagonalization
To study the non-perturbative effect, e.g., the avoided-decay of exci-
tations observed at μ0H = 3T, we performed an exact diagonalization
(ED) study in the truncated subspace S1,2 with number of quasi-
particles ≤2 on a finite lattice of 5 × 5 × 5 unit cells (500 spins). As the
Hilbert space dimension becomes prohibitively large for ED if we
include states with three quasiparticles, our calculation only accounts
for 1-, 2-, and 4-magnon excitations. The excluded states have only
perturbative effects becauseof their higher-energy scales compared to
that of a single quasiparticle.

The subspace S1,2 is spanned by the basis f∣ii,∣i≤ j�g with ∣ii= γyi ∣;i
and ∣i≤ j

�
= ζ ijγ

y
i γ

y
j ∣;i, where i stands for the dictionary index of

ðni,qiÞ,∣;i refers to the vacuum of the γ-quasiparticles and ζi≠j = 1 and
ζ i= j = 1=

ffiffiffiffi
2!

p
are normalization factors. Introducing the projector P1,2

to the subspace S1,2, the restricted Hamiltonian is obtained by the
projection

P1,2HP1,2 =
H11 H12

h:c: H22

� �
, ð29Þ

with matrix elements

Hi,j
11 = δijεni ,qi

, Hi,j ≤ k
12 =

1ffiffiffiffiffiffiffiffi
Nuc

p V ðS1Þ
ni ,nj ,nk

ðqi,qj,qkÞζ j,k ,

Hi ≤ j,k ≤ l
22 = δikδjlðεni ,qi

+ εnj ,qj
Þζ 2ij +

1
Nuc

Uni ,nj ,nk ,nl
ðqi,qj,qk ,qlÞζ ijζ kl :

ð30Þ

Here, the function Uni ,nj ,nk ,nl
ðqi,qj ,qk ,qlÞ accounts for the inter-

action between γ-quasiparticles,

Hð4Þ =
1

2!2!Nuc

X
ijkl

δðqi +qj +qk +ql � GÞUni ,nj ,nk ,nl
ðqi,qj ,qk ,qlÞγyni ,�qi

γynj ,�qj
γnk ,qk

γnl ,ql
,

ð31Þ

where G is the reciprocal lattice vector. The diagonalization of
P1,2HP1,2 is done for a fixed center of mass momentum. It reveals that
the spectrum includes four energy levels below the two-particle
continuum with a strong 4-magnon character, which are identified as
the 4-magnon bound states.

The spectral weights carried by these excitations are revealed by
computing the dynamical spin structure factor within the subspace
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S1,2:

Sμνðq,ωÞ =
Z 1

�1
dteiωt

1
N

X
ij

e�iq�ðr j�r iÞ ; ∣Sμr j ðtÞS
ν
ri
ð0Þ∣;

D E

=
Z 1

�1
dteiωt

1
4

X
αβ

; ∣Sμα,qðtÞSνβ,�qð0Þ∣;
D E

,
ð32Þ

where N = 4Nuc is the total number of lattice sites, and

Sμα,qðtÞ = ð1=
ffiffiffiffiffiffiffiffi
Nuc

p
Þ
X
r2α

e�iq�rSμr ðtÞ ð33Þ

is the Fourier transform of the spin operators on the sublattice α. The
evaluation of this correlation function is carried out by using
the continued-fraction method43 based on the Lanczos algorithm44.
The lattice size employed here (5 × 5 × 5 unit cells) is large enough to
capture the 4-magnon bound states because their linear size is of the
order of one lattice space owing to the very large effective mass of the
two-magnon bound sates.

Data availability
The raw experimental data are stored on ORNL’s Neutron-Scattering
Division computers. The reduced experimental data and the theory
dataa are available from the corresponding authors under simple
requests.
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