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Discovering functionally important sites in
proteins

Matteo Cagiada1, Sandro Bottaro1, Søren Lindemose1, Signe M. Schenstrøm1,
Amelie Stein 1, Rasmus Hartmann-Petersen 1 &
Kresten Lindorff-Larsen 1

Proteins play important roles in biology, biotechnology and pharmacology,
andmissense variants are a commoncauseof disease. Discovering functionally
important sites in proteins is a central but difficult problembecause of the lack
of large, systematic data sets. Sequence conservation can highlight residues
that are functionally important but is often convoluted with a signal for pre-
serving structural stability. We here present a machine learning method to
predict functional sites by combining statistical models for protein sequences
with biophysical models of stability. We train the model using multiplexed
experimental data on variant effects and validate it broadly. We show how the
model can be used to discover active sites, as well as regulatory and binding
sites. We illustrate the utility of the model by prospective prediction and
subsequent experimental validation on the functional consequences of mis-
sense variants inHPRT1whichmay cause Lesch-Nyhan syndrome, andpinpoint
the molecular mechanisms by which they cause disease.

Proteins carry out most functions in a cell, generally through interac-
tions with othermolecules. Thesemolecular interactions often involve
specific sites or regions whose identification plays a fundamental
role in understanding biology and disease. Progress has been made in
the development of methods to identify some types of functional
sites1–5 and efforts have been made to understand the relationship
between sequence variability, protein function, stability and the onset
of diseases6–10. With the entry of accurate and large-scale protein
structure prediction, structure-based methods for understanding
biology are becoming even more important.

Analyses of large-scale mutagenesis studies have been used to
probe the role of individual residues in the stability, abundance and
function of a protein11–13. Since most proteins need to be folded to
function, it may, however, be difficult to deconvolute the effects of
amino acid substitutions on intrinsic function from their effects on
stability and cellular abundance14. We note here that we use the term
‘function’ and ‘functional sites’ in a relatively general sense since our
goal is to examine protein function broadly. In a few, favourable cases,
multiplexed assays of variant effects (MAVEs) have been used to probe
the consequence of almost all individual substitutions using both a

functional readout and a readout that probes cellular abundance.
Analyses of such data have been used to shed light on the molecular
mechanisms underlying perturbed function, and more specifically to
pinpoint which functional properties an amino acid residue con-
tributes to15–18. For example, variants that lose function together with
loss of abundance are likely to be caused by perturbations to the
overall protein fold and stability, whereas variants that lose function
while retaining wild-type-like abundance in the cell are likely to be
caused by perturbing sites that directly play a role in function15,16,18.
Alternative to suchmulti-readout experiments, global analyses of large
datasets of multi-mutant variants can be used to deconvolute effects
on for example stability and binding19.

In a recent analysis of abundance and activity assays16 we showed
that approximately half of the single-point variants that show loss-of-
function do so together with loss of protein abundance. This result
suggests that if one uses a functional readout to detect residues that
are directly involved in function, then about half of the variants
detected as important are so simply because they cause lowered
abundance. This in turn makes it difficult to separate residues that are
directly involved in function (for example in catalysis, binding and
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signalling) from those positions that are conserved mostly due to
structural constraints20.

The other half of loss-of-function substitutions, instead, mostly
affects the protein via for example perturbing interactions with sub-
strates or binding partners rather than stability16,21. We call this class of
substitutions ‘stable but inactive’ (SBI) variants emphasising their tight
and direct involvement in protein function. Pinpointing and predicting
which variants are SBI is important to understand how amino acid
substitutions might affect protein functions, why they possibly cause
disease, and to ultimately aid the development of personalised ther-
apeutic treatments. A very practical utility of the detection of SBI
variants is that they enable the identification of amino acid residues
that play a direct role in function. Indeed, much of our biochemical
understanding of how proteins function relies of protein engineering
studies where the effects of amino acid substitutions on various bio-
chemical readouts are probed. Thus, positions where most substitu-
tions affect function, but not structural stability, are often found in
functional sites16–18.

As an alternative to experimental measurements, computational
predictions can offer a faster, cheaper and more scalable approach to
pinpoint positions that are important for function. Computational
prediction of SBI variants, however, is not trivial. Many existing com-
putational protocols are based on evaluating sequence conservation
to find positions and variants that cause loss of function5,22–26. This
strategy alone, however, may not be sufficient to identify residues that
are conserved due to direct functional roles because sequence evo-
lution is subject to both functional and structural constraints, and thus
the different signals cannot be easily disentangled. One possible
strategy to overcome this problem is to combine evolutionary data
with analyses that report directly on the effects of substitutions on
protein stability16,27–29.

Here, we aim to create a robust and easy-to-use prediction
method to identify functional residues in proteins and provide insights
into the biochemical role of these residues in the target protein. To
avoid biases from annotations of functional sites, we use data gener-
ated by MAVEs that report on the effects of a wide range of substitu-
tions on both function and abundance to train a supervised machine
learning model. As input to the model we use a combination of
sequence conservation measures, free energy changes accompanying
substitutions, and physicochemical properties. We begin by showing
how our model can capture a wide range of functional sites that
include those in active sites, but also distributed throughout the pro-
tein structure including potential allosteric and regulatory sites. We
then show how we achieve good accuracy in pinpointing functional
amino acids in different validation scenarios. Across several proteins
we find that roughly one in ten of the positions are functionally rele-
vant and conserved for reasons different than structural stability.
Having validated themodel, we use it to provide examples of the kinds
of insight that it may provide including identifying catalytic sites,
regions that interact with substrates, and interfaces in complexes.
Finally, we performed prospective predictions of the mechanisms of
disease variants in HPRT1 (encoding the protein Hypoxanthine-
Guanine Phosphoribosyltransferase 1, HPRT1) and validate these by
measuring variant effects on function and abundance. The code for
our model is freely available and we also provide access to it via a web
implementation.

Results
Previouslywe have used evolutionary analyses combined with stability
calculations to predict variant effects on protein function and stability
and showed how these measures correlate with changes in cellular
abundance or function13,16. Here, we build on these ideas to construct a
model to identify functional sites in proteins via the identification of
SBI variants (Fig. 1). Before detailing the model, we first provide an
intuitive description of the basic idea. Our goal is to identify positions

in proteins that play some role in protein function and regulation;
these may for example include active sites in enzymes, but also ‘sec-
ond-shell’ residues around the active site, protein-protein interfaces,
allosteric and regulatory sites, or residues involved in recognizing
ligands and substrates. Experimentally, these residues may be identi-
fied since amino acid substitutions at these sites might cause loss of
‘function’ (in some readout). Many variants, however, cause loss of
function via loss of stability and cellular abundance, and we remove
such indirect effects by requiring that the variants have close to wild-
type-like abundance (i.e., the variants belong to the SBI class). Com-
putationally,wecan identify thesevariants bycalculations of effects on
protein stability and conservation, thus finding positions that are
conserved during evolution, but not due to a role in protein stability.
We note two effects of these choices. First, the broad definitionmeans
that we can assign a functional role to a relatively large number of
residues e.g., well beyond active sites in enzymes. Second, some resi-
dues will have a direct role in function, but also be important for
protein stability; our analysis will miss those residues, but as shown
below, our results suggest that most functional sites do not fall in
this class.

Based on the ideas above, we collected the results from two
complementary types of MAVEs that respectively probe cellular-
abundance and functional effects for three different proteins:
NUDT1530, PTEN31,32, and CYP2C933 for a total of 9945 variants at 923
positions. Based on the experimental abundance and function scores,
we assigned each variant to one of the following four classes16: WT-like
(high abundance and high activity), total loss (low abundance and low
activity), SBI (high abundance and low activity), or low abundance and
high activity. We also selected input features for each variant. These
were calculated from the three-dimensional structure of a protein and
a multiple sequence alignment. More precisely, we included the fol-
lowing features: (i) the predicted change in thermodynamic protein
stability (ΔΔG) calculated using Rosetta34, (ii) the evolutionary
sequence information scores (which we term ΔΔE, by analogy with
ΔΔG) using GEMME26, (iii) the hydrophobicity of the amino acid35, and
(iv) the weighted contact number36,37 (Fig. 1A).

We first examinedwhether one of these features on its ownwould
be sufficient, but did not find any that individually separates SBI var-
iants from the remainder (Supplementary Fig. 1). Thus, we used the
experimental labels and the input features to train a gradient boosting
classifier (Fig. 1A and Supplementary Fig. 2) that predicts abundance
(high/low) and activity (high/low) for each variant (see Methods for
further details on the feature choices).

We determined model hyperparameters using a stratified cross-
validation procedure, where each validation set contained 20% of the
data. The resulting model has an average validation accuracy of 58%
and a Matthews correlation coefficient of 0.57. On the entire training
data the model classified 9540/9945 variants (95%) correctly, of which
1638/1819 (90%) are SBI variants. Having assigned effects of the indi-
vidual variants, we then used this data to pinpoint the functional
residues in the target proteins. To this end, we assigned a residue to a
class if at least half of the substitutions at that position belonged to
that class. In particular, we focused our attention on amino acids
classified as ‘functional residues’, where 50% or more of their variants
are stable but inactive (Fig. 1B). We compared the functional positions
identified from theMAVEswith the predictions from themodel (Fig. 2).
For the three proteins included in the training we correctly identify 116
out of 127 residues. Accuracy and true positive rates are similar for the
three proteins (Fig. 2).

After feature selection and training of the final model, we tested
its performance on an independent dataset (GRB2 SH3 domain,18)
using as baseline a model using only cutoff values for ΔΔE and ΔΔG
(Supplementary Fig. 3A) . We find that our model substantially out-
performs the baseline model, especially in labelling functional resi-
dues. We also validated the performance of the model on a reduced
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variant training set (Supplementary Table 1), and by training on two of
the proteins and evaluating on the third (Supplementary Table 2); in
both cases we found reduced performance compared to the full
model, but no evidence of substantial overfitting. We also examined
other choices of features including both subsets of those used in our
final model and a model with a wider set of features, and evaluated
both by cross-validation and the independent dataset (Supplementary
Fig. 3B). The results show that the chosen feature set outperforms the
other sets, including the model with a larger number of features.

Validation and applications
Our model predicts sites and residues that play a broad range of
functional roles. This, however, makes it more difficult to validate the
model as most experiments only probe the role of a small number of
sites. We therefore tested the method on diverse tasks and data.

Validation using multiplexed and high-throughput data. First, we
tested our model against a set of data that is relatively similar to the
training data. Specifically, we applied it to two proteins (an SH3
domain from GRB2; Uniprot ID P62993 and the PDZ3 domain from
PSD95; Uniprot ID P78352) that each have been assayed using two
MAVEs that probe abundance andbinding18. A joint analysis of this data
in turn enabled determining ΔΔG for both folding and binding. We

then used our model to predict variants and residues that are impor-
tant for folding and function (here binding), and compared the results
to the experiments (Supplementary Fig. 4). For the SH3 domain, we
find a good agreement between the predictions and experiments.
Specifically, we find that variants and residues that are predicted to
cause loss of function due to loss of abundance are generally found to
have a large ΔΔG for folding in the experiments (Supplementary
Fig. 4A, B). Similarly, the variants and residues that we predict to cause
loss of function without loss of abundance, generally have a large ΔΔG
for binding, but are experimentally found not to affect folding. Note
that ourmodel did not use information about binding interactions, but
simply discovers residues important for peptide binding by the fact
that they are conserved, but not for stability reasons. A similar analysis
of the PDZ domain showed a more complex picture, where we find a
correlation (rather than separation) between the ΔΔG for folding and
binding, and that the predictions appear to divide the variants and
residues into three categories with progressively greater ΔΔG values
(Supplementary Figure 4C,D). We note that for PDZ3 we found a lim-
ited number of homologues in Uniref30 for the PDZ3 domain, which
might make the ΔΔE values more uncertain.

We then analysed data from MAVEs on five different proteins to
validate the performance of the variant classification step (Table 1). In
contrast to the data that were used to train the model, we here only

Fig. 1 | Graphical summary of our model to identify functionally important
residues. AUsing protein sequence and structure as input, we extract a number of
features to characterise each variant. For each protein in our training set we extract
all variants with MAVE measurements of abundance and function; this data is then
combined with the structural and sequence features to train a gradient boosting

classifier that assigns the variants to one of the four output classes. B The trained
model takes the structure- and sequence-based features as input to classify all
variants in to one of four classes. We also assign a class to each position/residue if
half of the variants at that position are found in that class; remaining positions are
not classified.
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had data for a singleMAVE for eachprotein. Four of these experiments
are functional assays and the last a cellular-abundance assay. Because
these experiments only probe one dimension of our two-dimensional
‘function-and-abundance’ landscape, we simplified the output labels
from the model from four to two classes. For the four MAVEs that
probe functionwe combined themodel’s output into either functional
or inactive (independent of the predicted effect on abundance), and
for the abundance-based MAVE we combine the predicted labels into
high/low abundance (independent of the predicted effect on func-
tion). We compared these predictions to the data generated by the
MAVEs which we also reduced to binary labels. On average we find an
accuracy of 72% over all the variants and 68% when focusing on the
variants labelled as SBI by our model (Table 1).

We also compared our predictions with the results of a high-
throughput experiment on alkaline phosphatase (PafA; Uniprot ID
Q9KJX538). In these experiments, the catalytic efficiency (kcat/KM) was

measured for the wild-type protein as well as variants where each
residue was changed into either glycine or valine. We first analysed
how well our model was able to distinguish between variants with
different levels of activity, and found a lowermedian activity (kcat/KM)
for variants classified as total-loss and SBI compared to WT-like var-
iants (Supplementary Fig. 5A, B). The experiments also revealed dif-
ferent effects of valine and glycine variants, and we analysed this
observation in light of our predictions. For buried positions, we find
that that variants at total-loss positions generally gave rise to lowered
activity, in particular when substituting to glycine (Supplementary
Fig. 5C). At exposed positions, we generally predicted variants to have
a smaller effect (Supplementary Fig. 5D). While the experiments
revealed that most variants did not cause global unfolding, a number
of variants appeared to affect the in vitro translation that was used to
produce the proteins38. In particular, some variants resulted in less
active protein when expressed at 37 °C compared to 23 °C. Using a
ten-fold change as a cutoff38, we find most (70%) variants that show
this level of difference belong to the total-loss class (Supplementary
Fig. 5E, F), in linewith the fact that these arepredicted to cause folding
defects.

Finally, we compared predictions from our model with results
from two previously published models for detecting functional
residues27,39. We selected 10 enzymes that had previously been studied
and for which the percentage of true positives from the previous work
was available. Using our model, we find 77 out of the 109 known
functional sites (true positive rate of 0.71) (Supplementary Fig. 6),
which can be compared to values of 0.40 and 0.60 from the earlier
models27,39.
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number of true positives (upper-left corner), true negatives (bottom-right corner),
false positives (bottom-left corner) and false negatives (top-right).

Table 1 | Validation usingmultiplexed assaysof variant effects

Protein PDB MAVE SBI accuracy Global
accuracy

Cystathionine beta-synthase 4COO 68 0.75 0.68

Beta-lactamase TEM 1BTL 69 0.76 0.72

Regulatory protein GAL4 3COQ 70 0.69 0.72

Small ubiquitin-related
modifier 1

1WYW 71 0.75 0.63

Thiopurine
S-methyltransferase

2H11 31 0.54 0.76
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Predicting functional sites in enzymes and protein interactions. As
an exampleof the kinds of insights onemight gain on specific proteins,
we applied the model to the Anti-sigma F factor (Uniprot: O32727,
Fig. 3A), for which previous studies have shown the importance of a
number of sites40,41. Our model predicted 509 SBI variants (20% of the
total number of variants) and we used these to label 21 positions as
predicted functional sites. When comparing these to previous bio-
chemical studies, we found reported functional roles for 17 of the 21
predicted positions40,42. Of these 17 amino acids, nine are located in the
proximity to the active site (Fig. 3B). His54, Gly55, Thr99, Gly107,
Gly109 andThr130 interact and stabilise the ADP/ATP in the active site,
Asn50 is involved in the chelation of a Mg2+ ion, Glu46 acts as the
catalytic base in thephosphorylation reaction andArg105 stabilises the
transition state in the phosphorylation reaction. In addition to these
active site residues, we found another cluster of functional residues
(Glu104, Thr49, Glu16, Ser45, Glu39 and Arg20) in the proximity to the
binding site for the Anti-sigma F factor antagonist (Uniprot O32723,
Fig. 3B), while predicted functional positions Arg20 and Lys41 have
been described as mediators of the interaction of the enzyme with the
sigma factor. The roles of the remaining four positions that our model
highlighted (Asn3, Asn15, Gly129, and Pro95) have, to our knowledge,
not been analysed; they could either be false positives or residues with
functional roles that have not yet been characterized. We observed
that the functional sites in the Anti-sigma F factor could be grouped in
two structurally compact clusters (Supplementary Fig. 7). The first
cluster includes all of the residues that have a role in the catalytic
process, while the second cluster contains positions in the interaction
network with Anti-sigma F factor antagonist and the sigma-factor.

Having shown the model performance using the Anti-sigma F
factor as an example, we extended this analysis of functional positions
to a larger data set, consisting of 20 enzymes in the Mechanism and
Catalytic Site Atlas database (M-CSA43), as well as five non-enzymes
from the Protein–Protein Interaction Affinity Database 2.044. We

applied our model to these 25 proteins and identified 16167 SBI var-
iants (15.2% of the total) and assigned 588 residues to be important for
function (12.7% of the total positions). We found a small difference in
the fraction of predicted functional sites between the enzymes (13.9%
of the total positions) and the other five proteins (11.6%). For the 20
proteins in M-CSA, we collected a curated list of 87 residues known to
be involved in catalysis43. Given the well-defined functional roles we
would expect that most substitutions at these sites would affect the
enzymatic function. Ourmodel assigned 62 of these 87 positions (71%)
as functional positions (Fig. 4A). In 9 out of 20 enzymes the entire set
of catalytic residues were classified as functional residues, while in the
rest of the dataset the fraction of matching sites ranged between 33%
and 80%.

We examined in more detail the 25 of the 87 positions that our
model did not assign as SBI. Most of these (17/25 residues; 68%) have a
median ΔΔG greater 2 kcal/mol, and our model labelled them as ‘total-
loss’ positions. This finding highlights one of the limitations of our
approach. While we can assign conserved residues that do not affect
stability to have a likely functional role beyond structural stability, the
reverse is not true. In these particular cases, ca. 20% (17/85) of the
amino acids in the active sites appeared to be important both for
function and structural stability. As an examplewe show the results for
an Endo-1,4-beta-xylanase (Supplementary Fig. 8) where three of the
five catalytic positions were assigned as functional residues by our
model, and the remaining two have a median ΔΔG > 2 kcal/mol.

A strength of our model is that it identifies residues with likely
functional roles beyond those directly involved in for example cata-
lysis. We examined the positions that our model predicted to be
functional sites in the 20 enzymes from M-CSA, and found that a
substantial fraction of these are localised in the vicinity of the catalytic
site (Fig. 4B); on average 48% of the predicted functional residues are
located less than 10Å from the closest catalytic site residue.We expect
that many of these residues are important for the catalytic process, as
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we show for glutamate racemase (Uniprot: P56868, Fig. 4C), where 19
out of 26 of the predicted functional residues (including M-CSA cata-
lytic positions) are less than 10 Å from the D-glutamine in the catalytic
site45.

In some cases we also found that the predicted functional sites
were located both close to as well as further away (20Å or more) from
the catalytic site, as illustrated by orotate phosphoribosyltransferase
(OPRTase, Uniprot: P0A7E3, Supplementary Fig. 9), where predicted

functional residues are located in several distinct regions. Most pro-
teins in the M-CSA set have clusters of predicted functional sites fur-
ther away from catalytic sites. We found that these positions, for
example, may be involved in interactions with substrates, but not
directly involved in the catalytic activity. As an example we show a
thymine-DNA glycosylase (Uniprot Q13569, Fig. 4D), where we identi-
fied a subset of functional residues far (14.5 Å) from the enzymatic
active site. These include Arg275 and the residues in loop 274–27741,46.
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These amino acids are not directly involved in catalysis, but their role is
to push the targetDNAbase into the catalytic pocket, which consists of
two residues: Arg140 and His15146,47. Our model identified the former
as a functional position, while the latter was predicted to be a total-loss
position.

In addition to finding positions that are important for catalysis
and binding of substrates, our model can also help identify positions
that play a role in forming protein-protein interactions as we show for
thymidylate synthase (P00469, Fig. 4E), a homo-dimeric enzymewith a
catalytic pocket in both of the subunits. Of the 41 functional residues
identified by our model, 20 are located close to the protein-protein
interface. We note here that, unless otherwise noted, all the stability
calculations are performed on monomeric structures, and so we
identify these residues as being conserved, but not due to the struc-
tural stability of the individual subunits. Looking at the predicted
functional sites at the interface, we find that some are involved in
forming the active site which includes residues from both subunits
(Arg178, Arg179, Cys198,48). We, however, also found a number of
other residues, which we suggest are conserved as they stabilize the
(obligatory) dimer structure.

To examine whether we could extract more information on
interaction interfaces we also calculated ΔΔG values using the struc-
ture of thedimerof thymidylate synthase, introducing eachaminoacid
substitution in both chains. Together with contact numbers calculated
using the dimer structure we used these new scores as input to our
model. We compared the resulting classification with the results
obtained when using using the monomer structure as input to our
model (Fig. 5). The analysis shows that nine residues at the interface
are classified as total-loss when the calculations arebased on the dimer

structure (compared to just onewhen themonomer structure is used).
Of these nine total-loss positions, three were labelled as functional
residues in calculations based on themonomer structures. Residues at
the interface that are known to be important for the catalytic activity
(Arg178, Arg179,48) remained labelled as functional sites. We per-
formed a similar set of calculations comparing the classification based
on structures of the monomer or dimer structure for OPRTase (Sup-
plementary Fig. 10A,B). As for thymidylate synthase, we found differ-
ences including an increased number of total-loss positions at the
interface in the classificationmadeusing thedimer; also in this case the
model correctly identified the catalytic residues located at the protein-
protein interface.

The results described above show that comparing the predictions
based on structures of monomers and oligomers can help disentangle
functional residues that are key for protein–protein interactions from
those with other roles. Specifically, when the structure of the oligomer
is known and used as input, our model focuses on residues that are
important for functions other than protein-protein interactions. To
illustrate this point further, we compared the classification for
(monomeric) myoglobin with that for the α2β2 tetramer haemoglobin.
For haemoglobin, we made predictions for both the α and β subunits,
and using both themonomer and tetramer structures as input.We first
compared the classification results for all three proteins when calcu-
lations are based on themonomer structure (Supplementary Fig. 10C).
For all three proteins we found a comparable classification of the
residues surrounding the heme group, with 7–9 residues classified as
functional. We, however, found differences between myoglobin and
the two haemoglobin chains at the residues that form interfaces in the
haemoglobin tetramer (Supplementary Fig. 10C). For these residues,

Fig. 4 | Predicting functional sites in enzymes. We used our model to study
functional residues in a set of 20 enzymes from M-CSA, which also provides
annotations of residues in catalytic sites. ANumber of known catalytic residues for
each protein in M-CSA (white) and the number of these catalytic residues classified
as functional positions by ourmodel (blue).B Functional sites are generally close to
the active site. For each protein, we show the distribution of distances (using a
boxplot) between thepredicted functional sites and the (nearest) active site residue
(from M-CSA) with the total number of functional residues reported (as n) in the
top of the distribution. For comparison we show the average and maximum pair-
wise residue-residue distances (reddotted line and a red squareddot, respectively).

The rightmost boxplot shows the cumulative data. The composition of each box-
plot (boundaries and elements) is reported in the Figure legend. C–E Examples of
predicted functional sites (blue) in three proteins from theM-CSA set. C Functional
sites in glutamate racemase are found in a single cluster close to the active site
(substrate in red). D Functional sites in thymine-DNA glycosylase are both located
in the active site, but also in the region needed to bind the target DNA chain (green
and yellow structure).E Predicted functional sites are also found inprotein–protein
interfaces, such as in the interface of homo-dimeric thymidylate synthase. The
second dimeric sub-unit is coloured in green with the substrate in the active site
in red.

Classification with dimer ΔΔGs

R179

R178

Classification with monomer ΔΔGs
A B

R179

R178

Thymidylate synthase (P00469)

Functional positionTotal-loss positionWT-like position Mixed position

Fig. 5 | Analysing functional sites at a protein-protein interface.We show the
results from predicting functional sites in thymidylate synthase using either the
structure ofA themonomer or B the dimer as input to Rosetta for calculating ΔΔG.

Residues at the interface are shown with Van der Walls atomic representation.
Residues with known catalytic activity are labelled.
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the model assigned the WT-like label for most of the positions
in myoglobin, while several interface residues in haemoglobin are
classified as functional. This difference likely arises because the cal-
culated ΔΔG values at the interface residues are small (because we
used the monomer structures as input), but the residues in hae-
moglobin are more conserved than those in myoglobin. In line
with this hypothesis, many of the interface residues in haemoglobin
are classified as total-loss when we use the tetramer structure as
input to our model (Supplementary Fig. 10C). In this case, substitu-
tions at the interface are more destabilizing, and so the model assigns
these residues to the class that corresponds to destabilization of the
functional protein (the tetramer). Together, the results on thymidylate
synthase (Fig. 5), OPRTase (Supplementary Fig. 10A, B), and myoglo-
bin/haemoglobin (Supplementary Fig. 10C) show that residues at
key protein-protein interaction sites behave differently depending
on whether one considers destabilization of the monomer or
oligomer form. In cases where the oligomer structure is known, this
difference can help to distinguish residues that play functional
roles due to protein-protein interactions from those that are for
example directly involved in catalysis. Similarly, when using the
monomer structure as input, the model can help shed light on key
interaction interfaces, which appear as surface exposed patches of
conserved residues.

Predicting and understanding disease variants in HPRT1
Having validated and exemplified our model using previously pub-
lished data, we then used our model in a prospective study to predict
the impact andmechanismof humanmissense variants.We andothers
have previously shown that many, but not all, disease-causing mis-
sense variants cause loss of function by loss of abundance. The ability
to assign a functional status to so-called variants of uncertain sig-
nificance is one of the major outstanding challenges in clinical genet-
ics. In order to understand themolecular origin of disease and develop
potential treatments it is, however, also important to be able to predict
why variants cause loss of function.

We therefore selected hypoxanthine-guanine phosphoribosyl-
transferase-1 (HPRT1, Uniprot: P00492), an enzyme involved in the
onset of Lesch-Nyhan disease and its attenuated variants49,50, for a
prospective study of the accuracy and utility of our model. We esti-
mated structural and sequence features for 190 of 210 residues in
HPRT1; of the 3610 total possible single amino acid variants, ourmodel
predicts 471 to be SBI and 1046 to be total-loss variants.

We then selected 17 variants for experimental characterization.
These variants were selected either from gnomAD51, ClinVar52 or var-
iants that we selected to test our model more broadly. Five of the
variantswerepredicted tohavewild-type-like activity, six variantswere
predicted to be total-loss (i.e., loss of activity and loss of abundance),
and six variants were predicted to be SBI (i.e., loss of activity without
loss of abundance) (Fig. 6).

To test our predictions, we established a yeast-basedgrowth assay
for HPRT1 function. HPRT1 catalyses the formation of inosine and
guanosine monophosphate (IMP and GMP) from hypoxanthine and
guanine, respectively. Previous studies have shown thatmycophenolic
acid (MPA) acts as an inhibitor of IMP dehydrogenase, which is
responsible for the conversion of IMP to xanthosine monophosphate
(XMP,53,54). Thus, in the presence of MPA, yeast cells can only generate
GMP through the salvage pathway, and the yeast HPRT1 orthologue,
Hpt1, therefore becomes essential (Supplementary Figure 11). We
introduced each of the 17 variants as well as a wild-type and vector
controls into a yeast strain lackingHpt1 to test their effects on function
and abundance. We found that 11/17 variants grew worse that the wild-
type control in the presence of MPA, showing that they cause loss of
function (Fig. 6B). We also measured the abundance of the wild-type
and 17 variants using western blots and found that 3/17 variants had
substantially reduced levels (Fig. 6C).

We used the experimental data to classify the variants into wild-
type-like, SBI and total-loss and compared the results to the compu-
tational predictions (Fig. 6D). Overall we find that 13/17 (76%) of the
variants are predicted correctly including all (6/6) of the SBI residues.
This result shows that our model can predict variant effects relatively
well, and in particular can help separate loss-of-function variants that
lose function due to intrinsic function from those due to structural
stability. We note that some of these variants have also been char-
acterized biochemically49, with overall good agreement between our
predictions, the yeast assays and the biochemical experiments.

Making the model more easily accessible
Evaluating ΔΔG values with Rosetta is relatively slow, making the
widespread application of our model less straightforward. We have,
however, recently developed amethod, called RaSP, for rapid stability
predictions55, which uses a deep-learning representation to approx-
imate Rosetta ΔΔG values orders ofmagnitude faster than Rosetta. We
first tested the resultswhenusingΔΔG values fromRaSP as input to the
functional model described above (which was trained with ΔΔG values
generated by Rosetta). Despite the relatively high correlation between
the Rosetta and RaSP ΔΔG values (average Spearman correlation
coefficient of 0.78), we found that the performance of the model was
lower during the cross-validation when we used ΔΔG generated by
RaSP (Supplementary Fig. 12A). This result suggests that differences in
the ΔΔG values generated by RaSP and Rosetta combined with the
threshold-based structure of gradient boosting machines can shift the
prediction for variantswith feature values close to the threshold values
used inside themodel.We therefore retrained ourmodel using instead
ΔΔG values generated by RaSP. We found that the RaSP-based model
performs as well as the model trained with Rosetta on our validation
sets (Supplementary Fig. 12B) and therefore decided to test the per-
formance for many of the tasks we used to test our Rosetta-based
model on. We found that the RaSP-trained model identifies the same
number of functional sites as the Rosetta-trained model (62/87) when
we examine the enzymes in the M-CSA set, with 57/62 being the same
(Supplementary Fig. 12C). We also found that the RaSP-based model
predicts the effects of theHPRT1 variants as well as the Rosetta-trained
model (Supplementary Fig. 12D).

Wemake ourmodel available via a notebook that can be run using
Google Colaboratory (available via https://github.com/KULL-Centre/_
2022_functional-sites-cagiada). The notebook guides the user with a
step-by-step procedure to generate input data, using for example the
GEMME and RaSP web implementations, and to generate the predic-
tions of functional sites.

Discussion
There is a longhistory of studyingprotein function through analyses of
sequence conservation, and conserved residues are generally impor-
tant for the protein. Because most proteins need to be folded to
function it is, however, difficult to disentangle the role of individual
amino acids on the stability of the overall fold from more direct roles
of individual amino acids for protein function. Clearly, it may not
always bepossible to separate the two, andwehave shown for example
that substitutions at some catalytic residues may result in loss of sta-
bility. In many cases, however, substitutions at functionally important
sites either have a small negative effect on stability, or may even
give rise to increased stability56,57. Building on these ideaswehave here
presented a method that finds functionally important sites as those
that are conserved, but not immediately due to a role in protein
stability.

To construct and train our model we leverage (i) large-scale
experimental assays reporting on protein activity and abundance and
(ii) computational methods to estimate variant effects on protein
stability as well as general functional effects using conservation in
multiple sequence alignments. We have validated our model using
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both detailed biochemical experiments on individual proteins (via M-
CSA), as well as larger scale data generated by high-throughput
experiments. We also validated the method through prospective pre-
dictions of the mechanism of disease variants in HPRT1. Our model is
freely available. For users that want to avoid slower, more costly
Rosetta calculations, we have also trained a model that uses our deep-
learning-based method for stability predictions55. Since both Rosetta58

and RaSP55 give relatively accurate results using structures predicted
using AlphaFold, our model can also be applied to predicted protein
structures. Very recently59, it has been shown that one can also use
large-scale measurements of stability changes as input to an approach
inspired by our work.

Our model for functionally important sites, in some sense, lies
between two extremes that have previously been used to analyse
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H60R 1.4 -0.5
L68R 1.3 -5.9
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L78Q 3.0 -5.0
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Total-loss
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Fig. 6 | Predicting consequences of missense variants in HPRT1. A Structure of
HPRT1 shown as van der Walls surfaces with the predicted functional residues
coloured in blue. Residues which contain at least one disease-causing variant are
labelled and coloured according to which diseases it has been associated with (see
legend). B Yeast-based assay for HPRT1 function. Yeast strains carrying a vector
control, wild-type HPRT1 or one of the 17 HPRT1 variants all grow on medium
containing guanine. In the presence of the inosinemonophosphate dehydrogenase

inhibitor mycophenolic acid (MPA), yeast cells cannot grow in the absence of a
functional HPRT1 protein. C Assessment of protein abundance using western blots
of the 6His-tagged HPRT1 variants. D Comparing predictions of the effects of the
variants with the experimental measurements. Rosetta ΔΔG values are in units of
kcal/mol. Panels B and C show representative results of three replicates. Source
data for this figure are provided as a Source Data File.
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proteins. At one end of the scale, activity-based MAVEs and sequence
conservation analyses provide a global view of residues that play
functional roles, but often do not give direct mechanistic insights. At
the other end of the scale, detailed biochemical, biophysical and
structural experiments are often needed to pinpoint how individual
aminoacids affect function, but are (with exceptions such aswork by38)
difficult to scale to a large number of variants and proteins. To test our
model we have thus both compared it to data generated by MAVEs,
reducing to a one-dimensional view when only a single assay is avail-
able, as well as results from detailed assessments of the role of indi-
vidual amino acids in enzymes and protein-protein interactions.

Technological andmethodological developments have led to rapid
increases in the number of known protein sequences, as well as our
ability to assignoverall biological functions tomanyof these. The ability
to identify functionally important sites in proteins is important for our
understanding of how proteins work, our ability to engineer enzymes
and to understand the mechanisms that underlie diseases. Our model
may, for example, be used to select residues for protein engineering
experiments, or for generating focused libraries in enzyme optimiza-
tion. As additional data is generated by MAVEs reporting on both
function and abundance, the model can be improved further. As we
have illustrated, the model can help pinpoint the molecular mechan-
isms of disease variants, whichmay both guide further experiments and
be used as starting point for developing mechanism-based therapies
such as finding variant that may or may not be rescued by pharmaco-
logical chaperones. Recent work shows how it is possible to annotate
enzyme function at larger scale60 and our model can help pinpoint
functionally important sites in newly discovered enzymes. We thus
anticipate that the method that we have described here will help
researchers make progress in these and many other areas.

Methods
Preprocessing of the training data
The training data include paired MAVE data for three different pro-
teins: NUDT15, PTEN, and CYP2C9. For each protein, we selected
thresholds for the scores generated by each MAVE as outlined
previously16. Briefly, we fit the variant score distributions to three
Gaussians and use the intersection of the first and last Gaussian as the
cutoff. We use such binary classification for each of the two MAVEs to
classify the variants into four categories16.

Sequence features
For eachprotein in the training (Supplementary Table 3) and validation
(Supplementary Tables 4,5 and 6) data we performed a statistical
analysis of multiple sequence alignments (MSA). We extracted the
sequence of the first isoform from Uniprot and used HHBlits61 to build
an MSA, on which we applied additional filters before evaluating the
substitution effects and conservation scores. The first filter keeps only
the positions (columns) that are present in the target sequence, and
the second filter removes the sequences (rows) where the number of
total gaps exceeds 50% of the total number of positions. We used
GEMME26 to calculate an evolutionary conservation score. GEMME
explicitly models the evolutionary history of the protein, returning a
score (ΔΔE) which estimates an ‘evolutionary distance’ of a variant
from the query wild-type sequence. The ΔΔE scores for the variants
rangebetween0 (conservative substitution) and − 7 (substitutions that
appear incompatiblebasedon theMSA). In addition to the effect of the
individual variants, we also calculated a ‘neighbour score’ as the
average of the ΔΔE values for the previous and proceeding residue. In
addition to the ΔΔE scores, we used the hydrophobicity35 of the target
amino acid as a feature in our model.

Structural features
We predicted changes in thermodynamic stability using Rosetta
(GitHub SHA1 99d33ec59ce9fcecc5e4f3800c778a54afdf8504). We

used the Cartesian ddG protocol34 on crystal structures corresponding
to the Uniprot sequence listed in Supplementary Tables 3,4 and 5. The
ΔΔG values obtained from Rosetta were divided by 2.9 to bring them
from Rosetta energy units onto a scale corresponding to kcal/mol34.
Stability changes using RaSP were performed as described55. We used
theseΔΔG values as a feature for the classifier, setting all values below/
above a range of 0 – 5 kcal/mol, to 0 or 5 kcal/mol, respectively. We
also calculated a neighbour score, averaging over the two nearest
neighbours, as for the ΔΔE values.

Finally, we usedMDTraj v.1.9.362 to calculate the weighted contact
number (WCN) for each residue:

WCNi =
X

j≠i

sðri,jÞ with sðrÞ=
1� r

r0

� �6

1� r
r0

� �12 ð1Þ

where ri,j is the Cα distance between residue i and j, r0 is a switching
parameter (set to 7.0 Å).

We determined solvent exposed and buried regions using
GetArea63 using 20% as a threshold to divide the data in to two classes.

Training the classifier
We began by including up to eleven features as input to our classifier.
After testing on the three proteins (NUDT15,PTEN and CYP2C9), we
proceeded with only eight of them. The features used for each variant
were: (1, 2) variant ΔΔG and ΔΔE, (3–6) residue average and neighbour
average ΔΔG and ΔΔE scores, (7) the hydrophobicity of the target
amino acid, and (8) the WCN. The three features discarded during
model building were: wild-type amino acid type, binary exposure
classes based on solvent exposure and hydrophobicity of thewild-type
amino acid.

We used a gradient descent machine to classify the variants,
as implemented in Catboost64 v.0.26.1, using a Multinomial/Multiclass
Cross Entropy Loss and L2 regularization. We first set the number
of gradient descent iterations (Supplementary Figure 2A) on the
‘vanilla’ model and then used a grid scan to find optimal value for the
remaining hyperparameters. We measured precision and recall
using five-fold cross validation on the training data to optimise the
hyperparameters (Supplementary Figure 2B). We compared the
model performance with a null model from the sklearn python pack-
age (sklearn.dummy.DummyClassifier) using the ‘prior’ strategy,
which returns the most frequent class label in the observed argument
passed to it. We also used a random forest classifier model (sklear-
n.ensemble.RandomForestClassifier) in the comparison, optimizing the
hyperparameters using a grid scan protocol and k-fold cross
validation.

Cloning
Full-length human HPRT1 was expressed in yeast from the pYES2
vector (Invitrogen). An N-terminal RGS6His-tag was inserted upstream
of an SRS linker peptide, before HPRT Met1. Point mutations were
generated by GenScript.

Yeast strains and techniques
The hpt1Δ (MatA, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, hpt1::KanMX) Sac-
charomyces cerevisiae yeast strain was from Invitrogen. The cells were
cultured in synthetic complete (SC) medium (2% glucose, 6.7 g/L yeast
nitrogen base without amino acids and with ammonium sulfate
(Sigma)) and supplemented for selection with 1.92 g/L uracil drop-out
mix (US Biological). For expression, the glucose was replaced with 2%
galactose.

Yeast transformations were performed with lithium acetate65. For
growth assays, the cells were cultured at 30 °C to exponential
phase and diluted to an OD(600nm) of 0.40. From this, dilution series
(5-fold) were prepared and 5μL of each dilution was applied as
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droplets on agar plates. Colonies formed after 2–3 days of incubation
at 30 °C. The agar contained 50μg/mL guanine (Sigma) and 0.1mg/mL
MPA (Sigma).

Whole cell lysates for western blotting were prepared from
exponential phase cultures using glass beads and trichloroacetic acid
(TCA) as described before66. Briefly, 1.2 × 108 cells in exponential phase
were harvested andwashed in water by centrifugation (3000g, 5min).
The cells were resuspended in 1mL of 20% TCA and centrifuged
(3000g, 5min). The supernatant was discarded and the pellet was
resuspended in 200μL 20% TCA and transferred to 2mL screwcap
tubes containing 0.5mL 400–600 micron glass beads (Sigma). The
tubes were then applied to a Mini-BeadBeater machine (BioSpec Pro-
ducts Inc.) set at 3 cycles of 10 s. With a needle, a hole was made in the
bottom of the tube and the tube was placed inside a 15mL tube. Then,
400μL 5% TCA was added and the material was eluted by centrifuga-
tion (1000 g, 5min) into the 15mL tube. The eluted material was cen-
trifuged (10000g, 5min) at 4 °C. The pellet washed twice with ice-cold
80% acetone. Finally, the pellet was resuspended in 100μL sample
buffer for SDS-PAGE (62.5 mM Tris/HCl pH 6.8, 2% SDS, 25% glycerol,
0.01% bromphenol blue, 5% β-mercaptoethanol) and incubated for
5min at 100 °C.

SDS-PAGE and western blotting
SDS-PAGE was performed using 12.5% acrylamide gels. After electro-
phoresis, the proteins were transferred to 0.2μm nitrocellulose
membranes (Advantec) by electro-blotting. After transfer, the blots
were stained with Ponceau S (0.1% Ponceau S in 5% acetic acid) and
blocked in PBS (10 mMNa2HPO4, 1.8mMKH2PO4, 137mMNaCl, 3mM
KCl, pH 7.4) with 5% skimmed milk powder. The antibodies were
mouse IgG1 anti-RGSHis (Qiagen, Cat. No. 34650) diluted 1:2000 and
peroxidase-conjugated polyclonal rabbit anti-mouse antibody (Dako,
Cat. No. P0260) diluted 1:5000.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The input data for themodel and the predictions used in this study are
available at https://github.com/KULL-Centre/_2022_functional-sites-
cagiada which also contains the final trained model. The datasets are
also available on Zenodo67, and can be accessed via https://doi.org/10.
5281/zenodo.8046585. Uniprot and PDB ID codes for the proteins
studied are available in Supplementary Tables 4, 5 and 6. Source data
(full images) for Fig. 6 are provided as a Source Data File in zip for-
mat. Source data are provided with this paper.

Code availability
The code used to generate the main text figures, to recreate the pre-
dictions, and to generate new predictions is available at https://github.
com/KULL-Centre/_2022_functional-sites-cagiada. An implementation
of themodel is also availableviaGoogleColaboratory via the same link.
The code is also available on Zenodo67, and can be accessed via https://
doi.org/10.5281/zenodo.8046585.
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