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Atlas-scale single-cell multi-sample multi-
condition data integration using scMerge2

Yingxin Lin 1,2,3,4, Yue Cao1,2,3,4, Elijah Willie1, Ellis Patrick 1,3,4,5 &
Jean Y. H. Yang 1,2,3,4

The recent emergence of multi-sample multi-condition single-cell multi-
cohort studies allows researchers to investigate different cell states. The
effective integration of multiple large-cohort studies promises biological
insights into cells under different conditions that individual studies cannot
provide. Here, we present scMerge2, a scalable algorithm that allows data
integration of atlas-scale multi-sample multi-condition single-cell studies. We
have generalized scMerge2 to enable the merging of millions of cells from
single-cell studies generated by various single-cell technologies. Using a large
COVID-19 data collection with over five million cells from 1000+ individuals,
we demonstrate that scMerge2 enables multi-sample multi-condition scRNA-
seq data integration from multiple cohorts and reveals signatures derived
from cell-type expression that are more accurate in discriminating disease
progression. Further, we demonstrate that scMerge2 can remove dataset
variability in CyTOF, imaging mass cytometry and CITE-seq experiments,
demonstrating its applicability to a broad spectrum of single-cell profiling
technologies.

Technological advances of large-scale single-cell profiling of genes and
proteins, such as single-cell RNA-seq (scRNA-seq)1, Cytometry by Time-
Of-Flight (CyTOF)2 and imaging mass cytometry3 have exploded in
recent years and enabled unprecedented insight into the identity and
function of individual cells. This has enabled the discovery of cell-type-
specific knowledge and has transformed our understanding of biolo-
gical systems. This myriad of single-cell data has prompted the recent
creation of data atlases that collate single-cell omics data from multi-
ple studies. Examples of large-scale atlases containing over two mil-
lions cells are theHumanCell Atlaswhichaims tomapeverycell type in
the human body4; atlas of gene expression and chromatin accessibility
of 4 million human fetal cells across 15 organs5,6; the Human Tumour
Atlas Network7 and DISCO8, which provides integrated human single-
cell omics data across 107 tissues/cell lines/organoids and 158diseases.
These atlases serve as valuable references for the exploration of
healthy and diseased cells.

As single-cell technologies advance, there are an increasing
number of studies around the globe that performmulti-condition and
multi-sample large-cohort single-cell profiling to examine persisting
questions associated with human health. These datasets enable
researchers to delve into biological insights of cells under multiple
treatment conditions across multiple individuals. For example, to
investigate the cell-type-specific cellular mechanism underlying
COVID-19 disease severity9 and to predict treatment response to
cancer10. Such data and studies are expected to rise in the coming
years11 in the continuingquest to improvehumanhealth. This expected
increase necessitates the effective access and joint interpretation of
multiple datasets to unleash the power of meta-analysis at single-cell
resolution.

Last year, benchmarking studies12 began to investigate atlas-scale
integration. Luecken and colleagues investigated 16 popular data
integration technologies on 13 data integration tasks with up to 1
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million cells. While significant progress has been achieved in batch
correction and data integration over the years (including our
research), the increasing scale of cohort sizes and the number of
related studies for integration has introduced additional scalability
challenges. The new challenge for atlas-scale integration is to have a
scalable algorithm that can handle a large number of studies, con-
sisting a large collection samples (thousands) and millions of cells.
With the exception of Seurat13, SAUCIE14 and Scanorama15, several of
these rapid procedures (deepMNN16, BBKNN17, Harmony18, scVI19,
scANVI20 and DESC21) focus on extracting the joint embedding and do
not return adjusted gene expression matrices. With the growing need
for sample level analysis, the lack of adjusted expression matrices
restricts the utilisation of such integrative results and diminishes their
potency and generalizability. As a result, the next generation of atlas-
scale integration algorithms should be capable of integrating a large
number of studies and producing consensus cell type maps as well as
adjusted expression matrix for further downstream analysis. In parti-
cular, these methods need to overcome the computational challenge
of integrating over a million cells and create adjusted gene expression
matrix for all genes for downstream analysis.

To this end, we present scMerge2, a scalable, high-capacity algo-
rithm that allows data integration of atlas-scale multi-sample multi-
condition single-cell studies. We achieve this through three key inno-
vations in (i) hierarchical integration to capture both local and global
variation between studies; (ii) pseudo-bulk construction to ensure
computational scalability; and (iii) pseudo-replication inside each
condition to capture signals from multiple conditions. Our scMerge2
algorithm is able to integrate many millions of cells from single-cell
studies generated from various single-cell technologies, including
scRNA-seq, CyTOF, and imaging mass cytometry. Leveraging pseudo-
bulk to perform factor analysis of stably expressed genes and pseu-
doreplicates, scMerge2 is able to integrate five million cells from a
largeCOVID-19data collectionwithover 1000samples from20 studies
globally within a day. We further demonstrate that the integration
using scMerge2 improves the performance of discriminating distinct
cell states in COVID-19 patients with varying degrees of severity and
facilitates diverse single-cell downstream analyses.

Results
scMerge2 effectively integrates single-cell multi-sample, multi-
condition data
scMerge2 provides a scalable data integration method for the rapid
growth of multi-sample, multi-condition single-cell studies. This new
extension of scMerge is specifically designed to address unwanted
intra- and inter-dataset variation that can overshadow true biological
signals between conditions. In our previous study, we introduced
scMerge, an algorithm that integrates multiple single-cell RNA-seq
data by factor analysis of stably expressed genes and pseudo-
replicates across datasets and enhances biological discovery, includ-
ing inferring cell development trajectories22. The integration approach
supports diverse integration settings, enabling cross-batch, cross-
dataset, and cross-species discoveries. In particular, the semi-
supervised aspect of scMerge allows incorporation of prior knowl-
edge facilitated by experimental design.

With the rapid emergence of multi-samplemulti-condition single-
cell studies and the increased number of datasets for integration, our
proposed scMerge2 addresses challenges associatedwith scalability of
cells and studies as well as producing analytically ready data (i.e.
adjusted expressionmatrix). This is achieved via three key innovations
as illustrated in Fig. 1. First, hierarchical integration is used to capture
both local and global variation. This is a clear contrast to the conven-
tional data integration that involves estimating unwanted variation
across all datasets as a whole. When integrating across a large collec-
tion (over 10) of datasets with different pairwise differences, sequen-
tial integration better captures the difference in pairwise variations.

Two other methods, Seurat and fastMNN, also allow user-defined
merging order for data integration tasks. However, these methods
require a rigid merging strategy, allowing only pairwise merging at
each level and performing batch merging in a progressive manner. In
contrast, scMerge2 provides users with a more flexible and adaptable
multi-level merging structure, of which each level can comprise mul-
tiple collections of several batches and batch correction can be per-
formed within each collection separately using user-defined batch
labels. Second, pseudo-bulk construction is used to reduce computing
load, allowing for the analysis of datasets containing millions of cells.
Third, pseudo-replication inside each condition is built, allowing for
the modelling of numerous conditions. Details of these components
are included in Methods. In essence, scMerge2 takes gene expression
matrices from a collection of datasets and integrates them in a hier-
archical manner. The final output of scMerge2 is a single adjusted
expression matrix with all input data matrices merged and ready for
downstream analysis.

scMerge2 outperforms existing integration methods in detect-
ing differential expression
We demonstrate the performance of scMerge2 in removing multi-
level unwanted variation of multiple scRNA-seq datasets from three
aspects. Firstly, to illustrate the effectiveness of the hierarchical
integration strategy, we applied scMerge2 to a 200k subset of cells
from two COVID-19 studies (Liu and Stephenson) that contain three
cohorts/batches within each dataset (See “Methods” for details). We
compared the performance of two different scMerge2 settings:
scMerge2-h, where we performed intra-study correction before
inter-study correction; and scMerge2, where we integrated two
datasets (6 batches) in one go. We find that integrating the two
studies in a hierarchical manner improves the performance of data
integration, especially in terms of revealing the cell type signals
(Fig. 2a, b). Compared to the other data integration methods
(Seurat, SeuratRPCA, fastMNN, Liger, Harmony, scVI and Scanor-
ama), both settings of scMerge2 (scMerge2-h and scMerge2) have

Fig. 1 | Overview of scMerge2. This new scalable algorithm uses (i) hierarchical
integration to captureboth local and global variation; (ii) pseudo-bulk construction
to reduce computational load; and (iii) phenotype specific pseuduo-replicate, and
outputs adjusted expression matrix for millions of cells ready for downstream
analysis.
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overall better performance in achieving the balance of batch effect
removal and biological signal preservation, based on the five eva-
luation metrics that quantify the data integration performance
(Fig. 2a, b). We further performed the comparison with fastMNN
and Seurat, specifying the merging order to correct the cohort
effect within the study first, and then corrected the study effect
(fastMNN-h and SeuratRPCA-h). We demonstrate that scMerge2h
consistently outperforms the other two methods in terms of overall
performance (Suppl. Fig. S1)

In terms of computational efficiency and memory required, we
evaluated scMerge2 on data integration tasks using the full set of the
two COVID studies (Liu and Stephenson), which in total have ~1M cells.
We benchmarked the scalability of the integrationmethods by varying
the number of cells and the number of features (~17k genes or 87
proteins). We find that among all the methods that are able to return
the adjusted gene expression matrix, scMerge2 is the most efficient in
terms of computational time in all comparisons (Suppl. Figs. S2–S3). In
terms of memory usage, to return a fully adjusted gene expression

matrix, scMerge2 requires more memory than fastMNN and scVI, but
significantly less than Seurat.

Next, we investigate the performance of the adjusted matrix in
identifying genes that are differentially expressed between two con-
ditions (termed as differential state (DS) analysis by ref. 23) through a
simulation study. We generated synthetic single-cell datasets with two
batches and multiple samples from two conditions using a simulation
framework that extended from scDesign3model24, with knownground
truth DS genes (Suppl. Figs. S4–S5) (See Methods). Cell-type-specific
DS analysis was performed using the limma-trend algorithm25 on the
sample-wise aggregated data by taking the mean of the log-
transformed or adjusted data. By simulating data with different log
fold change (1.1 ~ 2) and proportions of DS genes (5% and 10%), we find
that scMerge2 substantially outperforms the other two data integra-
tion methods that also return adjusted matrices in detecting DS genes
(Fig. 2c and Suppl. Fig. S6). scMerge2 has much lower FDR than
fastMNN and Seurat, and higher TPR compared to the unadjusted data
(Suppl. Figs. S7–S8), illustrating that scMerge2 outputs an adjusted

Fig. 2 | scMerge2 outperforms existing integration methods. a Scatter plots of
evaluation metrics of data integration of a 200k cells subset of two COVID-19
studies (Liu and Stephenson) for scMerge2, scMerge2-h (data merged in a hier-
archical manner), Seurat, Seurat (RPCA), Harmony, fastMNN, Liger, scVI, Scanor-
ama and Raw: Adjusted rand index (ARI) (left panel), where x-axis indicates 1 minus
batch ARI and y-axis indicates cell type ARI; Average silhouette width (ASW), where
the x-axis is 1 minus batch ASW and y-axis is the cell type ASW (right panel). b Dot
plots indicate the ranking of the data integrationmethods in terms of five different
evaluation metrics. The size of the dot indicates the scaled scores, which are

obtained from the min-max scaling of the original values. The overall ranking is
rankedbased on the average ranking of the five evaluationmetrics. c F1-scoreof the
differential state (DS) results of two selected cell types (CD14 and CD4) (row) of
simulated data, with 10% DS genes within each cell type, for scMerge2, Seurat,
fastMNN and raw, varying simulated log fold change (logFC) of DS genes (x-axis)
and different threshold of adjusted p-value (column). d Scatter plots of evaluation
metrics of robustness analysis when varying the number of pseudobulk con-
structed within each cell type of each batch, where the x-axis is 1 minus batch ASW
and y-axis is the cell type ASW. Source data are provided as a Source Data file.
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matrix with less unwanted variation for single-cell downstream
analysis.

Finally, we illustrate the robustness of scMerge2 by varying the
key tuning parameters of the algorithm, including the number of
unwanted variation factors, the number of pseudo-bulk, the ways of
pseudo-bulk construction and the number of nearest neighbours. As
shown in Fig. 2d and Suppl. Figs. S9, despite varying the settings in the
algorithm, scMerge2 has consistently better performance than the
othermethods. Together, these results demonstrate the effectiveness,
utility and computational efficiency of scMerge2 in data integration of
scRNA-seq data.

scMerge2 is scalable to integrate five millions COVID-19
PMBC cells
Todemonstrate the scalability of scMerge2 in integratingmulti-sample
multi-condition single-cell data, we performed scMerge2 on a COVID-
19 data collection of consisting of ~5m cells from 1298 samples (963
individuals) PBMC samples from 20 studies worldwide (See Methods).
We considered the cell type annotation refined by scClassify as
pseudo-replicates information. We also used a hierarchical integration
strategy, where we first performed integration of different cohorts

within one study respectively (e.g. Ren, Stephenson, Liu and Schulte-
Schrepping) and also two studies with distinguished sequencing
depth, followed by the integration of 13 studies with small number of
cells (hierarchical integration strategy shown in Suppl. Fig. S10). We
then integrated all the data in the next step. An inspection of UMAP
visualisations shows that scMerge2 effectively integrates the 20 stu-
dies, while preserving the multi-level cell type information (Fig. 3a,
Suppl. Fig. S11). A UMAP plot faceted by dataset further illustrates the
successful removal of dataset induced unwanted variation (Suppl.
Fig. S12). The quantitative evaluation metrics further confirm this
observation, where we find that scMerge2 reduces the technical var-
iation caused by dataset, protocol and technology, resulting in
improved cell type identification (Fig. 3b, Suppl. Fig. S13).

To further illustrate theutility of scMerge2,wedemonstrate that it
improves the prediction of disease severity in the COVID-19 dataset
using cell-type-specific expression. Comparing to the original raw log-
normalised data, identifying cell types with scMerge2 substantially
improves the prediction accuracy rate of disease severity for all cell
types that have more than 1% abundance in the data, with a 3.2%
increase in accuracy on average (Fig. 3c and Suppl. Fig. S14). Notably,
we find that CD14 Monocytes have the highest discriminative power
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for disease severity among all cell types, and scMerge2 is able to fur-
ther improve the accuracy rate from 81.3 to 83.6%.

scMerge2 enables differential cell state detection for multi-
conditions data
We next illustrate how the adjusted expression matrix output from
scMerge2 facilitates several downstream analysis of single-cell multi-
condition multi-sample studies, including differential abundance
analysis and differential expression analysis. As a case study, we focus
on the analysis of identification and characterisation of cell states that
are distinguished between the moderate and severe patients using
COVID-19 data collection. We first calculated the differential abun-
dance score for each cell to quantify the difference between the
moderate and severe patients usingDASeq26. As shown in Fig. 4a, b, we
are able to identify regions on the UMAP plots that are associated with
the disease severity. As expected, when mapping these regions to cell
types,wefind thatneutrophils have thehighest proportionof cells that
are associated with severe disease outcome as their accumulation
marks the critical illness of COVID-19 patients27 (Suppl. Fig. S15).

Next, we investigate the cell-type-specific underlying biological
process pathways that are associated with the disease severity and
time for each cell type. We performed the differential expression
analysis on the cell-type specific pseudo-bulk by considering both
disease severity and days from onset of symptoms as covariates, fol-
lowed by gene set enrichment analysis (GSEA). The pathways enriched

with disease severity include hallmark TNFα signalling and hallmark
inflammatory response (Fig. 4c) and are upregulated in severe patients
in most of the cell types, while GO IL6 positive production and Hall-
mark MTORC1 signalling are upregulated in moderate patients. Nota-
bly, we observe that a few pathways reveal distinct enrichment
patterns between different cell types, including GO response to type-I
IFN. We find that for CD14 Monocytes (Fig. 4c, d), the type-I IFN sig-
natures is negatively associateddisease severity and alsodecreaseover
time, consistent with the previous findings28 (Fig. 4d). While other cell
types such as CD4 CM and CD4Naive have an enrichment of type-I IFN
in severe patients, this enrichment is also decreased over time. Toge-
ther, these analysis demonstrate that the integration of multiple stu-
dies using scMerge2 enables a variety of data analysis approaches that
address a wide range of biological questions.

scMerge2 is versatile to other single-cell platforms
Oneof the key strengths of scMerge2 is its generalizability to data from
multiple biotechnology platforms. We illustrate that scMerge2 is
generalizable to other single cell modalities including spatially
resolved modality and multi-modalities. We start by illustrating that
our algorithm is directly applicable to other single-cell single-modal
data, using two mass cytometry time-of-flight (CyTOF) datasets as an
example. The two datasets (COMBAT (CyTOF) and Geanon (CyTOF))
contain more than 11 million cells in total collected from healthy
controls, COVID-19 and sepsis patients, with 18 immune cell
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populations and activation states. The UMAP plots constructed after
integration (Fig. 5a) reveal that the two datasets are successfully inte-
grated compared to the raw data. Notably, we find that Granulocytes
(Neutrophils and Eosinophils), cell types that are only present in
Geanon (CyTOF) but not COMBAT (CyTOF), are represented as a dis-
crete and distinct cluster, suggesting that scMerge2 is able to reveal
the unique cell types existing only in specific batches. An inspection of
the cell-type-specific marker expression distribution further confirms
the effective dataset effect removal (Fig. 5b and Suppl. Fig. S16).

Next, we show that scMerge2 enables normalisation of spatially
resolved single-cell data for better cell type identification with specific
cluster markers. We applied scMerge2 to a COVID-19 Imaging Mass
Cytometry (IMC) dataset29, followed by clustering using FlowSOM30,
with the number of clusters set equal to the manually annotated cell
types in the original study. We find that compared to the original data,
the scMerge2 adjusted matrix provides better clustering results that
aremore consistentwith themanual cell type annotation (Fig. 5c), with
ARI increasing from 0.13 to 0.58. These clusters are also marked by
more specific enrichment of protein markers (Fig. 5d). For example,
scMerge2 is able to reveal a cluster of T cells that uniquely expressed
CD8a but not CD4 and a cluster that expressed of CD4 but not CD8a.
Similarly, scMerge2 identifies the B cell cluster that has high expres-
sion in CD20,while clustering directly on the unadjustedmatrix results
in several clusters with qualitatively similar enrichment of markers,
lacking the ability to identify distinguished cell types (Fig. 5e).

Lastly, we demonstrate scMerge2 can efficiently remove the
unwanted variation of multi-modal data, such as Cellular Indexing of
Transcriptomes and Epitopes by Sequencing (CITE-seq) data that
concurrently measure RNA and cell-surface proteins of the same cell.
In this case, we can remove the unwanted variation for each of the two
modalities separately using scMerge2.We first examined the quality of
data integration using two CITE-seq datasets with six batches and 87
common surface proteinsmeasured (The samedata used in Fig. 2a, b).
We find that scMerge2 utilising the hierarchical merging strategies
achieves a better balance between batch effect removal and cell type
signal preservation than most of the other methods, with comparable
performance with Harmony (Suppl. Fig. S17). Similar to the findings in
scRNA-seq, using surface protein expression adjusted by scMerge2
improves the severity prediction, compared to the raw data (Suppl.
Fig. S18). With the adjusted expression matrix of each modality, one
can perform any multi-modal integration approach to obtain the joint
latent space and visualisationof cells with batcheffect removal13,31,32. As
an example, we used j-UMAP that generates joint visualisation of the
adjusted multi-modal data32, which further confirms the effective
integration of the six batches from the two CITE-seq datasets (Fig. 5f).

Discussion
We have presented scMerge2, a scalable approach for integrating data
from large-scale multi-sample multi-condition single-cell studies. This
was achieved via the use of three essential innovations with hier-
archical integration, pseudo-bulk building to minimise processing
demand, and pseudo-replication that accounts for circumstances with
phenotypes. Our algorithm enabled the atlas-scale integration of 20
global COVID-19 studies with around 5 million cells from 963 donors,
1298 samples. We illustrated that scMerge2 data integration enabled
the detection of distinct cell states in COVID-19 patients of variable
severity. Finally, scMerge2 merged millions of cells from a number of
single-cell technologies, including asCITE-seq,CyTOF, and imagemass
cytometry.

The type of output extracted from atlas-scale data integration has
an important impact on the analytical question of interest. To date,
there are three standard types of output from recent atlas-scale data
integration (defined as over millions of cells). These are (i) an adjusted
gene expression matrix, (ii) a low-dimensional projection of the data,
known in machine learning as “embeddings”; and (iii) a unified graph

representation. Various methodological approaches may provide one
or more of these types of outputs. In general, there are a number of
existing approaches that use modern deep learning-based algorithms
to achieve fast, atlas-scale integration. Given that single-cell data are
ultra sparse high-dimensional datasets, “embeddings” are a natural
output since they are effective for joint data visualisation and reduce
memory load. However, an embedding output by itself increases
interpretability challenges since a low-dimensional representation
does not naturally lend itself to the development of interpretable
features such as cell–cell interactions or pathway information, which is
crucial for downstream case-control studies or multi-treatment ana-
lysis. One step towards achieving a balance between generating
adjusted expression matrices and appropriate memory usage is to
enable selective adjusted output. For example, scMerge2 enables the
extractionof a subset of genes (such as the top nhighly variable genes)
of the adjustedmatrix for all 5million cells in the COVID-19 data sets as
well as outputting the adjusted matrix by batches, allowing users to
effectively balance computational burden with specific downstream
analytical strategies.

The order of integration is an important factor in hierarchical
merging, which can be knowledge-guided or data-guided. Our current
method is based on a data-guided order, in whichwe integrate batches
within one study or studies with similar size first. In contrast, a priori
information such as sequencing platforms or cell extraction techni-
ques canbeused in knowledge-guidedorder of integration. Noted that
the hierarchical data integration design can be broadly classified into
two strategies33, balanced trees and concatenating approaches. The
balanced tree approach integrates between pairs of datasets at dif-
ferent levels of the tree, and the procedure is continued until all data is
merged. The concatenating approach sequentially integrates datasets,
therefore for n data sets, this will need n − 1 steps of integration. Pre-
vious studies have found that normalisation results are very similar
between the two types of integration tree structures33. The key dif-
ference between the approach is computational burden with the
concatenating approach being more computational intensive. Cur-
rently, the scMerge2 approach is closer to the balance approaches
allowing for many datasets to be added simultaneously at each level.

We demonstrated that our curation and effective integration of
the COVID-19 gene expression data with over 1000 individual samples
facilitates flexible downstreammeta-analysis, offering the opportunity
to examine particular sub-populations that cannot be adequately
addressed with individual datasets. Scientists, for example, may
investigate the molecular differences underlying mild and severe
outcomes for a given age group (e.g.,middle-aged individuals between
41 and 50). Such analyses are difficult to perform in individual studies
due to the limited sample sizes. This challenge can be overcome by
merging several datasets.

Recent technological advancements substantially extend beyond
scRNA-seq, enabling other data modalities (e.g. DNA, proteins) to be
profiled in individual cells providing amore comprehensivemolecular
view of the cellular regulation. For the datasets with multi-modal
profiles measured for the same cell (paired data), such as CITE-seq and
ASAP-seq, scMerge2 can be applied to integrate data from different
batches by either considering each each modality as a separated
matrix, or concatenating the data into a single matrix. Currently, the
integration illustrated in this paper was done within each modality. In
the future, we can incorporate the multi-modal information to better
identify the pseudo-replicates of the paired data as well as utilise the
higher-order relationship of features to improve the integration
performance.

In summary, scMerge2 enables atlas-scale integrative analysis of
large collections of single-cell data. As the availability of public multi-
sample multi-conditional single-cell studies continues to surge,
scMerge2 demonstrates its ability to integrate over 5 million cells for
further downstream analysis, thereby enabling effective downstream
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Fig. 5 | scMerge2 is versatile to other single-cell platforms. a UMAP plots of
CyTOF data coloured by dataset (left) and cell type (right), for original (first row)
and scMerge2 (second row). The red circles highlight the cell types (Neutrophils
and Eosinophils) that are unique to Geanon (CyTOF). b Density plot of selected
markers in specific cell types (CD4 in CD4 T cells), using original expression (first
row) and scMerge2 adjusted expression (second row). Within a specific cell type,
the distribution of the cell type markers are expected to be similar between two
datasets. c Heatmaps indicate the clustering results and their fractions of con-
cordance with the original cell type annotation given in ref. 29 for Original (first
row) and scMerge2 (second row). Clearer diagonal structure illustrates better

concordance.dHeatmaps indicate the averagemarker expression, calculated from
cells aggregated by clusters for Original (first row) and scMerge2 (second row).
More specific markers for each column and row indicates more distinguished
clusters being identified. e Scatter plot indicates the averagemarker expression for
each cluster, calculated using Original data (first row) and scMerge2 adjusted data
(second row), for two pairs of proteinmarkers: CD4 vs CD8 (first column); and CD4
vs CD20 (second column). Low concordance between the twomarkers is expected
to reveal cluster with specific markers. f J-UMAP plot of integrated CITE-seq data
colouredbydataset (left) and cell type (middle) and severity (right). Sourcedata are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-39923-2

Nature Communications |         (2023) 14:4272 7



meta-analysis. Notability, when compared to the raw log-normalised
data from the outset, we demonstrated that scMerge2 offers a sig-
nificant improvement in the prediction accuracy rate across all of the
main cell types. The merge of large collections of scRNA-seq datasets
from several cohorts further enables identification of distinct cell
states in COVID-19 patients whose symptoms are of varying degrees of
severity. Finally, scMerge2 has the ability to combine the data from
millions of cells obtained from a variety of single-cell technologies,
such as CITE-seq, CyTOF, and image mass cytometry.

Methods
scMerge2
Single-cell groupingwithin one batch. Following the sameprincipals
as scMerge, the scMerge2 approach begins by grouping the cells that
share similar biological signals within each dataset or batch. We can
approach this in two ways: one way is to perform unsupervised clus-
tering; the other way is using results from supervised cell type
classification.

• Clustering-based grouping: This is performed by default when
no cell type label is used as input. Firstly, the top 2000 highly
variables genes (HVG) are selected using getTopHVGs in the
scran R Package, using batch information as block information.
For data likeCyTOF andADT fromCITE-seqdata, this stepwill be
skipped and all featureswill beused in the next step.Next,within
each batch, instead of using k-means clustering as in the
previous version, we construct a shared nearest neighbour
graph on the gene expression of the HVGs, with a default
number of neighbours of 10, followed by louvain clustering. This
therefore relieves theneedof predefining thenumberof clusters
that is required in our previous version.

• Reference-based grouping: This refers to the use of supervised
cell type classification to predict or annotate the cell types using
one or more reference datasets. This ensures the cell-type
annotations are consistent among datasets. Cell type classifica-
tion algorithms (e.g. scClassify34 and SingleR35) can also be used
and the reference dataset can be external datasets with similar
cell types to the data to be integrated. This approach unifies cell
type annotation across all datasets and eliminates the need for
clustering and cell type annotation after data integration. It is
noted that this approach is used in the COVID-19 case study to
integrate the data collection of 20 datasets.

Pseudo-bulk construction. With the cell type grouping of each batch
determined, scMerge2 next constructs multiple pseudo-bulk within
each cell type. The pseudo-bulk construction significantly reduces the
computational time in two main steps of the original version of
scMerge22: identification of pseudo-replicates and RUVIII model esti-
mation. scMerge2 provides two approaches to calculate cell-type-
specific pseudo-bulk for each batch:

• when count data are not available for all datasets, for each cell
type grouping, we randomly assign the cells into k subsets and
take the gene-wise average of each subset as one pseudo-bulk.
This therefore results with k pseudo-bulk for one cell type
grouping.

• when counts data are available for all data, we can perform a
similar pool-and-divide strategy that is proposed in RUVIII-NB36.
Here, we can have two strategies in pooling the cells: (1) assign
the cells basedon library size; (2) randomly assign the cells into k
subsets. Thenwegene-wisely take the sumof the counts for each
subset and generate the counts data following a negative
binomial distribution. While the pseudobulk matrix generated
by this strategy is able to maintain the gene mean-variance
relationship36, we find that this approach does not improve the
quality of data integration in scMerge2 (Suppl. Fig. S9).

Noted that k is set as 30 by default for cell type group with more
than k number of cells, and pseudo-bulk are not constructed for cell
types with less than k cells, i.e., all the cells from these cell types will be
retain for the next steps of scMerge2.

Pseudo-replicates identification across batches in scMerge2.
Replicates are considered as the samples with similar biological var-
iation across batches. Construction of pseudo-replicates is one of the
key steps in scMerge which later are utilised to estimate the unwanted
variation from thedata. In scMerge,weproposed afive-stepprocedure
to identify pseudo-replicates by clustering on amutual nearest cluster
(MNC) graph, where each node of the MNC graph indicates a group of
cells in a batch. scMerge2 follows similar steps as the previous version,
but with two major improvements:

• Thepseudo-replicates identification is basedon the pseudo-bulk
matrix to reduce the computational time;

• For data with multiple conditions (or other observed biological
factors), scMerge2 allows the MNC graph to be constructed
within each condition to preserve the biological variation. Note
that this strategy can only be used when the batches to be
merged have at least one common condition and can only be
performed in the condition with multiple batches.

Estimation of RUVIII model using pseudo-bulk. The underlying
model of scMerge2 is the fastRUVIII model that takes the gene-wise
standardized gene expression matrix that is log-transformed and
cosine normalised as input. Let Zcg be the standardized data, where
c = 1,…,C, with C indicates the number of cells from all batches/data-
sets in total; g = 1,…,G, with G indicates the number of genes. Fol-
lowing the same annotation in scMerge, we formulate ZC×G using
RUVIII model as

ZC ×G =XC ×pβp×G +WC × kαk ×G + ϵC ×G, ð1Þ

where X denotes the matrix of observed factors of interest; p denotes
the number of factors of interest;W denotes thematrix of unobserved
factors of unwanted variation; α denotes the coefficient of W; k
denotes the number of unwanted factors, which is unknown (set as 20
by default for scRNA-seq data, and 10 for ADT from CITE-seq data and
CyTOF data); ϵ denotes the random error. Following the RUVIII model
estimation proposed in refs. 22,37, the model removes the unwanted
variation from ZC×G. In summary, it follows the three steps:

• Step i: estimate α via the first k right singular vectors of Singular
Value Decomposition (SVD) on RMZ, where
RM = 1�MðMTMÞ�1

MT , with the replicate matrix M∈ RC×N, N
indicates the number of types of pseudo-replicates;

• Step ii: estimate W by WC × k =Zsα̂
T
s ðα̂sα̂

T
s Þ

�1
, where α̂s 2 Rk ×Gs

indicates the the submatrix of α, which columns include only the
genes that belongs to single-cell stably expressed genes (SEG)
with number of genes asGs (SEG selection and evaluation can be
found in ref. 38);

• Step iii: adjust thematrix by subtracting the estimatedunwanted
variation component:

Ẑ C ×G =ZC ×G � ŴC × k α̂k ×G: ð2Þ

SVD is a computationally intensive algorithm, especially for large
matrices like single-cell data. We argue that for Step 1, we do not need
the full single-cell data to estimate α. Instead, we can subsample the
data or construct cell-type-specific pseudo-bulk which are informative
enough to approximate the full single-cell matrix to reduce the com-
putational burden in estimation ofα. Let ZCb ×G

denote the the “sketch”
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of the full single-cell matrix derived from pseudo-bulk construction
step, where the column denotes the number of the genes, with the
samedimension as the full data Z; the rownow indicates the number of
pseudo-bulk, with dimension Cb. We then construct pseudo-replicates
based on the pseudo-bulk matrix Zb to obtain the replicate matrix
Mb 2 RCb ×Nb (See Section Pseudo-replicates identification across bat-
ches in scMerge2 formore details).We estimate α̂b using the first k right
singular vectors of SVD on RMb

Zb. By treating α̂b as the approximation
of α̂, we then next bring back the full single-cell matrix Z to estimateW
and adjusted Ẑ following the same Steps 2-3 above.

Hierarchical merging. When we integrate data from different studies,
the unwanted variation can come from multiple levels, such as batch
effect of samples within each study but also between studies. In this
case, a hierarchical integration strategy would be useful to first adjust
intra-study unwanted variation effect, and then perform the inter-
study data integration. On the other hand, when we integrate a large
number of studies, such as the COVID-19 data collection in this paper,
starting from correcting the data of a smaller set of studies can be a
more efficient way to estimate the parameters of the model to har-
monise the data33.

scMerge2 allows users to input a hierarchical tree strategy to
perform the data adjustment in a multi-level manner. This data strat-
egy can take a flexible multi-level merging structure. For each level, it
can containmultiple collections of batches and data correction can be
performed within each collection respectively, with a user-defined
batch label. For each collection, it can consist of multiple batches. The
data adjusted on the current level will be used as input on the
next level.

For the COVID-19 200k data collection, we first integrated the the
3 batches within each dataset before integrating the two datasets. For
the COVID-19 scRNA-seq data collection, we first performed the
adjustment on four datasets that have multiple cohorts (Ren, Ste-
phenson, Liu and Schulte-Schrepping) to correct the intra-study
unwated variation (where the cohort label is used as batch label) as
well as between the two datasets that have very different sequencing
depth (Arunachalam andWilk). Next, we performed the adjustment of
the 13 datasets with <200,000 cells. We finally integrated all the
20 studies together, where the study label is used as batch label.

Data collection and preprocessing
COVID-19 scRNA-seqdata collection.We collected 20publicCOVID-
19 PBMC and whole blood scRNA-seq datasets (Supplementary
Table 1). The raw count matrix of each dataset is size-factor standar-
dized and log-transformed using logNormCount function from scater39

R package. Tounify the cell types fromdifferent studies, weperformed
scClassify to reannotate the cell types based on a 3-level hierarchical
cell type tree34, using three distinct reference datasets that were either
generated fromwhole blood (Wilk) or generated by CITE-seq protocol
that contains multi-level annotations (Liu and Stephenson).

COVID-19 200k CITE-Seq data collection (COVID-19 200k). To
benchmark scMerge2 with other methods, we subset 200k cells from
the two COVID-19 studies (Liu and Stephenson) as a benchmarking
dataset that with 17,446 genes, 87 proteins and 184 samples from 3
conditions (Healthy, Mild/Moderate, Severe/Critical) to assess the
concordance performance of the adjusted gene expression matrix
after data integration. Both of these two studies have three batches
within the studies,which allows us to evaluate the hierarchicalmerging
strategy in scMerge2 (i.e., scMerge2-h), where we first integrated the
three batches within each batch, with kRUV = 10 (kRUV denotes the
number of unwanted variation) and then performed the integration
across two datasets, with kRUV = 10.

The raw antibody derived tag (ADT) countsmatrix of each dataset
is size-factor standardized and log-transformed using the

logNormCount function from scater39. In scMerge2,weused all features
as negative controls and used kRUV = 3 in both levels in scMerge2-h.

COVID-19 60k data collection (COVID-19 60k). To evaluate the
robustnessof theparameters in scMerge2,we further created a smaller
subset of data, which is derived from selecting the cells from moder-
ate/mild patients of the Stephenson data from the COVID-19 200k
data. The selected subset has 66,967 cells from 58 samples and 17,446
genes where the aim is to integrate three different batches in the
Stephenson data.

COVID-19CyTOFdata collection. Twopublic COVID-19 PBMCCyTOF
datasets (Supplementary Table 1) were downloaded from Flow-
Repository with ID FR-FCM-Z2XA for Geanon data40 (4,747,543 cells
from 21 samples) and zenodo https://doi.org/10.5281/zenodo.6120249
for data from granulocyte depleted whole blood in COMBAT study41

(7,118,158 cells from 160 samples), which both contain the expression
matrix and cell type annotations. To combine the two studies, we
manually unified antibody names and the cell type annotations to 18
cell types. The expression matrices were then used as input for
scMerge2. Noted that we used all features as negative controls in
scMerge2.

COVID-19 IMC data collection. The COVID-19 IMC dataset generated
by29 aims to assess the pathology of lungs across Covid-19 disease
progression. The dataset, including cell intensities and metadata, was
obtained from the repository https://zenodo.org/record/4139443#.
Yw_gk9LMKXI provided in the publication and contained 237 images
generated from 23 samples across 43 markers. In the original
manuscript29, the cell typeswereannotatedbyfirst clusteringusing the
Leiden algorithm and then manually curated into 17 meta-clusters
based on marker expression, phenotype, and proximity to lung
structures.

Evaluation
Part I - Simulation. Simulation framework. We adopted a simulation
framework to generate single-cell multi-condition andmulti-sample
data with batch effect based on scDesign324. This framework is able
to simulate single-cell count data that preserve the gene-wise cor-
relation structure. Similar to many other simulators, scDesign3
required a a real training scRNA-seq data to estimate the required
parameters. Here, we have taken a subset of Stephenson data that
contains four cell types (B cell, CD14 Monocytes, CD4 T and CD8 T)
and 23 samples from two conditions (Healthy and Severe) as train-
ing data. From each sample, we randomly subsampled 400 cells.
Only genes that were in the top 2000 highly variable genes and
expressed in more than 2% of the cells were included. We further
excluded any genes that were originally considered as differential
expressed (with adjusted p-value < 0.2). This resulted in the training
data with 9200 cells and 1196 genes from 23 samples. Our simula-
tion framework includes three main steps.

Step 1: Construct a null dataset with no differentially expressed
genes by first permuting the condition labels in the training data. We
then estimate both cell-type and sample variation in the data using the
function fit_marginal() in scDesign3 that fits the marginal distribution
of each gene using a negative binomial distribution with the mu for-
mula ~ cell type+ sample ID+ condition and the sigma formula
~ 1. Then we used a vine copula to estimate the gene correlation from
the real training data.

Step 2: Introduce the batch effect to the simulated data. Assuming
all genes are affected by the batch variation, we drew a vector with
length equal to the number of genes from a log-normal distribution
with mean logð2Þ and standard deviation 0.43 as batch effect on the
mean of the gene distribution. The direction of the batch effect is
randomly assigned to each gene.
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Step 3: Introduce the ground truth differential state genes to the
simulated data. For each cell type, we randomly select p% of genes to
be differentially expressed between two conditions (p = 5, 10 in our
study). The log fold changes (logFC) vector is simulated from a log-
normal distribution, with the mean μlfc and the standard deviation σlfc.
In our evaluation setting, we consider a range of logFC values from
μlfc = 1.1 to 2 in 0.1 increment and σlfc =0.43. The direction of the reg-
ulation is randomly assigned to each DS genes using a binomial dis-
tribution with probability 0.5.

Lastly, with the fold change of both batch effect and condition
effect combinedwith the parameters estimated in Step 1, the simulated
single-cell data is generated from the negative binomial distribution
using strategies implemented in simu_new() of scDesign3. For each
value of logFC, we simulated 18,400 cells (23 samples, each sample
with 800 cells), with 5% or 10% differential states genes within each
cell types.

Evaluation metrics and settings—Differential states analysis. To
assess the impact of data integration on downstream analytics, we
considered the performance of the differential states analysis results
on the simulated data. Our evaluation is based on three metrics; false
discovery rate (FDR), true positive rate (TPR) and F1 scores. For each
log-transformed simulated matrix with dimension G ×C, with S sam-
ples and T cell types, we took the gene-wise average of each sample
within each cell type, resulting in a G × S matrix for each cell type. We
then performed a differential state analysis using the limma-trend
algorithm25 on the cell-type specific sample-wise aggregateddata using
the default parameters.

Part II - Real data comparison. Evaluation setting for scRNA-seq and
CITE-seq data collection.
1. Signal to noise ratio: We used ARI and ASW (see evaluation

metrics below) to evaluate the concordance of clustering results
with respect to the cell type labels and the datasets. A desirable
data integration method will show a high concordance between
the clustering result and known cell type information (signal
refers to cell types) and a low concordancebetween the clustering
results and known datasets information (noise refers to batch
effect).

2. Severity prediction: We aggregated cell-type-specific average
expression of each sample to a gene by sample matrix for each
cell type. We then used each cell-type specific matrix to predict
the sample condition (Healthy, Mild/Moderate and Severe/
Critical) using support vector machine (SVM) with radial basis
function kernel. The prediction performance was evaluated using
repeated fivefold cross validation with 20 repeats. We evaluate
the prediction performance using F1 score.

3. Visualisation plot: For scRNA-seq data, we used UniformManifold
Approximation and Projection (UMAP) to visualise and evaluate
the results of the adjusted expression matrix. For CITE-seq case
study, we used j-UMAP to jointly visualise the two modalities32,
where we first performed PCA within each modality, and then
j-UMAP was performed to obtain the joint UMAP embeddings of
the two modalities.

Evaluation on IMC data collection. We applied scMerge2 to per-
formdata integration of the 23 samples. This is achieve by firstfiltering
and selecting the data using the 38 markers specified in the original
publication29 and removing all undefined cell types (i.e. cells having
cell type annotation as “nan”). Next, considering sample labels as batch
information,we applied scMerge2with settings kRUV = 2, kpseudoBulk = 5,
kcelltype = 20, using all markers as negative control genes and highly
variable genes. Thirdly, unsupervised clustering was performed on
both the unnormalised and scMerge2 normalised datasets using the
FlowSOM30 algorithm with 17 clusters. The Adjusted Rand Index (ARI)
was used to compared the concordance between this unsupervised

clustering with the manually curated cell types in the original
manuscript29. The results are visualised using heatmaps showing the
average marker abundance in the cell types. Average marker abun-
dance were generated after scaling the marker expression by com-
puting the ratio of themean of eachmarker and its standarddeviation.

Sensitivity analysis of scMerge2. We examined the robustness
of the following parameters in scMerge2: the number of pseudo-
bulk constructed; the number of neighbours in SNN graph; the
pseudobulk construction strategy and the number of unwanted
variation. We performed our sensitivity analysis on the COVID-19
60k data on a number of settings for each of the four parameters
as below:

• Number of pseudobulk constructed within each group: 10, 20,
30, 40 and 50

• Number of neighbours in SNN graph: 5, 10, 15, 20, 25 and 30
• Ways of pseudobulk construction: Default, Pool-Divide, Pool-

Divide (Random)
• Number of factors of unwanted variation to be removed: 10, 15,

20, 25 and 30

For each setting, we repeat the analysis 10 times with a different
seed and assess the concordance performance of the signal to noise
ratio using ASW and ARI as evaluation metrics as describe in the Sec-
tion Evaluation metrics. We compared against benchmarkingmethods
described in the Section Benchmarking methods.

Evaluation metrics. We used three metrics to assess the performance
of data integration results from different methods. Details of the
evaluation metrics are described as follows:

• Adjusted Rand Index (ARI) - Clustering analysis: We used ARI to
quantify the concordance of the clustering results with respect
to the cell type (ARI (cell type)) and batch labels (ARI (batch)).
The clustering results for all methods were derived from first
building a shared nearest neighbour from the batch corrected
embeddings with a default number of neighbours of 10, fol-
lowed by louvain clustering. For scMerge2, the batch corrected
embeddings were derived from the top 20 PCs of the adjusted
gene expression matrix.

• Average silhouette width (ASW) - Embedding visualisation: We
calculated the average of silhouette coefficients for each cell
(ASW) by considering two different groupings: cell type (ASW
(cell type)) and batch label (ASW (batch)), based on the Eucli-
dean distance obtained from the UMAP embeddings generated
from the batch corrected embeddings.

• PCA scores: We calculated the coefficient of determination (R2)
for a linear regression model that fitted each of the first 20
principal component with technical variation labels, such as
batch, technology and protocol labels. We then calculated the
product of the variance explained by each principal component
and the corresponding R2. The final PCA score was calculated by
summing across the products, which quantify howmuch the PCs
explained the unwanted technical variation.

Benchmarking methods. We benchmarked the performance of
scMerge2 against five other methods that are designed for data inte-
gration of scRNA-seq datasets in terms of the batch corrected
embeddings in the COVID-19 200k data. Detailed settings used in each
method are as follows:

(i) Seurat. Applying Seurat with canonical correlation analysis set
as the reduction method. Version 4.1.1. of the Seurat42 R package was
used. We first identified the variable features within each batch using
FindVariableFeatures() and then selected the integration features using
SelectIntegrationFeatures(). The integration anchors were then identi-
fied using FindIntegrationAnchors() with reduction set as “cca”, fol-
lowed by IntegrateData() to obtain the integrated data.
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(ii) SeuratRPCA. Similar to Seurat (CCA), within each batch, we
first found the variable features, with an addition PCA step performed.
After integration features were selected, FindIntegrationAnchors() was
performed with reduction set as “rpca”. Lastly, IntegrateData() was
performed to obtain the integrated data.

(iii) fastMNN. This is a fast version of the mutual nearest neigh-
bours (MNN) method43. R package batchelor v1.12.3 was used. We ran
fastMNN()with default parameters to derived both the batch corrected
embeddings and adjusted expression matrix.

(iv) Liger. R package rliger v1.0.044 was used. Online integrative
nonnegative matrix factorization was performed to obtain the batch
corrected embedding following the tutorial (https://github.com/
welchn-lab/liger/blob/master/vignettes/online_iNMF_tutorial.html),
where we first ran selectGenes() to select the features, scaleNotCenter()
to scale the features, and online_iNMF()withminiBatch_size = 5000 and
max.epochs = 5.

(v) Harmony. R package Harmony v0.1.018 was used. The PCA
space returned by runPCA() of R package scaterwas used as input, and
thenHarmonyMatrix()wasperformedwith do_pca= FALSE to retain the
batch corrected embedding.

(vi) scVI. Python package scvi v0.16.119 was used. We used the
following settings to perform the data integration using model SCVI:
the number of layers as 2; the number of latent variables as 30 and the
gene likelihood as negative binomial.

(vii) Scanorama. Python package scanorama v1.7.315 was used. We
ran correct_scanpy() to perform the data integration and gene expres-
sion adjustment.

Computational efficiency comparison
We used two of the COVID CITE-seq dataset (Liu and Stephenson) to
evaluate the computational efficiency of the integration methods by
varying the number of cells from 5k to 1M in four scenarios: (1) scRNA-
seq: 17k genes with 2 batches; (2) scRNA-seq: 17k genes with 6 batches;
(3) ADT: 87 proteins with two batches; (4) ADT: 87 proteins with six
batches. The running time was measured using 1 core with the max-
imum number of threads of OpenMP library that can be used by a
parallel region is set to 1. The peak resident set size, which is the
highest amount of memory used by a process, was recorded to mea-
sure the memory usage. All methods were run using a research server
equipped with dual Intel(R) Xeon(R) Gold 6148 Processor with 40
cores and 768 GB of memory and we set the running time limit as
10 hours. It is noted that for both Seurat and scMerge2 we evaluated
two settings: one that adjusts the expression matrix for full gene
matrix and another that only adjusts the top 2000 highly
variable genes.

COVID-19 downstream analysis
Differential abundance analysis on the cells from mild/moderate
and severe/critical samples. Differential abundance (DA) analysis
was performed on the cells from mild/moderate and severe/critical
samples using DA-seq26. The top 30 PCs derived from the adjusted
expression data were used as input for the algorithm to calculate
the DA scores. A range of k values from 50 to 500 was used for the
calculation of DA score vector with kNN. We define salient differ-
ential abundance (DA) cells as cells with absolute abundance
scores >0.8.

Differential states analysis ofDAcells. For all DA cells, weaggregated
cell-type-specific abundance scores (or values) of each sample to a
gene by sample matrix for each cell type. Next, we model the aggre-
gated cell-type-specific abundance values across using a linear model
with severity and the days since symptom onset as covariates. We
account for sample level variability using the limma-trend imple-
mentation in the R package limma25. We then ranked the genes based
on the test statistics. The preranked based gene set enrichment

analysis (GSEA) of the selected pathways that are related COVID-19
disease mechanism28 (as listed in Fig. 4c) is measured using the fgsea
function in the R package fgsea v1.22.045. Significant pathways are
defined with adjusted p-value <0.05.

Statistics and reproducibility
All analysis was done in R version 4.1.2. No statistical method was
used to predetermine sample size. No dataset listed in Supple-
mentary Table 1 were excluded from the analyses. Cells with low-
quality were excluded based on standard single-cell preprocessing
procedures. The experiments were not randomized. The Investi-
gators were not blinded to allocation during experiments and out-
come assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are included in Supplementary Table 1. The
COVID-19 IMC data. The Arunachalam data used in this study is
available in the GEO database under accession code GSE155673. The
Bost_PBMC data is available in the GEO database under accession code
GSE157344. The COMBAT data is available in the EGA database under
accession code EGAS00001005493. The Combes data is available in
the GEO database under accession code GSE163668. The Lee data is
available in the GEO database under accession code GSE147507. The
Liu data is available in the GEO database under accession code
GSE161918. The Ramaswamy data is available in the GEO database
under accession code GSE166489. The Ren data is available in the GEO
database under accession code GSE158055. The Schulte-Schrepping
data is available in the EGA database under accession code
EGAS00001004571. The Schuurman data is available in the GEO
database under accession code GSE164948. The Silvin data is available
in the EBI database under accession code E-MTAB-9221. The Sinha data
is available in the GEO database under accession code GSE157789. The
Stephenson data is available in the EBI database under accession code
E-MTAB-10026. The Su data is available in the EBI database under
accession code E-MTAB-9357. The Thompson data is available in the
GEO database under accession code GSE166992. The Unterman data is
available in the GEO database under accession code GSE155224. The
Wilk data is available in the GEO database under accession code
GSE174072. The Yao data is available in the GEO database under
accession code GSE154567. The Zhao data is available at Figshare
[https://figshare.com/articles/dataset/seu_obj_h5ad/16922467]. The
Zhu data is available at the CNGB database under project code
CNP0001102. The COVID-19 IMCdata. The COMBAT data used in this
study is available in the EGA database under accession code
EGAS00001005493. The Geanon data is available at FlowRepository
under the accession code FR-FCM-Z2XA.TheCOVID-19 IMCdata. The
Rendeiro data is available in Zenodounder the accession code zenodo.
4110560, zenodo.4139443 and zenodo.4637034 Source data are pro-
vided with this paper.

Code availability
The code to run scMerge2 is part of the scMerge package [Github:
https://github.com/SydneyBioX/scMerge]46.
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