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Roving methyltransferases generate a
mosaic epigenetic landscape and influence
evolution in Bacteroides fragilis group

Michael J. Tisza 1,4,7, Derek D. N. Smith1,5,7, Andrew E. Clark2,6, Jung-Ho Youn2,
NISC Comparative Sequencing Program*, Pavel P. Khil1,2 & John P. Dekker 1,2

Three types of DNA methyl modifications have been detected in bacterial
genomes, and mechanistic studies have demonstrated roles for DNA methy-
lation in physiological functions ranging fromphagedefense to transcriptional
control of virulence and host-pathogen interactions. Despite the ubiquity of
methyltransferases and the immense variety of possible methylation patterns,
epigenomic diversity remains unexplored formost bacterial species.Members
of the Bacteroides fragilis group (BFG) reside in the human gastrointestinal
tract as key players in symbiotic communities but also can establish anaerobic
infections that are increasingly multi-drug resistant. In this work, we utilize
long-read sequencing technologies to perform pangenomic (n = 383) and
panepigenomic (n = 268) analysis of clinical BFG isolates cultured from infec-
tions seen at the NIH Clinical Center over four decades. Our analysis reveals
that single BFG species harbor hundreds ofDNAmethylationmotifs, withmost
individual motif combinations occurring uniquely in single isolates, implying
immense unsampled methylation diversity within BFG epigenomes. Mining of
BFG genomes identified more than 6000 methyltransferase genes, approxi-
mately 1000ofwhichwere associatedwith intact prophages. Network analysis
revealed substantial gene flow among disparate phage genomes, implying a
role for genetic exchange between BFG phages as one of the ultimate sources
driving BFG epigenome diversity.

Methylation of genomic DNA has been detected in all three domains of
cellular life as well as in viruses1–3. Eukaryotic genomes display dynamic
methylation of cytosine at the C5 position (5mC) within certain CpG
(5’-CG-3’) contexts, and regulation of this CpG methylation at specific
sites affects transcription4, genome repair dynamics, and genome
compaction5. In contrast, bacteria display motif-specific DNA methyla-
tion (e.g., 5’-CC-6mA-TGG-3’) where nearly all instances of a given motif

may bemethylated6. Similar to eukaryotic genomes, 5mCmodifications
are common; however, bacterial genomes display additional methyla-
tion at the N4 position of cytosines (4mC) and, most commonly, the N6
position of adenines (6mA)6. Bacterial DNAmethylation is conducted by
DNAmethyltransferases, someofwhich appear to be present and active
in all strains of a given species (e.g., Dam, which modifies GATC in
Escherichia coli), whereas other DNA methyltransferases and the genes

Received: 24 January 2023

Accepted: 29 June 2023

Check for updates

1Bacterial Pathogenesis andAntimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA. 2National Institutes of Health Clinical Center, NIH, Bethesda,
MD, USA. 4Present address: The Alkek Center for Metagenomics andMicrobiome Research, Department of Molecular Virology andMicrobiol, Baylor College
of Medicine, Houston, TX, USA. 5Present address: Environment and Climate Change Canada, Ecotoxicology andWildlife Health Division, Wildlife Toxicology
Research Section, Ottawa, ON, Canada. 6Present address: Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
7These authors contributed equally: Michael J. Tisza, Derek D. N. Smith. *A list of authors and their affiliations appears at the end of the paper.

e-mail: john.dekker@nih.gov

Nature Communications |         (2023) 14:4082 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1168-1617
http://orcid.org/0000-0003-1168-1617
http://orcid.org/0000-0003-1168-1617
http://orcid.org/0000-0003-1168-1617
http://orcid.org/0000-0003-1168-1617
http://orcid.org/0000-0002-3701-5228
http://orcid.org/0000-0002-3701-5228
http://orcid.org/0000-0002-3701-5228
http://orcid.org/0000-0002-3701-5228
http://orcid.org/0000-0002-3701-5228
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39892-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39892-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39892-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39892-6&domain=pdf
mailto:john.dekker@nih.gov


that encode them are transiently gained and lost over time and are not
essential for viability in culture7. Classically, bacterial DNA methylation
has been understood as primarily a byproduct of anti-phage defense
based on restriction-modification systems8. However, other physiolo-
gical consequences of maintainingmethylated DNA, often at thousands
of loci, have now become clear. Studies have demonstrated roles for
bacterial DNA methylation in the regulation of transcriptional activity
controlling virulence phenotypes9–11 andother physiologic programs12,13,
genome stability14,15, and affecting mutation frequency within methy-
lated motifs16,17, similar to observations in eukaryotic systems.

Bacteria in the Bacteroides fragilis group (BFG) represent more
than a dozen species in the Bacteroides, Parabacteroides, and the
recently introduced Phocaeicola genera18. These abundant symbiotes
can readily be found living anaerobically in human gastrointestinal
tracts and have been implicated in many important metabolic and
immune functions19–21. They are also among the most commonly
recovered bacteria from extra-intestinal anaerobic infections and are
increasingly resistant to many antibiotics, including cephalosporins
and carbapenems22,23. Their broad phenotypic purview is enabled in
part by phase variation, an array of polysaccharide utilization loci, and
their use of invertible promoters24,25.

In this work, clinical isolates from an historical collection of BFG
spanning four decades were studied using a combination of short and
long-read genomic sequencing, methylome analysis, and antimicrobial
susceptibility phenotyping. The comprehensive scope of the methy-
lome analysis performed in this study, in combination with contiguous
long-read assemblies, revealed an epigenetic landscape in clinical BFG
isolates of immense and previously unappreciated diversity. Hundreds
of DNA methylation motifs containing 5mC, 4mC, and 6mA were iden-
tified across the genomes, with nearly all motif combinations observed
only in single isolates. Some DNA methylation motifs were strongly
enriched within particular lineages within a species, and evidence of
genome-wide depletion of these motif sequences was frequently
observed in these same lineages, suggesting selection and pointing to
DNA methylation as a driver of genome evolution in the BFG.

Results
In-depth characterization of an historical collection of 383 BFG
clinical isolates
More than 600 clinical BFG isolates cultured during the course of
routine care of patients in the NIH Clinical Center in Bethesda, MD,
USAwere collected and cryogenically stored between 1973 and 2018.
A set of 383 isolates was selected from this collection to represent
a range of dates, species, and antimicrobial resistance profiles.
Isolate genomes were sequenced with long-read nanopore sequen-
cing (n = 383), and a representative subset (n = 13) received
additional PacBio SMRT sequencing (SupplementaryData 1). De novo
assembly of genomes was performed, and in 68.1% (261/383) of iso-
lates, chromosomes were assembled as a single, circular contig
(Supplementary Fig. 1A), ranging in length from3.9 to 7.2megabases.
Evaluation of assembly quality indicated that long repetitive regions
could be resolved in these assemblies. For example, some isolates
contained more than ten tandem and non-tandem copies of Tn4555,
a 12 kilobase (kb) transposon carrying cfxA, a beta lactamase gene26,
and the long read approach allowed resolution of copy number
and genomic locations of these repeats (Supplementary Fig. 1B).
Further, analysis of circularized genomes showed that between 3
and 7 rRNA operons (>5 kb each) could be detected in assemblies
(Supplementary Fig. 1C). The numbers of identified rRNA operons
per circular chromosome corresponded to the expected values for
the species in almost all cases based on data derived from the
Ribosomal RNA Database27.

Taxonomy of each isolate was investigated with two methods.
First, the Bruker Biotyper28,29 was used to analyze bacterial lysates by
MALDI-TOF mass spectrometry. Then, the GTDB-Tk30 was employed

ongenomesequences toplace each in a species-level bin (Fig. 1). These
methods were largely congruent, agreeing on 360/383 isolate gen-
omes (94.0%), though different numbers of final species designations
were reported, with 15 identified by MALDI-TOF and 21 by GTDB-Tk.
These discrepancies are in part explained by the fact that the GTDB-Tk
uses newer taxonomy structure that has split some relevant species/
genera. On the basis of Bruker Biotyper identification, Bacteroides
fragilis sensu strictowas themost common species in the set of isolates,
contributing 135 unique species-level assignments, followed by Bac-
teroiodes thetaiotaomicron (n = 80), Bacteroides ovatus (n = 51), and
Bacteroides vulgatus (n = 32) (see Methods). The genetic diversity of
this dataset was visualized by the pairwise nucleotide similarity dis-
tances between all isolate genomes (Supplementary Fig. 2), showing
clear species-level clustering. It should be noted that the name Pho-
caeicola vulgatus has recently been proposed and accepted for Bac-
teroides vulgatus (B. vulgatus)29. The name B. vulgatus is retained
throughout this manuscript for consistency with most of the existing
literature.

Antimicrobial susceptibility testing was performed for seven
antibiotics (ampicillin, ampicillin/sulbactam, piperacillin/tazobactam,
meropenem, metronidazole, moxifloxacin, clindamycin, and tetra-
cycline) on 324 sequenced isolates by the reference agar dilution
method (Fig. 1 and Supplementary Data 2). This testing demonstrated
heterogeneous and complex resistance patterns amongst isolates of
each species with the isolates from the most recent decade exhibiting
similar resistancepatterns to other publishedwork23,29. Consistentwith
prior studies, we found that resistance to several antibiotics, including
piperacillin-tazobactam and meropenem appears to have increased in
certain species such as B. fragilis and B. ovatus from the 1980s to the
2010s (Supplementary Fig 3A). This was supported to some extent by a
concomitant increase in certain antimicrobial resistance genes over
the same period (Supplementary Fig. 3B).

Genomic analysis demonstrates open pangenomes and
substantial movement of mobile genetic elements within
and between BFG species
Pangenome analysis31 of eight species from the current study supple-
mented with additional GenBank reference genomes revealed that the
accessory (cloud and shell) gene families in each species varied
from 29.0% (Bacteroides faecis) to 42.2% (B. ovatus) of total gene
content (Fig. 2a). Further, rarefaction analysis (Fig. 2b), and Heap’s law
estimates (Supplementary Table 1) demonstrated that the pangenome
of each species remained open with some species containing
>20,000 sampled genes within the dataset, implying that an immense
number of additional gene families await discovery within the BFG.
This pangenome openness is largely consistent with gut-derived Bac-
teroides metagenome assembled genomes32.

To understand the flow of genes and mobile genetic elements
across genomes and species, 31,436 accessory regions (DNA sequen-
ces >3 kb in length encoding only accessory genes, Supplementary
Data 3) were extracted from 414 genomes representing 13 species for
which three or more genomes were available (378 genomes from this
study and 36 genomes from NCBI)33. Comparison of each accessory
region sequence with all others in this set demonstrated that >10% of
such regions were shared between species, suggesting horizontal
transfer (Fig. 2c). Each accessory region was probed for a variety of
features, and it was found that phage, phage defense systems, DNA
methyltransferases, conjugative machinery, episomes/plasmids, and
antimicrobial resistance (AMR) genes were all more common in
accessory regions detected in three or more species (Fig. 2c). For
instance, accessory regions encoding the tetracycline resistance gene
tet(Q) and/or a cassette with genes tet(X)1, tet(X)2, and the aminogly-
coside modifying enzyme aadS were detected in 12 of 13 species ana-
lyzed (Fig. 2 and Supplementary Fig. 4), likely confirming a history of
selective pressure from tetracycline and aminoglycoside compounds.
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Many pathogenic bacteria of medical importance, including
Enterobacterales and related Gammaproteobacteria, carry a large
proportion of AMR genes extra-chromosomally on plasmids34. The
dataset analyzed in thiswork yielded 575 complete circular plasmids or
episomes across the 383 sequenced isolate genomes (Supplementary
Data 4), belonging to 85 clusters of >95% average nucleotide identity
(see Methods) (Supplementary Fig. 5A). The majority of circular con-
tigs (550 out 575; 95.7%) had recognizable plasmid genes such as
replicases or relaxases (see Methods), and a proportion of the
remaindermay represent replicative intermediates of transposons, but
this was not analyzed further. Despite the ubiquity of both plasmids/
episomes and AMR genes in the sequencing data, we found that most
of these AMR genes were not located on plasmids/episomes (53 out of
1911 AMR geneswere locatedwithin circular plasmid/episome contigs)
among BFG species. The overwhelming majority (>97.2%) of AMR
genes appeared to be located within chromosomes, and many were
associated with integrative elements23. Many of the AMR genes enco-
ded by plasmids/episomes also appeared associated with integration
of integrative elements into plasmid backbones, consistent with pos-
sible shuttling of AMR genes between chromosomes and plasmids/
episomes (Supplementary Fig. 5B).

DNA methyltransferases are remarkably diverse and abundant
in the accessory genome
It is hypothesized that DNAmethyltransferasesmay function as a class
of global regulators in many bacterial species7. Methyltransferases
usually modify DNA at short motifs present at thousands of sites
scattered broadly across intragenic regions and gene bodies of bac-
terial genomes, and thus the expression of a single methyltransferase
gene may in turn control global methylation states. Methylation at

both intra- and intergenic sites is known to affect transcriptional pro-
grams and tune bacterial phenotypes9–13. A significant proportion of
bacterial methyltransferase genes in turn have been observed in
association with mobile genetic elements, particularly within acces-
sory regions of bacterial genomes35,36. To facilitate identification of
methyltransferases in BFG genomic data, we built on previous hidden
Markovmodel approaches37 to develop a publicly accessible tool, DNA
Methylase Finder, to detect and annotate DNA methyltransferase
genes and the gene neighborhoods to which they belong (https://
github.com/mtisza1/DNA_methylase_finder). A sensitivity of 100% and
false positive rate of up to 5.4%wereobserved in abenchmarking study
of this toolwith aREBASEdataset of annotatedmethylationmotifs (see
Methods).

Using DNA Methylase Finder, 6011 DNA methyltransferase genes
were detected in 462 BFG genomes (genomes from this study sup-
plemented with additional BFG genomes downloaded from GenBank)
(Supplementary Data 5). These genes were binned into 536 families
(Supplementary Data 6) (see Methods), representing all known types
(Type I, Type II, Type IIG, Type III, as well as DNA methyltransferases
that could not be classified, labeled as “unknown”). Between two and
38 DNA methyltransferase genes were detected in each genome ana-
lyzed, and methyltransferase gene families could be found in the
persistent, shell, and cloud partitions of the pangenomes of these
species, showing awide spectrumofmobility (Fig. 3). Of the 5480DNA
methyltransferase genes belonging to the 15 analyzed species in Fig. 3,
720 (13.1%) were in the core partition, 2385 (43.5%) were in the shell
partition, and 2375 (43.3%) were in the cloud partition.

The number of methyltransferases we identified with this method
maybegreater thanwouldbeanticipatedbasedonprevious reports.We
expect that some fraction of the identified putative methyltransferases
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B. xylanisolvens

Fig. 1 | Four-decade collection of clinical BFG isolates from the NIH Clinical
Center. MLST marker gene cladogram of BFG genomes sequenced in this study
supplemented with Genbank reference genomes (n = 462 total). Taxonomy

assignments were defined proteomically with MALDI-TOF mass spectrometry
(Bruker Biotyper) and genomically with GTDB-Tk. “Source” and “Decade” data were
extracted from clinical laboratory metadata records.
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are likely inactive, and additionally, the method demonstrated a false
positive discovery rate of up to 5.4%whenmeasured against theREBASE
database, so somesmall percentagemaybe falsepositive identifications.
However, we also noted that many genomes contained more than one
methyltransferase of near identical sequence, in many cases in associa-
tion with mobile genetic element context. Thus, the large number may
be accounted for, in part, by duplications due to transposon insertions.
It is very possible that studies based on short read sequencing may
underestimate the number of such methyltransferase duplicates due to
collapse during assembly. The 38 putative methyltransferases encoded
by isolateBFG-632 (SupplementaryData 7), a numberofwhich appeared
to be duplicate insertions, were queried with BlastP and 37/38 returned
hits with >90% amino acid identity to previously identified DNA
methyltransferases. Interestingly, in the course of our analysis, we
observed that within each species, there is a positive correlation
between genome size and number of putative DNA methyltransferases
(Supplementary Fig. 6). BFG-632 is the longest genome in the entire
collection, consistent with the greatest number of methyltransferases.

Additional annotation of genes upstream and downstream of the
identified putative DNA methyltransferases demonstrated that speci-
ficity subunits are detected almost exclusively near putative Type I
DNA methyltransferases (Supplementary Fig. 7A). Additionally,
restriction endonucleases were detected in the neighborhood of 100%
of putative Type III DNA methyltransferases, and most Type II DNA
methyltransferases are apparent orphans, without vicinal restriction
endonucleases identified (Supplementary Fig. 7B). These additional
features increase the confidence in many of these methyltransferase
identifications.

Network analysis reveals substantial methyltransferase gene
flow among disparate phages
Annotationof gene neighborhoods ofDNAmethyltransferases above
indicated that DNA methyltransferase genes were often found in
proximity to phage-related genes. To examine this relationship in
greater detail, putative prophage regions of each genome were
extracted by scanning accessory regions with Cenote-Taker 238 and
CheckV39, revealing 1255 candidate prophage regions, most of which
were predicted to be complete genomes (Supplementary Data 8–10).
The majority (n = 824) of these prophages encoded at least one DNA
methyltransferase gene, accounting for 1089 of the 6011 DNA
methyltransferase genes in the genome set. The 1255 putative
prophages could be clustered into 411 virus Operational Taxonomic
Units (vOTUs) (Supplementary Data 9) (see Methods). Notably,
there was substantial diversity of methyltransferase gene content
within individual vOTUs, in combination with wide dispersion of
single methyltransferase gene families across disparate phage gen-
omes (Fig. 4 and Supplementary Fig. 8). Overall, this suggests not
only that there is substantial methyltransferase gene flow among
BFG phage genomes, but also that disparate BFG phage genomes
may serve as important sources of genetic diversity for one another,
possibly allowing recipients to subvert restriction-modification
systems35.

BFGmethylationmotifs tile a vast combinatoric spacewithopen
panepigenomes
Oxford Nanopore sequencing technology has been used to identify
6mA, 4mC, and 5mCmodifications with recently developed methods.

0

5000

10000

15000

20000

0 50 100 150
Genomes

P
an

ge
no

m
e 

si
ze

 (
nu

m
be

r 
of

 g
en

e 
fa

m
ili

es
)

B. vulgatus

P. distasonis
species

B. caccae

B. faecis

B. fragilis

B. ovatus

B. thetaiotaomicron

B. uniformis

3000

a

b

c
B. fragilis

B. thetaiotaomicron

B. ovatus

B. vulgatus

B. uniformis

B. caccae

B. faecis

P. distasonis

B. cellulosilyticus

B. salyersiae

P. goldsteinii

B. stercoris
P. merdae

B
. o

va
tu

s
(n

=
55

)

B
. t

he
ta

io
ta

om
ic

ro
n

(n
=

82
)

B
. f

ae
ci

s
(n

=
24

)

B
. v

ul
ga

tu
s

(n
=

34
)

B
. f

ra
gi

lis
(n

=
15

0)

P
. d

is
ta

so
ni

s
(n

=
29

)

B
. c

ac
ca

e
(n

=
8)

B
. u

ni
fo

rm
is

(n
=

11
)

Fig. 2 | Genomic analysis demonstrates open pangenomes and substantial
movement of mobile genetic elements within and between species. a Stacked
barplots quantifying average numbers of persistent, shell, and cloud genes across
eight species.b Pangenome analysis for a subset of BFG species. Rarefaction curves
indicate open pangenomes over the sequenced set, with the three largest pan-
genomes demonstrating greater than 20,000 genes each. c Analysis of accessory

region and mobile genetic element content. Top panel shows species-level spread
bins for more than 33,000 accessory regions/mobile genetic elements. “Species”
indicates number of species sharing the indicated number of accessory regions or
mobile genetic elements. Paired bottom panel barchart indicates annotated fea-
tures of the accessory regions as a percentage of each paired spread-level bin in the
upper panel.

Article https://doi.org/10.1038/s41467-023-39892-6

Nature Communications |         (2023) 14:4082 4



Nanodisco is a powerful approach for methylation pattern detection
that works by comparing raw current-level nanopore sequencing tra-
ces for native methylated genomic DNA to prepared unmodified
DNA40. To benchmark methylation calls made by Nanopore and
Nanodisco for this dataset against another method, PacBio and
Nanodisco methylation motif identification were performed for a
subset of six isolates representing six species for which sequencing
data for both methods were obtained (Methods). This comparison
revealed concordance of results for 6mA and 4mC. PacBio SMRT
sequencing identified 29/33 6mA motif calls and 2/2 4mC motif calls
made by Nanodisco. Two 5mC calls made by Nanodisco were not
identified by PacBio sequencing, which is consistent with observed
lower sensitivity of the PacBio approach for 5mC (Supplementary
Table 2).

The Nanodisco method was then applied to 268 genomes from
the BFG collection spanning five species, with manual curation of
methylation motifs (as described in Methods and Supplementary
Figs. 9–10). A total of 639 distinct methylation motifs were detected
by de novo discovery (Fig. 5 and Supplementary Data 11). Remark-
ably, the number of distinct methylation motifs appears far from
saturation in the analyzed dataset based on rarefaction curves
(Fig. 5a) and Heap’s law estimates (Supplementary Table 3), sug-
gesting an immense number of total motifs used by the BFG. In
addition to this diversity of individual methylationmotifs seen in this
sample set,most combinations ofmotifswere unique, present only in
single isolates, generating an additional layer of combinatorial
diversity, and suggesting a vast number ofmotif combinationswithin

BFG that have not yet been sampled (Supplementary Fig. 11). Though
most motifs were detected in only a single species, two motifs
(CTGCAG, and GATC) were detected in at least one isolate from all
five analyzed species. A study of Bifidobacterium breve isolates using
both PacBio and bisulfite sequencing41, and another study looking at
Clostrioides difficile using only PacBio SMRT sequencing (lower sen-
sitivity for 5mC without method modification9), showed greater
saturation of the panepigenome in those taxa (data from these stu-
dies plotted in Fig. 5a). It is possible that a less diverse sampling set or
lower sensitivity for detecting motifs could generate an apparent
saturation at lower genome coverage. These results nevertheless
suggest that BFG species may contain a greater diversity of methy-
lation motifs and motif combinations than other gastrointestinal
anaerobes.

For each species in the analysis (B. fragilis, B. thetaiotaomicron, B.
ovatus, B. vulgatus, and P. distasonis), the presence or absence of each
DNA methylation motif was investigated in relation to a phylogenetic
tree ofmarker genes within the species (Fig. 5b–f). As noted above, the
majority of methylated motifs were present only in single isolates in
the set. A small number of DNAmethylationmotifs weremethylated in
all isolates of a species (e.g., CTCAT in B. fragilis or CGCG, CCAGG, and
CCTGG in P. distasonis). Some motifs were methylated mostly or
entirely within a sub-species lineage (e.g., GATC in B. ovatus), while
other motifs appeared to be distributed irrespective of phylogeny
(e.g., CCWGG in B. thetaiotaomicron). At least one methylated motif
was detected in all genomes except within two B. thetaiotaomicron
isolates and one B. vulgatus isolate.
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AMR genes and promoters contain abundant DNA methylation
motifs
Transcriptional regulationof AMRgenes is known to play an important
role in the expression of resistance phenotypes in many different
species, and recent work has demonstrated that AMR gene expression
and resistance phenotypes can be specifically regulated by
methylation10,42. We thus we searched for DNA methylation motifs in
the gene body and the promoter of AMR genes in BFG that may
influence transcription. To investigate the frequency and distribution
of such motifs, AMR genes and their upstream regions (200 nucleo-
tides) from B. fragilis, B. thetaiotaomicron, B. ovatus, B. vulgatus, and
P. distasonis genomes were extracted and dereplicated at 99%
nucleotide identity (seeMethods). These AMR gene regions were then
profiled for the presence of motifs that were found in at least one
genome from the corresponding species (Supplementary Fig. 12A–E).
Remarkably, every profiled AMR region hadmultiple DNAmethylation
motifs in the gene body and upstream/promoter region detected in at
least some isolates.

To ask the further question of whether motif density in the AMR
gene bodies differs from that of the rest of the genome, we per-
formed an analysis of methylation in AMR genes relative to non-AMR
genes in the five principal species for which there were sufficient
numbers of isolates. A direct correlation between motif content and
GC content became apparent in this analysis. Because of this

correlation, motif density was analyzed as a function of GC content
for AMR genes vs. non-AMR genes. This analysis found no aggregate
systematic differences between motif density (adjusted for GC con-
tent) in AMR genes vs. non-AMR genes (Supplementary Fig. 13).
Whether methylation in any of these AMR genes or associated pro-
moter regions have consequences for antimicrobial resistance war-
rants further investigation.

Lineage-specific DNA methylation motifs show evidence of
depletion
A subset of DNA methylation motifs displayed a strong phylogenetic
signal, present in most or all closely related genomes, but seen rarely
or not at all in more distantly related genomes of the same species.
This enrichment was interpreted to indicate that genomic positions
with this motif have been methylated in these lineages since the last
common ancestor. If there is a negative fitness cost associated with
tolerating these modifications at some loci in the genome following
the introduction of a methyltransferase, one may expect to see a
depletion of these motifs in genomes of the lineage containing the
methylase due to selection. Additionally, methylation in certain con-
texts has been linked to hypermutation of the modified base resulting
in programmed motif self-destruction16.

We identified 14 lineage-specific motifs (see Methods), and 6 of
these 14 (42.9%) appeared to be significantly depleted in the lineage
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Type IIG

No Methyltransferase

One DNA Methylase Genonotype

Two DNA Methylase Genonotypes

Three DNA Methylase Genonotypes

Four or more DNA Methylase Genotypes

Unknown

Phage vOTU clusters

DNA Methyltransferase gene families

Fig. 4 | Network analysis reveals substantial methyltransferase gene flow
among disparate phage genomes. Network graph of phage viral operational
taxonomic units (vOTU) clusters and DNA methyltransferase gene families (80%
AAI, 80%AF), indicatedby nodes of different shapes as defined in the legend. Shape
size is proportional to the numberof phage genomeswithin a given vOTUcluster or

methyltransferase genes within a gene family. Edges connect methyltransferase
gene families and vOTU clusters containing prophage genomes that encode a
methyltransferase gene from that methyltransferase gene family. Edge thickness is
proportional to the number of genomes that encode the corresponding gene
family.
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genomes after multiple test correction while none were enriched
(Fig. 6). For comparison, motif density for 16 to 58 control motifs of
the same length and base composition obtained by permutation
(e.g., GATC control motifs include AGTC, ATCG, and CTAG) was
calculated for each lineage-specific motif. If more than 58 possible
controlmotifs existed, 50were chosen by random shuffling. Between
0% and 13.7% of permuted motifs were depleted (average of 3.8%)
and between 0% and 37.5% were enriched (average of 5.1%) (Fig. 6,
Supplementary Figs. 14–21, Supplementary Table 4). Notably, of
the six lineage-specific motifs that appeared to be depleted at a
significant level, five motifs were palindromic in such a way that
each locus with these motifs had a methylated base on both strands.
The non-palindromic motif that was depleted (TCAGG/CCTGA) is a
type IIS motif, in which the motifs are reverse complements of each
other, and thus both strands of DNA at these loci are methylated as
well. Whether selection acts differentially on motifs that are methy-
lated on both strands is a further question that we are unable
to evaluate definitively in this dataset. We did not observe an
enrichment of motifs that would result from transitions or trans-
versions at the modified site for 5mC and 4mC modifications that
could not account for the magnitude of the depletions (Supple-
mentary Fig. 21), suggesting that hypermutation alone cannot
explain the findings16,17.

Discussion
The globalmethylomeanalysis performed in thiswork, in combination
with contiguous long-read assemblies, revealed an epigenetic land-
scape in clinical BFG isolates of immense and previously unappre-
ciated diversity. Hundreds of DNA methylation motifs were identified,
and most motifs were unique. Though some species (B. fragilis and P.
distasonis) appeared to contain species-specific motifs that could be
detected in each analyzed genome, thiswas uncommon, and almost all
motif combinations were observed only in single isolates. Further-
more, DNA methylation motif composition varied dramatically even
over short phylogenetic distances between genomes of a species,
implying profound epigenetic diversity even among closely related
lineages within the BFG.

While substantial diversity of DNA methylation patterns has been
observed across species within the bacterial domain of life43, large
surveys of DNAmethylation diversity between different species within
a genus have previously not been conducted, and closely related
species have not been compared in a systematic way. Our study puts
forward an extensive analysis of the relationships between the
methylome, intra- and inter-species phylogeny, and diversity within
the BFG, basedon a unique historical collection of BFG clinical isolates.
The isolate collection on which the study is based has additional fea-
tures that add significant value to our dataset. First, whereas many
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prior BFG studies have focused on strains collected from the GI
microbiome, our set contains primarily clinical BFG isolates cultured
from sites of infection, whose genomes andmethylomesmay facilitate
studies of how invasive isolates may differ from commensal GI strains.
Second, our set spans four decades and stretches back into the pre-
and early antibiotic eras for a number of commonly used agents,
allowing examination of how both the resistome and methylomes
evolved under the selection of these agents over a period of four
decades.

Our findings raise the question of whether BFG species havemore
diverse epigenomes than other pathogens and commensals that
inhabit the human GI microbiome. Answering this question is chal-
lenginggiven the limited amount of available data. Rarefaction analysis
demonstrated that the panepigenomes of the BFG species we studied
remained open without signs of asymptotic saturation over the
sequenced set, implying substantial unsampled diversity. Comparison
with similar rarefaction analysis of published data from C. difficile9. and
B. breve41 suggested somewhat less intraspecies DNA methylation
motif diversity than the BFG. This analysis however comes with a few
important caveats. First, it is possible that underlying host genome
diversity inB. breve andC.difficile studieswas lower,which could result
in an underestimate of methylation motif diversity. Second, it is pos-
sible that the present study used more sensitive methods for the
detection of methylation motifs, which would also result in greater
apparent diversity. More thorough investigations into other species
are needed to establish whether methylome diversity is indeed
impacted by phylogeny or lifestyle.

Althoughwe did not examine the transcriptional consequences of
methylation in this study, previousworks hasdemonstrated significant
regulation of transcription by DNAmethylation42. It maybe reasonable
to speculate that the epigenomic diversity we observed may generate
proportionate transcriptional diversity within populations with fitness
consequences that are operated on by selection. Our finding of
apparent genome-wide depletion of DNA methylation motifs within
individual bacterial lineages has implications for BFG genome evolu-
tion. In these cases, there was typically not a concomitant increase in
motifs that would result frommutations of the methylated nucleotide
of sufficient magnitude to explain the depletion, suggesting that
methylation-induced hypermutation is not solely responsible for
epigenome-driven genome change. Selection acting to remove
methylated motifs that result in deleterious fitness consequences, on
the other hand,may explain these findings, asmutations that eliminate
methyltransferase recognition need not be restricted to the methy-
lated nucleotide. Further investigation will be required to understand
the underlying mechanisms.

In our dataset, we examined the specific question of whether
methylation motifs might be positioned to affect the transcription of
AMR genes and influence or control the expression of AMR pheno-
types. We found that all classes of AMR genes we examined, including
the important cfiA gene encoding a beta-lactamase mediating carba-
penem resistance, contained methylation motifs both in upstream
intergenic regions and in the gene body. Furthermore, the overall
epigenomic diversity in motifs among isolates was reflected in the
diversity of methylation motifs adjacent to and within AMR gene
bodies. Given ourfindings of extensive potentialmethylation involving
all classes of AMR genes we examined, it may be reasonable to expect
that transcription of these genes and the resulting resistance pheno-
types will be influenced by which methylases are present and their
expression. Epigenome diversity-driven heterogeneity in AMR phe-
notype may carry benefit to BFG populations, and the purifying
selection that often occurs with exposure to antibiotics may select
certain epigenomic methylation patterns over others.

Linking DNA methylation motifs to cognate DNA methyl-
transferases on the basis of genomic analysis alone is challenging.
Many of the DNA methyltransferases encoded by genes located in

bacterial genomes, especially within mobile genetic elements, are
functionally silent in most conditions. It has been suggested that
inactivating mutations in DNA methyltransferases, or other genetic
switches such as invertible promoters that control methyltransferase
expression may be a common evolutionary mechanism used to vary
transcriptional programs44. In fact, nearly all genomes in our set had a
greater number of potential DNA methyltransferase genes than
detected methylated DNA motifs, suggesting either the presence of
pervasive silent methyltransferases within the BFG, or, alternatively,
methyltransferases that are not expressed under standard conditions
of growth on rich media. While this may carry interesting evolutionary
and functional implications, it introduces additional technical chal-
lenges in associating specific methyltransferases to specific motifs.
Adding further complication in our data set is the fact thatmostmotifs
were detected in only one or a few genomes, precluding a systematic
approach to establishing linkages, given the variety of co-occurring
silent methylases. Additionally, the Nanodisco method applied here
has less than 100% sensitivity, so we expect some methylation motifs
went undetected40.

Of the more than 6000 potential methyltransferase genes we dis-
covered within our genomic dataset, the majority were located in the
shell or cloud compartments, often associated with mobile genetic
elements. These findings are consistent with those of other studies35,36

and are also consistent with the assumption that many of the methy-
lases are components of restriction modification or other defense sys-
tems. Importantly, we found that approximately 1000 of the identified
methyltransferase genes were associated with intact prophages. Net-
work analysis of theseprophagegenomes revealed a remarkable degree
of methyltransferase gene flow among disparate phages with apparent
modular swaps of methyltransferases, including of different classes,
betweenphage genomes. Thesefindings suggest a fundamental role for
genetic exchange between BFG phages as one of the ultimate sources
driving BFG epigenome diversity. Future studies will be needed to
examine the exact relationships between phage-phage interactions in
the natural GI microbiome context in which they occur and how these
interactions may have driven the diversification of the BFGmethylome.

Methods
Isolate storage, growth, and identification
Historical BFG isolates originally cultured from clinical material
between 1973 and2018were stored either lyophilizedor frozen in skim
milk media at the National Institutes of Health Clinical Center
Department of Laboratory Medicine (Bethesda, MD). Isolates were de-
identified and metadata including year and source/site of culture was
maintained. Due to this de-identification, it was not possible to rule out
that some isolates in the collection may represent multiple samplings
froma single patient. The subset of isolate chosen for sequencing from
the larger set were selected to maximize diversity over dates, source,
species, and AMR profiles, and this selection likely reduced the inclu-
sion of isolates sampled from single patients. It should be noted that a
subset of isolates lacked precise information regarding date and/or
source of culture. Selected isolates were recovered and passaged from
their original historical stocks to confirm their identity using Bruker
BiotyperMALDI-TOFmass spectrometrywithmanufacturer’s database
(Supplementary Data 2). All isolates were recovered on BD BBLTM CDC
Anaerobe 5% Sheep Blood Agar (BD 221734, Becton, Dickinson and
Company, Sparks, MD) or BD BBLTM Brucella Agar supplemented with
5% Sheep’s Blood supplemented with hemin and vitamin K1 (BD
297716). Incubationwas generally performed for 36–72 h inMitsubishi
Anaero Anaerobic gas chambers with BD BBLTM GasPak CO2 Gen-
erators (BD 261205) at 35–37 °C with 6% percent CO2. Isolates were
manipulated under ambient aerobic conditions. Confirmed BFG iso-
lates were subsequently reisolated and stored at −80 °C in Cryosavers
Skim Milk Media Cryovials (Hardy Diagnostics, Santa Maria, CA) for
subsequent culturing and experimentation.
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Anaerobic susceptibility testing by agar dilution
Susceptibility testing was performed using the reference agar dilution
method as described in the Clinical and Laboratory Standards Institute
(CLSI) guidelines (9th Ed., M11) or the Wadsworth-KTL Anaerobic
Bacteriology Manual (6th edition). Briefly, all susceptibility testing
mediawas freshly prepared in 100mmsquare grided petri dishes filled
to 30mL and used within a week. For inoculum preparation, isolated
colonies recovered from frozen stocks were re-isolated to Brucella
agar supplemented with 5% Sheep Blood, hemin and vitamin K1 (BD
297716) to be grown for 40–48 h constituting two serial passages.
Selected growth was then suspended in Brucella Broth (B3051, Sigma-
Aldrich, St-Louis, MO) a concentration of 0.5 McFarland as measured
using either a DEN-1B Densitometer (Grant Instruments, Cambridge,
UK) or Microscan Turbidity Meter (Dade Behring (now Siemens)
Munich, Germany).

Twomicroliters of each test isolate (105 cfu/spot) was then applied
to freshly prepared Brucella Agar with supplemented with hemin,
vitamin K1 (B2926, Sigma-Aldrich) and 5% Laked Sheep’s Blood
(Hemostat, Dixon, CA) containing the antibiotic and concentration of
choice. Tested antibiotic concentrations were consistent with con-
centration utilized as clinical breakpoints as determined by CLSI. All
plates were inoculated with the following quality control organisms: E.
coli 25922, B. thetaiotaomicron (ATCC 29741) and B. fragilis (ATCC
25285). Interpretive criteria were based upon CLSI anaerobe break-
points as follows (antibiotic followed by S:I:R MICs in μg/ml): Moxi-
floxacin 2:4:8; Ampicillin 0.5:1:2; Ampicillin/Sulbactam: 8/4:16/8:32/16;
Clindamycin: 2:4:8; Metronidazole: 8:16:32; Meropenem: 4:8:16; Piper-
acillin/tazobactam: 32/4:64/4:128/4; Tetracycline: 4:8:16. Susceptibility
determinations were made after approximately 48 h growth.

DNA extraction and sequencing
Multiple BFG colonies from a single isolate were resuspended in either
PBS or sterile water for extraction. Extractions for Illumina sequencing
were performed with DNeasy Blood & Tissue (Qiagen, Frederick, MD)
and NucliSENS easyMag (bioMerieux, Durham, NC). High molecular
weight DNA for long read sequencing was extracted either with the
Gentra Puregene Yeast and Bacteria kit (Qiagen) using the Gram-
negative protocol or a customized Maxwell HT gDNA Blood kit (Pro-
mega Corporation, Madison, WI) protocol on the Kingfisher Flex sys-
tem (ThermoFisher, North Logan, UT) that involved extracting DNA
from a volume of bacteria equivalent of 1/5 of a 10μl inoculation loop
in the PBS suspension and using a 120μl final elution volume. DNA
concentrations were determined using a Qubit 4 fluorometer (Ther-
moFisher) and purity was assessed for select samples with the Nano-
drop One (ThermoFisher).

DNA for Illumina sequencing was prepared with the RipTide High
Throughput Rapid Library Prep Kit (IGenomX, Carlsbad, CA). Libraries
were sequenced to generate 150bpPE reads on an IlluminaHiSeq2500
(Illumina, San Diego, CA) at the NIH Intramural Sequencing Centre
(NISC) and on an Illumina NextSeq 550 instrument in the NIH Clinical
Center. Sequencing data were demultiplexed with fgbio v 0.7.0 as per
the iGenomX protocol (http://fulcrumgenomics.github.io/fgbio/) and
demultiplexed reads fromdifferent lanesweremerged.Quality control
issues of uncertain origin were encountered with a number of Igeno-
mix RipTide libraries resulting in demultiplexed read files with sig-
nificant barcode-to-barcode mixing between libraries in a given
sequencing run. Strict quality control parameters were used to select a
subset of these libraries for polishing of long read assemblies in sub-
sequent steps (see Genome Assembly).

For Oxford Nanopore Technologies (ONT) genome sequencing,
genomic libraries were prepared from extracted DNA using the ONT
Rapid Barcoding Sequencing Kit (SQK-RBK004) and protocol for the
ONT R9.4.1 flow cells (ONT, Oxford, UK). Sequencing was performed
with an ONT GridION X5 instrument. For DNA methylation motif
identification, paired methylation-free libraries were prepared using

the Oxford Nanopore Rapid PCR Barcoding Kit (SQK-RPB004) and
protocol (RPB_9059_v1_revL_14Aug2019) and sequenced with ONT
R9.4.1 flow cells using the ONT GridION Mk1 instrument. The SQK-
RPB004 protocol was modified to use 7.5 ng of input genomic DNA
and the PCR step was modified to use 7min and 30 s for the
extension step.

For PacBio genome sequencing, the Pacific Biosciences protocol
“Preparing multiplexed microbial SMRTbell libraries for the PacBio
Sequel System” was used to create libraries from 3μg of DNA.
Sequencing was performed using a Sequel sequencer (Pacific Bios-
ciences) using version 3 SMRT cells and sequencing reagents with 10-h
movies.

Genome assembly
Bioinformatic analyses were primarily performed on the NIH HPC
Cluster Biowulf using installed modules and Conda v. 4.8.3 managed
environments. Detailed scripts and instructions are provided through
Zenodo (https://zenodo.org/record/7510225) Illumina reads were
trimmed with Cutadapt v. 2.645 and assembled with SPAdes v. 3.13.146.
After contigs under 500bp were removed, assemblies were checked
for genome completeness and contamination with CheckM v 1.0.1847.
Raw reads from assemblies with greater than 98% completeness and
less than 2% contaminations were used for polishing of ONT long-read
assemblies with Pilon v 1.2348.

ONT basecalling was performed with standalone Guppy v. 3.3.3
and 3.4.5 using qcat v.1.0.6 demultiplexing. The ONT GridION MK1
instrument was also used for basecalling and demultiplexing using
MinKnow 19.12.6 (Guppy v. 3.2.10+aabd4ec, equivalent to Guppy v.
3.4.5). Filtering, assembly, and polishing were managed with Snake-
make v 5.13.049. ONT reads were quality controlled using Filtlong v.
0.2.0 (https://github.com/rrwick/Filtlong) with the settings --min_-
length 1000 --keep_percent 95. Filtered reads were used for assembly
with Flye v. 2.750 with the –meta flag enabled for most assemblies, but
disabled to optimize a subset of assemblies where numerous spurious
contigs were generated. The Flye –asm-coverage flag was also set to
100 to avoid the necessity of down sampling ONT sequencing reads to
retain asmuch coverage as possible for subsequent polishing. Iterative
Racon v. 1.14.351 polishing was performed four times before Medaka v.
0.12.1 (https://github.com/nanoporetech/medaka) was used for a final
error correction step followed by Pilon when short reads were avail-
able. Circlator v. 1.5.5 “fixstart” option was used on assemblies to
reorient chromosomes to a dnaA start or to orient contigs to the
predicted gene nearest to the middle. Medaka polished assemblies
were again evaluated with CheckM for completeness and assemblies
with greater than 90% completeness and less than 3% contamination
were retained for subsequent analysis. rRNA Operons were quantified
using Barrnap v0.9 (https://github.com/tseemann/barrnap).

To construct PacBio genomes, demultiplexed PacBio Sequel
subreads were assembled with the Hierarchical Genome Assembly
Process (HGAP4) pipeline within the PacBio SMRT Link version 6.0.0
package orwithCanu (version 1.6 or 1.8)52. The assembled contigswere
circularized using Circlator 1.5.353 and corrected reads generated from
HGAP4 or Canu. In some cases, draft contigs were circularized by
evaluating contig overlaps using Gepard v1.3054 and manually joining
sequences. The circularized chromosome andplasmid sequenceswere
polished with the PacBio SMRTLink version 6.0.0 resequencing pipe-
line. The FASTA assembly was annotated using the Prokka (version
1.13) pipeline55.

Phylogenetic and antimicrobial resistance gene identification
Multi-locus sequence analysis (MLSA) was performed with long read
assemblies from this study and references from the NCBI56. Frameshift
correction was necessary with ONT generated assemblies to facilitate
whole gene retrieval for MLSA. MEGAN v.6.19.257 was used on DIA-
MOND v 0.9.3358 alignments of ONT assemblies to a reference file of
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protein sequences from the same species, as determined by Bruker
Biotyper, to output a frameshift corrected fasta file as described
earlier59. All assemblies and references were annotated with Prokka v.
1.4.655 using a custom Bacteroides protein database, available through
Zenodo (https://zenodo.org/record/7510225). Locus tags that mat-
ched reference MLSA scheme gene queries60 with BLAST v 2.10.0+.
BLASTn61 and BLASTx against the fasta nucleotide/protein files output
from Prokka were identified for gene retrieval. Annotations that were
still truncated due to frameshift were resolved through manual
acquisition of the split annotation and intergenic region identifiedwith
Prokka. Geneswere retrieved by locus tag and concatenated (16S-dnaJ-
gyrB-hsp60-recA-rpoB) for alignment with MEGA X v.10.1.8 using
MUSCLE62 with default parameters. Columns with less than 75%
occupancy were removed using trimAL v. 1.4.rev1563. RaxML v. 8.2.1264

was used to generate a phylogenetic tree using 20 tree searchers with
the GTRGAMMAmodel and tested with 500 bootstraps. The unrooted
tree was visualized with ggtree65.

Mash v. 2.366 with a sketch size of 10,000 was used for all-versus-
all whole genome comparisons using assemblies, without frameshift
correction. 1-Mash distancewas used as an average nucleotide identity
(ANI) estimate and additional reference assemblies retrieved from
NCBI were included in comparisons. The heatmap was generated in
using R 4.2.1 with ComplexHeatmapv 2.14.067 with dendsort applied to
hclust distances calculated using the ward D2 method. Abricate
(https://github.com/tseemann/abricate) with 80% minimum coverage
and 80% minimum identity was used to query AMR genes against a
composite database curated for Bacteroides68–71 (https://github.com/
thsyd/bfassembly), and 1911 AMR genes were found. Abricate output
table can be found in Supplementary Data 12.

GTDB-Tk v2.0.0 was used with default settings with the r207
reference database to classify all genomes in the set30. Agreement
between GTDB-Tk and MALDI for species identification (agreement of
360/383 genomes or 94.0%) was based on assuming equivalence of
Bacteroides vulgatus (former name) and Phocaeicola vulgatus (new
name). Summarymetadata for isolates andGenBankReferences canbe
found in Supplementary Data 2.

Pangenome and accessory region characterization
To correct for assembly errors associated with Nanopore sequencing,
Proovframe v0.9.7 (and diamond v2.0.8) (https://github.com/thackl/
proovframe), was used to correct indels by aligning polished BFG
genomes to Genbank nr database (release 245), and replacing indel
regions with Ns to improve ORF contiguity (available through Zenodo
as https://zenodo.org/record/7510225). If this indel correction step is
not performed, ORF counts can be artificially inflated by split ORFs,
and gene family-wise calculations can be affected. Proovframe-
corrected genomes were then annotated with Prokka. All genome-
based analyses aside from those associated with Fig. 1 and associated
supplementalfigures were performed using the Proovframe-corrected
genomes.

PPanGGOLiN v. 1.1.13631 was used to generate pangenome graphs
and statistics. Genomes were grouped by species (MALDI method),
and genomes from the same species were used as input to PPanG-
GOLiN with default settings. Using these settings, genes were grouped
into families within a threshold of 80% average amino acid identity and
80% alignment fraction. To generate rarefaction curves for each pan-
genome, PPanGGOLiN gene family matrix tables were input into
MicroPan72 rarefaction module with 50 permutations and MicroPan
Heaps module with 100 permutations.

PPanGGOLiNpangenomegraphfiles for each specieswere usedas
input to PPanGGOLin rgp33 with default settings (minimum length of
3000 nucleotides) to find accessory regions (“regions of genome
plasticity”) and output these regions as fasta files (Supplementary
Data 3). Accessory region sequences were aligned “all-vs-all” using
BLASTN with flag “ -perc_identity 90”. Anicalc from the CheckV

packagewas used to calculate ANI and AF (Alignment Fraction) of each
alignment, and number of alignments for each accessory region
sequence with ANI > = 95 and AF > = 85 were counted. Note that
accessory region sequences can often consist of multiple mobile
genetic elements or genomic islands in tandem, and no attempt was
made to separate individual elements within these regions with the
exception of bacteriophages.

To find phage defense systems in accessory regions, Padloc v1.0.1
with database v1.1.0 was used with default settings73. AMR genes were
identified using Abricate as described above. DNA methyltransferase
genes were identified using DNAMethylase Finder as described below.
Bacteriophages were identified using Cenote-Taker 2 v2.1.3 (https://
github.com/mtisza1/Cenote-Taker2) with flags “-p false -db virion
--lin_minimum_hallmark_genes 2 --circ_minimum_hallmark_genes 2”.
Then, CheckV v0.7.0 with database v0.6 was used to find prophage
borders and estimate completeness of each phage sequence. To find
conjugative machinery genes, ORFs for each accessory region
sequence were found and translated with prodigal, using flag “-p
meta”, then all amino acid sequences were queried against a custom
HMM database of conjugative machinery models pulled from PFAM
(Supplementary Data 13) using hmmer74 with flag “-E 1e-8”. Hits for two
or more genes were required to for a positive identification on a given
accessory region sequence.

To find and characterize circular plasmids/episomes, Flye
assembly info tables were parsed to extract putative circular sequen-
ces less than 1.5 megabases in size. In the data set, some short plas-
mids/episomes were present at high copy numbers (>50 copies per
chromosome), and in some cases these high copy number plasmids/
episomes were represented in lower copy number in companion
libraries sequenced on the same flow cell. We assessed that this was
likely library cross-contamination and to reduce the likelihood of
artifactual assignment of plasmids/episomes to the incorrect library,
we excluded circular contigs with coverage that was either 80% of the
coverage value of the bacterial chromosome or less or if the coverage
was less than 30-fold on average across the sequence. This may have
resulted in an underestimate of the true number of plasmids/epi-
somes. Furthermore, the Flye assembler occasionally artifactually
assembles sequences as concatemers of two or more tandem copies.
Each circular sequence was aligned to itself with BLASTN, and, if the
total length of the alignment was greater than 140% of the total length
of the sequence, the episome was trimmed down to one unit length to
eliminate potential artifactual tandem duplications. To determine if
the filtered sequences had plasmid-associated genes, each sequence
was run through MOBsuite75 followed by RPS-BLAST against the CDD
database76 with flags “ -evalue 1e-2 -seg yes”. Hits were then cross-
checked against a list of models related to plasmid replicases, relaxa-
ses, conjugative machinery, integrases, and transposes (Supplemen-
tary Data 14). Also, Abricate was run as described above on each
sequence. Plasmids/episomes were clustered into approximate
operational taxonomic units (OTUs) using anicalc and aniclust from
CheckV with flags “--min_ani 95 --min_tcov 85” (minimum ANI = 95%,
minimum AF = 85%). The network graph was visualized in Cytoscape77.

DNA methylase finder construction
Identification of DNA methyltransferase genes is difficult for at least
three reasons: (1) the sequence spaceof DNAmethyltransferase genes/
domains is very large and diverse, (2) some DNA methyltransferase
domains have homology to other domains, mostly RNA methyl-
transferase domains, and (3) many DNAmethyltransferase genes have
multiple domains (e.g., a DNA methyltransferase domain and a DNA
helicase) resulting in potential annotation by the comparator
gene only (not the methyltransferase gene) by standard annotation
tools. Furthermore, many genes annotated with Prokka or NCBI’s
Prokaryotic Genome Annotation Pipeline (https://github.com/ncbi/
pgap) are labeled as “methylase”, and it is unclear if these genes are
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DNA methyltransferases, RNA methyltransferases, protein methyl-
transferases, or something else.

To solve these issues, DNA Methylase Finder was created. A
complete description of all components of the pipeline with doc-
umentation, aswell as the fully executable version used in thiswork are
available at https://github.com/mtisza1/DNA_methylase_finder. At the
beginning of the pipeline, input protein sequences (or translated
nucleotide inputs) are queriedusing hmmer against a customdatabase
of HMMs from diverse DNA methyltransferase domains from PFAM,
CDD, PDB, the work of Oliveira et al 2014, and additional models
generated in-house (https://zenodo.org/record/6647341/)37. Aligned
proteins are trimmed down to just the aligned region representing the
putative DNA methyltransferase domain, and these regions are then
queried against all of CDD using hmmer to see if any other models
(such as RNAmethyltransferase domains) are a better match. If a DNA
methyltransferase model remains as the best hit, the putative DNA
methyltransferase is typed (i.e., Type I, Type II, Type IIG, Type III)
using subtype specific models from Oliveira et al, 2014, and pro-
spective motif specificity is inferred by BLASTP alignment to REBASE
database DNA methylases (http://rebase.neb.com/rebase/rebase.
html) with known motif specificity (default 80% AAI and 80% AF
threshold to report specificity). Finally, if nucleotide contigs/gen-
omes were used as an input, maps of DNA methylase “gene neigh-
borhoods” (flanking +/− 5 genes) are annotated with models to
restriction enzymes, specificity subunit genes, followed by all of
CDD. This tool and documentation are available on GitHub (https://
github.com/mtisza1/DNA_methylase_finder). Databases are available
at https://zenodo.org/record/6647341/.

To evaluate the sensitivity of DNA Methylase Finder, the REBASE
“gold standard” database of DNA methyltransferases was used
(downloaded May 21, 2021). These protein sequences were entered as
input to DNA Methylase Finder with default settings. Conversely, to
assess a false positive rate, all (6011) of the putative DNA methyl-
transferase genes sequences from the BFG genomes were extracted
and compared, via BLASTP with 1e-3 evalue threshold, to the REBASE
“gold standard” database of DNA methyltransferases.

In the sensitivity test, DNAMethylaseFinder identified 100%of the
microbial methyltransferases in the set. The only putative methyl-
transferase proteins in this REBASE database that were not identified
by DNA Methylase Finder were mouse and human methyltransferase
genes as well as two sulfotransferase genes (e.g., M.SenCer87DndC)
that may have been added to the database in error.

In the assessment of false positive rates, we found that 329/6011
(5.4%) putative methyltransferase genes identified had no hit to the
REBASE database at this e-value cutoff.While a number ofmotifs in the
set of 320 had apparent high quality DNA methyltransferase domains
based on manual HHpred searches, others appeared to be true false
positives. We thus estimate the false positive rate based on this com-
parison to be up to 5.4%.

Phage-encoded DNA methyltransferases
Prophage sequenceswere extracted as described above, and virusOTUs
were generated by clustering using anicalc and aniclust from CheckV
with flags “--min_ani 95 --min_tcov 85” (minimum ANI =95%, minimum
AF=85%). Genome maps were drawn with Cenote-Taker 2, and related
genomes were visualized with Clinker v0.0.2178. DNA methylase genes
were identified with DNA Methylase Finder, and clustered with aniclust
based on 80% average amino acid identity and 80% alignment fraction
with alignments derived from “all-vs-all” BLASTP search.

Identifying methylated DNA motifs with Nanodisco
Genomic DNA from 268 BFG isolates from five species (B. fragilis, B.
ovatus, B. vulgatus, B. thetaiotaomicron, and P. distasonis) were pre-
pared with the Oxford Nanopore SQK-RPB004 kit as described
above. These data and data from isolate-matched “native” (SQK-

RBK004) genomic DNA sequencing were (re)-base called with Guppy
5.0.7 “hac/high-accuracy” mode. Nanodisco v1.0.340 was used per
instructions, with 300 “chunks” being analyzed for each genome
(Nanodisco difference option). Following data processing with
Nanodisco, all genomes received manual motif curation, as a sig-
nificant proportion of the potential motifs that are given as initial
output are likely incorrect (usually too specific or too broad). Expert
curation was performed by a single operator (MT) and was based on
detailed analysis of the output of the program. Expert curation
involved identification and correction of two common types of
errors. One error involved merging of similar motifs and a second
error involved truncation of motifs. Full explanation of the steps for
how these two errors were identified and corrected are shown in
examples in Supplementary Figs. 8–9.

Motifs that were ultimately cataloged were required to demon-
strate an obvious signal difference at nearly all motif occurrences
(according to inspection of “Refine_motifs” plots). We expect that the
method we applied to manual curation represents a conservative
approach and it is possible that it excluded actual methylation motifs
that were poorly detected by Nanodisco. Note that Type I DNA
methyltransferases target a gapped motif and its reverse complement
(e.g., TCANNNNNGTC/GACNNNNNTGA). For thepurposeof analysis,we
made the decision to count non-palindromic motifs putatively targeted
by the same DNA methyltransferase as separate motifs. We applied the
same counting logic to the external data that was used in analyses9,41.

Comparing Pacbio and Nanopore/Nanodisco de novo motif
detection
For the isolates with genome sequencing data from Pacbio, Nanopore
native, and Nanopore PCR, de novo motif calls were performed by
both the default Pacbio pipeline and Nanodisco. Output tables were
compared (Supplementary Table 2).

Quantifying motifs in BFG genomes
For eachmotif, seqkit locate79 with flags to allow for ambiguous bases,
such as N or W was used to scan for all instances of each motif on all
relevant genomes. Comparison of motif abundance between lineage
ingroups versus outgroups was done in python with stats annotator
v0.4.3 package (https://github.com/trevismd/statannotations) using T
tests with Benjamini-Hochberg correction (1% FDR).

Similarly, to assess motif density in genes (Supplementary Fig. 13),
prokka-output gene sequences were evaluated with seqkit as above.
Seqkitwas also used to ascertain gene length andGC%.Abricatewas run
on all genes (as described above) to identify and annotate AMR genes.

Statistics & reproducibility
As this study involved retrospective sequencing of available stored
clinical isolates, no statistical method was used to predetermine sample
size. Sequencing libraries demonstrating either evidence of con-
tamination or poor quality were discarded and repeated; no other data
were excluded from the analyses. This work involved only sequencing,
methylome determination, and bioinformatics analysis of de-identified
bacterial isolates and thusno randomizationwas requiredorperformed.
The investigators were not blinded for any of the analyses. De-identified
BFG isolates were obtained from a frozen, stored, historical collection,
and thus there were no pre-registered criteria for this collection.

Ethics statement
The work presented in this manuscript involved only de-identified
clinical bacterial isolates. As such, thisworkwasexcluded fromNIH IRB
review under OHSRP exemption 19-NIAID-00802.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The raw sequencing data generated in this study have been deposited
in the NCBI database under BioProject accession code PRJNA646575.
Supplemental Data File 3, and the raw data for PacBio and nanopore
genome construction and nanodisco analysis, and instructions are
located in a zenodo database under https://zenodo.org/record/
7510225 and https://zenodo.org/record/7548812. The primary FAST5
output files from nanopore sequencing are available on request and
have not been uploaded to a public repository due to file size (>10 Tb).
Requests for materials associated this work require a standard NIH
Material Transfer Agreement with the NIH and U.S. Government.
Requests for materials should be addressed to John Dekker at
john.dekker@nih.gov.

Code availability
Methylase Gene Finder is available for the Linux command line through
GitHub https://github.com/mtisza1/DNA_methylase_finder, with an
associated database deposited at https://zenodo.org/record/6647341/.
Other scripts are located within https://zenodo.org/record/7510225.
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