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Universal alignment in turbulent pair
dispersion

Ron Shnapp 1,2 , Stefano Brizzolara 2,3, Marius M. Neamtu-Halic2,3,
Alessandro Gambino2,3 & Markus Holzner2,4

Countless processes in nature and industry, from rain droplet nucleation to
plankton interaction in the ocean, are intimately related to turbulent fluctua-
tions of local concentrations of advected matter. These fluctuations can be
described by considering the change of the separation between particle pairs,
known as pair dispersion, which is believed to obey a cubic in time growth
according to Richardson’s theory. Our work reveals a universal, scale-invariant
alignment between the relative velocity and position vectors of dispersing
particles at amean angle thatwe show tobe a universal constant of turbulence.
Weconnect the value of thismean angle to Richardson’s traditional theory and
find agreement with data from a numerical simulation and a laboratory
experiment. While the Richardson’s cubic regime has been observed for small
initial particle separations only, the constancy of the mean angle manifests
throughout the entire inertial range of turbulence. Thus, our work reveals the
universal nature of turbulent pair dispersion through a geometrical paradigm
whose validity goes beyond the classical theory, and provides a framework for
understanding and modeling transport and mixing processes.

If we took a handful of small passive particles and threw them into the
ocean, how long would it take before the particles became fully mixed
in the oceans across the globe? Answering questions like this requires
that we know the rates at which turbulent flows transport and diffuse
the materials that they carry. One characteristic of transport is the so-
called pair dispersion, which describes the rate at which two particles
separate from each other. Pair dispersion can be used to calculate the
variance of the concentration fluctuations of substances carried by the
flow1, so it is of critical importance in numerous applications such as
determining the rate of ozone destruction in the atmosphere2 or the
dispersion of pollutants in the ocean3.

In quiescent fluids particles undergo Brownian motion, so the
increase of the distance between two particles is a diffusive process
with constant diffusivity. However, in turbulence, particles are trans-
ported by the flow field and so the process is driven by advection.
Turbulent pair dispersion is divided into three regimes (see reviews in
refs. 4–6). First, at very short times, the finite fluid inertia dictates that

the relative velocity of particles remains approximately constant. This
leads to the so-called “ballistic" regime, in which the inter-particle
distance scales linearly with time1. The ballistic regime occurs at times
t < τb, where τb = ðl20=ϵÞ

1=3
is the Batchelor time scale (l0 is the initial

distance between particles and ϵ is themean dissipation rate of kinetic
energy into heat). The second, so-called “diffusive" regime of separa-
tion ensues at very long times when the inter-particle distances, l, are
outside the inertial range, l≫ L (where L is the integral length scale).
There, similarly to the Brownian motion case, the velocity field is
uncorrelated and the typical inter-particle distance grows with a
square-root scaling in time7. The third regime was introduced by
Richardsonnearly a century ago8, and it is still intenselydebated today.
This regime corresponds to the inertial range of turbulence, namely,
η≪ l≪ L, where η = ðν3=ϵÞ1=4 is the Kolmogorov length scale (ν is the
kinematic viscosity). In this inertial regime the typical separation
velocities increasewith the separationdistance, which leads to a super-
diffusive growth of inter-particle distances.
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While the validity of the ballistic and the diffusive regimes are
generally agreed upon by the community, Richardson’s inertial
regime remains contested. Indeed, although Richardson’s theory
was proposed nearly a century ago8, and despite it being considered
a hallmark of turbulence, it remains elusive to empirical verification.
In particular, finite Reynolds number effects9–17, and intermittency
andmixing of different regimes18–20, make it difficult to interpret the
measurements of the time evolution of the statistics of inter-
particle distances over long periods of time. Indeed, empirical
studies that measured pair dispersion scaling exponents found
agreement with Richardson’s theory only for particular choices of
initial conditions, namely small initial distances10,16,17,21,22 or separa-
tion velocities15, while for other initial conditions the scaling expo-
nent were different. This gap between the classical theory and
modern experiments demands an explanation that will better
describe the process across the scales.

In this paper, we propose a new approach for characterizing
turbulent pair dispersion. Specifically, we focus on the angle, θ,
formed between the relative position and relative velocity vectors
(see Fig. 1, and Supplementary Video 1). We show theoretically and
confirm empirically that this angle has three unique behaviors in
each of the three regimes of the separation process. In particular, in
the inertial regime it has a constant mean value that is equal to
approximately 59° independently of the initial conditions and the
Reynolds number. Thus, it is a universal constant of turbulence.
Furthermore, we calculate the mean value of the angle analytically
using Richardson’s theory at small initial separations, finding
agreement with the empirical data. Thus, our work introduces a
geometrical framework that reveals the universality of turbulent
pair dispersion and applies more broadly than the traditional pic-
ture. This provides a framework for characterizing dispersion in
oceanic and atmospheric turbulent flows.

Results
Theoretical analysis of the pair dispersion angle
We begin by calculating theoretical predictions for the average of θ in
turbulence. To elucidate our analysis, we will consider three different
scenarios: first, particles that move with constant velocities, second,

particles that undergo normal diffusion, and third, particles that
undergo a super-diffusive separation. These three scenarios corre-
spond to the three regimes of pair dispersion in turbulence namely,
the ballistic, diffusive and inertial regimes respectively. We
consider particles that have initial positions x1(0) and x2(0), and
move with velocities, v1(t) and v2(t), respectively. Their relative
velocity is Δv(t) = v1(t) − v2(t). The distance between them,
lðtÞ � ∣lðtÞ∣= ∣x1ðtÞ � x2ðtÞ∣, follows the kinematic relation9,23

d l
dt

=
Δv � l
l

: ð1Þ

The cosine of the angle that lies between the relative velocity and
relative position vectors is equal to

cosðθÞ � α =
Δv � l
∣Δv∣ l

, ð2Þ

where it can take values between −1 and 1, which correspond to θ
ranging from 180° to 0°. Combining Eqs. (1) and (2) shows that

α =
1

∣Δv∣
d l
dt

: ð3Þ

In the first scenario, the ballistic case, the particles’ velocities are
frozen in time. Thus, the relative position in this regime evolves as
l(t) = l(0) +Δv t, and the angle cosine can be solved analytically, giving

αðtÞ= Δv � ðlð0Þ+Δv tÞ
∣lð0Þ+Δv t∣ ∣Δv∣ : ð4Þ

Therefore, in the ballistic scenario α(t) increases monotonically
and tends asymptotically towards 1 for any l(0) and Δv. Correspond-
ingly, the two vectors tend towards perfect alignment with time,
namely, θ→0°.

We move on to the second scenario by analyzing the time evo-
lution of αh i (where brackets denote an ensemble average) for an
ensemble of particles that undergo diffusion with a constant diffusiv-
ity. Specifically, we consider an ensemble composed by taking pairs of
particles at different locations and times with the same initial separa-
tion l(0) = l0, while allowing them to separate with time. Initially, there
is no preferred alignment ( αð0Þ� �

=0) since the particles’ velocities are
chosen randomly. Furthermore, the particles separate fromeachother

on average, so dl
dt

� �
>0; together with Eq. (3), this suggests that αðtÞ� �

immediately grows and becomes positive for t >0. To determine the
long time behavior we transform to a frame of reference whose origin
is fixed at x1(t). Then, considering long times for which l(t)≫ l0 (where
l0 � ∣lð0Þ∣), the average distance between pairs in three dimensional

space is given by hlðtÞi= ð16π DtÞ1=2, where D is the diffusivity for the
relative dispersion, equal to twice the single particle diffusivity. Taking
the time derivative and using Eqs. (1) and (2), we obtain the long-time

scaling αðtÞ� �
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4D

π ∣Δv∣h i2
q

t�1=2. Thus, at long times, αh i decays asymp-

totically back towards zero with a time scaling of t−1/2, so that
θðtÞ� �! 90�. The asymptotic decay in this case occurs because 〈l〉
grows with time with a scaling exponent smaller than 1, while the sta-
tistics of Δv are constant.

Moving forward to the third scenario, pair dispersion in the
inertial range of turbulence is intrinsically different from the above
cases, since both the scaling of 〈l〉 is different, and statistics of Δv
depend on the scale l. Indeed, a preferential oblique alignment
between l and Δv was observed in direct numerical simulations
(DNS)9,19. To calculate themean value of αwe use eq. (3) and expand it

Fig. 1 | Pair dispersion angle definition. Visualization of a group of Lagrangian
fluid particle trajectories in a turbulent flow, starting from within a cube with
dimensions of one Kolmogorov length scale. Trajectories are color-coded
according to their final position. The relative position vector, the relative velocity,
and the angle between them, l,Δv, and θ, respectively, are shown for one particle
pair. In the inertial range, the average of θ calculated over all pairs is equal to a
constant value.
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as a Taylor series around the mean values of ∣Δv∣ and d l
dt. By averaging

the series, we obtain the following expression for the mean value

αh i= 1
∣Δv∣

d l
dt

� �
=α0 1 +

X1
n = 1

αn

α0

 !
ð5Þ

where αn is the averaged nth term of the series, and α0 =
1

∣Δv∣h i
d lh i
dt (the

derivation is given in Section 4.4). In what follows, we assume that
the series converges sufficiently fast and truncate terms with n ≥ 2.
This results in a first order approximation of Eq. (5), the accuracy of
which is confirmed in Section 2.2. Then, since α1 = 0, we obtain
that αh i=α0.

The behavior of α0 could first be considered from a dimensional
analysis point of view. In the inertial range, Kolmogorov’s local

isotropy theory leads to the conclusion that α0 can only depend on
ϵ, l0, and t. In addition to that,αdoesnotdependon l explicitly but only

on dl
dt (Eq. (3)). Therefore, and because d lh i

dt = d l�l0h i
dt , it is reasonable to

assume that α0 is independent on l0 in the inertial range. This leaves
only ϵ and t as the parameters of the problem in the inertial range.
However, no dimensionless group can be constructed from these two
parameters, so to ensure dimensional homogeneity, αh i has to be
constant. The actual validity of this assumption is verified below
(Section 2.2).

We can also calculate α0 using Richardson’s theory in the range in
which it is valid. Thus, we calculate d l

� �
=dt and ∣Δv∣h i in the inertial

range. When l(t) is in the inertial range and sufficient time has passed
such that 〈l(t)〉≫ l0, Richardson’s law predicts the following super-

Fig. 2 | Turbulence characterization. a A sketch showing the experimental water
tank, four camera system, laser light, and a streak image of flow tracers in the
apparatus. b The Eulerian first-order absolute structure function is shown as a
purple line, and a shaded region shows the Kolmogorov scaling with C1 = 2.7 ± 0.15.
The absolute, first order, mixed Eulerian-Lagrangian structure function is shown as
shapes for particle groups with l0/η = 5, 15, 25, 35 ± 5, and the black dashed line
shows our theoretical prediction (eq. (16)). Data shown was taken from the DNS.
c The correction factor due to the series truncation in eq. (5), plotted against time
for data taken from the DNS for l0/η∈ (10, 20, 30, 40, 50, 70, 100), and the
experimental results, averaged over l0 in the inertial range with uncertainty cal-
culated by bootstrapping over three groups. dMean squared particle separation is

plotted against time for l0/η < 5, 5 < l0/η < 10, 10 < l0/η < 20, 40< l0/η < 50, 60 < l0/
η < 70, and 90< l0/η < 100. The inset shows the same property for particles with
2 < l0/η < 4, normalized according to eq. (6), where g =0.52 ± 0.06 is shown as a
shaded region. Data shown uses the DNS results. e The PDF of θ is shown at various
times as indicated by the color of the curves. Data is shown for l0 = 50η using the
DNS results. f The Eulerian second-order longitudinal structure function in the
experimental dataset is plotted against the distance, l. The black line and shaded
region show the Kolmogorov scaling range for 10η < l < 40η. g The longitudinal
spatial correlation function of velocity fluctuations, averaged over spherical shells
of radius l in the experimental data set. The line shows an exponential fit to the tail
of the data.
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diffusive pair dispersion regime6,8

hl2i= g ϵ t3, ð6Þ

where g is the Richardson constant. We also make use of the fact that
there are two theoretical predictions for the probability density func-
tion (PDF) of l in the inertial range1,6,8,13. In both theories, the average

separation is equal to hli=b
ffiffiffiffiffiffiffiffi
hl2i

q
, where b =0.867 ± 0.054 is a

dimensionless constant (see Section 4.2). Combining this with Eq. (6)

we obtain d lh i
dt = 3

2 b ðgϵtÞ1=2. Notably, Richardson’s solution is strictly
valid only for l0 = 0, and thus the variance of l in Eq. (6) is usually

replaced with the variance of (l − l0)6. Yet, since
d lh i
dt = d l�l0h i

dt , and since
the PDF of l − l0 was experimentally observed to agree with the theo-
retical expressions used here for the PDF of l6,13, our calculation applies
also for finite l0. The second factor, ∣Δv∣h i, is the first order Eulerian-
Lagrangian absolute structure function, where the relative velocities
are taken over the full distribution of particle distances which changes
with time. At t = 0, the structure function is purely Eulerian, so
according to the Kolmogorov theory24 (namely, neglecting intermit-

tency corrections), ∣Δv∣ ∣ t =0h i= �∣Δl0
v∣
�
=C1ðϵl0Þ1=3, where C1 is a

universal constant of turbulence. At longer times, the mixed structure
function is calculated by averaging the particles’ relative velocities
across the distribution of particle distances, l; in the inertial range we

obtain ∣Δv∣h i= c C1 ϵ
ffiffiffiffiffiffiffiffiffi�
l2
�q� �1=3

, where c =0.918 ± 0.034 is a dimen-

sionless constant (see Section 4.3). Combining these estimations and
using Eq. (6) we obtain the following first order, mean-field
approximation, for the angle cosine in the inertial range of turbulence

αh i=a g1=3

C1
, ð7Þ

where a � 3b
2c = 1:42±0:10.

Equation (7) connects αh i with Richardson’s law in the inertial
range, and it has several important implications. First, our calculations
suggest that αh i in the super-diffusive regime is constant. This is in
agreement with the dimensional analysis argument presented above,

which is expected as eq. (6) can also be derived from a similar
argument4. Indeed, the valueof αh i obtainedhere does not dependon ϵ
nor on the initial conditions, so it is a universal constant of turbulence.
The value of αh i can be calculated with eq. (7) for the small initial
separations for which Richardson’s theory holds, and then, assuming
that αh i is independent on l0, the same value should hold for the entire
inertial range (this is verified in Section 2.2). Second, because of the
geometrical constraint ∣α∣≤ 1, and since all the constants in eq. (7) are
positive,weobtain a constraint for the valueof theRichardson constant

g ≤
C1

a

� �3

: ð8Þ

Third, if one measures θ
� �

from empirical data, the value of g can
be readily calculated.

Universality of the pair dispersion angle
The angle θ can bemeasured from the trajectories of flow tracers, and
thus, its behavior can be tested using empirical data directly. To this
end, we used two independent datasets. The first is the Johns Hopkins
Turbulence Database (JHTDB), which holds turbulent flow fields taken
from a direct numerical simulation (DNS) of a forced homogeneous
isotropic turbulence at a Taylor microscale Reynolds number of
Reλ ≈ 433, with the ability to integrate Lagrangian trajectories25,26. Since
its publication, this database has become a gold standard and a
hypothesis-testing tool for turbulent flows. The second data set was
taken from 3D particle tracking measurements27,28 of quasi-
homogeneous isotropic turbulence that we conducted inside a stir-
red water tank at ETH Zürich (Fig. 2a and Supplementary Video 2, the
data is available in ref. 29). The flow had secondary circulation with an
amplitude of about 68% of the root mean squared turbulent fluctua-
tions. The turbulence integral length scale, L = 20.5mm,was calculated
by fitting an exponential function to the longitudinal velocity auto-
correlation function (Fig. 2g), where a Kolmogorov scaling range was
observed between approximately 1 and 5 mm for the Eulerian second
order structure function (Fig. 2f). The Reynolds number was Reλ ≈ 188.
Detailed information about both data sets are given in Section 4.

We begin by evaluating the error that results from truncating the
Taylor series in eq. (5). The ratio between αh i and its first order

Fig. 3 | Evolution of the pair dispersion angle. a Evolution of the average angle
between the separation and the relative velocity vectors as a function of time.
Continuous lines show DNS results for various ensembles grouped by the initial
separation distance for values in the inertial range; the bin edges used to form the
ensembles are l0/η =0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 130, 160, and 200,
where the arrow runs from lower to higher values. Lines in the inset show the same
data plotted with time normalized by the Batchelor timescale. Circles correspond
to the experimental results, averagedover all pairswith r0 < 70ηwith anuncertainty

of ± 2∘ based on the data range across the l0 groups (Fig. S3). The dot-dashed line
correspond to eq. (9). The dashed black line and the shaded region mark the
estimated value of θ

� �
= 59:3 ± 2�. b Evolution of the average of θ for pairs with

initial separation outside the inertial range. Data are shown for initial separation
distances of l0/η = 483, 594, 704, 812, 915, and 1006. These values correspond to l0/
L = 1.00, 1.24, 1.47, 1.69, 1.91, and 2.10. The horizontal dashed line marks the
θ
� �

= 59:3� value, and the vertical dashed line marks one integral timescale.
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approximation varies slightly with time where the same trend is
observed for both data sets. At t =0 it equals approximately 0.8, and it
then increases with time, plateauing at approximately 0.89 for t ≳ τb
(Fig. 2c). Therefore, the error introduced by truncating the series
amounts to approximately 10% of the value of αh i and it does not
change with time. Since the correction is constant throughout the
inertial range, truncating the series does not affect the constancy
predicted for θ

� �
. This observationmight be explained by the fact that

the higher order terms result from correlations between l and Δv
(Section 4.4), which should not change with time in the self-similar
inertial range.

Next we confirm our calculation for the first order absolute
structure function. The Eulerian structure function, shown in Fig. 2b, is
compared with the Kolmogorov scaling, where neglecting inter-
mittency corrections to the scaling exponent we obtain C1 = 2.7 ± 0.15.
Furthermore, plotting the mixed Eulerian-Lagrangian structure func-
tion we obtain good agreement with Eq. (16). Overall, Fig. 2b and c
confirm the hypotheses made in the derivation of Eq. (7), and suggest
that the error due to the Taylor series truncation is reasonably small.

We now turn to estimating the Richardson constant, g. The
growth of 〈l2〉 as a function of time is shown in Fig. 2d for particles
taken from the DNS results. As commonly observed, we can identify a
range in which Eq. (6) holds only for pairs with small initial
separations10,16,17. Therefore, using particles with the initial separation
2η < l0 < 4η, we estimate g =0.52 ± 0.06 (Fig. 2d, inset),which is in good
agreement with previous measurements6,10. Furthermore, using the
value we measured for C1, eq. (8) gives g ≤ 6.91, which agrees with our
measurements and with previous estimates6.

Next we turn to measure the pair dispersion angle for particles in
the empirical data sets using Eq. (2) directly. The main panel of Fig. 3a
shows the evolution of θ

� �
as a function of time for twelve pair

ensembles from the DNS dataset, whose initial separation distance is
inside the inertial range (η < l0 < L). For all cases, the average angle is
initially very close to 90° (values slightly smaller than 90° are due to
the well-known skewness of Eulerian velocity differences in
turbulence4). Correspondingly, the PDF of θ, that ranges from 0° to
180°, is symmetrical around 90° (Fig. 2e). Indeed, since the particles
are chosen randomly, there is no significant preferred alignment
between l and Δv at t = 0.

For t > 0, the average angle rapidly decreases until a plateau is
reached where the time of convergence of θ

� �
to the plateau increases

with the initial separationdistance. In theballistic regime, t≪ τb, during
which Δv is constant, simple geometrical considerations show that
θ= π

2 � ∣Δ?v∣
∣l0 ∣

t, where Δ⊥v is the transverse component of the relative
velocity. Taking the average of this relation over particles with the
same l0 while using the Kolmogorov scaling of the velocity differences
we obtain the solution for short times

θ
� �

=
π
2

1� t
τb

2C1,?
π

� �
for t≪τb, ð9Þ

where C1,⊥ ≈ 1.66 is the coefficient for the transverse absolute first-
order structure function (h∣Δ?v∣i) measured from our data. Therefore,
to compensate for the differences in the convergence rate for pairs
with different l0/η, time is normalized by τb for the DNS and the
experimental datasets. Following this normalization, the data from the
DNS and from our experiment collapse, and good agreement is found
with Eq. (9) (Fig. 3a inset). The plateau is reached at t/τb ≳0.5,
approximately the time thatmarks thebeginning of the super-diffusive
regime30. Since in ballistic motion θ

� �
decreases monotonically, and

since the transition in Fig. 3a occurs at fixed t/τb, we infer that the
transition in the trends of θ

� �
is due to the transition of pair dispersion

from the ballistic to the inertial, super-diffusive regime. Therefore, the
plateau observed for θ

� �
in Fig. 3a occurs during the turbulent inertial

regime; this confirms our prediction that θ
� �

attains a constant value in

the inertial range, and that a plateau marks the inertial regime.
Correspondingly, the PDF of θ becomes increasingly asymmetrical
through the ballistic regime since its mode shifts to the left; eventually
it reaches a steady-state for t/τb ≳0.5, namely in the inertial
range (Fig. 2e).

The value of the plateau of θ
� �

does not show a systematic
dependenceon l0 nor on ϵ, which is in accordancewith the assumption
presented in Section 2.1 and with Eq. (7). In particular, the difference
between the plateaus observed in theDNSand the experimental data is
smaller than 2° (58.6° in theDNS and 60.3° in the experiment), which is
comparable to our uncertainty levels. This observation supports our
prediction that the value of θ

� �
(and αh i) in the inertial range is a

universal constant of turbulence. Considering times t > τb, we calcu-
lated the average value of the angle across l0 averaging over both
datasets, which gives an estimate of θ

� �
= 59:3� with an estimated

uncertainty of ±2° (Fig. 3a).
Using the values that we measured for C1 and g, and plugging

them into eq. (7), we can predict the value of the average angle cosine
αh ith =0:422±0:042 (the uncertainty reflect uncertainty in the values
of C1 and g). Furthermore, using the direct empirical measurement, we
calculate that αh imeas =0:46±0:03 (here the uncertainty reflects the
slight variance in the experimental and numerical estimates). Evi-
dently, these two independent measurements are in good agreement
given the 10% accuracy of the first order approximation we used. This
confirms eq. (7) for the available degree of uncertainty.

In contrast to the behavior in the inertial range, Fig. 3b shows the
evolutionof θ

� �
for pairsoutside the inertial range,with l0 > Lusing the

DNS data. Particles with such a large value of the initial separation are
in the diffusive, Taylor range of turbulent pair dispersion, since velo-
city fluctuations are no longer correlated at these scales4. As for the
inertial range case (Fig. 3a), θ

� �
is initially close to 90° and decreases

rapidly. However, unlike in the inertial range case, here the curves do
not plateau; instead, they reach local minima with values that depend
on l0, and then increasewith time. This behavior of θ

� �
agrees with the

prediction for the trend of θ
� �! 90� for diffusing particles (second

scenario in Sec. 2.1). Overall, our observations confirm that in turbu-
lence, only pairs in the super-diffusive pair dispersion regimemanifest
the plateau of average pair dispersion angle.

Discussion
Our work offers a framework which reveals the universality of turbu-
lent pair dispersion. We show that the angle between the separation
and the relative velocity vectors of separating particles is biased
towards oblique values, and the evolution of its average, θ

� �
, follows

three distinct regimes in homogeneous isotropic turbulence. Starting
from an unbiased value of approximately 90�, θ

� �
decreases linearly

during the initial ballistic regime, while in the diffusive regime θ
� �

increases back towards the unbiased value of 90°. Yet, the key dis-
covery of our work is that in the inertial range of turbulence θ

� �
pla-

teaus at a constant value of approximately 59° independently of the
initial conditions and of the dissipation rate, making θ

� �
a universal

constant of turbulence.
In Section 2.1, we employed Richardson’s classical theory8 to

estimate themean value of α (namely, cosθ) analytically, arriving at eq.
(7). Nevertheless, the validity of Richardson’s law with the unique t3

scaling is observed only for small initial separations or separation
velocities10,15–17,21,22, while ourworkestablishes that the constancy of θ

� �
holds throughout the entire inertial range (Fig. 3). To confirm the
validity of the estimate provided by Eq. (7), we measured the
Richardson constant, g, using particles with initial separations in the
range in which Richardson’s theory holds. In this sense, Eq. (7) can be
understood as a relation that matches the values of g and the new
universal alignment property in the limited range where the validity of
both overlap. Further theoretical treatment is still needed to fully
understand the alignment property.
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Determining the time scaling of the separation between
particles in the inertial range is one of the long-standing open
problems in turbulence. In particular, it is not yet clear whether
the elusiveness of empirically confirming Richardson’s Eq. (6) is
due to a failure of the assumption of the theory itself (i.e. a scale
dependent diffusivity)30–33 or whether they are due to issues in the
measurements. Namely, had the Reynolds numbers in measure-
ments been higher and the duration of measurements been
longer, would Richardson’s classical predictions be recovered
then? Unlike direct scaling measurements, our work shows that
the inertial range behavior of θ

� �
is clearly observed at the Rey-

nolds numbers and measurement durations readily available with
current technological capabilities. In particular, the inertial range
behavior is robustly observed for particle pairs with l0 values
throughout the whole inertial range (Fig. 3a). A central difference
between θ

� �
and the direct scaling method is that while θ depends

on instantaneous regulation of the separation process by the flow
(namely on alignment properties of the separation velocity), the
scaling exponents integrate it in time and thus can accumulate
deviations. Therefore, while our observation that θ

� �
is constant

in the inertial range suggests that the internal regulation of the
flow leading to Richardson’s law exists in realistic, terrestrial
turbulence, whether this leads to converged scaling exponents in
a finite Reynolds number flow is still debated22.

An important outcome of our work is that it opens the
opportunity for verifying the three regimes of turbulent pair dis-
persion in future measurements. In particular, measuring the
evolution of θ

� �
instead of the separation scaling exponents is

advantageous because of three main reasons. First, confirming the
super diffusive regime using θ

� �
amounts to measuring a constant

value, which, due to the finite nature of measurements, is much
easier than measuring scaling regimes with high exponents. Sec-
ond, θ is inherently scale-invariant, so the complications that arise
due to the intermittency of pair dispersion and initial separation
dependence are avoided. Third, the plateau of θ

� �
appears early

after the ballistic regime (for t ≳ 0.5τb, Fig. 3), so it is not necessary
to obtain very long particle trajectories. Indeed, the plateau of 〈θ〉
is detected for all initial separations inside the inertial range
(l0 < L). Therefore, our framework allows confirming the effects of
turbulence on scalar dispersion over a wide range of flows and
under realistic conditions - a crucial step both for our under-
standing of turbulent flows and for modeling dispersion.

To conclude, our geometrical framework opens a new per-
spective in turbulent dispersion research since its universality
allows characterizing pair dispersion in a wide range of turbulent
flows. Even under conditions that depart from the ideal ones con-
sidered here (i.e., quasi-homogeneous and isotropic), observing at
which times and initial separations θ

� �
remain at a constant value

allows to quantitatively assert the range of scales in which the
inertial range manifests, a particularly crucial issue for environ-
mental flows34–36. Therefore, the framework we propose can be used
to characterize a large variety of dispersion processes in nature. For
example, going back to the question of how fast particles mix in the
ocean, measuring θ

� �
in field experiments will allow determining at

which scales isotropic turbulence phenomenology drives disper-
sion and under which of the three regimes, thus enabling more
accurate dispersion estimations of algae blooms, plastic debris and
oil spills in the ocean.

Methods
Empirical dataset
Our work uses two independent empirical datasets to confirm our
analysis - the results of a numerical simulation, and the results of a
particle tracking experiment.

Direct numerical simulation.Weused the results of aDirectnumerical
Simulation of theNavier-Stokes equationwith a large scale, statistically
stationary and homogeneous forcing. The simulation was performed,
and its results are stored and maintained, by the team of the Johns
Hopkins Turbulence Database25 (JHTDB). The results of the simulation
are stored as Eulerian fields, holding data for a time duration of
approximately 5 integral timescales over a periodic cubical domain
with 10243 nodes; the Taylor microscale Raynolds number is Reλ ≈ 433.
Since its publication, the JHTDB had become a gold standard and an
hypothesis testing tool in the turbulence community.

To study pair dispersion using the results of the JHTDB simulation
we calculated trajectories of flow tracers by time integration of the
velocity field. For that, we used JHTDB’s #get_position# function,
following the results of26. Overall, we integrated approximately 12,500
trajectories, each over a time span of three integral timescales. Tra-
jectories were integrated in 63 groups starting from random initial
positions and times in the computational domain. By pairing initially
close trajectories with one another we obtained a dataset that holds
~6 × 105 pairs of trajectories with initial separation inside the inertial
range (namely, with l0≲ 200η), and approximately 106 trajectory pairs
with initial separations larger than that. Fig. 1 shows a 3D rendering of
one such group of trajectories.

In addition to the Lagrangian trajectories, we also downloaded
Eulerian velocity samples over a regularly spaced grid. This datasetwas
used to calculate the first-order absolute structure function (Fig. 2b).
For this purpose we used samples distributed over three orthogonal
planes in the computational domain, taken at evenly spaced intervals
over time and space, using approximately 6η of separation in space
and one half integral time scale in time.

3D particle tracking experiment. We used an experimental dataset
obtained from a 3D Particle Tracking Velocimetry (3D-PTV) experi-
ment. The turbulent flowwasgenerated inside an octagonal cylindrical
tank that is constructed of an aluminum frame fitted with eight
transparent glass windows (Fig. 2a). The tank was filled with approxi-
mately 17.5 liters of de-ionized filtered water. Turbulent flow was
generated in the tank using eight 45 W DC servo-motors, each con-
nected to a vertical shaft that is fitted with a pair of propellers. Each
motor was operated individually using a random actuator that alters
the direction of rotation at random time intervals taken from a Poisson
distribution with an average of 0.1 s, in a setup similar to those used in
refs. 21, 37.

The flow was measured using 3D Particle Tracking Velocimetry
(3D-PTV)27. The water was seeded with 70μm fluorescent tracer parti-
cles of density ρ = 1030 kgm−3. The particles were then illuminated by
an expanded laser beam (537 nm), that was masked to illuminate a
prismatic rectangular volume at the center of the tank. Four high-
speed digital cameras (Microtron, 1280× 1024 pixels) were synchro-
nized and operated at 500Hz to record images of the tracer particles
as theywere carried by theflow. The cameraswere calibrated using the
self-calibration method38 using a calibration target on which 438
points weremarked at known locations over three parallel planes. The
setup yielded a static calibration uncertainty of approximately 50μm
based on the root mean squared calibration error. In addition, the
cameras were fitted with high pass optical filters to better visualize the
fluorescent particles.

The tracer images were analysed following the 3D-PTV metho-
dology by using our open-source software MyPTV28 that is freely
available online. The trajectories were then smoothed using a moving
third-order polynomial spline with a window size of 11 samples, and
5 samples at the edge of each trajectory were discarded. We analysed
20 s of data in total, which is on the order of 100 integral timescales of
the flow. Our measurement spanned a measurement volume of
70 × 70 × 40mm, where each of the 10,000 frames in our post-
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processed dataset contained approximately ∼Oð103Þ particles. The
root mean square of the velocity fluctuations was u0 = 58mms�1, the
integral length scale was L = 20.5mm, the dissipation rate
was ϵ= 1

2
u03
L =4950mm2 s�3; correspondingly, η = 0.12mm, and

the Taylor microscale and Reynolds number are
λ=

ffiffiffiffiffiffiffi
15 ν

ϵ

p
u0 =3:1mm,Reλ =

u0 λ
ν

≈ 188 (see supplementary materials for
details on these calculations). A 3D rendered animation of trajectories
from our experiment is shown in Supplementary Video 2. The full data
set of approximately ∼Oð6× 105Þ trajectories can be downloaded
in ref. 29.

Calculation of the coefficient b
In equation (5), we calculated the first moment of particle separations,
l, using theoretical predictions of its PDF and its second moment. In
particular, two shapes of the PDF of l were predicted assuming diffu-
sive separation from a point source6. The first was obtained by
Richardson8

qRðlÞ=
aR,1

ðπhl2iÞ3=2
� exp �aR,2

l2

hl2i

 !1=3
2
4

3
5, ð10Þ

where aR,1 =
429
70

ffiffiffiffiffiffi
143
2

q
and aR,2 = ð12878 Þ1=3, and the second was obtained

by Batchelor1

qB =
3

2πhl2i

 !3=2

exp � 3
2

l2

hl2i

 !
: ð11Þ

In both cases the second moment 〈l2〉 appears explicitly in the
expressions, which means that the nth moment can be expressed as
hlni / hl2i

n
2. In particular, for both PDFs, the nth moment is readily cal-

culated by solving

hlni=
Z 1

0
ln qðlÞ4π l2 dl ð12Þ

using the following formula39

Z 1

0
xn expð�a xkÞdx = 1

k
a�ðn+ 1Þ

k Γ
n+ 1
k

� �
ð13Þ

where Γ(x) is the Gamma function. Thus, for the Richardson PDF,

qR(l), we obtain b = 6aR,1ffiffiffi
π

p
a6
R,2
Γð6Þ≈0:813, whereas for the Batchelor PDF,

qB(l), we obtain b=
ffiffiffiffiffi
27
2π

q
ð23Þ

2
Γð2Þ≈0:921. These calculations result in

the following range of b = 0.867 ± 0.054. Notably, from the empiri-
cal point of view, themeasured distribution of lmay have a different
shape, so qR and qB are considered as two limit cases10,13 reflected in
the uncertainty range of b; in accordance, direct estimation of b
using our empirical datasets gives b ≈ 0.84, in agreement with the
calculations.

The mixed Eulerian-Lagrangian structure function
We here derive themixed-Eulerian-Lagrangian first order absolute
structure function. For that, we consider an ensemble of pairs of
Lagrangian particles that are initially separated by a distance l0.
The particles are free to move, so the distance between each of
the pairs in the ensemble changes as a function of time. Thus, the
first order structure function is obtained from the ensemble

average as

∣Δv∣h i=
Z Z

∣Δv∣Pð∣Δv∣,lÞdl d∣Δv∣ ð14Þ

where Pð∣Δv∣,lÞ is the joint PDF for the absolute value of the pairwise
relative velocity and the distance (see ref. 4, Sec. 24.2). Using Bayes’
theorem40, the join PDF is written using the marginal and the condi-
tional PDF of the distances and the relative velocity respectively
Pð∣Δv∣, lÞ=Pð∣Δv∣ ∣ lÞ � qðlÞ4π l2, where as in Section 4.2, q(l) is the PDF
for the distance l. We first solve the integral over the relative velocities
and obtain

Z Z
∣Δv∣Pð∣Δv∣ ∣ lÞd∣Δv∣

	 

qðlÞ4π l2 dl =

Z
C1 ϵ

1=3 l1=3 qðlÞ4π l2 dl

ð15Þ

where we have used the fact the the average of ∣Δv∣ at a given scale l is
the purely Eulerian first order structure function, while employing
Kolmogorov’s universal similarity theory24 for l in the inertial range;
this is justified because the initial position of each pair is chosen ran-
domly over space and time, and because of the l0 independence in the
inertial range. Following that, we solve the integral over the particle
distances while employing both Richardson’s and Batchelor’s PDFs,
qR(l) and qB(l). In both cases, we obtain the solution in the form

∣Δv∣h i= c C1 ϵ

ffiffiffiffiffiffiffiffiffiffi
l2
D Er� �1=3

ð16Þ

where c is a constant thatdependson the shapeof q(l) thatwas chosen,
being equal to 0.952 for the Batchelor PDF, and 0.885 for the
RichardsonPDF. Thus,wewill use the value c = 0.918 ± 0.034where the
uncertainty is taken to make sure we are covering the two possible
shapes of the PDF.

A Taylor series expansion for αh i in the inertial range
For ease of notation, we denote X � ∣Δv∣ and Y � d l

dt. To obtain eq. (5),
we write αðX ,Y Þ= 1

X Y , and Taylor expand it around the averages Xh i
and Yh i. After averaging the result, we obtain41

αh i=α0 +α1 +α2 + . . .

α0 =α∣ Xh i, Yh i =
1
Xh i Yh i

α1 =
∂α
∂X

∣
Xh i, Yh i

X � Xh ih i+ ∂α
∂Y

∣
Xh i, Yh i

Y � Yh ih i=0

..

.

αn =
1
n!

Xn
k =0

n

k

� �
∂n�k

∂Xn�k

∂kα

∂Yk
∣
Xh i, Yh i

ðX � Xh iÞn�kðY � Yh iÞk
" #* +

ð17Þ

Let us note that the values of α and its derivatives estimated at Xh i and
Yh i are constants that multiply mixed central moments of X and Y.

Data availability
The experimental dataset generated and analyzed during the current
study is available in “Zenodo" with the identifier https://doi.org/10.
5281/zenodo.6802679. Numerical data from the DNS dataset used in
this study can be downloaded from the Johns Hopkins Turbulence
Database at http://turbulence.pha.jhu.edu/. Other data used to sup-
port the finding of this study are available from the authors upon
reasonable request.

Code availability
The code used to obtain the numerical DNS dataset is available at the
supplementary information file.
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