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Detecting shortcut learning for fair medical
AI using shortcut testing

Alexander Brown1, Nenad Tomasev 2, Jan Freyberg3, Yuan Liu4,
Alan Karthikesalingam3 & Jessica Schrouff 2

Machine learning (ML) holds great promise for improving healthcare, but it is
critical to ensure that its use will not propagate or amplify health disparities.
An important step is to characterize the (un)fairness of ML models—their
tendency to perform differently across subgroups of the population—and to
understand its underlying mechanisms. One potential driver of algorithmic
unfairness, shortcut learning, arises when ML models base predictions on
improper correlations in the training data. Diagnosing this phenomenon is
difficult as sensitive attributes may be causally linked with disease. Using
multitask learning, we propose a method to directly test for the presence of
shortcut learning in clinical ML systems and demonstrate its application to
clinical tasks in radiology and dermatology. Finally, our approach reveals
instances when shortcutting is not responsible for unfairness, highlighting the
need for a holistic approach to fairness mitigation in medical AI.

Machine learning (ML) promises to be a powerful approach in many
healthcare settings, with models being designed for a variety of diag-
nostic and prognostic tasks. Risk of harm from machine learning
models is unfairness, as variation in model behavior for patients with
different sensitive attributes (Fig. 1a) has the potential to perpetuate or
amplify existing health inequities1,2. This has been observed inmultiple
clinical settings3–5 and remains a major topic of research. While the
definition of what constitutes fairness may vary widely across fields6,
here we focus on the expression of fairness as equal model perfor-
mance across patient subgroups defined by sensitive attributes7.

On the other hand, machine learning models may utilize infor-
mation about sensitive attributes (such as age, sex, or race) to improve
model performance8 in ways that may be justifiable where attributes
correlatewith disease risk/presentation in the deployment population.
For instance, androgenetic alopecia is more prevalent in men and
breast cancer more common in women; keloid scarring is more com-
mon in skin of color9, and melanoma is more common in lighter skin
tones. In such settings, ignoring or ablating attribute information may
decrease clinical performance.

However, the use of information about sensitive attributes can
also be harmful—in particular, due to the phenomenon of shortcut
learning10. This refers toMLmodels relying on spurious associations in

training datasets to learn prediction rules which generalize poorly,
particularly to new populations or new settings. Shortcut-based deci-
sion rules are also likely to amplify errors in atypical examples, such as
male patients with breast cancer or melanoma in dark-skinned indivi-
duals.While shortcut learning is typically evaluated by focusing on the
performance of a model in different populations or environments10,
shortcuts based upon sensitive attributes have the risk of exacerbating
model unfairness and to further health disparities. Our work hence
investigates how shortcuts might affect model fairness, in addition to
performance.

Concerns about ML models exploiting shortcuts based on sensi-
tive attributes have been amplified by the observation thatMLmodels
can predict these attributes from clinical data without the need for
attributes to be directly inputted into the model. For example, models
can be trained to predict sex or age from medical images11,12 and may
even encode information about sensitive attributes when this was not
the objective of ML training13. However, the fact that a ML model
encodes information about sensitive attributes does not necessarily
mean that it uses this information tomake clinical predictions14 or that
such use results in shortcut learning.

Previous work on shortcut learning10 has focussed on sensitive
attributes that are likely to encode spurious correlations. In this
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context, any reliance by the model on the sensitive attribute may be
considered to be a shortcut. However, this approach does not gen-
eralize to cases where a sensitive attribute may be, at least partly,
causally related to the outcome. In this work, weposit that the effect of
sensitive attributes on the model is the sum of biological, potentially
causal effects that might improve model performance, and shortcut
learning, whichmight be harmful. In this context, we redefine shortcut
learning to be an effect of the sensitive attribute that does not con-
siderably improve performance (as defined by the user) but affects
fairness. By intervening on the degree to which a model can encode a
sensitive attribute, we demonstrate a method that assesses whether
such encoding indicates the presence of shortcut learning, appro-
priate use of sensitive attributes, or is artefactual.

Themain contributionof this study is an approach that represents
a practically applicable framework for studying and mitigating short-
cut learning in clinical ML models. This addresses an unmet need
among practitioners when trying to develop fair and safe clinical AI. To
illustrate our method, we refer to radiology and dermatology appli-
cations and focus on age as a sensitive attribute since aging is linked to
disease risk across a wide variety of medical conditions, making it
harder to reliably establish whether a model is relying on shortcuts. In
addition, we follow up on prior work by Gichoya et al.13 investigating
the effect of race encoding to understand how this encoding affects
model performance and fairness. In this case, we consider race to be a
social construct akin to a spurious correlation13.

Results
Prediction models encode age and are unfair
Using an open-source chest X-ray (CXR) dataset, we trained separate
deep learning models for each of the three CXR prediction targets
(Atelectasis, Effusion, Abnormal, Supplementary Fig. 1a). The model
architecture comprised a feature extractor followed by a clinical pre-
diction head8. Using a transfer learning paradigm (i.e., freezing the
weights of the feature extractor and training themodel to predict age),
we then characterized the amount of age information contained in the
penultimate layer of each model (see “Methods”).

We find that transfer models were able to predict age (Supple-
mentary Fig. 1b; Effusion 11.9 ± 0.47 years; Atelectasis 11.3 ± 0.28;
Abnormal 11.4 ± 0.44, age MAE on the held-out test set) significantly
better than chance (permutation test, p <0.0001 for all models). We
estimated experimental bounds on these results by training the full
architecture to predict age (lower error bound) and to predict the
mean age across training samples (upper error bound, see “Methods”).
Models performed better than the upper error bound of 13.6 years but
worse than the lower error bound defined by a direct predictionmodel
of 6.4 ± 0.23 years.

We then estimated algorithmic fairness as defined by separation7,
i.e., discrepancies in the model’s true positive and false positive rates
based on age. All tasks produced models with a bias in performance
according to age based on separation (Supplementary Fig. 1c). The
observed separation values, in the range of 0.01–0.02, correspond to
around an 11–22% performance difference per decade of life, a dis-
crepancy that we feel is likely to be unacceptable to users in the
absence of other considerations.

Our findings demonstrate that CXR models do learn to encode
age, despite not being trained to do so. In addition, the performanceof
the models varies systematically with age, exhibiting unfairness.
However, it is not possible to infer from these observations alone that
the encoding of age is a driver of age-related unfair performance—
which would be required for shortcut learning.

Intervening on attribute encoding affects fairness metrics
In order to test the degree to which such encoding may drive unfair-
ness via shortcut learning, we performed an intervention that varies
the amount of age encoding in the feature extractor and assessed the
effect of this intervention onmodel fairness.We refer to this analysis as
Shortcut Testing or ShorT.Multiple techniques canbe used to perform
this intervention (e.g., group-DRO15, data sampling or reweighting).
Based on prior work on adversarial learning10,16–19, we selected to vary
the scaling of the gradient updates from the age head in a multitask
learning paradigm (see “Methods”). We focus here on results for the
Effusion label (Fig. 2a); similar resultswereobtained forAtelectasis and
Abnormal (Supplementary Fig. 2).

We were able to vary the amount of age information encoded in
the feature representation across awide range ofMAE values, covering
the region between the upper and lower bounds on age prediction
error (Fig. 2b). By plotting the fairness of the resulting models against
performance, we compared the impact of altered age encoding on
these critical properties (Fig. 2c). The ideal model would have high
performance and low separation, in the top left corner of the scat-
ter plot.

In this case, we found that increasing age encoding relative to
baseline (purple dots in Fig. 2c) does not noticeably affect model
performance. Reducing the age encoding (green dots) appeared to
slightly improve fairness properties but at the cost of reducing
overall model performance. We quantitatively analyze this
effect below.

ShorT efficiently detects shortcut learning
By definition, shortcut learning is driven by correlations between an
attribute such as age and condition prevalence and appearance.
While not identical, the distribution of ages of patients with and

Age: 76
Prediction: Effusion
True Positive

Age: 30
Prediction: No Effusion
False Negative

Condition (y)

Image (x)

Attribute (a)

a b
Causal relationship

Desired prediction

Shortcut via attribute

Causal relationship, 
may be indirect

Fig. 1 | Is amodel unfair due to shortcutting? a Examples of correct and incorrect
predictions that may be influenced by age shortcut learning in a chest X-ray
application detecting Effusion. In this example, the prediction is incorrect for a
patient with atypical age, raising the possibility of shortcut learning. b Simplified
diagram illustrating how shortcuttingmayoccur. In this schematic, the presence or
absence of a particular condition y will produce changes in the image x; we

thereforewish to train amodel that can predict y, given x (blue arrow). However, an
attribute a, such as age, may alter both the risk of developing a given condition, as
well as the image. This need not be a directly direct relationship (dotted arrows). A
model may learn to predict the presence of a condition by using the attribute (red
arrow). When these correlations are not considerably beneficial for model perfor-
mance, we consider that this path is (at least partly) a shortcut.
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without effusion in the NIH dataset is quite similar, with a mean age
of 48.2 for patients without effusion and 51.3 for patients with effu-
sion (Fig. 2a).

We therefore applied the ShorT method to datasets in which this
correlation was strengthened or weakened, simulating the results
expected in contexts inwhich shortcut learning is respectivelymore or
less likely. This was achieved by simple subsampling of the training
data to create a biased dataset and a balanced dataset (see “Methods”).
We expect that a greater correlation (biased dataset) will lead to a
strong pattern of shortcut learning, while a weaker correlation
(balanced dataset) should not lead to shortcut learning.

In the biased dataset, the correlation between age and the effusion
label was artificially strengthened by preferentially dropping examples
of older patients without effusion or younger patients with effusion.We
sought to induce an approximate decade of difference between classes;
owing to the inherent stochasticity of this method, the actual gap was
11.2 years (Fig. 3a). When trained on this perturbed dataset, baseline
models without additional age heads represented age more strongly
(9.18 years age MAE for models trained on the biased dataset, vs 11.8
years for models trained on the full dataset); however altering the gra-
dient scaling of the age head in multitask models still resulted in a wide
range of age encoding strengths (Fig. 3b). Clinical task performancewas
similar, albeit slightly higher in the biased dataset (mean AUC 0.901 vs
0.882 in theoriginal dataset). This is tobe expected since the separation
by attribute creates further information that can be used tomakemore
accurate predictions.However, the fairness of themodelswasdegraded
strikingly (Fig. 3c). This disparity could be obviated to some degree by
gradient reversal for age—with separation approximately halved in
models with poorer age representation, with only a slight decrease in
overall model performance (green cluster).

On the other hand, removing age differences due to prevalence
(thebalanceddataset, Fig. 3d–f) resulted inmodels thatperformedat a
similar level to the baseline model (mean AUC 0.883 in the balanced
dataset, 0.882 original), and these were fairer than models trained on
the original dataset.

We found similar results on Atelectasis and Abnormal labels when
using biased datasets (Supplementary Fig. 3), with a clear pattern of
dependence on model fairness relating to age encoding. Our results
are also replicated for effusion with other fairness metrics (Supple-
mentary Fig. 4).

In order to quantify the statistical dependence of unfairness on
age encoding—a signature of shortcut learning—we calculated the
Spearman rank correlation between these two variables (Fig. 4). For
the original dataset (Fig. 4a), there was a small but statistically sig-
nificant correlation between encoding and unfairness (⍴ = −0.224,
p =0.0156), indicating the presence of shortcut learning. This was
amplified in models trained on the biased dataset (Fig. 4b), indicating
the presence of significantly stronger shortcutting when training with
this biased dataset (⍴ = −0.668, p = 8.11e-17). Conversely, the correla-
tion coefficient in the balanced dataset was not significant (Fig. 4c,
⍴ = 0.116, p = 0.218), indicating no systematic impact of age encoding
on fairness in models trained on this dataset (for details, see Supple-
mentary Methods). Based on these results, our approach seems to
efficiently detect shortcut learning.

Shortcut learning cannot be identified by attribute encod-
ing alone
On the other hand, we found that the amount of age information
encoded in themodel bears little relation to the fairness of themodel
when comparing datasets (Fig. 4, compared directly in Supplemen-
tary Fig. 5). For an age MAE of 8.5–9.5 years, models trained on a
balanced dataset were almost perfectly fair, with an average
separation coefficient of 0.0016 (range 0.0003–0.0035, n = 24),
corresponding to an average 1.6% disparity in performance over a
decade of life. In contrast, models trained on a biased dataset had a
mean separation coefficient of 0.0384 (range 0.0335–0.0461, n = 43),
corresponding to an average 47% disparity over a decade of
life. Thus, in this case, it is clear that the performance of an
attribute transfer model alone is insufficient to make any predictions
regarding the fairness of the model. Rather, testing directly for the
effect of encoding on fairness reveals the presence of shortcut
learning.

ShorT detects shortcutting by race in cardiomegaly predictions
Using the public dataset CheXpert20, we predicted cardiomegaly
from chest X-rays as a binary outcome. Following the work in
Gichoya et al.13, we investigated whether the representation of race
(self-reported binary attribute, Black or White) led to shortcutting in
our model. Our results showed that shortcutting was present
(⍴ = 0.469, p < 0.001, Fig. 5), with fairness (here estimated via
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Fig. 2 | Intervening onage encoding usingmultitask learning. a The distribution
of ages for positive (light green) and negative (gray) examples for Effusion in the
training set. b The effect of altering the gradient scaling of the age prediction head
on age encoding (as determined by subsequent transfer learning). For large posi-
tive values of gradient scaling (left), the models encoded age strongly, with a low
MAE that approached the performance of a dedicated age prediction model
(empirical LEB). For large negative values of gradient scaling (right), the age pre-
diction performance of the multitask model approached the empirical UEB. Base-
line models (with zero gradient scaling from the age head, equivalent to a single

task condition predictionmodel) are shown in orange. Eachdot represents amodel
trained (25 values of gradient scaling times 5 replicates), with error bars denoting
95% confidence intervals from bootstrapping examples (n = 17,723) within amodel.
c Fairness and performance of all replicates (n = 125). The degree of age encoding
by the particular replicate is color-coded, with purple dots denoting more age
information and green dots less information, than the baseline model without
gradient scaling (in orange, overlapping with the purple dots in this case). Source
data are provided as a Source Data file.
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equalized odds) depending strongly on the model’s encoding of race
(estimated by the AUROC of race prediction). Contrary to the biased
dataset for Effusion, we however note that there is no apparent trade-
off between the model’s clinical performance and fairness. In this
case, ShorT provides fairer but performant alternatives to the origi-
nal model in addition to the detection of shortcutting (purple dots in
the top left corner of Fig. 5b).

Beyond shortcut learning: acne prediction in a dermatol-
ogy model
Lastly, we applied our approach to a multiclass prediction model in
dermatology (see Supplementary Methods) similar to that published
in ref. 8, examining a single class using a binarised formof our analysis.
The most common condition in this dataset is Acne, which is strongly
correlatedwith age (18.6-year difference inmean age between patients
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Fig. 3 | Effect of dataset perturbation.Results are presented in the samemanner as for Fig. 2 but for a subsampled dataset inducing a larger age disparity between classes
biased dataset (a–c, n = 15,148) and a balanced dataset (d–f, n = 16,093). Source data are provided as a Source Data file.
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correlation between age encoding and unfairness is markedly strengthened.
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with Acne vs other conditions; Fig. 6a). The multiclass model repre-
sents age strongly, with a mean age MAE of 9.58 years across five
baseline replicates, compared to an experimental LEB of 7.32 and
experimental UEB of 13.29 years (Supplementary Fig. 7).

Baselinemodelswith nogradient updates from the age head show
clear discrepancies in predicting the presence or absence of Acne
(separation range 0.0576–0.0755, Fig. 6b, orange dots). This corre-
sponds to a separate differential of up to 53% per decade.

However, despite the bias in the training set, strong age encoding
in the model, and unfair performance, we found that varying the
amount of age encoding did not result in a systematic change in fair-
ness properties in this case (Fig. 6c, ⍴ = −0.177, p = 0.0746). Although
the models are considerably less sensitive for Acne in older patients,
the specific cause for this does not appear to be shortcut learning.
There are a variety of other mechanisms which can lead to unfair
performance, discussed below. However, multitask learning may still
prove valuable in identifyingmodelswith highperformance and better
fairness properties.

Discussion
Shortcut learning poses significant challenges for machine learning in
healthcare, where predictions based on spurious correlations pose

significant concerns regarding safety21,22 and fairness3,4,12. However,
identifying whether shortcut learning is responsible for model
unfairness is challenging, especially when sensitive attributes such as
age may be causally linked to the clinical task.

In this paper, we propose a practical method to directly test for
the presence of shortcut learning during routine fairness assessment
of clinical AI systems when attributes might be causally related to the
outcome. We show that the degree to which models encode for a
sensitive attribute—which has previously been suggested as an analy-
tical approach13,23—is a poor measure of the degree to which that
attribute may be used. This supports previous work demonstrating
that the presence of sensitive attribute encoding by a model may arise
incidentally14. Rather, we focus not on the encoding itself but on the
degree to which the fairness of a model’s predictions depend on such
encoding.

While our approach is primarily designed to investigate shortcut
learning, a useful by-product is that it creates a family of models
mitigated with varying degrees of gradient reversal. However, the
particular choice ofmitigation strategy will depend on the dataset and
task, and more complex strategies may prove more effective or be
more feasible24. We also demonstrate that our method can indicate
when shortcut learning is unlikely responsible for model unfairness,
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which should prompt the exploration of alternative mitigation
strategies.

Prior to applying ourmethod, it is critical to select an appropriate
fairness criterion. Fairness criteria are commonly classified into inde-
pendence, separation and sufficiency7; the choice of metric will
depend upon the particular clinical task, as well as the wider societal
context25. In this study, we selected separation since age may be cau-
sally linked to many of the CXR findings our models were trained to
predict,making independencean inappropriate choice. Selectionof an
appropriatemetric also requires a deepunderstanding of howbias and
inequity may be present in clinical environments and datasets. We
therefore recommend consultation with subject experts, patient
groups, and literature review; to identify plausible links between sen-
sitive attributes and the clinical prediction target. This is likely to be
improved by participatory problem formulation26 but remains a chal-
lenging and open problem in the field to address comprehensively.We
also note that multiple fairness metrics can be estimated and their
correlation with the encoding of the sensitive attribute be compared.
This might provide further information on which mitigation might
help or select a multi-dimensional trade-off27. Although demonstrated
in the context of separation, our framework is equally applicable to
other fairness metrics.

Next, we would advocate for an initial exploratory analysis of the
data, focusing on correlations that may be present between sensitive
attributes and the prediction class. Such correlations are likely to drive
shortcut learning. Intuitively, the greater the correlation between
sensitive attribute and prediction target, the more likely it is that
shortcut learning will occur. However, this is likely to be true only for
similar datasets within a single task. For the prediction of Effusion on
CXR, there is a clear pattern of increasing shortcut learning as the age-
effusion correlation increases in subsampled datasets (Fig. 4, Supple-
mentary Fig. 5). However, shortcut learning is still observed in the
original dataset, in which there is only a small difference in age
between the positive and negative classes. In the case of Acne pre-
diction in a dermatological model, no shortcut learning was observed
despite a far greater correlation between age and the condition.
Therefore, correlation analysis alone is insufficient to detect shortcut
learning.

Another approach that has been advocated is to investigate the
degree to which models encode the sensitive attribute. As has been
shown for multiple sensitive attributes13,14, we demonstrated that
clinical AI models were able to encode information about age or race,
despite not being explicitly trained to do so. Therefore, providing the
model with information about the age or race of a patient (as an aux-
iliary input) is not required for shortcut learning to occur.

Such encoding is often assumed to demonstrate that the model
has learned to represent attributes so as to use them as shortcuts for
predictions. However, while the presence of encoding is necessary for
shortcut learning to occur, it does not provide conclusive evidence
that models are basing diagnostic decisions on the encoded informa-
tion using shortcut learning14. Our results demonstrate that the degree
to which models encode sensitive information was not predictive of
the fairness of the models in either the CXR or dermatology tasks. To
our knowledge, this has not previously been empirically demonstrated
in medical AI.

We therefore developed a method to directly test whether unfair
performance is driven by the observed encoding of the sensitive
attribute.Wedemonstrate this by varying the strengthof this encoding
using an additional demographic prediction head with variable gra-
dient scaling. Models whose fairness did rely on the sensitive attribute
will be systematically affected by changes in the degree of sensitive
attribute encoding; models in which the encoding is incidental should
not be affected in the same manner. Our approach does not quantify
the strength or impact of such shortcut learning but merely whether it
is statistically present in the training setup. Another important note is

that ShorT relies on an intervention that varies the encoding of the
sensitive attribute in the feature extractor (here, gradient scaling). If
the intervention does not cover a wide range of age encoding levels
(between lower and upper error bounds), the correlationwould not be
reliable. On simulation data (see Supplementary Note 1), we observed
that there could be a high variance in the model’s encoding of the
sensitive attribute based on random factors such as the random seed28

when the sensitive attribute and the outcome had a similar signal-to-
noise ratio. Therefore, verifying that the intervention consistently
modifies the encoding of the sensitive attribute is needed before
estimating its relationship with model fairness. Similarly, ShorT
depends on the evaluation of a selected fairness metric. If this eva-
luation is underpowered (e.g., some subgroups being small) or highly
variable, ShorT might provide misleading results. This concern is
broadly applicable to any fairness evaluation. Future work could con-
sider how to incorporate variance or confidence intervals of fairness
evaluations in the formulation of ShorT.

Rather than imposing a novel or particular architecture, our
approach involves the addition of a demographic prediction head to
the model under investigation in order to generate a family of similar
models with altered reliance upon attribute encoding. This family of
models is then used primarily to define whether shortcut learning is
occurring; the multihead models are not necessarily intended to be
used instead of the base model.

We note that even if shortcut learning is not detected, encoding
may present intrinsic ethical concerns and potential for misuse. Since
we do not add the demographic head to the production model, our
method reduces the potential for misuse of this information at
deployment. Where one of the alternative models is found to have
substantially better fairness properties, it could be substituted for the
base model; we would advocate for the removal of the demographic
prediction head after training in this circumstance so as to avoid any
potential for misuse.

Our proposed mitigation approaches (subsampling29,30, gradient
reversal) eliminate correlations between sensitive attributes and out-
comes or mitigate their effect on model training. This may seem
counterintuitive, particularly where sensitive attributes are thought to
be causal drivers of disease. Nevertheless, our framework allows
practitioners to identify when suchmitigation is desirable by analyzing
the consequences of the trade-off between model performance and
fairness.We however note that the selection of a specificmodel should
be informed by domain knowledge and multiple other considerations
(non-exhaustive list) such as utility, usage, potential distribution
shifts31 and downstream societal factors.

Shortcut learning is usually assumed to involve the encoding of,
and reliance upon, spurious or non-causal correlations10. As we show,
this need not be the case. Shortcut learning may also occur in cases
where a sensitive attribute is strongly linked to the clinical task via
known, biologically plausiblemechanisms.Modelsmay use attribute-
clinical correlations appropriately, but these correlations do not
generalize to deployment environments. It is also possible that
models over-weight the importance of the attribute at the expense of
clinical evidence that is more directly predictive, resulting in ste-
reotyping. We chose to focus our study on age for two reasons. First,
age is known to be strongly linked to disease risk across a variety of
conditions. Second, age is grounded as an objective attribute rather
than being socially constructed29. These two considerations suggest
that age information may be useful in a disease prediction task,
making disentangling shortcut learning from the appropriate use of
input features a more difficult task. For attributes not known to be
linked to disease risk or where attributes are considered to be social
constructs, any use of the attribute in the prediction task may be
likely to represent a shortcut. In such cases, it may be more appro-
priate to select demographic parity (independence) as a fairness
criterion.
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Where shortcutting does occur, there are multiple approaches
that can be used tomitigate this particular effect. In ourwork, we find
that gradient reversal can ameliorate, but not fully obviate, the effect
of a biased dataset. Balancing the dataset may be an effective strat-
egy, where feasible; we find that balancing the data leads to fair
model performance at no cost to overall performance for CXR (see
Supplementary Fig. 5). Other approaches24,32,33 could also be con-
sidered, although recent work suggests thatmany strategies improve
fairness only by degrading the performance of the model34.
Regardless of the mechanism, ensuring models are as fair as possible
remains a vitally important and unsolved challenge for machine
learning.

Whenwe applied our framework to a dermatology application, we
did not identify a clear pattern of shortcut learning, despite unequal
model performance by age. This demonstrates a case in which model
performance is not fair; the label is strongly correlated with the sen-
sitive attribute, and the sensitive attribute is encoded by the model.
However, the encoding does not appear to be the (main) source of the
unfair performance. In this case, unfairness might be caused by other
factors, such as:

• Different presentations of the same condition. For instance, the
typical pattern of hair loss for females with androgenetic alo-
pecia differs from that of males35. Where presentations differ,
unfairness can occur due to inadequate sample size for specific
subgroups or if the appearance of the condition is more “diffi-
cult” to identify for some groups. Potential solutions include
obtaining more examples of these presentations, upweighting
losses for difficult examples, or approaches such as focal loss36.
There is also evidence that longer training times encourage the
learning of more difficult examples37,38.

• Differences in the quality of the label or the useof proxy labels to
approximate underlying disease. This is extensively discussed in
refs. 3,39, with potential mitigations.

• Differences in the quality or missingness patterns of the data.
Multiple causes of unfairness in this regard are described
in ref. 1.

Lastly, shortcut learning, where present, does not guarantee the
absence of other sources of unfair performance.

In our study, we focused on disease presence as a binary outcome.
It is possible that disease severity or subtype distribution may also be
correlatedwith sensitive attributes, resulting in other formsof shortcut
learning. Further work is required to extend our framework to account
for these considerations. Similarly, our work considered age as a
single attribute of interest. In principle, this method may be readily
applicable to an intersectional analysis40, although practically, there

may be challenges around model convergence. In addition, ShorT
relies on the availability of demographic data, and future research
shouldbeperformed in caseswheredemographicdata is unobserved41.

Finally, algorithmic fairness is a set of mathematical formula-
tions, and model behavior should be considered in the broader
context of health equity, the entire clinical system and its interaction
with society, rather than just focusing on model behavior given a
defined dataset42. In this broader context, it would be informative to
compare human to AI performance and fairness; and to consider
modeling the therapeutic or clinical consequences of unfairness in
diagnostic predictions (for example, with decision curve analysis).
We however believe that the identification andmitigation of shortcut
learning, as demonstrated by our approach, paves the way for more
fair medical AI.

Methods
All images and metadata were de-identified according to Health
Insurance Portability and Accountability Act (HIPAA) Safe Harbor
before transfer to study investigators. The protocol was reviewed by
Advarra IRB (Columbia,MD), which determined that this retrospective
study on de-identified data did not meet the definition of human
subjects research and was hence exempt from further review.

To identify shortcut learning and how it relates to the encoding of
sensitive attributes by themodel, we definemultiple quantities: (1) the
encoding of the sensitive attribute, (2) fairness metrics, and (3)
shortcut testing (ShorT), i.e., the correlation between the encoding of
the sensitive attribute and fairness metrics. We demonstrate our pro-
posed approach using binary prediction tasks for findings in an open-
source chest X-ray (CXR) dataset. The approach is then applied to a
multiclass diagnosis task in dermatology.

Datasets, tasks and models
For Chest X-Ray (CXR) experiments, models were trained using the
NIH Chest X Ray dataset43 to predict a single binary condition label
(Fig. 7a Condition Prediction) using a cross entropy loss. We investi-
gated the effusion, atelectasis and abnormal findings. Model perfor-
mance was estimated by computing the Area Under the Receiver
Operator Curve (AUROC). The feature extractor was a ResNet 101 × 3
architecture initialized from BiT checkpoints44. We used an Adam
optimizer with a constant learning rate, and optimal hyperparameters
were determined for each class of model before training (see Supple-
mentaryMethods). Eachmodel was trained from five different random
seeds, with results presented in terms of average and standard devia-
tion across seeds. The code was written in Python v3.9, using
Tensorflow45 v1.15, pandas v1.1.546, numpy 1.23.547, scikit-learn 1.0.248,
matplotlib 3.3.449, and statsmodels 0.12.250.
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Fig. 7 | Learning tasks and fairness metrics. a Outline of the four learning tasks
described in this paper. For each task, a feature extractor backbone (box) is used in
conjunction with one or more prediction heads (circles). Clinical and Attribute
Prediction tasks use a single head only; Attribute Transfer tasks use a single head
with a frozen feature extractor previously trained for a clinical task. Multitask
prediction models use both clinical and attribute prediction heads. b Logistic

Regression (LR)fit for fairnessmetrics. In this example, a logistic functionwasfitted
to the predictions of the model for examples with the condition. The gray dis-
tributions represent counts of true positives (top) and false negatives (bottom)
across age (x-axis). The LRmodel fits the probability of a true positive as a function
of age (TPR, right y-axis in yellow).
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Assessing the encoding of demographic information
Similarly to previous work13,14, we assessed the encoding of demo-
graphic information in the penultimate layer of the model by trans-
ferring the condition model to predict age. Once the condition model
was trained (Fig. 7a, Clinical prediction), we froze all weights in the
feature extractor and trained a linear predictor for age (Fig. 7a, Attri-
bute Transfer) using a mean squared error regression loss. In order to
aid interpretability, the performance of the transfer model was
expressed as the Mean Absolute Error (MAE); this value was used as a
measure of the age information content of the final layer of the feature
extractor, with lower values indicating a more accurate age prediction
and hence more age encoding. The results of our experiments were
unchanged by using MSE as an evaluation metric. We assess the
replicability of this age encoding by training 5 replicates with different
random seeds.

To contextualize the obtainedMAE, we trainedmodels to directly
predict age without initially training for condition prediction or
freezing the feature extractor (Fig. 7a, Demographic Prediction). This
provides an empirical lower error bound (LEB) for age for this dataset
andmodel architecture.We estimated an empirical upper error bound
(UEB) for age by calculating the error obtained as a result of predicting
the mean age of patients in the training set for all examples in the test
set (i.e., the baseline performance using the distribution of ages alone,
without any image information, in this dataset).

Assessing fairness for age as a continuous variable
To assess the fairness of a model’s predictions according to age, we
refer to the definitions in ref. 7 and applied group fairness metrics,
quantifying independence, separation and sufficiency. Similarly to
ref. 51, we expressed fairness as a function of a continuous attribute
variable to avoid the need for quantizing the data4,12. This was achieved
by fitting a univariate logistic regression (LR)model on age against the
outcome of interest (Fig. 7b), implemented with Pandas and Scikit-
learn48. Since we do not wish to assume that the clinical task is inde-
pendent of age, we focus on separation—the discrepancy of error rates
across subgroups, rather than independence—the discrepancy of
model predictions across subgroups.

Separation was defined by fitting two LR models to the binarised
model predictions, one forpatientswhodohave the condition andone
for patients who do not, equivalent to modeling the effect of age on
the True Positive Rate (TPR, sensitivity) and the False Positive Rate
(FPR, 1- specificity). The separation value was then calculated as the
mean of the absolute values of the two logistic regression coefficients.
This resulted in a metric where a score of 0 indicates that there is no
monotonic relationship between age and model performance, and
higher scores indicate that the TPR and/or FPR vary systematically with
age. For small values of separation, our definition approximates the
fractional change in performance per year of life—while numerically
small, the resultant discrepancy may be large over a clinically relevant
age difference. This can be calculated as es:Δa, where s is the separation
coefficient and Δa is the age difference. A separation value of 0.01 will
thus correspond to a 10.5% change in model performance per decade;
0.02 will correspond to a 22.1% change per decade.

Our method is agnostic to the choice of fairness definition, and
other equivalent formulations could be considered, such as the odds
ratio of the logistic regression model, measures computing the max-
imum gap between subgroups31 or metrics defined to verify the inde-
pendence criteria52. We however note that it is best to select a metric
that will not be dominated by changes in overall performance due to a
possible fairness-performance trade-off (e.g., worst-case group15). For
completeness,we reportmultiple fairnessmetrics in the ExtendedData.

ShorT: testing for shortcut learning
In prior work detecting shortcut learning, the typical assumption is
that any effect of the attribute on model output is spurious21,22.

Methods such as Group-DRO15 or similar mitigation strategies53 rely on
this assumption and compare model performance across different
groups. In the present case, we assume that a difference in perfor-
mance across groups could be due to amix of biological and shortcut-
learning effects (as per our amended definition of shortcut learning).
To identify shortcut learning, we hypothesize that if the model is
shortcutting, intervening in its encoding of the sensitive attribute
should consistently affect fairness metrics beyond the gains in per-
formance. Our goal is hence not to perform a binary (i.e., spurious
signal present compared to absent) evaluation but rather obtain a
continuous modification of the encoding.

Formally, if we assume a feature representation f(X) (here the
output of the feature extractor), we want to perform an intervention G
such that the relationship between f(X) and the sensitive attribute A is
modified between a lower bound (f(X) independent of A) and anupper
bound (f(X) strongly related to A). We estimate the efficacy of our
intervention with a proxy: the performance of a model predicting A
from f(X). Our amended definition of shortcut learning then assesses
how the relationship between A and f(X) affects the model’s fairness,
given a desired minimum performance level.

Based onpriorwork on adversarial learning16–19, we usedmultitask
learning to alter the degree towhich age is encoded in the penultimate
layer of the condition prediction model (Fig. 7a, Multitask Prediction).
We trained models on both demographic information (here, age) and
condition prediction tasks by using a common feature extractor with a
separate head for each task. Varying the amount of age information
encoded in this model was achieved by scaling the gradient updates
from the age prediction head. Positive values of gradient scaling
encourage the model to represent age more strongly in the final layer,
whereas negative values decrease this representation by gradient
reversal. For each model trained (i.e., each combination of gradient
scaling and training seed), we assess population variance by boot-
strapping test examples 1000 times for eachmodel trained and report
95% confidence intervals.

Wemeasured the effectof varying the age information encoded in
the model by computing model performance, age availability (MAE of
the age transfer model, as described above) and fairness metrics for
each value of gradient scaling. The presence of shortcut learning is
then indicated by a significant relationship between age encoding and
fairness metrics. Given our choice of MAE and our formulation of
separation (lower is better), we expect a negative correlation (com-
puted via Spearman correlation coefficient) to highlight shortcut
learning. For simplicity, we focus on the metrics as evaluated once
across the test population for each model, as we observed that
population variance was smaller than the variance across models.

Assessing the efficacy of ShorT to detect shortcut learning
To assess how our method behaves under different bias scenarios, we
alter the correlation between the sensitive attribute and the condition
label in the CXR training dataset. This was achieved by randomly
subsampling the training set54, with a probability determined as a
function of the patient’s age and condition label (see Supplementary
Methods). After resampling, we obtained two datasets: a biased data-
set that introduces approximately a decade of age difference between
the positive and negative classes and a balanced dataset where the
distributions of ages across classes are approximately matched.
Importantly, while this perturbation increased or eliminated the cor-
relation between age and disease, there remain examples of older
patients and younger patients with and without the condition, and all
retained exampleswerenotmodified in anyway.While this resampling
strategy leads to a slightly lower number of training examples, it has
the advantage of maintaining the marginal probability of diseases and
avoids creating synthetic examples, which may not be realistic. We
expect the biased dataset to lead to strong shortcut learning, while the
balanced dataset should lead to no shortcut learning.
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In Supplementary Note 1, we also generated simulated data and
assessed the sensitivity of the technique when we suspected short-
cutting to be absent and when we suspected it to be present.

ShorT on other datasets
We apply ShorT on two additional datasets: chest X-rays from the
public CheXpert database20 and a proprietary dataset of dermatology
images from teledermatology clinics in the United States of
America8. Model architectures are similar to that described above.
Fairness metrics and model hyperparameters are adapted to the
case of a binary attribute (CheXpert) and a multiclass prediction
model (dermatology). Please see the Supplementary Methods for
details.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The NIH CXR Dataset is provided by the NIH Clinical Center and is
available at https://nihcc.app.box.com/v/ChestXray-NIHCC. CheXpert
is available at https://stanfordmlgroup.github.io/competitions/
chexpert/. Demographic labels are available at https://stanfordaimi.
azurewebsites.net/datasets/192ada7c-4d43-466e-b8bb-b81992bb80cf.
The de-identified teledermatology data used in this study are not
publicly available due to restrictions in the data-sharing agreement.
The data is available for non-commercial purposes for an adminis-
trative fee, providing that the requesting entity can comply with
applicable laws and the privacy policy of the data provider. Please
contact dermatology-research@google.comwho can help forward any
requests to the source, with a response timeframe of maximum two
weeks. TheMNIST55 data for the simulated experiments is available as a
tensorflow dataset at https://www.tensorflow.org/datasets/catalog/
mnist and its original version at http://yann.lecun.com/exdb/mnist/
. Source data are provided with this paper.

Code availability
The deep learning framework (TensorFlow) used in this study is
available at https://www.tensorflow.org/. Formedical imagingmodels,
the training framework (Estimator) is available at https://www.
tensorflow.org/guide/estimators; the deep learning architecture (bit/
m-r101x3) is available at: https://tfhub.dev/google/bit/m-r101x3/1. The
detailed code to model medical images is proprietary, but pseudo-
code agnostic to the deep learning framework is in the supplementary
material. The code for the simulated experiment using MNIST is
available at https://github.com/google-research/google-research/
tree/master/shortcut_testing. Scikit-learn is available at https://scikit-
learn.org/stable/. We also usedMatplotlib (https://matplotlib.org/) for
plotting and Pandas for data analysis (https://pandas.pydata.org/).
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