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Spatial cellular architecture predicts
prognosis in glioblastoma

Yuanning Zheng 1, Francisco Carrillo-Perez 1,2, Marija Pizurica1,3,
Dieter Henrik Heiland 4,5 & Olivier Gevaert 1,6

Intra-tumoral heterogeneity and cell-state plasticity are key drivers for the
therapeutic resistance of glioblastoma. Here, we investigate the association
between spatial cellular organization and glioblastoma prognosis. Leveraging
single-cell RNA-seq and spatial transcriptomics data, we develop a deep
learning model to predict transcriptional subtypes of glioblastoma cells from
histology images. Employing this model, we phenotypically analyze 40million
tissue spots from 410 patients and identify consistent associations between
tumor architecture and prognosis across two independent cohorts. Patients
with poor prognosis exhibit higher proportions of tumor cells expressing a
hypoxia-induced transcriptional program. Furthermore, a clustering pattern
of astrocyte-like tumor cells is associated with worse prognosis, while dis-
persion and connection of the astrocytes with other transcriptional subtypes
correlate with decreased risk. To validate these results, we develop a separate
deep learning model that utilizes histology images to predict prognosis.
Applying this model to spatial transcriptomics data reveal survival-associated
regional gene expression programs. Overall, our study presents a scalable
approach to unravel the transcriptional heterogeneity of glioblastoma and
establishes a critical connection between spatial cellular architecture and
clinical outcomes.

Glioblastoma (GBM) represents the most common and aggressive
form of malignant tumor in the central nervous system, characterized
by a low five-year survival rate of 6.8%1. Despite advancements in
diagnostic techniques and treatment modalities, therapeutic resis-
tance and tumor recurrence continue to challenge clinical outcomes2.
One of the major obstacles precluding the development of effective
therapeutics is tumor heterogeneity3,4. Malignant cells demonstrate
differences in genetic lesions, epigenetic states, and gene expression
profiles5,6. In addition, tumors from different patients have distinct
cell-type compositions and spatial cellular organization. In the past
decade, studies based on single-cell RNA sequencing (scRNA-seq) have

guided our understanding of intra-tumoral heterogeneity5,7–11. GBM
cells span between fourmajor cellular states: (1) neural-progenitor-like
(NPC-like), (2) oligodendrocyte-progenitor-like (OPC-like), (3)
astrocyte-like (AC-like), and (4) mesenchymal-like (MES-like)5. Inte-
grated analysis of GBM and normal developmental brains revealed
conserved trilineage differentiation hierarchy of GBM cells that mirror
normal neurodevelopment10.

While scRNA-seq can profile transcriptomes of thousands of cells
in a single experiment, it only provides indirect inference of cell-to-cell
interactions due to the loss of spatial information. In brain malig-
nancies, cellular interactions and tumor architecture are key factors
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driving the clonal evolution, tumor progression and therapeutic
resistance12–15. Recent advancements of spatial transcriptomics tech-
nologies have enabled in situ transcriptomeprofiling without the need
for tissue dissociation. This provides a unique opportunity to decipher
how malignant cells are spatially organized and interact with their
immediate microenvironment. Recent studies based on spatial tran-
scriptomics have revealed spatial localization of GBM cells with dis-
tinct transcriptional phenotypes16–18.

Although scRNA-seq and spatial transcriptomics enable us to
decipher tumor compositions, these technologies are expensive,
require specialized expertise, and are not included as a routine assay
for cancer diagnosis, which restricts their clinical applications. There-
fore, how cellular composition and spatial architecture contribute to
patient prognosis has not been completely resolved. Compared to
transcriptomeprofiling on the other hand, histology images arewidely
available and easier to obtain. In addition, the recent advancement in
digital profiling of whole-slide images (WSIs) has enabled the genera-
tion of high-resolution cellular maps of tumors from large patient
cohorts19. These technical advances have motivated studies that use
deep learning to automate clinical diagnosis20,21, detect metastasis22,
quantify immune-infiltrating cells23,24, classify cancer subtypes and
predict tumor grade25,26. Some others used it for predictions of mole-
cular traits, such as gene expression27, mutations28, copy number
alterations29 and hormone receptor status30. Since molecular profiles
are known to shape cell morphological features, we hypothesize that
the transcriptional subtypes of malignant cells can be inferred from
histology images, and this will enable us to computationally recon-
struct cellular maps with informed transcriptional subtypes and link
spatial cellular architectures to clinical outcomes.

In this study, we utilize a reciprocal approach to investigate the
effect of transcriptional subtype compositions and spatial cellular
organization on GBM prognosis. Firstly, we develop a deep learning
model capable of predicting the transcriptional subtypes ofmalignant
cells based on histology images. The model is trained using spatial
transcriptomics data and validated in external testing cohorts. Lever-
aging histology images from 410 patients, we phenotypically analyze
40 million tissue spots and identify consistent associations between
tumor architecture and prognosis across two independent GBM
cohorts. Additionally, we train a separate deep learning model that
leverages histology images to predict prognosis. Applying this model
to spatial transcriptomics data lead to the identification of survival-
associated regional gene expression programs. Finally, we develop a
user-friendly software, named GBM360, that allows users to char-
acterize tissue compositions and spatial cellular organization of new
GBM cases. Although the current study focuses on GBM, the multi-
modal data integration framework presented here is scalable to other
diseases.

Results
Identifications of spatially resolved transcriptional subtypes
To resolve the transcriptional heterogeneity of GBMwithin the spatial
context, we performed an integrative analysis of three spatial tran-
scriptomics datasets (Supplementary Data 1)16,18. The integrated data-
set comprised 23 GBM samples obtained from 22 patients. Each
sample contains 2500 ~4702 gene expression spots, resulting in 75,625
transcriptomes. Data preprocessing and batch-effect normalization
were described in the “Methods” section. To determine the number of
cells in each spot, we performed nuclei segmentation on histology
images. The cell count ranged from3 to 38, with an average count of 13
cells (Supplementary Fig. 1a). To determine genomic abnormalities of
the GBM samples, we inferred copy number alterations (CNAs) using
the transcriptomics profile of each spot, where data from a separate
cohort of normal brain tissues (n = 6 tissues from3 patients)were used
as a reference31. Tumor samples demonstrated broad CNAs across
chromosomes, including gains of Chr 6, Chr 7 and loss of Chr 8, Chr 10

and Chr14 (Fig. 1a and Supplementary Fig. 1b). Since GBM cells are
highly infiltrative, each spot may contain a mixture of tumor cells and
normal brain tissues. To estimate the tumor cell content within each
spot, we first designated a prominent CNA event that shared across all
the spots in each tumor as tumor signature CNA. The tumor cell con-
tent was then estimated based on the score of the CNA signature
(“Methods”). At least three signature events were calculated in each
tumor to ensure robust and unbiased estimations. We found that our
approach was able to distinguish tumor regions versus histologically
normal peripheral tissues (Supplementary Figs. 1c, d). Therefore, we
used CNA-based estimation of tumor cell contents to filter malignant
spots, while spotswith low (<20%) tumor cell content were removed in
our subsequent analysis.

To identify transcriptional subtypes of the malignant spots, we
employed two complementary approaches. First, we performed con-
sensus non-negative matrix factorization (cNMF)32 using tran-
scriptomes frommalignant spots to identify recurrent gene expression
modules across the patients. Second, we performed computational
deconvolution of the spots using data from single-cell RNA-seq as
references. Through the cNMF analysis, we discovered five distinct
meta-gene modules (Fig. 1b and Supplementary Data 2). To differ-
entiate these modules from the published single-cell RNA-seq
modules5, we named each of them as “nmf.x” (e.g., nmf.NPC). The first
two modules were associated with neuronal lineage development and
synaptic functions (Fig. 1b and Supplementary Figs. 2a, b). Module #1
was enriched with markers for neural progenitor cells (SNAP25, CD24
and SYN1)33, while module #2 was strongly associated with oligoden-
drocyte progenitors (PLP1, CNP, MBP)6,8. Therefore, we designated
module #1 as nmf.NPC and module #2 as nmf.OPC. Module #3
exhibited co-expression of astrocytic markers (GFAP and APOC1)6 and
genes involved in antigen processing and inflammatory response (e.g.,
HLA-DRA, B2M, and CD74) (Fig. 1b and Supplementary Fig. 2c). This co-
expression pattern likely reflects the reactive transformation of
astrocytes34–36. Therefore, we named module #3 as nmf.RA (reactive
astrocytes). The remaining two modules, #4 and #5, were enriched
with mesenchymal (MES)-related genes, such as VIM and COL6A1
(Fig. 1b). Module #4 demonstrated enrichment in glycolytic process
(GAPDH, PGK1, LDHA) and hypoxia response (VEGFA, HILPDA, ADM)
(Supplementary Fig. 2d), hence named as nmf.MES-hypoxia. On the
other hand,module #5was enrichedwith genes encoding extracellular
matrix (COL6A1, FN1, MMP9), but lacked hypoxia signatures, and was
designated as nmf.MES-like (Supplementary Fig. 2e).

To assess how the cNMF modules were related to published
transcriptional modules in GBM, we performed spatially weighted
correlation analyses. We first compared each cNMF module to the
modules defined in a spatial transcriptomics study by Ravi et al. 16 As
expected, we observed strong correlations between the nmf.NPC
and nmf.OPC modules with the Regional.NPC and Regional.OPC
modules, respectively (Fig. 1c, P < 0.001). The nmf.RA correlated
with both the Radial.Glia (P < 0.001) and Reactive.Immune (P < 0.01)
modules. This overlap is expected due to the close relationship
identified between the Radial.Glia and Reactive.Immunemodules in
the original study16. The nmf.MES-like and nmf.MES-hypoxia mod-
ules were significantly correlated with the Reactive.Immune and
Reactive.Hypoxia module, respectively (Fig. 1c). To provide addi-
tional validation, we further compared our modules to those
defined from a single-cell RNA-seq study by Neftel et al. 5 The
nmf.NPC, nmf.OPC, and nmf.RA modules demonstrated strong
correlations with the NPClike, OPClike and AClike modules,
respectively (Fig. 1d). Similarly, the nmf.MES-like and nmf.MES-
hypoixa modules were strongly correlated with the MESlike1 and
MESlike2 modules, with the nmf.MES-hypoixa module specifically
correlatedwith theMESlike2module. Notably, theMESlike2module
identified by Neftel et al. was also enriched with hypoxia-response
genes, demonstrating the strong relationship between the cNMF
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modules and those derived from single-cell RNA-seq. By analyzing
the transcriptional subtypes of spots determined by the top-scoring
cNMF module, we discovered that each tumor harbored multiple
transcriptional subtypes (Fig. 1e). Spots of different subtypes were
localized within distinct spatially segmented regions (Fig. 1f). These
observations highlight the transcriptional diversity and spatial
heterogeneity within GBM tumors.

Next, we performed deconvolution analysis to estimate the frac-
tion of different GBM cell types with the malignant spots using data
from single-cell RNA-seq (Fig. 1g and “Methods”). To capture both
tumor cells and immune cells, we integrated three single-cell RNA-seq
datasets as references: GSE131928, GSE163108, and GSE84465 (Sup-
plementary Data 1)5,11,37. For tumor cells, we included four transcrip-
tional subtypes from the reference: (1) NPClike, (2) OPClike, (3) AClike,
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(4) MESlike. The MESlike cells were further classified into hypoxia-
dependent (MEShypoxia) and hypoxia-independent (MESlike) groups
based on the expression of hypoxia-response genes (e.g., HILPDA,
VEGFA) and glycolytic genes (e.g., GAPDH, LDHA)5. For immune cells,
we focused on T cells and macrophages. Details of the deconvolution
analysis and validation of the results can be found in the “Methods”
section (Supplementary Figs. 1e, f). Based on our deconvolution ana-
lysis, we found that the composition of tumor cells was relatively
homogenous within individual spots. In most spots, the dominate
tumor cell type accounted for over 70% of all tumor cells (Fig. 1h).
Notably, approximately 30% of the spots consisted exclusively of one
tumor cell type (Fig. 1h). Analysis of the immune cell distributions
showed that 49% of the spots contained one immune cell type, and
approximately 8% of the spots consisted of a mixture of both T cells
and macrophages (Fig. 1i). Overall, the spots classified as nmf.NPC,
nmf.OPC, nmf.RA, nmf.MES-like, nmf.MES-hypoxia were enriched with
NPClike, OPClike, AClike, MESlike and MEShypoxia cells, respectively
(Fig. 1j). In addition, the nmf.RA spots had increased macrophage
infiltration compared to the other spots, while the nmf.MESlike spots
had increased proportions of T cells. These results demonstrated that
a single spot was typically dominated by one tumor cell type, while the
tumor cells were frequently mixed with immune cells.

Transcriptional subtypes can be predicted from histology
images
Since gene expression features are known to shape cell morphol-
ogy, we hypothesized that the cell-type distribution can be inferred
from histology images. We developed GBM-CNN, a convolution
neural network for image classification (Fig. 2a). The input to GBM-
CNN were patches extracted from hematoxylin-eosin (H&E)-stained
histology images. The edge length (56 μm) of one patch was roughly
equal to the diameter (55 μm) of one gene expression spot in spatial
transcriptomics. The output was cell types present in each patch.
We formulated the problem as a multi-label classification task. For
predicting tumor cells, since each spot was predominately occupied
by only one cell type (Fig. 1h), we aimed at predicting the dominant
type of tumor cells in each patch. For immune cells, since both
T cells and macrophages were frequently mixed with tumor cells
(Fig. 1i, j), we included them as independent labels. To assess the
performance of GBM-CNN, we carried out leave-one-out cross-
validation (LOOCV) using data from the spatial transcriptomics
cohort (n = 23 tumors; n = 69,647 spots). In each iteration, the
model was trained on spots from 22 tumors, while spots from the
remaining tumor (n = 1) were reserved for held-out validation. To
prevent overfitting, the model architecture and associated hyper-
parameters remained consistent across all iterations (“Methods”).
After each iteration, we evaluated the model’s performance on the
validation sample. For predicting tumor cells, the F1 score was 0.86,
and the standard deviation (SD) was 0.15 (Fig. 2b). The area under
the receiver operating characteristic curve (AUROC) was 0.93 and
the SD was 0.05 (Supplementary Fig. 3a). Spatial visualization
showed that the model accurately predicted the distribution of

dominant cell types in even the most heterogenous tumors within
the cohort (Supplementary Fig. 3b). To assess whether the domi-
nant tumor cell type correlated with any histological features, we
extracted the color values of each image channel, along with the
texture and histogram features from the H&E images (“Methods”).
Our analysis showed that the extracted image features varied across
different samples (Supplementary Fig. 3c). However, when we per-
formed the same analysis on the feature vector (2048 × 1) extracted
from the last layer of the ResNet50 module (Fig. 2a), we observed a
strong correlation between the resulting clusters and the tran-
scriptional subtypes in the validation samples (Supplementary
Fig. 3d). These results indicated that GBM-CNN learned latent
representations of the transcriptional subtypes beyond raw histo-
logical features.

We next assessed the performance of GBM-CNN in predicting
immune cells. Since T cells and macrophages were treated as inde-
pendent labels, we assessed the sensitivity and specificity for each cell
type separately (Fig. 2c, d). For predicting T cells, the sensitivity was
0.80 (SD: 0.08), specificity was 0.83 (SD: 0.05), and AUROC was 0.80
(SD: 0.08) (Fig. 2c and Supplementary Fig. 3e). For predicting macro-
phages, the sensitivity was 0.84 (SD: 0.09), specificity was 0.81 (SD:
0.07), and AUROC was 0.89 (SD: 0.11) (Fig. 2d and Supplementary
Fig. 3f). These results demonstrated that the GBM-CNN was able to
accurately predict the subtypes of tumor cells and the presence of
immune cells from histology images.

To test whether the classification performance of GBM-CNN can
be generalized to external patient cohorts, we applied the image
model to whole-slide images (WSIs) from the IvyGap cohort
(n = 184 slides from n = 8 patients)38 and the TCGA-GBM cohort
(n = 693 slides from 312 patients)39. The IvyGap cohort included data
from in-situ RNA hybridization for 343 GBM-related genes and their
adjacent H&E-stained histology sections.We expected that tumor cells
assignedwith a specific transcriptional subtype fromGBM-CNN should
have high messenger RNA (mRNA) expression levels (i.e., ground
truth) for the corresponding cell-type signatures. As shown in Fig. 2e, f,
tumor regions classified as “MESlike” showed high mRNA expression
levels of the MES-related signatures, such as COL4A1, PDPN. In addi-
tion, regions classified as “MES-hypoxia” alignedwith the expression of
HIF1A. Similarly, regions classified as “NPC-like” and “OPC-like” were
associated with the expression of SNAP25 and OLIG2, respectively.
Regions classified as “AC-like”displayed elevated expression of PTPRZ1
and EGFR, and regions with macrophage infiltration aligned with the
expression of CD163 (Fig. 2f).

To further validate GBM-CNN, we predicted the transcriptional
subtypes of tumor cells usingWSIs from the TCGA-GBMcohort39. Each
tumor was composed of three to five transcriptional subtypes, with
76.2% of the tumors consisting of all five subtypes (Fig. 2g, h and
Supplementary Fig. 3g). Although spatial transcriptomics data were
not available for this cohort, we estimated transcriptional subtype
proportions of each tumor by computationally deconvoluting the
matched bulk RNA-seq data (“Methods”). Since bulk RNA-seq and
histology images are independent modalities, we could validate our

Fig. 1 | Identifications of spatial gene expression programs in GBM. aHeatmaps
showing the tumor cell content across different spots and corresponding CNAs
across different chromosomes in a representative sample. b Heatmap showing
gene expression levels of the top60 signatures fromeach cNMFmodule.Malignant
spots (n = 69, 647) from all samples (n = 23) were grouped by the expression score
of each module. c, d Heatmaps showing the average correlation coefficients
(n = 23 samples) from spatially weighted correlation analysis between the cNMF
modules (x-axis) and published modules from (c) Ravi et al. 16 and (d) Neftel et al. 5

Two-sided Wald tests were used to determine statistical significance, and P values
were adjusted for multiple testing using the Benjamini-Hochberg procedure.
*P <0.05, **P <0.01, ***P <0.001. e Stacked bar plot showing the fractions of dif-
ferent transcriptional subtypes in each sample. Transcriptional subtype was

determined using the top-scoring cNMFmodule in each spot. f spatial visualization
showing the distribution of transcriptional subtypes in two example tumors. Spots
were colored by transcriptional subtypes as indicated in panel e. g Pipeline for
computational deconvolution of spots using single-cell RNA-seq data as reference:
I. UMAP visualization of the reference single-cell RNA-seq data. Eachdot represents
a cell colored by the subtype; II. cell count estimation of each spot based on nuclei
segmentation; III. Align cell types from the reference dataset to spots. hHistogram
showing the fraction of dominant tumor cell type over all tumor cells in each spot
(total n = 69, 647 spots; n = 23 samples). i The number of immune cell types in each
spot (total n = 69, 647 spots; n = 23 samples). j The average fraction (x-axis) of each
individual cell type from the single-cell RNA-seq data in spots classified by cNMF
modules (y-axis). Source data are provided as a Source Data file.
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image model by comparing the subtype composition estimated from
RNA-seq deconvolution versus our image predictions. Remarkably, we
observed a significant correlation between the transcriptional subtype
proportions estimated from bulk RNA-seq deconvolution and those
predicted by our image model (Fig. 2g, h, i). These results indicated
that the transcriptional subtypes of malignant cells can be predicted
from histology images with GBM-CNN.

Associations between the transcriptional subtype composition
and prognosis
To assess how the predicted transcriptional subtype composition was
associated with prognosis, we used diagnostic slides from patients of
the TCGA cohort39 as the discovery cohort, and slides from the CPTAC
cohort40 as the validation cohort (Supplementary Data 1). Since the
absolute size for the resected tumor region varied across patients, the
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downstream analysis of tissue compositions may lead bias to tumors
with large resections. To overcome this potential sampling bias, we
implemented two strategies. First, we ranked the tumors in each
cohort based on their number of patches (indicating tissue size) and
removed the bottom 5% tumors with the smallest number of patches.
Second, we included gender, age, IDH status, and tissue size as cov-
ariates in our Cox regression analysis. Following this rigorous filtering
strategy, we obtained a final set of 693 slides (n = 312 patients) in the
TCGA cohort and 227 slides (n = 98 patients) in the CPTAC cohort. Our
multivariate Cox regression analysis showed that samples with a high
proportion of patches classified asMES-hypoxiawere associatedwith a
worse prognosis (Table 1). In the TCGA cohort, the hazard ratio (HR)
for the MES-hypoxia subtype was 2.06 (P =0.008), and in the CPTAC
cohort was 2.23 (P = 0.01). Moreover, the proportion of NPC-like sub-
type was associated with a better prognosis in both cohorts, although
these associations did not reach statistical significance.

Associations between spatial cellular architecture and
prognosis
The results presented so far have linked transcriptional subtype
compositions to patient prognosis. However, since spatial organiza-
tion and cellular interactions play critical roles in driving clonal evo-
lution, tumor progression and therapeutic resistance12–15, we sought to
assess how the spatial distribution of malignant cells contributes to
prognosis. To characterize the spatial cellular organization, we first
constructed a spatial neighborhood graph to represent cell commu-
nities within each tumor (Fig. 3a). In this graph, each patch was a node
and edges represented direct connections between patches. The
phenotype of each node was the predicted transcriptional subtype
represented by the dominant tumor cell type in each patch. To ensure
unbiased exploration of the spatial cellular organization and its asso-
ciation with prognosis, we included subtype proportions as covariates
in our survival analysis.

We first assessed how the frequency of interactions between dif-
ferent transcriptional subtypes contributed to prognosis. Our results
revealed that an increased connectivity between AC-like subtypes
corresponded to an increased risk (Fig. 3b, c and Fig. 3d, e, TCGA:
HR = 3.70, P <0.01; CPTAC: HR = 3.32, P <0.01). Conversely, when the

AC-like subtype was connected with other subtypes, such as NPC-like,
MES-like, and MES-hypoxia, the risk was decreased (Fig. 3b, c and
Fig. 3f, g). To further confirm these results, we examined the clustering
coefficient, which indicates the degree to which the same transcrip-
tional subtype clusters together in the spatial neighborhood graph
(“Methods”). We found that a higher clustering coefficient for the AC-
like subtype was associated with a poorer prognosis (Table 2, TCGA:
HR = 3.82, P = 0.004; CPTAC: HR = 3.96, P =0.009). Notably, the pro-
portion of the AC-like subtype alone was not a significant predictor of
prognosis (Table 1), highlighting the value of spatial relationships
over abundance alone.

Furthermore, our analysis revealed that a higher interaction
between the OPC-like and MES-hypoxia subtypes was strongly asso-
ciated with a poorer prognosis in both cohorts (Fig. 3b, c and Fig. 3h, i,
TCGA: HR = 4.30, P <0.001; CPTAC: HR = 4.82, P < 0.001). Overall,
these findings underscored the significance of spatial interactions
between transcriptional subtypes in affecting patient prognosis.

In situ identifications of gene expression markers associated
with prognosis
The results presented so far have established a connection between
transcriptional subtype compositions and spatial architecture with
patient prognosis. To further explore spatial gene expression pro-
grams associated with prognosis, we developed a separate deep
learning model that used histology images to predict prognosis
(Fig.4a). The model aimed at assigning an aggressive score to each
patch, where higher scores contributing to a worse prognosis. We
evaluated the model’s performance through a five-fold cross-valida-
tion using data from the TCGA-GBM cohort (n = 693 slides from
n = 312 patients). Additionally, we tested the model trained on the
TCGA cohort on the CPTAC cohort (n = 227 slides from n = 98
patients). To assess the accuracy of the model, we derived a compo-
site score (CS) that combined the concordance index (C-index)41,42

and integrated brier scores43,44 (“Methods”). The CS ranges from 0.0
to 1.0, with higher values indicating more accurate predictions. In the
TCGA cohort, the model achieved a CS of 0.74 (SD: 0.03). Further-
more, we divided the patients into a high-risk and a low-risk group
using the median predicted score. Patients in the high-risk group
showed significantly worse prognosis compared to patients in the
low-risk group (Supplementary Fig. 4a, log-rank test, P = 2.47E-07). To
benchmark the model’s performance, we compared it to a baseline
model, where aggressive scores were predicted by a random,
untrained model with the same architecture. The CS for the trained
model was significantly higher than that of the baseline model (Sup-
plementary Fig. 4b, Mann-Whitney U test, P = 0.004). Similarly, in the
CPTAC testing cohort, the model achieved a CS of 0.75, and patients
assigned with high aggressive scores had significantly worse prog-
nosis compared to those with low aggressive scores (Supplementary
Fig. 4c, log-rank test, P = 0.03).

To identify survival-associated spatial gene expression programs,
we next used the trained prognostic model to predict an aggressive
score for each spot (n = 69,647) in the spatial transcriptomics cohort

Fig. 2 | Development and validation of GBM-CNN for spatially resolved tran-
scriptional subtype prediction. a Architecture of GBM-CNN. Histology images
were cropped to extract patches corresponding to each spot. Each patch was then
transformed into a feature vector (2048 × 1) using a ResNet-50 module. Subse-
quently, each feature vector was mapped to a probability vector (8 × 1) through a
fully connected layer. The cell-type cartoons were created with BioRender.com.
b Confusion matrix showing the classification performance of GBM-CNN in pre-
dicting the dominant tumor cell type. Predictions from all folds (n = 23) were
averaged into a single matrix. c, d Confusion matrices showing the classification
performance of GBM-CNN in predicting the presence of (c) T cell and (d) macro-
phage. e, fAlignment of ground truth gene expression signals obtained from in situ

RNA hybridization and the predicted probability scores of individual cell types in
matched histological sections. Examples from two different tumors were pre-
sented. g, hH&E images and the predicted distribution of transcriptional subtypes
in two tumors from the TCGA cohort. Bar graphs depict transcriptional subtype
proportions derived from the image prediction versus bulk RNA-seq deconvolu-
tion. iHeatmap of Pearson correlation coefficient showing the agreement between
transcriptional subtype proportions derived from our image predictions versus
those estimated from bulk RNA-seq deconvolution (n = 166 patients). P valueswere
determined using the two-sided Pearson correlation test and were adjusted by the
Benjamini-Hochberg procedure. **P <0.01, ***P <0.001. Source data are provided
as a Source Data file.

Table 1 | Cox regression analysis showing the effect of sub-
type proportions on prognosis

TCGA (n = 312 patients) CPTAC (n = 98 patients)

Transcriptional
subtype

HR 95% Cl P HR 95% Cl P

NPC-like 0.72 0.43-1.21 0.22 0.69 0.25–1.90 0.48

OPC-like 0.80 0.46-1.42 0.45 1.54 0.75–3.19 0.24

AC-like 1.25 0.95-1.36 0.80 0.78 0.65-1.20 0.87

MES-like 0.88 0.47-1.62 0.68 0.89 0.76-1.02 0.81

MES-hypoxia 2.06 1.04–4.06 0.008** 2.23 1.08–3.49 0.01*

HR: hazard ratio; CI: confidence interval. *P < 0.05; **P < 0.01.
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using the paired histology images (Fig. 4b). Our analysis revealed that
the aggressive scores were significantly different between transcrip-
tional subtypes (Fig. 4c–e). The MES-hypoxia subtype was assigned
with the highest aggressive scores, followed by the reactive astrocytes,

MES-like, NPC-like, and OPC-like cells (Fig. 4e). To identify genes
associatedwith prognosis, we divided all spots using themedian score
of this cohort, and spots assigned with high scores were compared to
those with low scores. We discovered 4,569 genes that were

Fig. 3 | Associations between spatial cellular architecture and prognosis.
a Schematic representation of a spatial neighborhoodgraph. Eachpatch represents
a node and connections between patches are edges. b, c Hazard ratio (HR) for
frequency of transcriptional subtype interactions and prognosis using data from
the (b) TCGA (n = 312 patients) and (c) CPTAC (n = 98 patients) cohorts. Statistical
significance was determined using multivariate Cox regression analysis, and sig-
nificant associations were highlighted by red for HR>0 and blue for HR<0.
*P <0.05, **P <0.01, ***P <0.001. d, e Representative tumor samples with high
clustering coefficient (CC) of the AC-like subtype. Spots were colored by tran-
scriptional subtypes. Abstractive networks demonstrate tumor regions character-
ized by clusters of AC-like spots, as indicated by white arrows. f, g Representative

tumor samples with low clustering coefficient (CC) of the AC-like subtype. Spots
were colored by transcriptional subtype. Abstractive networks highlighted the
interactions between the AC-like subtype and other subtypes, such as NPC-like,
MES-like and MES-hypoxia. h Representative tumor sample with a high frequency
of interaction between the OPC-like and MES-hypoxia subtype. i Kaplan-Meier
survival curves of TCGA patients with high (n = 156) and low (n = 156) interactions
between the OPC-like and MES-hypoxia subtypes. Error bands represent con-
fidence intervals for the estimated survival probabilities, and the survival curves are
compared with the log-rank test (P =0.01). Source data are provided as a Source
Data file.
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significantly upregulated in regions with high aggressiveness (Fig. 4f
and Supplementary Data 3, log2FC >0.25, P <0.01) and 1,984 genes
significantly upregulated in regions with low aggressiveness (Supple-
mentary Data 4, log2FC >0.25, P <0.01). Gene set analysis showed
genes related to high aggressiveness (Fig. 4g) were involved in the
regulation of injury response (SOD2, TNR, PTN), glycoprotein meta-
bolic process (MT3, RAMP1, CST3), antigen processing (AZGP1, CD74,
HLA-DRA), response to oxidative stress (RHOB, PON2, AQO1), and
gliogenesis (PTPRZ1, GFAP, SOX4). On the other hand, genes related to
low aggressiveness (Fig. 4h) were associated with neuronal develop-
ment, including neural nucleus development (MBP, CALM1, CNP), oli-
godendrocyte differentiation (PLP1, OPALIN, MAG), neurotransmitter
transport (SNAP25, SYT1, SLC17A7) and axon development (STMN1,
UCHL1, CCK). Some genes were known to be associated with GBM
prognosis, such as PTPRZ145 and EGFR46. However, we identified many
other genes that were previously unknown, such as SNRPD3, TPST1 and
GUCD1. These data demonstrated that the reactive transformations of
malignant cells in response to hypoxic environment and inflammatory
stimuli contributed to a worse prognosis.

Software for predictions of spatial transcriptional subtypes and
aggressiveness
To make our trained image models accessible for future research, we
developed GBM360 (https://gbm360.stanford.edu), a user-friendly
software for the prediction and visualization of transcriptional sub-
types and prognosis in GBM histology images (Fig. 5a). With GBM360,
users can uploadH&E histology images in the svs or tiff format (Fig. 5b,
c). The software offers three key functionalities: (1) predicting tran-
scriptional subtypes of GBM cells from histology images and visualiz-
ing the resulting spatial cellular maps (Figs. 5d), (2) predicting and
visualizing regional aggressive scores (Figs. 5e), and (3) performing
various statistical analysis for characterizing transcriptional subtype
compositions, spatial cellular organization and subtype interactions
(Fig. 5f, g, h).

Discussion
The emerging spatial transcriptomic technologies have enabled tran-
scriptomic profiling while preserving the tissue architecture. In addi-
tion, high-resolution histology images are readily available in spatial
transcriptomics, providing a key opportunity for the integration of
molecular characteristics and histological features. Here, we inte-
grated data from single-cell RNA-seq, spatial transcriptomics and his-
tology images to resolve the spatial cellular heterogeneity in GBM. The
results presented have the potential to improve our understanding of
howspatial cellular architecturewas associatedwithpatient prognosis.

In the past decade, deep learning-based computational approa-
ches have demonstrated great potentials in revolutionizing tumor
diagnosis. A number of deep learning algorithms, such as convolu-
tional neural networks (CNNs), have been trained to extract intricate
patterns and features from H&E histology sections. These algorithms
have shown effectiveness in various aspects of tumor diagnosis,

including tumor grading, subtyping, and prediction of patient
outcomes20–26. To obtain deeper biological insights from histology
images, subsequent studies have applied deep learning to predict
molecular traits, such as gene expression27, mutations28, copy number
alterations29 and hormone receptor status30. He et al. developed ST-
Net, a CNN-based algorithm, to predict the expression of spatially
variable genes in breast cancer using histology images47. Subsequent
work by Zeng et al. applied Vision Transformer-based deep learning
models to predict spatial gene expression in breast cancer48. Despite
the importance of predicting transcription levels of individual genes, it
is also critical to consider the interactions of genes within modules,
where a group of functionally related genes collectively define the
transcriptional states of malignant cells. In the current study, we
integrateddata fromsingle-cell RNA-seq and spatial transcriptomics to
identify spatially resolved gene expression programs in GBM. Our
analysis based on the cNMF lead to the discovery of five meta-gene
modules, including NPC-like, OPC-like, reactive astrocytes, MES-like,
and MES-hypoxia. Comparative analysis of the top-scoring signatures
with published gene expression modules showed that the detected
cNMFmodules were congruent with the existing classification of GBM
cells5,8,10,37,49.

Despite the rapid development of the spatial technologies, their
application as routine diagnostic assay is limited by their high costs
and the requirement of specialized expertise. In contrast, histology
images are widely available and cheaper to obtain. In this study, we
tested whether the transcriptional subtypes of GBM cells could be
inferred fromhistology images. To tackle this challenge, we developed
GBM-CNN, a deep-learning model that uses histology images to pre-
dict the transcriptional subtypes of GBM cells. The model was trained
and evaluated using spatial transcriptomics data and subsequently
validated in external testing cohorts. Using GBM-CNN, we phenotyped
over 40 million tissue spots from 920 whole-slide images across two
independent cohorts, enabling the computational reconstruction of
high-resolution cellular maps in 410 GBM patients. Our analysis
revealed that each tumor was composed of three to five malignant
transcriptional subtypes, with over 75% of the tumors consisted of all
five transcriptional subtypes, highlighting the intra-tumoral cell-state
heterogeneity. Integrating the predicted cellular maps with clinical
data led to the discovery of survival-associated spatial cellular com-
positions. Notably, a higher proportion of the MES-hypoxia subtype
correlated with a worse prognosis. This result is supported by recent
studies showing that the hypoxic environment drives metabolic
alterations of tumor cells, leading to the accumulation of genomic
instabilities and epigenetic disorders, ultimately driving increased
aggressiveness and therapeutic resistance50–52. By enabling automated
detection of hypoxic regions in histology images, our model holds the
potential to enhance diagnosis and facilitate personalized treatment
strategies.

In addition to the composition of transcriptional subtypes, the
spatial cellular organization plays a critical role in driving clonal evo-
lution, tumor progression, and therapeutic resistance12–15. Through the
analysis of transcriptional subtype interactions and clustering coeffi-
cient, we found that a clustering pattern of the AC-like tumor cells was
associated with poor patient prognosis. Conversely, when the AC-like
tumor cells were dispersed and connected to the other subtypes, the
prognosis was improved. In line with this result, a recent biological
study showed that the GFAP+ astrocytoma cells frequently form ultra-
longmembrane protrusions, known as tumormicrotubes (TMs)12. TMs
connect astrocytoma cells with each other, leading to the formation of
multicellular anatomical networks12. In vivo studies showed that the
microtube-connected cellular networks are resistant to the cytotoxic
effects of radiotherapy12. In response to radiotherapy, microtube-
connected cells are protected from cell death, while unconnected cells
die in relevant numbers. In our results, the highly clustered reactive
astrocytes may represent the radioprotective, microtube-connected

Table 2 | Cox regression analysis showing the effect of clus-
tering coefficient on prognosis

TCGA (n = 312 patients) CPTAC (n = 98 patients)

Transcriptional
subtype

HR 95% Cl P HR 95% Cl P

NPC-like 1.02 0.50-1.35 0.44 0.79 0.27–2.35 0.68

OPC-like 0.81 0.69-1.21 0.37 0.64 0.20–2.04 0.45

AC-like 3.82 1.28–4.86 0.004** 3.96 1.54–5.02 0.009**

MES-like 1.61 0.83–3.10 0.16 1.04 0.41–2.62 0.93

MES-hypoxia 0.51 0.24-1.20 0.12 0.97 0.52-1.78 0.29

HR hazard ratio, CI confidence interval. **P < 0.01.

Article https://doi.org/10.1038/s41467-023-39933-0

Nature Communications |         (2023) 14:4122 8

https://gbm360.stanford.edu


astrocyte cellular networks. The presented results have the potential
to improve our understanding of how the spatial cellular organization
contributes to tumor evolution and disease progression.

To further identify survival-associated transcriptional programs,
we developed a separate deep learning model that uses histology
images to predict prognosis. The model was trained on the TCGA
cohort and further tested in the CPTAC cohort. Applying the trained

model to paired histology images of the spatial transcriptomics led to
the identification of regional gene expression programs associated
with prognosis.We identifiedboth knowngene expressionmarkers for
GBM prognosis, such as PTPRZ145 and EGFR46, as well as markers that
were previously uninvestigated, such as SNRPD3, TPST1 and GUCD1.
Overall, genes upregulated in high-aggressive regions were related to
glycoprotein metabolism, antigen processing and response to axon
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injury. These results were congruent with our observations that the
reactive transformation of malignant cells in response to metabolic
and inflammatory stimuli was associated with a worse prognosis.

Limitations include the resolution for classifications of transcrip-
tional subtypes at both the cellular and spatial dimensions. Due to the
limitations of platform sensitivity, ourmodel predicted transcriptional
subtypes at a patch level rather than at a single-cell level. While our
deconvolution analysis revealed that each spot was predominantly
occupied by one tumor cell type, it is important to note that the tumor
cells were often intermixed with immune cells, such as T cells and
macrophages. Previous studies utilizing image cytometry and single-
cell RNA-seq have identified the existence of distinct subsets of T cells
and macrophages within the tumor microenvironment11,53. Notably,
different immune cell subsets exhibited distinct functions in regulat-
ing tumor progression54. However, due to the trade-off between
resolution and accuracy, we did not differentiate between different
subsets of these immune cells in our deconvolution analysis. Conse-
quently, our prognosis analysis was limited to tumor cells without
considering the contribution of these immune cells. Future investiga-
tions into the interactions between tumor cells and immune cells will
substantiate our understanding of how the tumor microenvironment
influences disease progression and therapeutic responses.

In summary, we proposed a machine-learning framework that
integrates histology images, spatial transcriptomics and patient clin-
ical outcomes. The proposed framework offers an efficient and cost-
effective approach for characterizing intra-tumoral cellular hetero-
geneity in GBM. Our results linked tumor compositions and the spatial
cellular organization to patient prognosis. Although we demonstrated
the value of our framework in GBM, it can be extended to other
diseases.

Methods
Preprocessing of the spatial transcriptomics data
We used four publicly available spatial transcriptomics datasets com-
prising both tumors and normal brain tissues (Supplementary
Data 1)16,18. All datasets were generated using the 10X Visium platform.
Quality control was performed by the cell ranger pipeline and impor-
ted into AnnData objects using the Scanpy software (version 1.9). In
each sample, we removed spots with less than 200 detected genes and
more than 5% mitochondrial RNA. Additionally, genes detected in less
than 3 spots were removed. Given the potential presence of batch
effects in spatial transcriptomics data, we performed normalization
and variance stabilization across different samples using regularized
negative binomial regression55. We regressed out percentages of
mitochondria-expressed genes per spot and effects from cell cycles.
This approach allowed us to remove the influence of technical var-
iances from downstream analyses while preserving biological
heterogeneity.

CNA inference and prediction of tumor cell content
We used the InferCNV method56 to estimate copy number alterations
(CNAs) of each spot from GBM tissues, where the transcriptomes of a

separate cohort of normal brains (n = 6 tissues from n = 3 patients)
were used as a ref. 57. We calculated an average gene expression value
over a chromosomal window (default = 100 genes) across each ana-
lyzed gene/chromosomal region in GBM tissues and compared the
value to its counterpart in normal brains. The output from InferCNV
was a two-dimensional matrix indicating the CNA score of each chro-
mosomal window in each spot. We then rescaled the CNAmatrix, such
that at each chromosomal window, the CNA score of normal brains
ranged between 0.98 and 1.02, with an average score of 1.00. Com-
pared to normal brains, tumor tissues exhibited a broad CNA across
genome, such as gain of Chr 7 and loss of Chr 10. Then we selected a
signature CNA event in each tumor that shared across all its spots. To
define tumor signature CNAs, we required the average CNA score >
1.05 if the signature was a chromosomal gain or <0.95 if the signature
was a chromosomal loss. The tumor cell content C for a given spot i

was defined as Ci =
ACNVi�1½ �

max ACNVð Þ�1½ � if the signature was chromosomal gain

and Ci =
1�ACNVi½ �

1�min ACNVð Þ½ � if the signature was chromosomal loss. At least

three tumor signature eventswere used in each tumor, and the average
results were calculated to ensure robust and unbiased estimation.
Spots with C > 0.2 were defined as malignant spots and retained for
downstream analysis.

Consensus non-negative matrix factorization (cNMF)
To identify gene expression programs (i.e., meta-gene modules) that
govern the transcriptional phenotypes of malignant cells, we used the
cNMF algorithm (version 1.3.4)32. We aimed to generate an unbiased
classification of transcriptional subtypes across the patients, wherewe
didn’t assume that a transcriptional subtype can always be found in
every patient and one tumor may not include all transcriptional sub-
types. Therefore, we ran the cNMF using transcriptomes pulled from
all patients. Given the high levels of inter-patient heterogeneity, it is
possible that some transcriptional subtypes were present in only a
subset of the patients but missing in other patients. Non-negative
matrix factorization was run 200 times for k clusters, where k ranged
from 2 to 15. The optimal k value was selected by finding the most
stable clustering solution, in which the maximum clustering stability
and lowest error rate were found.

Gene set analysis
Gene set analysis was performed with the clusterProfiler R package
(version 4.2.1)58. We selected the top 100 scoring genes of each meta-
gene module, and hypergeometric testing was used to identify enri-
ched biological processes using the gene ontology (GO). To determine
significant biological processes, we set the P value to 0.05 and Q
value to 0.20.

Spatially weighted correlation analysis
To correlate the cNMF modules defined from our study to published
gene expression modules, we performed spatially weighted correla-
tion analysis. We first scored each module in each spot using the

Fig. 4 | In situ identifications of gene expression markers associated with
prognosis. a A deep-learning model was trained on whole slide images from the
TCGA cohort to predict patient prognosis. H&E-stained histology images were
cropped into 56μm × 56μm patches. Each patch was converted to a feature
vector (2048 × 1) using a ResNet-50 module. The feature vectors were then
mapped to an aggressive score through a Cox regression module. The aggressive
scores of each patient were averaged for validation. b Using the trained image
model from panel (a) to predict aggressive scores for spots in spatial tran-
scriptomics. c, d Visualization of transcriptional subtypes and the predicted
aggressive scores in two tumors from the spatial transcriptomics cohort.
Aggressive scores were normalized within each sample using min-max normal-
ization. e Bar plot of median aggressive scores for malignant spots. Aggressive

scores from all tumors (n = 23) were pooled together and normalized using min-
max normalization. f Violin plot of mRNA expression levels for genes upregulated
in tumor regions assigned with high aggressive scores (blue) versus those with
low scores (yellow). The top 10,000 spots from each group were shown. Boxes
within the violins represent the interquartile range (Q1-Q3) of the combined
groups, and circles inside the box represent median values. g, h Top enriched
biological processes in tumor regions with (g) high and (h) low aggressiveness.
Sizes of the circles represent the number of genes in each biological process, and
colors represent P values of enrichment. P values were determined using the
hypergeometric test and adjusted by the Benjamini-Hochberg procedure. Source
data are provided as a Source Data file.
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AddModuleScore function from the Seurat R package (version 4.3.0)59.
We then correlated any two set of modules using geographically-
weighted regression using the GWmodel package (version 2.2)60.

Preprocessing and integration of single-cell RNA-seq data
To include both tumor cells and immune cells as references for
deconvolution analysis, we integrated three single-cell RNA-seq data-
sets: GSE131928, GSE163108, and GSE84465 (Supplementary
Data 1)5,11,37. GSE131928 predominately contains tumor cells, while
GSE163108 predominately contains immune cells. GSE84465 contains

both tumor and immune cell types. We performed preprocessing and
batch effect normalization following the same procedures as outlined
in the previous section. Specifically, we used the SCTransform algo-
rithm to regress out percentages ofmitochondria-expressed genes per
cell and cell-cycle effects55. To stratify tumor cells into different tran-
scriptional subtypes, we used the gene expression modules derived
fromGSE131928, which comprisedGBMcells from28patients.Module
scores were calculated for each tumor cell using the AddModuleScore
function from the Seurat R package (version 4.3.0)59, and the cell type
was assigned based on the module with the highest score. For the

Fig. 5 | Screenshots of the GBM360 software. a Introductory page describing the
functions of GBM360. The cell-type cartoons were created with BioRender.com.
b Control panel for uploading histology images and configuring software settings.
cThumbnail of a histology image uploaded from the user.d Predictions and spatial
visualization of the cell-type distribution. The image was colored by transcriptional
subtypes. e Predictions and visualization of regional aggressive scores. The image

was colored by the aggressive score predicted at each patch. Red indicates high
aggressiveness and blue indicates low aggressiveness. f–h Statistical analysis of the
transcriptional subtype distribution: (f) bar graph showing the transcriptional
subtype fractions, (g) clustering coefficient for each subtype, and (h) two-
dimensional matrix showing the frequency of interactions between any two tran-
scriptional subtypes.
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subsequent deconvolution analysis, we randomly selected 20% of cells
from each transcriptional subtype as the reference. In the case of
immune cells, we randomly sampled 200 CD4 T cells and 200 CD8
T cells from GSE163108 and combined them with the immune cells
from theother twodatasets. Considering a balanced trade-off between
resolution and accuracy of deconvolution, we merged CD4 and CD8
T cells into a single cell-type label. To generate a UMAP visualization of
the integrated single-cell dataset, we normalized the total counts
across all genes to ensure that every cell had the same total counts
after normalization. The number of neighbors was set to 15, and the
neighborhoodgraphwas embedded into twodimensions usingUMAP,
and visualization was generated using the sc.pl.umap() function of the
Scanpy software (version 1.9).

Align single-cell RNA-seq data to spatial transcriptomics
To deconvolute the spots obtained from spatial transcriptomics, we
first determined the number of cells present in each spot. For this
purpose, we performed nuclei segmentation onH&E-stained histology
images using the StarDist algorithm (version0.8.3, https://github.com/
stardist/stardist)61. The accuracy of segmentation was confirmed
through visual inspection. To estimate the fractions of different cell
types within each spot, we constructed a reference dataset using the
single-cell RNA-seq data, as described in the section above. Tomap the
single cells to spots, we used the Tangram algorithm (version 1.0.4)62.
In this process, we selected the top 200 differentially expressed genes
between different single-cell clusters as training genes. To validate the
deconvolution results, we utilized another set of 200 genes as testing
genes, and we calculated the alignment score for each gene.

Image processing and data augmentation
Spatial transcriptomics cohort. For the training and internal valida-
tion of GBM-CNN, we used data from the spatial transcriptomics
cohorts. All images were taken at 20xmagnification. We enhanced the
brightness and contrast of each image by 1.5 times, and the quality of
the images were confirmed by visual inspection. Given the variation in
H&E staining colors across different samples, we performed stain
normalization using StainTools (version 2.1.2, https://github.com/
Peter554/StainTools). For this purpose, we randomly selected 20 his-
tology images from the TCGA-GBM cohort as references, and we
normalized the stain colors of each image of the spatial tran-
scriptomics to match those of each reference. The average image
features derived from all references were used for further analysis.

To extract patches, we centered each patch at the spatial coor-
dinate of its corresponding gene expression spot. Each patch had an
edge length of 56 μm, which was approximately equal to the diameter
(55 μm) of a single gene expression spot. The Pillow image Library
(Version 9.2.0) was utilized for patch extraction, and the extracted
patches were resized to 224 × 224 pixels. During the training phase of
GBM-CNN, we performed image augmentation, including random
horizontal and vertical flipping in 50% of the time, as well as random
adjustments of brightness (factor = 0.25), contrast (factor = 0.25), and
saturation (factor = 0.25).

TCGA, CPTAC and IvyGAP cohorts. Histology images of the TCGA-
GBM cohort were obtained from the Genomic Data Commons (GDC)
portal using a Data Transfer Tool Client (https://gdc.cancer.gov/
access-data/gdc-data-transfer-tool). Histology images of the CPTAC-
GBM cohort were download from the Cancer Image Archive (https://
www.cancerimagingarchive.net/collections). The accession URLs were
listed in Supplementary Data 1. Histology images of the IvyGap cohort
were downloaded from the Ivy Glioblastoma Atlas Project (https://
glioblastoma.alleninstitute.org) using the “Requests” HTTP library
(version 2.31) in Python.

We used whole-slide images (WSIs) of formalin-fixed, paraffin-
embedded (FFPE) diagnostic slides captured at 20x magnification,

corresponding to a pixel resolution of 0.5 μm/pixel. To separate tissue
sections (foreground) from the white background, we applied an Otsu
segmentation mask to each WSI. Given the observed variation in H&E
stain colors between the TCGA and CPTAC cohorts, we performed
stain normalization using StainTools (version 2.1.2, https://github.
com/Peter554/StainTools). We randomly selected 20 histology images
from the TCGA cohort as references and normalized the color of each
CPTAC image tomatch the stain colors of each reference. The average
image features derived from all reference images were then used for
subsequent analysis.

To extract patches, we used the OpenSlide library (Python API,
version 1.2.0)63. Each patch had an edge length of 56μm (112 × 112
pixels), which was consistent with the patch size extracted from the
spatial transcriptomics cohort. Each patch was then subsequently
converted to 224 × 224 pixels as input to the model. If a patient had
multiple slides, we included all of them for the presented analysis.

Architecture of GBM-CNN and training algorithm
All deep learning models were implemented with the PyTorch library
(version 2.0). To extract histology features from each 224 × 224 pixel
patch, we used a ResNet-50 module64. Each patch was mapped to a
feature vector of size 2048. To enhance model performance, we
adopted a Transfer Learning approach in which the ResNet-50module
was initialized with weights pre-trained on ImageNet65. During the
training phase, we selected the last two layers of the ResNet blocks to
fine-tune while freezing the other ResNet blocks. The feature vector
was then converted to a probability vector through a fully connected
layer. To optimize model weights, we used ADAM66 as the optimizer
and the cross-entropy as the loss function. The training parameters
were selected empirically, with the mini-batch size set to 64, the
learning rate set to 5e-4, and the weight decay set to 1e-5. The model
was evaluated using leave-one-out cross-validation (LOOCV). In each
iteration, themodelwas trained forfive epochson the training samples
and validated using the sample left out for validation. Following the
LOOCV,we trained a finalmodel using data from all samples (n = 23) in
the cohort. This final model was used to predict transcriptional sub-
types in images obtained from external cohorts (i.e., TCGA, CPTAC,
IvyGAP).

Infer cell-type proportions from bulk RNA-seq data
To estimate the fraction of each transcriptional subtype from the bulk
RNA-seq, we used the CIBERSORTx algorithm67. To construct a sig-
nature gene expression matrix, we randomly selected 100 cells from
each transcriptional subtype from our integrated single-cell RNA-seq
dataset (refer to the “Preprocessing and integration of single-cell RNA-
seq data” section for details). For the bulk RNA-seq data, we obtained
the raw gene expression counts of the TCGA-GBM cohort from the
UCSCXena browser68. We performed the deconvolution analysis using
the default parameters of CIBERSORTx, which provided us with the
estimated proportions of each transcriptional subtype in each patient.

To establish a correlation between the fraction of transcriptional
subtypes obtained from the deconvolution analysis of bulk RNA-seq
and those predicted from histology images, we focused exclusively on
frozen tissues from the TCGA cohort (n = 338 slides from n = 166
patients). These frozen tissue slides were derived from the same
resected regions as the tissues used for bulk RNA-seq analysis. For all
other analysis, the FFPE tissues were used as stated in the previous
section.

Extraction of histological features
To assesswhether the transcriptional subtypes correlatedwith any raw
histological features,we extracted (1) the color values fromeach image
channel, including their mean and quantiles, (2) histogram features
and (3) texture features. The histogram features quantified histogram
counts of color channel values, while texture features characterized
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the different combinations of distance and angle between pixels. The
combined feature dimension was 105 × 1. The feature extraction was
performed with the Squidpy Python library (version 1.2.2)69.

Image-based aggressive score predictions
Model architecture and training algorithm. Similar to GBM-CNN, we
used a ResNet-50 module64 to extract histopathological features from
patches, and each patchwas converted into a one-dimensional feature
vector Z , where the size of Z was 2,048. The feature vector Z was then
mapped to an aggressive score through a fully connected layer
implementing the Cox loss.

The goal of survival prediction is to predict the likelihood that the
patient will survive until time t given patient features Z . We used the
Cox proportional hazards model to predict patient survival based on
the feature vector, where the hazard function was
λ t∣Zð Þ = λ0ðtÞexpðZ�βÞ. The λ0 tð Þ was the baseline hazard function, and
β was the corresponding coefficient weight implemented in the fully
connected layer. The Cox model was able to include censored data in
casewhere the death timeof somepatients were unknown (either they
were still alive, orwe lost the track of their information at a certain time
point). Let Zi be the features of the patient i, Y i be the survival time,
and Ci be the censor indicator, we have Ci = δevent i =death. The negative
log-likelihood to minimize (or Cox loss) was

L βð Þ= �
X

i∣Ci = 1

�
Ziβ� log

� X

j∣Y j ≥ Y i

eZjβ

��
: ð1Þ

We adapted this loss to a deep learning framework. Since Zi was
the extracted features of patient i, Ziβ can be represented by f θ Xi

� �
in

the neural network setting, where Xi was the input predictor of patient
i, f denoted a nonlinear mapping the neural network learns to first
extract patient features from the predictor and to finally predict
patient risk, and θ denoted the model parameters including the
weights and biases of each neural network layer. Our objective to
minimize was

L θð Þ= �
X

i∣Ci = 1

�
f θ Xi

� �� log
� X

j∣Y j ≥ Y i

e f θ Xjð Þ
��

: ð2Þ

In practice, we can’t compute the sum
P

j∣Y j ≥ Y i

e f θ Xjð Þ over all
patients. We adopt a batch sampling strategy and compute this sum
with patients of each batch.

For training the model, we initialized the ResNet50 module with
the weights of a model pretrained on ImageNet65, and we selected the
last two layers of the ResNet blocks to fine-tune while freezing the
other blocks. The training is patch-based, and the model aimed at
predicting aggressive scores for patches. In testing, we averaged
aggressive scores of all patches from a patient to get the final
aggressive score. Since training a model using all patches from a WSI
could be computationally expensive, we randomly selected 200 pat-
ches from each patient. This number was determined based on a
balanced consideration between performance and computational
time after testing a range of different number of patches. We used
ADAM66 as the optimizer with cross-entropy as the loss function to
optimize themodel weights. Themini-batch size was set to 128 and the
learning rate was 5e-4.

Evaluation of algorithm. We initially considered two standard eva-
luation metrics for testing the performance of a prognosis prediction
model: (1) the concordance index (C-index)41,42 and (2) the integrated
Brier score (IBS)43. The C-index is a performance measure that evalu-
ates how well the predicted aggressive score ranks patients according
to their actual survival time. It was calculated by dividing the number
of all pairs of subjects whose predicted risks are correctly ordered, by
the number of admissible pairs of subjects. A pair is considered

admissible if neither event in the pair is censored, or the earlier time in
the pair is not censored. A value of 1.0 indicates perfect prediction
where all the pairs are correctly ordered, and a value of 0.5 indicates
random prediction. The Brier score was calculated by the squared
differences between observed survival status and the predicted sur-
vival probability at a given time point. The IBS provided an overall
evaluation of the model performance at all available times. In contrary
to theC-index, an IBSclosing to0.0 indicates goodprediction,while an
IBS closing to 1.0 indicates poor prediction.

Since GBM is a highly aggressive cancer type, and patient survival
time is relatively short and homogenous, IBS is a more relevant eva-
luation compared to C-index44. Therefore, we derived a composite
score (CS) that integrated both IBS and C-index:

CS =
C� index + 1� IBSð Þ

2
: ð3Þ

The C-index was calculated using the “lifelines” package (version
0.27.4) in Python, and the IBS was calculated using the “survcomp”
package (version 3.16) in R.

Spatial statistical analysis
Spatial neighborhood graph. To characterize the spatial cellular
organization, we first built a spatial neighborhood graph on each WSI,
wherenodes are patches andedges are direct interactions between the
patches. We used spatial coordinates of each patch to identify neigh-
bors among them. We defined the neighbors of a patch as those pat-
ches that were located within a two-patch distance (maximum of 24
patches from 5 × 5 patches). The class phenotype at each patch is the
predicted transcriptional subtype. The neighborhood graph can be
denoted as G= V ,Eð Þ, where V represents vertices (nodes) and E
represents edges between the vertices. The neighborhood graph was
implemented using the Python NetworkX libarary70.

Clustering coefficient. The clustering coefficient measures how well
nodes of a specific class tend to cluster together. It is defined as the
ratio of the number of interactions (I) between the class members to
the number of all interactions that includes that class member:

Cluster mð Þ =
I M,Mð Þ

I M,Mð Þ+ I M,Kð Þ 2 0, 1½ � ð4Þ

where K represents any class that is not class M.

Interactionmatrix. Interactionmatrix represents the number of edges
between any two malignant cell types (M and K) divided by the total
number of edges between all malignant cell types in the graph:

Interaction m,kð Þ =
I M,Kð ÞP

i, j 2V
I i, jð Þ : ð5Þ

Generation of abstractive networks
To enhance the visualization of spatial cellular interactions, we gen-
erated abstractive networks based on the predicted cellular maps. We
first selected a region of interest (e.g., region with clusters of the AC-
like subtype) from the spatial neighborhood graph of the image. Then,
for each node in the selected region, we inspected its neighboring
nodes. If over 70% of the neighboring nodes belong to the same
transcription subtype as the target node, we aggregated all nodes in
this neighborhood into one node. This process was repeated for every
node in the selected region until converging. The resulting abstractive
networks were visualized using the neworkD3 library (version 0.4).
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Survival analysis
Molecular characteristics and clinical endpoints of GBM patients were
obtained frompublished studies of the TCGA71,72 andCPTAC40 cohorts.
Multivariate Cox regression analysis and the log rank test were per-
formed using the lifelines package (version 0.27.4) in Python (version
3.9)73. In Cox regression analysis, we included gender, age, tumor size
and IDH subtype as covariates. The P values were adjusted formultiple
testing using the Benjamini-Hochberg method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets analyzed in the current study, including spatial tran-
scriptomics, single-cell RNA-seq and histology images, are publicly
accessible,with the accessionURLs listed in SupplementaryData 1. The
single-cell RNA-seq data were obtained from the GEO database under
the following accession numbers: GSE1319285, GSE16310811,
GSE8446537. The publicly available spatial transcriptomics data were
acquired using the following accession URLs: (1) Datadryad [https://
doi.org/10.5061/dryad.h70rxwdmj]16; (2) Figshare [https://doi.org/10.
6084/m9.figshare.20653908.v3]18 (3) 10X Genomics [https://www.
10xgenomics.com/resources/datasets/human-glioblastoma-whole-
transcriptome-analysis-1-standard-1-2-0]; (4) LIBD [http://research.
libd.org/spatialLIBD]31. The in-situ RNA hybridization data were
obtained from the Ivy Glioblastoma Atlas Project using the accession
URL [https://glioblastoma.alleninstitute.org]38. The publicly available
histology images of the TCGA-GBM cohort were downloaded from the
GDC data portal [https://portal.gdc.cancer.gov/projects/TCGA-GBM],
and thebulkRNA-seqdatawereobtained from theUCSCXenabrowser
[https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-GBM.
htseq_counts.tsv.gz]39. The publicly available histology images of the
CPTAC-GBM cohort were downloaded from the Cancer Image Archive
with the accession URL [https://www.cancerimagingarchive.net/
collections], and the publicly available clinical data were obtained
from the GDC data portal [https://portal.gdc.cancer.gov/projects/
CPTAC-3]40. The remaining data are available within the Article, Sup-
plementary Information or Source Data file. Source data are provided
with this paper.

Code availability
The source codes of the GBM360 software used to perform the ana-
lyses presented in this manuscript are available on GitHub at https://
github.com/gevaertlab/GBM360 and Zenodo at https://doi.org/10.
5281/zenodo.805130574.
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