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Phonemic segmentation of narrative speech
in human cerebral cortex

Xue L. Gong 1 , Alexander G. Huth2, Fatma Deniz3, Keith Johnson 4,
Jack L. Gallant 1,5 & Frédéric E. Theunissen 1,5,6

Speech processing requires extractingmeaning from acoustic patterns using a
set of intermediate representations based on a dynamic segmentation of the
speech stream. Using whole brain mapping obtained in fMRI, we investigate
the locus of cortical phonemic processing not only for single phonemes but
also for short combinations made of diphones and triphones. We find that
phonemic processing areas are much larger than previously described: they
include not only the classical areas in the dorsal superior temporal gyrus but
also a larger region in the lateral temporal cortex where diphone features are
best represented. These identified phonemic regions overlap with the lexical
retrieval region, but we show that short word retrieval is not sufficient to
explain the observed responses to diphones. Behavioral studies have shown
that phonemic processing and lexical retrieval are intertwined. Here, we also
have identified candidate regions within the speech cortical network where
this joint processing occurs.

The human cerebral cortex performs complex computations to
transform a continuous speech sound pressure waveform into a lan-
guage based message. These transformations include the detection of
information-bearing spectro-temporal features in the speech sound,
the combination of these acoustic features into phonemic units, syl-
lables, words andmeaningful clauses. At a coarse level, the location of
cortical regions underlying the transformation from sound to words
has been well described1–3. However, the neural basis of the phonemic
processing steps where phonemic subunits are combined into mean-
ingful larger units for the identification of syllables and words remains
poorly understood. In order to explore phonemic processing in the
cerebral cortex, we measured human fMRI blood-oxygen level-
dependent (BOLD) response to narrative stories4,5. First, we contrasted
the predictive power of linearized encodingmodels based on acoustic
features, phonemic features and semantic features in order to
delineate the cortical regions that were sensitive to phonemic infor-
mation. Second, to explore the nature of phonemic segmentation
within these identifiedphonemic cortical areas,we then contrasted the

predictive power of nested phonemic encoding models that used
single phonemes, diphones and triphones as regressors.

Our approach implicitly combines two complementary analyses
that have been used successfully in prior neurolinguistic research. The
hierarchical processing in the sound tomeaning transformation of the
speech signal requires both abstraction at different levels and seg-
mentation at different time scales. On the one hand, research based on
fMRI experiments has principally leveraged differences in responses in
predictive power for different levels of abstraction. For example, by
using words versus non-word matched speech sounds as stimuli,
researchers have analyzed BOLD responses to delineate cortical word-
specific regions from phonemic regions within the temporal lobe3,6–8.
Similarly, the predictive power of statistical linear models using
spectral features versus articulatory features has been used to distin-
guish primary auditory cortical regions from speech specific cortical
regions within the superior temporal gyrus3,7.

On the other hand, research based on EEG, MEG and ECoG
experiments have principally leveraged the entrainment observed at
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different temporal scales between the speechwaveformand theneural
signals measured with those techniques9–11. For example, neural cor-
relates of word segmentation have been localized to cortical regions
found along the left inferior and middle frontal gyri12. At lower fre-
quencies (<2 Hz), it has also been shown that the time scales of phrase
and sentence processing canbe reflected in theneural activity found in
middle and posterior superior temporal gyrus and inferior frontal
gyrus10. At higher frequencies, corresponding to the syllable rate, the
robust phenomenon of cortical entrainment to the speech envelope
has been linked to lower level processing of speech sounds. It is well
accepted, however, that the functional properties of this cortical
speech entrainment as measured in EEG needs to be further analyzed
in order to distinguish its role in speech or linguistic processing from a
more general role in acoustic processing13.

Here we assessed the predictive power of linear models based on
phonemic units combined at different levels of temporal granularity
and contrasted those models to those based on lower level (spectral)
and higher level (word embeddings) of abstraction. This combined
approach allowed us to clearly delineate phonemic cortical regions
from acoustic or word/semantic regions and simultaneously examine
the granularity of the segmentation for phonemic units. Although it
appears counter-intuitive to be able to detect the fast rates of pho-
nemic segmentation in the slow fMRI BOLD signal, we will show that
this analysis is possible as long as individual voxels show sufficient
sensitivity for the identity of specific phonetic units.

Lastly, the locus of the transition from phonemic processing to
lexical retrieval has also been debated as both anterior and lateral
posterior regions of the temporal lobe as well as inferior prefrontal
cortex (reviewed in14). The investigation of the temporal granularity of
phonemes in combination with the representation of speech

processing at different levels of abstractions allowed us to more rig-
orously assess the uniquephonemic cortical region and thus revisit the
locus of the phonemic to lexical retrieval transition. For this purpose, a
detailed quantitative analysis of the differences in predictive power
between linearized models based on phonemic features versus
semantic features was performed.

Results
The goals of this study were, first, to localize the phonemic brain
regions; second, to investigate the nature of the phonemic segmen-
tation; and third, to determine the putative brain regions where the
transformation from phonemic processing to lexical semantic mean-
ing representation occurs.

To achieve these goals, we collected fMRI BOLD data while 11
participants listened to more than two hours of spoken narrative
stories from The Moth Radio Hour3–5. Following the logic of the vox-
elwise encoding model (VM) framework, acoustic, phonemic, and
semantic features were first extracted from the speech stimuli (Fig. 1).
These features were then used in regularized linear regression15 to
predict the time varying BOLD signals in each voxel independently.
The predictive power of thesevoxelwisemodelswas then estimatedby
cross-validation, using a separate data set reserved for this purpose
(Methods, Supplementary Fig 1 and 2). By comparing the predictive
power obtained using different feature spaces, one can obtain a
functional map of phonemic processing.

Responses to acoustic features and presence of speech sounds
In order to localize the cortical regions sensitive to phonemic proces-
sing, we first removed the fraction of the BOLD response that could
be explained by the mere presence versus absence of speech sounds.
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Fig. 1 | Feature spaces used for voxelwise modeling. To identify the cortical
representation of features important for speech comprehension, the sound wave-
forms from the stimuli were first transformed into six different feature spaces.
Acoustic features were extracted by creating separate spectrum power and pho-
nemecount feature spaces. These two acoustic feature spacesdescribe brain activity
that can be explained by themere presence or absence of speech sounds. Phoneme-
related featureswere extractedby creating separate feature spaces that reflect single
phonemes, diphones and triphones. Semantic features were extracted by creating a
feature space based on a 985-dimensional word embedding space4. Cortical Pro-
cessing: Six distinct feature spaces were used to investigate the Acoustic, Phonemic
and Semantic processing in the speech cortical network. Feature Representations:
Illustration of the time course of a single feature from each feature space: the

spectrum of sound signal in the frequency band centered at 2801 Hz, the phoneme
(/ai/), the diphone (/m.ai/), the triphone (/w.ah.s/), and the semantic co-occurrence
with “I''. These signals are low-pass filtered to generate the continuous values dis-
cretized at the TR (bold colored lines). Feature Vectors: Illustration of matrices of
each feature space for 5 TRs and a subset of the features in each feature space.
Models: Venn diagrams illustrating the features used in nested voxelwise models
(VMs). The Acoustic Baseline VM used the spectrum power and the phoneme count
as features. After subtracting the predictions from the Acoustic Baseline VM, nested
models using phonemic and semantic features (green and pink circles at bottom)
were fitted to localize phonemic regions and phonemic to semantic cortical
boundaries. Nested models using single phonemes, diphones and triphones were
fitted to assess the granularity of the phonemic segmentation in phonemic regions.
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For this purpose, we obtained the BOLD predictions from a jointmodel,
Acoustic Baseline VM, consisting of the time-varying spectrum power
and phoneme count features (Fig. 1). The phoneme count feature
quantifies the presence versus absence of speech sounds without being
linearly sensitive to the sound intensity or the exact spectrum of parti-
cular utterances. Within the Acoustic Baseline VM, we examined the
anatomical location of voxels sensitive to time-varying spectrum power,
and phoneme count individually (Fig. 2; see Supplementary Fig. 5 for per
subject data). The time-varying spectrum power best predicts the BOLD
responseof voxels located in themostmedial part of the auditory cortex
(AC; identified functionally using localizers asdescribed in theMethods).
This medial region surrounds the Heschl’s gyrus (cyan line in
Fig. 2)where theprimary auditory cortex (PAC) is found. Phonemecount
best predicts the BOLD response of voxels in themore lateral regions of
AC including voxels along the superior temporal gyrus (STG). Significant
predictions are also observed in the more lateral ventral speech pre-
motor area (sPMv) and inferior prefrontal cortex (IPFC) including Bro-
ca’s area, mostly in the left hemisphere of this subject. These phoneme
count auditory voxels could simply correspond to general auditory
regions that are more sound level invariant than what can be predicted
by linear weights on the time varying spectrum power. Alternatively,
these phoneme count voxels could also correspond to an area of audi-
tory processing specialized for speech. Since the goals of our studywere
not to functionally parcelate these auditory regions, we did not perform
any additional analyses or experiments to disambiguate these two
alternatives. In order to delineate the cortical regions sensitive to pho-
nemic identity and not simply to their presence, we subtracted the
predictions from this Acoustic Baseline VM from the BOLD response to
obtain a BOLD response residual. All subsequent predictions refer to
predictions for this residual response, which we will refer to as Yres.

Phonemic voxels and phonemic segmentation
To investigate phonemic processing, we defined phonemic voxels as
the voxels that responded to the identity of speech phonemes and/or
phoneme combinations beyond what could be explained by the mere
presence or absence of speech sounds. The response to the identity of
speech phonemes was assessed by significant predictions of the BOLD
responses based on the full Phonemic VM. The full Phonemic VM
consists of single phoneme, diphone and triphone features. Here we
will first describe the anatomical location of the phonemic voxels.
Second, we examine phonemic segmentation by quantifying the var-
iance inbrain activity that could be explainedbymodels based on each
of these three phoneme-related features and the joint of these
features.

Anatomically, phonemic voxels were found in large regions of
the temporal, parietal and prefrontal cortex (Fig. 3a: Phonemic
Processing). In the temporal cortex, phonemic voxels were found in
the superior temporal gyrus (STG) and had increasing predictive
power in the superior temporal sulcus (STS) and the adjoining lateral
area covering a large section of the lateral temporal cortex (LTC).
These temporal cortex phonemic areas were found on both hemi-
spheres and also had large anterior to posterior coverage (see
Supplementary Fig. 7 and Supplementary Note for a detailed ana-
lysis of hemispheric differences). By contrast, predictive power was
very low in the primary auditory cortical areas (PAC). The temporal
phonemic area also extended more posteriorly into the lateral and
posterior parietal cortex (LPC, PPC). Phonemic areas were also
found bilaterally along the medial parietal cortex (MPC). Finally, the
inferior and superior prefrontal cortex (IPFC, SPFC) contained
clusters of phonemic voxels, including in areas just anterior and
inferior to Broca’s area and anterior to sPMv.
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Fig. 2 | Variance partitions for acoustic processing. To identify acoustic pro-
cessing across the cerebral cortex, a joint Acoustic Baseline VM consisting of
spectrum power and phoneme count feature spaces was constructed. The pre-
diction performance obtained from one typical subject (S5) for the joint Acoustic
Baseline VM, and the models based on the time-varying spectrum power feature
only, and the phoneme count feature only after excluding the time-varying spec-
trum power are shown. a Shows that the Acoustic Baseline VM produces accurate
predictions of brain activity in PAC, LTC, sPMv and IPFC. To determine whether
these representations were best modeled using spectrum power, or phoneme
count features, variancepartitioningwasused to identify howmuchof the variance
in brain activity could be explained bymodels based on each of these two features.

b Shows that spectrum power features best explain response variance in PAC.
c Shows that phoneme count features best explain response variance in STG, sPMv
and IPFC. Color shows the value of cross-validated predictionperformanceR2 for all
statistically significant voxels (Permutation test with FDR correction). White lines
separate occipital, temporal, parietal and frontal cortex. White circles indicate
regions of interest acquired from separate localizer scans. The cyan line within AC
locates Heschl’s gyrus. Anatomical regions labeled are: SPFC superior prefrontal
cortex, IPFC inferior prefrontal cortex, MPC medial parietal cortex, LPC lateral
parietal cortex, STS superior temporal sulcus, LTC lateral temporal cortex, MTC
medial temporal cortex, VC visual cortex; Additional areas defined with localizers:
AC auditory cortex, Broca, sPMv ventral speech premotor area.
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To visualize the unique and joint contribution of single pho-
nemes, diphones and triphones to this cortical phonemic repre-
sentation, we used variance partitioning. The single phoneme
features alone significantly predicted the BOLD response of a small
number of voxels located along the superior temporal sulcus (STS)
of both hemispheres (Fig. 3b: Phoneme). By contrast, the diphone
features (Fig. 3b: Diphone) significantly predicted the BOLD
response in LTC, LPC, MPC, IPFC and SPFC. The unique contribution
of the triphone features, and the joint contribution of each pair of

phonemic features and of all three phonemic features are relatively
minor and scattered in voxels found in all phonemic cortical regions
(Fig. 3b: Triphone, Phoneme + Diphone, Diphone + Triphone, Pho-
neme + Triphone, and All). Thus, cortical phonemic segmentation
appears to occur principally at the diphone level. Single phoneme
representation is limited tomore “primary” speech processing areas
along the STS. There is no clear distinctive triphone region beyond
what was already identified as phonemic processing areas using the
full Phonemic VM.
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Fig. 3 | Variance partitions for phonemic processing. To identify phonemic
representations across the cerebral cortex, a jointPhonemicVMconsisting of single
phoneme-, diphone- and triphone-based feature spaces was constructed. a Shows
that the joint Phonemic VM produces accurate predictions of brain activity in LTC,
LPC, MPC, IPFC and SPFC. To determine whether these representations were best
modeled using single phoneme-, diphone-, or triphone-based features or the joint
of these features, variance partitioning was used to identify how much of the var-
iance in brain activity could be explained by models based on each of these three
phoneme-related features and their joint pairs. b Shows that single phoneme

features best explain response variance along STS. Diphone features best explain
response variance in LTC, LPC,MPC, IPFCandSPFC. Triphone features and the joint
of each pair of these phonemic features produce poor predictions in most voxels.
Data used to generate thisfigure has been provided in source data. Cortical regions
referred are: SPFC superior prefrontal cortex, IPFC inferior prefrontal cortex, MPC
medial parietal cortex, LPC lateral parietal cortex, STS superior temporal sulcus,
LTC lateral temporal cortex, MTC medial temporal cortex, VC visual cortex, sPMv
ventral speech premotor area.
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To quantify these observations, we estimated the unique con-
tribution of each phonemic feature to the full Phonemic VM predic-
tions in the entire cortex, in four ROIs partitioning the large phonemic
areas found in the temporal cortex (PAC, STG, STS, LTC), and inBroca’s
area in the prefrontal cortex.

On average across the entire cortex, the unique contribution of
the diphones is superior to the prediction obtained for the unique
contribution of single phonemes and to the triphones (mixed-effect
statistical models with subject as random factor: likelihood ratio
test with null statistical model that ignores phonemic feature,
χ2(2) = 10355.60, p < 2.2 × 10−16). The effect size is large: the averaged
d-prime of the unique contribution of the diphone feature relative
to the unique contribution of single phoneme and triphone features
is d0 = 13:114 + � 0:203 (2SE; obtained from mixed effect coeffi-
cients; Supplementary Table 1 and 2 for per subject data and
analyses).

Within the temporal cortex (TC), the prediction performance of
the full Phonemic VM shows a gradient: it is lowest in primary AC,
highest in STG and STS, and lower again in LTC (Fig. 4). Furthermore,
the diphone contribution varied relative to the single phoneme and
triphone contributions as a function of anatomical location (Fig. 4). A
linear mixed-effect statistical model analysis was used to predict the
unique contribution to the prediction performance with the three
phonemic features, the four ROIs in TC and their interaction as fixed
effects and subject as random effect. This full statistical model has 12
coefficients (1 for intercept, 3 for ROIs, 2 for features and 6 for the
interaction term). Prediction performance varied significantly across
ROIs (likelihood ratio test with the nested statistical model that does

not include ROIs and the interaction: χ2(9) = 625.68, p < 2.2 × 10−16)
and across phonemic features (likelihood ratio test with the nested
statistical model that does not include feature spaces and the inter-
action χ2(8) = 4828.82, p < 2.2 × 10−16). The unique contribution is
higher for the diphone than for the single phoneme and triphone
features in STG, STS, and LTC. Moreover, there was a significant
interaction between cortical regions and feature space (likelihood
ratio test with the nested statistical model that does not include
the interaction χ2(6) = 522.32, p < 2.2 × 10−16). This interaction can be
described by the effect size used to quantify the differences in
the unique contribution between the diphone features and the single
phoneme and triphone features in each ROI within the temporal cor-
tex. The effect size is small in PAC ( �d0 =0:440+ � 0:968ð2SEÞ),
increases in the STG ( �d0 = 12:838+ � 0:838ð2SEÞ), and in the STS
( �d0 = 12:509+ � 0:327ð2SEÞ), and then decreases in the LTC
( �d0 =9:060+ � 0:471ð2SEÞ). All �d0 and SE are obtained from mixed
effect coefficients. Thus, in all phonemic regions of the temporal
cortex, the unique contribution of the diphone features is the highest
and the effect size of this difference is larger in STG and STS.

In Broca’s area, the diphone features also significantly predict
BOLD response better than single phoneme or triphone features
(likelihood ratio test with the nested statistical model that does not
include feature spaces, χ2(2) = 443.64, p < 2.2 × 10−16; Effect size
is �d0 = 24:168 + � 0:203ð2SEÞ).

In summary, phonemic segmentation throughout the cortex, and
specifically in regions in the temporal cortex and prefrontal cortex
with high phonemic representation, occurs at the level of diphones,
rather than single phonemes or triphones.
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at the level of diphones, rather than single phonemes or triphones. The statistics
are derived from the performance of significant phonemic voxels for each ROI

(n = 201 to 12,411 voxels) across 11 independent subjects (*p <0.05, **p <0.01 and
***p <0.001). The effect size of difference is estimated by the average Cohen’s
d-prime ( �d0) of diphone-single and diphone-triphone comparisons. All tests are two
sided and corrected for multiple comparisons. The exact p-values can be found in
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vided in source data.
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Finally, we also investigated to what extent these results could be
affected by the fMRI methodology and, in particular, by a potential
mismatch between the rate of individual phonemic units and the
temporal resolution of the BOLD signal (Fig. 1). The rate of single
phonemes in natural speech stimuli is rapid and varies from 10 to 40
phonemes per TR (i.e. up to 20 Hz). However, the rate of particular
single phonemes, diphones and triphones is much slower. Thus, as
long asaputativephonemic voxel is sufficiently sensitive forphonemic
identity, one should be able to predict its BOLD signal from the pre-
sence and absence of a small set of particular phonemes in the voxel’s
“phonemic receptive field”. The requirement of “sufficiently sensitive”
depends on the signal to noise ratio of the BOLD signal, and on the
length of the signal acquired during the experiment. To determine this
sensitivity threshold, we performed a series of simulations where we
systematically varied the sensitivity of model voxels (Methods). Using
two hours of narrated speech data, the VM approach used on our data
set would distinguish phonemic identity voxels from phonemic count
voxels if the model voxel was sensitive for fewer than 10 particular
single phonemes and fewer than 100 particular diphones (Supple-
mentary Fig 3). The same simulations showed that one could also
distinguish voxels that were sensitive to single phonemes from those
that were sensitive to diphones or triphones but not to longer com-
binations (Supplementary Fig. 4).

Diphone segmentation for identification, expectations or lexical
retrieval?
Models capturing the diphone identity yielded, among phonemic
features, the highest predictive power in large parts of the cortex
implicated in speech processing. Does this phonemic segmentation at
the level of the diphone reflect sensitivity for the identity of particular
diphones or does it reflect other speech related processing such as
expectations for specific diphone sequences or lexical retrieval?

A large body of previous work has shown the importance of pre-
dictions in speech processing16–18. In order to further explore if the
cortical BOLD activities truly encode the content of diphones or
merely the statistical properties of diphones, we built one diphone
statistics model consisting of 8 phonological statistical features
extracted from Irvine Phonotactic Online Dictionary (IPhoD;19). These
features describe the phonotactic probability of diphones (Supple-
mentary Table 6). As shown in supplementary Figs. 9 and 10, although
transition probabilities across diphones yielded some predictive
power in the phonemic regions, the prediction strength of VMmodels
based solely on these transitions probabilities was much smaller than
VM models that explicitly represented the diphone identity.

Furthermore, since many diphones are also short words (e.g.
diphone “M.AY” could represent the word “my”), it is important to
elucidate whether the unique explanatory power from diphone fea-
tures could be a reflection of responses to high-frequency shortwords.
In addition, the beginning of words are considered to be linguistically
important in the process of lexical activation during spoken-word
recognition20. In order to test these potential effects, we divided the
diphone features into three categories (Fig. 5 upper panel): short
words (e.g. “M.AY”), word beginnings (e.g “AE.N” in word “and”), and
diphone residues not belonging to either previous groups (e.g. “N.D” in
word “undid”).We then estimated the contribution to thepredictionof
a VM phonemic model based on diphones (but also including words
made of single phonemes) coming from each of these three diphone
categories. We then normalized these raw contribution values by the
proportion of occurrences in each group to effectively obtain an
average prediction measure per diphone for each category.

As shown in Fig. 5, there is a significant difference among short
words, word beginnings, and diphone residues in terms of their nor-
malized contribution to the prediction of the diphone features (mixed-
effect statisticalmodels with subject as random factor: likelihood ratio
test with the nested statistical model that does not include diphone

categories: χ2(2) = 52.75, p = 3.5 × 10−12). The diphone’s dominance in
explaining cortical BOLD can be in part, but not solely, explained
by responses to short words. The contribution to the prediction
of the short words is significantly higher than the beginning of
words (F (2, 10) = 7.44, p = 6.6 × 10−5) and diphone residuals
(F (2, 10) = 8.62, p = 1.8 × 10−5). It should also be noted that we did not
observe distinct cortical subregions within cortical areas with pho-
nemic representations where the responses to short words were sys-
tematically higher than those to word beginnings of other diphones
(Supplementary Fig 8, Supplementary Table 3).

Phonemic versus semantic cortical representations
Thecortical areaswith significant phonemic representations described
above were large and overlapped significantly with cortical areas that
have been previously assigned to lexical retrieval and semantic
processing3–5. To determine whether these regions represent pho-
nemic information, semantic information, or both, we compared
prediction accuracy of Phonemic VM using single phoneme, diphone
and triphone feature spaces to the accuracy of Semantic VM using
semantic feature space (see Supplementary Fig 12 for the hemispheric
analysis). The prediction accuracy of Semantic VM is obtained from
variance partitioning from subtracting the prediction accuracy of
Phonemic VM from that of Phonemic-Semantic VM using all three
phonemic feature spaces and the semantic feature space (Fig. 1,
Fig. 6a). As expected, phonemic and semantic cortical representations
overlap (Fig. 6b, d). However, the relative contribution of the pho-
nemic and semantic features can vary across cortical regions.

First, we quantified the phonemic and semantic features’ con-
tributions averaged across the entire cortex. These average values
serve as a baseline to assess to what extent a particular cortical region
of interest is more phonemic or more semantic. We found that the
cortex is significantly more involved in semantic processing than
phonemic processing (linear mixed-effect statistical model with sub-
ject as random effect and feature as a fixed effect;the likelihood ratio
test with the nested statistical model that does not include feature
spaces, χ2(1) = 712.23, p < 2.2 × 10−16). The effect size at the level of the
whole cerebral cortex is large: the d-prime obtained from the differ-
ences in the additive contribution of the semantic feature and the
predictive power of the phonemic feature is d0 =2:018+ � 0:151ð2SEÞ
(see Supplementary Fig. 11, Supplementary Table 4 and 5 for per sub-
ject data and analyses).

Next, we examined the additive contribution of the semantic fea-
tures in the four ROIs of the temporal cortex defined above. The pre-
dictive power of the Phonemic-Semantic VM is lowest in PAC, increases
in STG and peaks in STS and LTC (Fig. 6c). Moreover, a linear mixed-
effect statistical model with features (two levels: Phonemic and
Semantic), ROIs (four levels: PAC, STG, STS, and LTC) and their inter-
actions (3 coefficients) as fixed effects, subjects as the random effect,
and the contributions to prediction performance as the response vari-
able, shows that the prediction performance of semantic features is
significantly different from that of the phonemic features across ROIs
(likelihood ratio test with the nested statistical model that does not
include ROIs and the interaction: χ2(6) = 561.87,p < 2.2 × 10−16) and
across features (likelihood ratio test with the nested statistical model
that does not include the interaction: χ2(3) = 80.63,p < 2.2 × 10−16).
Phonemic features explain a significantly larger portion of response
variance than semantic features in STG (χ2(1) = 19.12, p=8.1 × 10−6) and
STS (χ2(1) = 51.75, p=6.3 × 10−13). In contrast, semantic features explain
significantly more response variance than phonemic features in LTC
(χ2(1) = 36.65, p= 1.4 × 10−9). These ROI analyses suggest a medial-lateral
gradient of phonemic versus semantic representation within the tem-
poral cortex. The most medial regions near the auditory cortex
(d =0.155 +0.513) better represent non-phonemic acoustic features,
more lateral voxels in STG (d =0.626 +0.280) and STS (d =0.617 +
0.171) better represent phonemic features, and the most lateral voxels
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in LTC (d=0.999 +0.329) best represent semantic features. We will
further delineate the boundary between the phonemic regions and the
semantic regions in the last section of the results.

Within Broca’s area in the prefrontal cortex, the additive con-
tributions for the semantic features is significantly higher than the
phonemic feature (χ2(1) = 15.24, p = 9.5 × 10−5). However, the effect size
(d0 = 1:158+ � 0:593ð2SEÞ) is smaller than the average observed across
all cortical regions.

Phoneme to semantic transitions
The analyses described above revealed a gradient of phonemic to
semantic cortical representation in the temporal cortex extending
from its medial and superior region to its more lateral and posterior
region. In addition, voxels in the inferior prefrontal cortex (IPFC)
appear to be better predicted by phonemic features in their inferior
portion and better by semantic features in their superior portion
(Fig. 6, Supplementary Fig 13). We thus performed a more detailed
anatomical analysis to examine the transition from phonemic to
semantic representations in LTC and IPFC.

We projected the prediction performance of the Phonemic and
Semantic VMs for all the significant voxels onto a “medial-lateral” axis

in LTC (perpendicular to STS), and “inferior-superior” axis in IPFC
(perpendicular to IFS) (Fig. 7b, yellow lines). For each voxel in the
corresponding region, we computed the distance to the nearest point
along the bottom of the STS and the IFS for the LTC and the IPFC
respectively. The average prediction performance along those two
axes are shown in Fig. 7c: positive values are moremedial (i.e. towards
the STG) or more superior (i.e. towards the MFG), and negative values
are more lateral (i.e. towards the MTG) or more inferior (i.e. towards
the IFG). In LTC the contribution of the phonemic features to the
overall prediction was highest around the STS (paired t-tests: −14 to
7mm around STS of left hemisphere: t(10) = 3.43, p = 6.5 × 10−3; −12 to
20mm around STS of right hemisphere: t(10) = 5.36, p = 3.2 × 10−4),
while the additive contribution of the semantic features was higher
around the Inferior Temporal Sulcus (ITS) (−30mm lateral to STS of
left hemisphere: t(10) = −8.59, p = 6.0 × 10−6; −40mm lateral to STS of
right hemisphere: t(10) = −10.87, p = 7.3 × 10−7). To coarsely quantify
these effects, we estimated the physical location of the “center of
mass” of the spatial density of the variance explained by phonemic
versus semantic features for each subject (Supplementary Fig. 14). We
found that in LTC, the center of mass of the phonemic feature con-
tribution is consistently and significantly more medial than the center
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independent subjects. All tests are two sided and corrected for multiple compar-
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has been provided in source data.
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of mass of semantic feature contribution (Supplementary Fig. 14,
paired t-test: left hemisphere: t(10) = 5.88, p = 1.1 × 10−4, 11/11 subjects;
right hemisphere: t(10) = 9.28, p = 1.6 × 10−6, 11/11 subjects). In IPFC, the
phonemic contribution is significantly higher inferior to the IFS (−23 to
−10mm inferior to IFS of left hemisphere: t(10) = 3.04, p = 6.5 × 10−3;
−27 to −23mm inferior to IFS of right hemisphere:
t(10) = 3.58,p = 2.3 × 10−2), while the additive contribution of the
semantic features was higher superior to IFS in the left hemisphere
only (20 to 30mm superior to IFS: t(10) = −4.70, p = 3.3 × 10−3)(Fig. 7c).
In summary, these analyses indicate that phonemic to semantic tran-
sition happens in a medial-lateral gradient in the LTC and an inferior-
superior gradient in the IPFC.

Discussion
We examined the anatomical location and granularity of phonemic
representations in the human cerebral cortex. To clearly delineate the

phonemic cortical regions, we also examined the anatomical locations
of acoustic and semantic representations and their overlap with the
regions identified as being involved in phonemic processing. For these
analyses, we trained voxelwise encoding models (VMs) to predict
cortical fMRI signals elicited by natural narrative stories. The VMsused
a hierarchy of feature spaces that reflect the transformation of speech
sound to meanings: spectrum power, phoneme count, identity of
phonemes, diphones, triphones and semantic embeddings.

We found phonemic cortical regions are primarily located not
only in the superior and lateral temporal cortex (STG, STS, LTC), but
also in the ventral anddorsal regions of the inferior parietal lobule (IPL)
and in the inferior prefrontal cortex (IPFC). Within all phonemic areas,
the segmentation at the level of the diphone yielded themost accurate
predictions of the measured fMRI signal. The phonemic regions were
distinct from primary auditory regions, but overlapped with cortical
regions where word and semantic representations were found.
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poral cortex, MTC medial temporal cortex, VC visual cortex, sPMv ventral speech
premotor area. Data used to generate this figure has been provided in source data.
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Comparing the phonemic and semantic based predictions revealed a
medial-lateral gradient in the temporal cortex: phonemic information
was better represented in more medial regions (STG, STS), while
semantic information was better represented in more lateral regions
(LTC). An analogous inferior-superior gradient appeared in IPFC:
phonemic informationwasbetter represented inmore inferior regions
of the IPFC, while semantic information was better represented in
more superior regions.

One of the surprising results from this study is the large cortical
areas in the lateral and posterior region of the temporal cortex
involved in phonemic processing. In prior research, phonemic pro-
cessing hadprimarily been assigned to small regions in themid STG. In
our prior work, we had used a phonemic feature space based on
articulatory features describing single phonemes and found that the
predictive power of this articulation based phoneme model was

limited to small regions in mid STG3. Similar conclusions were also
reached in a meta-analysis of fMRI studies1 as well as with ECoG
recordings showing that electrodes placed on top of STG demon-
strated tuning responses for groups of phonemes21. Recently, both
intracranial recordings and stimulation studies indicated human mid
STG might be a parallel higher level auditory area specialized for low-
level speech processing22. Our study confirms these previous findings
implicating the mid STG in phonemic processing: the VMs based on
phoneme counts and the identity of single phonemes had the largest
explanatory power in that region.

However, when diphones and triphones are added as distinct
features in VMs, the cortical region in the temporal cortex implicated
in phonemic processing ismuch larger. It extends laterally fromSTG to
STS to much of the LTC. This large phonemic area in the LTC further
extends into the ventral and posterior area of the IPL without a clear
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frontal sulcus. Data used to generate this figure has been provided in source data.
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break along the temporoparietal junction. Since diphones and tri-
phones include many common short words, the phonemic regions
defined heremight also be cortical regions involved in lexical retrieval.
In another word, these regions could be involved in the segmentation
of the speech signals into known words. In order to disambiguate
lexical processing from phonemic processing, we estimated the con-
tribution short words made to our VM (Fig. 5). Indeed, we found that
approximately half of the explanatory power originating from the
diphone features could be attributed to short words. In addition, the
semantic feature space based on word embedding is by necessity
correlated with a lexical space. We showed that there was a large
number of phonemic voxels where the additional predictive power
obtained from the semantic feature space was significant. Thus, we
propose that the large cortical regionswhere the PhonemicVMyielded
good predictions of the BOLD response are cortical areas involved
both in phonemic and lexical processing.

In the more lateral regions of the temporal cortex, the semantic
features yielded additional predictive power that was greater in
magnitude than the one obtained by phonemic features only, sug-
gesting that this lateral region constitutes a cortical network impli-
cated in the phonemic/lexical to semantic transition. Both this
network in the lateral temporal cortex23 and the adjacent region in
the IPL24 have been implicated in lexical retrieval and speech com-
prehension in multiple studies. We also found discrete locations
within IPFC around the IFS where the phonemic model yields better
predictions than the semantic model. These locations might also be
involved in lexical retrieval potentially under a different linguistic
context than the one found in lateral temporal cortex25. For example,
it has been suggested that these regions in the IPFC are implicated in
lexical retrieval with higher linguistic load such as with increase word
cohort competition26.

One key finding from this study is that, within the phonemic/
lexical regions in the LTC, IPL and IPFC, segmentation occurs prin-
cipally at the level of the diphone. This finding is consistentwith basic
phonetic theory. In natural speech, single phonemes don’t occur in
isolation and it is well known that single phonemes are acoustically
different when produced in combinations, a phenomenon known as
coarticulation27. In other words, the acoustic features characterizing
single phonemes vary depending on the phonological context. This
acoustic variability prevents a simple transformation from temporal-
spectral acoustical features to the identification of a single phoneme.
This acoustical variability is reduced when segmentation occurs at
the level of diphones. Since the number of diphones used in lan-
guages remains relatively small (e.g. around 860 in English) com-
pared to memory capacity of the human brain, it is reasonable to
postulate that the transformation between an acoustic based neural
representation and a phonemic based neural representation of a
speech stream could therefore rely principally on a direct operation
on spectral-temporal features to extract the diphone identity. As
caveats, first, we have not exhaustively explored segmentation based
on other speech features. For examples a segmentation based on the
speech signal envelope (e.g. syllables, envelope peaks, etc) have
shown to have large explanatory power for recovering the neural
signals in the STG obtained in ECoG recordings28. Second, we have
only investigated models with a static segmentation. More sophisti-
cated models could also include an adaptive segmentation model
based both on acoustic features and linguistic features as proposed
in the adaptive resonance theory29. Third, the dominance of
diphones may also reflect the engagement of predictive speech
processing mechanisms which become more important in noisy
situations30. In particular, under the noisy fMRI scanning environ-
ment, diphones could be more reliably represented and resistant to
noise than single phonemes. On the other hand, the predictive power
of VM that were solely based on the statistical properties of diphone
sequences and ignored diphone identities was significantly smaller

(see Supplementary Fig. 9 and 10). Finally, our conclusions are based
on measures of predictions of nested models of phonemic features.
Based on a systematic variance partitioning of single phonemes
versus diphones and triphones, we are confident that the unique
variance explained by diphones over single phonemes is substantial
while the unique variance explained by triphones over diphones is
small. However, we don’t provide direct evidence for diphone spe-
cificity, for example in the form of finding a cortical map that is
systematically organized along diphone structure but not triphone
structure. Additional explorations on the exact nature of the cortical
representation for phonemic segments is needed.

As mentioned above, the over-representation of diphones in
phonemic brain regionsmight also be related to word segmentation, a
key process in lexical retrieval. Many common short words are
diphones. To begin to assess the extent of putative word processing
within the regions identified here as phonemic, we sorted diphones
into three groups: short words, word beginnings and other. We found
that the diphones that were short words were better represented than
word beginnings and the other diphones. This over-representation
might thus reflect the role of STG, STS and/or LTC in word segmen-
tation and lexical retrieval. However, within the phonemic/lexical
regions, we did not find subregions that were principally phonemic or
principally lexical. These results are consistent with lexical retrieval
mechanisms as revealed and established in behavioral studies that the
process of word recognition entails gradual integration across multi-
ple phonemes31,32. Thus phonemic and lexical processing appear to be
intertwined both mechanistically and in cortical functional mapping.

Finally, we also assessed the extent with which our findings on the
granularity of phonemic segmentation could be a consequence of the
spatial and temporal resolution of the fMRI signal. The low temporal
resolution of fMRI due to sluggish hemodynamic response function
(HRF) signal has longbeen considered as a challenge to study fastbrain
processing like speech segmentation33. Our simulations (Methods),
however, show that the capability of detecting fast neural activities
underlying speech processing using fMRI is not necessarily con-
strained by this low temporal resolution as long as the fast speech
events being studied are sufficiently variable at the temporal scale
captured by fMRI. For example, although the phoneme counts in
speech are high, in a given TR therewill be a small number of counts of
any particular phoneme or diphone, etc. Thus, in order to have tem-
porally sparse events in the BOLD signal, the sensitivity of a single
voxel must be sufficiently high as to only be responsive to a small
number of phonemic units. The threshold of sensitivity is determined
by the signal to noise ratio (SNR) and the data size. It is also a function
of the spatial resolution of the fMRI34,35.

Another key finding from this study is that two principal regions
where the phonemic/lexical representation to semantic meaning
transition occurs were identified: a medial-lateral gradient in the LTC
and an inferior-superior gradient in the IPFC around IFS. In the LTC, the
phonemic/lexical representation dominates in the more medial parts
around the STS, while the semantic representation dominates in the
more lateral areas along ITS. In our study, the phonemic/lexical LTC
area includes the posterior medial temporal gyrus (pMTG) and the
posterior part of the inferior temporal sulcus (pITS). These regions
have been assigned as a corephonological to lexical interface in a large
body of research based on clinical, neurophysiological and imaging
research (reviewed in14). While our results and conclusions are con-
sistent with that published work, we also found that the posterior LTC
extends into the ventral and posterior area of the IPL making a larger
continuous region of phonemic/lexical representation to semantics
transition. On the one hand, the junction of the temporal and the
parietal cortex (in particular the regions that include the supramar-
ginal gyrus and angular gyrus, that together are known as Wernicke’s
area) has been extensively implied in speech processing. For example,
it is known to be involved in categorical phoneme perception36 and
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more generally in auditory to motor integration37. On the other hand,
the posterior IPL had not been identified previously as a region
involved in the transition from phonemic/lexical representations to
semantics. It has, however, been identified as a core region where
visual representations are transformed into visual objects with
semantic meaning38. Similarly, it is a region of transition between a
visual representation of the letters inwritten text to themeaning of the
words in the text5. The ventral and posterior IPL therefore appears to
be implicated in the extraction of meaning from sensory stimulus
irrespective of the modality. For the speech sound to semantic
meaning transformation, it remains to be seenwhether the ventral and
posterior IPL serves a different function as the neighboring region in
the temporal cortex. For example, one could hypothesize that the
subregion in the temporal cortex specializes in the phonemic/lexical to
meaning transformation supported by linguistic priors, and that the
subregion in the parietal cortex specializes in the phonemic/lexical to
meaning transformation by engaging the visual imagery that can be
elicited by listening to narrated speech stories.

In the inferior frontal cortex, we found an inferior-superior gra-
dientwith a dominant phonemic/lexical representation around IFS and
adominant representation for semantics along theMFG.Thisfinding is
also in accordance with prior studies. IPFC is known to play a sig-
nificant role not only in speech related sensori-motor integration but
also in phonological processing, in particular when it involves analyses
requiring segmentation based on lexical features26,39. In non-humates
primates, high-level auditory neurons in IPFC have also been shown to
respond categorically to species specific vocalizations according to
their behavioral meaning40.

In summary, by investigating phonemic segmentation in long
fMRI recording sessions obtained while subjects listened to enga-
ging narrative speech, two large regions involved in the repre-
sentation of phonemic and lexical features were described: one in
the superior and lateral temporal cortex and ventral/dorsal parietal
cortex and a second one in the IPFC. In both regions phonemic
features beyond those found in short words increase predictive
power of encoding models. It indicates phonemic and lexical pro-
cessing may be intertwined. In both LTC and IPFC, a systematic
gradient in the relative dominance in phonemic/lexical versus
semantic representation was also observed. The actual potential
distinct roles of these two large cortical networks, or of sub-
networks within these two large networks, in phonemic processing
and in the phonemic/lexical to semantic transformation remain
poorly understood. We also demonstrated here that fMRI analyses
could be leveraged to study cortical speech processing, even those
occurring at time scales that are faster than the temporal resolution
of the BOLD signal. Thus, further exploring the predictive power of
more complex VMs applied to fMRI data could allow for a finer
functional parcellation of phonemic/lexical specific areas. For
example, to gain further insights on networks dedicated to word
segmentation, one could test the additional predictive power of
phonemic based VM that also take into account word segmentation
expectations based on linguistic context assessed at multiple time-
scales10,16,26,41,42. Similarly, distinct roles for the subnetworks involved
in phonemic/lexical to semantic transitions could also be tested. For
example, linguistic priors that play a role in predictingmeaning from
the beginning of sentences could also be included as features in
semantic based VMs43. Lastly, VMs could also be used to explore the
speech representations of bilingual or multilingual subjects listen-
ing to stories in multiple languages including some that subjects do
not understand. Such experiments would allow researchers to fur-
ther distinguish phonemic segmentation and identification that
occurs independently of understanding, or that might be common
across multiple languages. These analyses would therefore be useful
to also more clearly delineate the purely phonemic regions from
those implicated in lexical retrieval, if such regions exist.

Methods
Participants
Structural and functional brain data were collected from seven male
subjects (S1: age 26, S2: age 31, S5: age 30, S6: age 25, S7: age 36, S9: age
24, S10: age 24), and four female subjects (S3: age 28, S4: age 25, S8: age
24, S11: 31). Each subject’s handedness was evaluated by the Edinburgh
handedness inventory44. All subjects were healthy and hadno reported
hearing problems. The use of human subjects in this study was
approved by the UC Berkeley Committee for the Protection of Human
Subjects. A written statement of informed consent has been obtained
from each subject.

Stimuli
The stimuli in these experiments were pre-recorded stories from the
Public Radio Exchange (PRX) radio show “The Moth Radio Hour”,
which has been used in previous studies of our lab3–5. These sounds
have been annotated for their word and phonetic content. They are
engaging stories that capture the attention of the subjects. The scan-
ning sessions lasted approximately 2.5 h and included time needed to
play the audio/visual stimuli used as generic localizers and two one-
hour sessions during which the subjects listened to Moth stories.

The stimuli were split into separate model estimation and model
validation sets. Themodel estimation stimulus-set consisted of ten 10-
to 15-min stories played once each. The length of each scan was tai-
lored to the story and also included 10 s of silence both before and
after the story. Each subject heard the same 10 stories, 5 of which were
told by male speakers and 5 by female speakers. The model validation
stimulus-set consisted of a single 10-min story told by a female speaker
that was played twice for each subject in order to estimate voxel
response reliability and noise ceiling. This resulted in 3737 time points
(sampled at TR) for the training dataset and 291 time points for the
validation dataset.

Auditory stimuli were played over Sensimetrics S14 in-ear piezo-
electric headphones (Sensimetrics MA, USA). These headphones pro-
vide both high audio fidelity and some attenuation of scanner noise. A
Berhinger Ultra-Curve Pro hardware parametric equalizer was used to
flatten the frequency response of the headphones (Berhinger, Las
Vegas, USA). The sampling rate of the stimuli in their digitized form
was 44.1 kHz and the sounds were not filtered before presentation.
Thus, the potential frequency bandwidth of the sound stimuli was
limited by the frequency response of the headphones from 100Hz to
10 kHz. The sounds were presented at comfortable listening levels.
Stories were manually transcribed and converted into separate word
and phoneme representations (see3,4).

MRI data collection and preprocessing
Structural MRI data and blood oxygen level dependent (BOLD) fMRI
responses from each subject were obtained while they listened to
approximately 2 h and 20min of natural stories. For nine of the sub-
jects, these data were collected during two separate scanning sessions
that lasted no more than 2 h each. For two of the subjects (S1 and S5)
the validation data (two repetitions of a single story) were collected in
a third, separate session. MRI data were collected on a 3T Siemens TIM
Trio scanner at the UC Berkeley Brain Imaging Center, using a 32-
channel Siemens volume coil. Functional scans were collected using a
gradient echo-EPI sequence with repetition time (TR) = 2.0045 s, echo
time (TE) = 31ms, flip angle = 70degrees, voxel size = 2.24 × 2.24 × 4.1
mm,matrix size = 100 × 100, and field of view = 224 × 224mm. 32 axial
slices were prescribed to cover the entire cortex. A custom-modified
bipolar water excitation radiofrequency (RF) pulse was used to avoid
signals from fat tissue. Anatomical data were collected using a T1-
weighted MP-RAGE45 sequence on the same 3T scanner.

Each functional runwasmotion-corrected using the FMRIB Linear
Image Registration Tool (FLIRT) from FSL 4.246. All volumes in the run
were then averaged to obtain a high quality template volume. FLIRT
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was also used to automatically align the template volume for each run
to the overall template, which was chosen to be the template for the
first functional run for each subject. The overall template is obtained
within each participant over all runs. These automatic alignments were
manually checked and adjusted for accuracy. The cross-run transfor-
mation matrix was then concatenated to the motion-correction
transformation matrices obtained using MCFLIRT, and the con-
catenated transformation was used to resample the original data
directly into the overall template space. This overall template space is
also obtained within each participant across all runs. Low-frequency
voxel response drift was identified using a 2nd order Savitsky-Golay
filter with a 120-s window, and this was subtracted from the signal.
After removing this time-varying mean, the response was scaled to
have unit variance (i.e. z-scored). Structural and functional MRI were
combined to generate functional anatomical maps that included
localizers for known regions of interests (ROIs). The method used to
determine these ROIs is explained in detail in3.

Feature space and model construction
In order to localize the phonemic brain regions, to investigate pho-
nemic segmentation and the phoneme to word/meaning transitions,
we constructed six distinct feature spaces: time-varying power spec-
trum, phoneme count, single phoneme, diphone, triphone, and
semantic features.

The time-varying power spectrumwas obtained by estimating the
power for 2-s segments of the sound signal between 25 Hz and 15 kHz,
in 33.5 Hz bands (number of frequency bands = 448), using the classic
Welch method for spectral estimation density as we have done
previously3.

The phonemes rate features consisted of phonemes’ counts per
TR. The time-varying power spectrum and the number of phonemes
were combined to make the baseline feature space (number of fea-
tures = 448 + 1 = 449). The baseline feature space quantifies the pre-
sence or absence of sounds and speech sounds. As we were interested
in brain regions that process phoneme identity and meaning, the
fraction of the BOLD response explained by the baseline feature space
was analyzed separately and then subtracted.

The single phoneme feature space is composed of a binary vector
encoding the presence or absence of 15 consonants and 24 vowels of
English that we generated based on the CMU pronouncing
dictionary47. Although the numbers of all possible diphones
(392 = 1521) and triphones (443 = 59319) are large, English words utilize
only a subset of all possible combinations. For the stories used in this
study, we found 835 diphones and 2677 triphones. When we added
combinations found in the larger IPhOD data set, we obtained alto-
gether 858 possible diphones and 4841 possible tri-phones19. For
diphone and triphone feature space, they are composed of one-hot
code encoding the presence or absence of all possible diphones or
triphones. In semantic feature space, each word is represented as a
985-dimensional vector based on word co-occurrence statistics with
the 985 basis words fromWikipedia’s “List of 1000 Basic Words” (3,38).
All the feature vectors were downsampled to the TR using Lanczos
filtering (Fig. 1).

Voxelwise model fitting and validation
Based on these feature spaces, we created different linear encoding
models (linearized regression) in order to predict the time-varying
BOLD response of each voxel of each subject from the time varying
stimulus (Fig. 1). We have called this approach voxelwise modeling
(VM). First, we constructed a baseline VM that used spectrum power
and phoneme count as regressors (XB∈Rnt×449) to predict the BOLD
response (Y∈Rnv×nt), where nt is the number of time points (nt = 3737)
and nv is the number of voxels (varies across subjects; range:
73, 023 − 92, 970). We then subtracted this prediction from the mea-
suredBOLD response toobtain a response residual (Yres∈Rnv×nt) before

fitting VMs based on phonemic and semantic identities. Subtracting
the prediction from this baseline VM is needed in order to distinguish
variance in the BOLD response that is simply due to the presence
versus absence of phonemes or words from the variance that is
dependent on the identity of phonemic and semantic features. Sec-
ond, one joint phonemicmodel, using single phonemes, diphones and
triphones features (X1+2+3∈Rnt×5738) as regressors, was fitted to predict
the BOLD response residual, Yres. Finally, the phoneme-semantic VM
was obtained by using all three phonemic features with semantic fea-
tures (X1+2+3+4∈Rnt×6723). Before fitting the VM weights (also known as
model coefficients in the context of linear regression), the regressors X
and the BOLD response Y were z-scored. BOLD response was z-scored
separately for each story to control for the random effect of the story.

In order to account for the temporal integration time constants of
both the neural processing and the BOLD response, our linear models
predict the BOLD response at time t from signal features evaluated in
four time windows of 2 s each and starting at t − 2 s, t − 4 s, t − 6 s and
t − 8 s. This is accomplished by concatenating feature vectors that had
been delayed by 2 s, 4 s, 6 s, and 8 s. This yields 1796 features
(448 spectrum power × 4 + 1 phoneme count × 4) for the Acoustic
Baseline VM, 22,952 features (39 phonemes × 4 + 858 diphones × 4 +
4841 triphones × 4) for the Phonemic VM, and 26,892 features (39
phonemes × 4 + 858 diphones × 4 + 4841 triphones × 4 + 985 words ×
4) for the Phonemic-Semantic VM.

Due to the relatively large number of features relative to nt, we
used regularized regression techniques to estimate the VM weights to
prevent overfitting. Regularization was achieved using Tikhonov
regression with different levels of regularization used for different
feature spaces and delays for each voxel and each subject. Along the
spatial dimension (features), a different regularization hyperpara-
meter was used for each feature space. For example, all features
belonging to the single phoneme feature space would shrink accord-
ing to λ1 (the regularization hyperparameter corresponding to the
inverse variance of the Gaussian prior), while all features belonging to
the diphones would shrink according to λ2

3,15,48. We have called this
type of regularization banded ridge regression because the diagonal
covariance matrix that characterized the Gaussian prior has bands
corresponding to the equal values of for all features belonging to the
same feature space. In addition to the regularization along the spatial
dimension, our regularization procedure also acted along the tem-
poral dimension (the features in the four delay periods). Asmentioned
in the previous paragraph, the weights along the temporal dimension
include the neural integration time and the time course of the hemo-
dynamic response. As part of the regularization procedure, one can
capture the expected effect due to the hemodynamic response by
using a hemodynamic response function (HRF) temporal prior. This
temporal prior was fixed and effectively enforces different levels of
regularization for different time delays. An efficient analytical solution
for banded ridge regression was implemented using the kernel
method as described in15,48.

For each feature space and each voxel, we tested 10 possible
regularization hyperparameters, log spaced between 102 hyperpara-
meters for the baseline VM, 103 for the phonemic VM and 104 for the
phoneme-semantic VM. This hyperparameter search was performed
for each voxel of each subject. The optimal hyperparameter was found
by maximizing the cross-validated coefficient of determination (R2)
using a 10 fold cross-validation procedure on the training data set (see
below). In order to prevent overfitting, these optimal hyperparameters
were tested on a separate validation data set.

Finally to quantify the goodness of fit of the VMs, the fitted VMs
were used to predict BOLD responses to a separate story that had not
been used for hyperparameter optimization mentioned above and
model fitting. Prediction performance was then estimated from the R2

calculated between predicted and actual BOLD responses for each
voxel over the 291 time points for this validation data.
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Variance partitioning
In order to quantify the variance and localize the cortical regions
uniquely explained by individual feature spaces and any combination
of feature spaces, we performed a variancepartitioning procedure.We
first fitted a joint phonemic model with all phonemic features (single
phonemes, diphones and triphones)3. Then, we used the hyperpara-
meters (to the optimal shrinkage) obtained from this joint phonemic
model of each block of features in the banded regression so that the
same sub space of features obtained by the ridge is used in all models.
We computed the variance of seven possible partitions: the unique
variance of each feature and all the possible combinations of these
features (single phonemes + diphones, diphones + triphones, single
phonemes + triphone, single phonemes + diphones + triphones).
Afterwards, we performed a variance correction on R2 that is used to
eliminate biases in the R2 estimation that could lead to nonsensical
results.

In a separate analysis, we examined the contribution of distinct
types of diphones features. First, we separated diphone into three
categories: diphones that are short words (e.g. “M.AY” as word “my”),
diphones that are at the beginning ofwords (e.g. “AE.N” inword “and”),
and all the other diphones.We then estimated the contribution of each
diphone category to the prediction by deleting the diphones that did
not belong to the category being considered;morepreciselywe set the
contribution to the diphone feature vector from the out-of-
considered-category diphones to zero. With this procedure, we divi-
ded the predicted signal obtained from the diphones into three com-
ponents, one obtained for each mutually exclusive diphone category.

Definition of ROIs
Regions of interests including auditory cortex broadly defined (AC),
Broca’s area, and ventral speech premotor area (sPMv) were defined
based on standard functional localizer scans. Voxels that were
responsive when the subject listened to 10 repetitions of a one-min
auditory stimulus with 20-s segments of music, speech and natural
sound are considered to belong to AC. AC thus includes both primary
and secondary auditory cortical areas. When the subject continuously
subvocalizes self-generated sentences, the active voxels located at the
triangular part of the inferior frontal gyrus are determined as Broca’s
area and voxels located at the premotor cortex as sPMv. The repeat-
ability of the voxels’ response was calculated as an F statistic given by
the ratio of the total variance responses over the residual variance.

Other ROIs were defined based on speech processing relevant
anatomical landmarks4,49–52 obtained from the structural MRI scan. In
particular, the inferior prefrontal cortex (IPFC) contains cortical
regions ventral to inferior frontal sulcus (IFS),while superior prefrontal
cortex (SPFC) contains regions dorsal to superior frontal sulcus (SFS).
The peak of the superior parietal gyrus separates the lateral parietal
cortex (LPC) from medial parietal cortex (MPC). LPC contains supra-
marginal gyrus (SMG) and angular gyrus (AG). The peak of the inferior
temporal gyrus is used to separate the lateral temporal cortex (LTC)
from ventral temporal cortex (VTC).

Statistical analyses
The statistical significance of the cross-validated coefficient of deter-
mination R2 was estimated using a permutation analysis. First, We
obtained a set of regularization hyperparameters from fitting the
phoneme-semantic VM (using single phoneme, diphone, triphone and
semantic features) for each subject. Then, a permuted R2 for each
model of each subject was obtained by refitting the model using this
set of hyperparameters and the shuffled regressors of each feature
space within the model. This process was repeated 1000 times to
generate the null distribution of cross-validated R2 for each voxel of
each subject. Based on the values of this null distribution, we used
variable thresholds yielding a significance level of 1% corrected using

the False Discovery Rate (FDR) procedure53 to determine statistical
significance.

The raw R2 values, or the partial R2 raw values obtained from
variance partitioning, obtained for each voxel and each subject were
then aggregated to make inferences about reliable patterns of corre-
lations between features in the speech stimuli and BOLD activity in
specific brain regions. Alternatively, we also used a winner-take-all
approach assigning the feature space that yielded the highest predic-
tion in a specific comparison (e.g. single phoneme, diphone, triphone)
as a label to each voxel. The number of voxels for each label and each
ROI was then taken as the measure of the effect (Supplementary
Table 2 and 5).

In such aggregations, it is incorrect to simply consider all voxels
found in a given ROI for all subjects as independent observations.
Because of pseudo-replication, in such erroneous approach, an effect
(e.g. phonemic based R2 > semantic based R2) found in one single
subject with many voxels but not in the other subjects could yield a
false result of statistical significance with a grossly deflated p-value.
More conservatively, one could first average the data for each subject
(e.g. estimating the average “phonemic based R2” - “semantic based R2”

for each subject) and perform statistical inference on those subject-
averaged values. Although this approach is clearly more correct and
conservative, it also gives the same weight to a subject with a small
number of significant voxels in the ROI than to a subject that has a
higher number of significant voxels in the sameROI. Amoreprincipled
solution is therefore to explicitly model the statistical dependence of
the raw voxelwise R2 or counts in each subject. For this purpose, we
used statistical mixed effect models with the subject as the random
factor. Inmixed effectmodels, the penalty for the random effect in the
overall likelihood that is being maximized for a subject with a smaller
number of significant voxels is smaller than for a subject with more
significant voxels. In this manner, a likelihood based weighting of the
subject data is performed.

In this paper, we used this mixed-effect statistical modeling when
reporting the effect sizes and statistical analyses in the text and figures
in the main section of the paper. We also repeated all statistical ana-
lyses by first performing averages for each subject and then applying
classical statistical inference tests on those data. The per-subject ana-
lyses and statistics are found in supplementary tables. The statistical
results, effect sizes and conclusions obtained using these two
approaches were practically identical.

For the statistical analyses presented in the main text, linear
mixed-effects statistical models with subjects as random effect (R:
lmer) were used to compare the raw R2 for different phonemic and
semantic based VMs across in PAC, STG, STS, LTC, Broca’s area, and
the entire cortex and to test for lateralization effects. Generalized
mixed-effects statistical models (R:glmer) with binomial distribu-
tions were used to compare the fraction of best explained voxels by
the semantic feature based VMs relative to the phonemic feature
space VMs across ROIs. Multinomial mixed-effects statistical models
(R: mblogit) were used to estimate the fraction of best explained
voxels by the single phoneme vs diphone or triphone feature based
VM while taking into account the variability across subjects (the
random effect). CustomR codewas written to calculate the expected
likelihood of the null model corresponding to a fixed effect of equal
probability (13) and a random effect yielding a saturated statistical
model that predicts the actual empirical probability found for each
subject. Likelihood ratio tests were then performed to estimate
whether the likelihood of the mixed-effects multinomial statistical
model with fitted fixed effects (i.e. non zero intercepts) was greater
than the likelihood of the null model. The standard errors in the
mixed-effects model were estimated by bootstrapping over subjects.
The bootstrap was performed using the emmeans R package for
glmer and with custom code for mblogit.
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We used Cohen’s d0 to report the effect sizes of the difference of
the mean prediction performance between phonemic and semantic
based VMmodel, as well as themean prediction performance among
single phoneme, diphone and triphone features. In order to obtain
the dprime of the phonemic and semantic based VM model, we first
used a mixed-effect statistical model with subject as random factor
and models as fixed factor. The estimated standard deviation of the
random effect of this mixed-effect model captures the variance in
mean prediction performance found across subjects, σ2

SUB; the
coefficients of the fixed effects of this model captures the difference
in the mean prediction performance between VM models based on
different features. For example μS − μP where μS is the mean predic-
tion performance for semantic based VM and μP is the mean pre-
diction performance for the phonemic based VM, and the standard
error of these same coefficients gives the standard error in this same
mean prediction difference, σSE(S−P), the effect size (d0) was then
estimated by dividing this difference in average performances by the
standard deviation, both estimated in the mixed effect model across
subjects:

d0 =
ðμS � μPÞ
σSUB

ð1Þ

The standard error of the d0 was calculated from the standard
error for the difference in mean predictions:

SEðd0Þ= σSEðS�PÞ
σSUB

ð2Þ

In order to obtain the average dprime for diphones relative to single
phonemes and diphones VM predictions (d0

phn), we first calculated the
dprime of the diphone versus triphone (d0

DiTri) and the dprime of the
single phoneme versus single phoneme (d0

SinDi). Then, we simply
averaged these two dprimes after correcting for the sign inversion.

d0
phn =

ðd0
DiTri � d0

SinDiÞ
2

ð3Þ

For the standard deviation of the dprime for diphone VM pre-
dictions (SEðd0

phnÞ), we first computed the sum of the square of the
standard error of the dprime of the diphone versus triphone
(SEðd0

DiTriÞ) and diphone versus single phoneme (SEðd0
SinDiÞ), and then

we calculated the half of the square root of this sum.

SEðd0
phnÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEðd0
DiTriÞ

2
+ SEðd0

SinDiÞ
2

q

2
ð4Þ

In addition, we also reported a d’ for each subject in Supple-
mentary Table 1 and 4. It was calculated as the difference between the
means of the average prediction performance between the phonemic
and semantic based VMmodel for each subject divided by the pooled
standard deviation. Themean and SE of those per-subject dprimes are
summarized in the table as well.

To quantify the difference in the number of voxels that are best
explained by phonemic or semantic based VMs, the log of the odds (or
logit) that a voxel is labeled as “semantic” (vs “phonemic”) was used to
calculate the the effect size:

l = log
pS

1� pS

� �

ð5Þ

Similarly to compare the number of voxels that are best explained
by single phonemes, diphones or triphones, the probability that a
voxel is labeled as any of the phonemic label was estimated using a
reference in the multinomial statistical model. Here we took the

diphone as the reference and report negative logits, for example for
the probability of single phonemes vs diphones:

l = � log
pS

pD

� �

ð6Þ

The probability values are obtained from mixed effect binomial
(semantic versus phonemic) or multinomial (single phonemes vs
diphone vs triphone) statistical models in themain text and, just as for
d0, this calculation is repeated with the “equal weight" per subject and
shown in the supplementary tables for Supplementary Table 2 and 5.

Simulation: feasibility and limitations
In this study we are proposing to use the VM approach to predict
BOLD activity based on the segmentation of the speech stream
occuring at the level of small phonemic units: single phonemes,
diphones and triphones. The temporal resolution of the BOLD signal
is known to be particularly slow due to the sluggish hemodynamic
response functionwhose power is concentrated below0.2Hz54. Here,
we investigate the processing of phonemic units which have rates of
up to 20 Hz in spoken speech. Stated in this manner, the time scales
of phonemes and the BOLD response are mismatched by a factor of
100. Thus, can we prove that our approach could in fact measure
correlations between specific phoneme identity (or their combina-
tion) and BOLD activity?

As an initial step, one can gain some insight on the feasibility of
the approach by examining the signals generated at TR rates for
single phonemes or combinations as shown in Fig. 1. Indeed,
although the phoneme counts in speech are high, in a given TR there
will be a small number of any particular phoneme. One finds mostly
counts of zero, one, two or three (and consequently, even smaller
numbers of particular diphones and triphones).Moreover, this count
changes from TR to TR yielding a clear signal. Thus, as long as voxels
are sufficiently sensitive, in the sense of respondingmore strongly to
a small number of phonemes, one should be able to detect this signal
in the BOLD response given sufficiently long recording times. To
quantify what is “sufficiently sensitive”, we thus performed a series of
simulations with realistic signal to noise ratio (SNRs) and data size
(corresponding to our 2 hour recording time) to evaluate the
recovered VM coefficients and compare them to their actual values
used to generate the simulated data. The simulation results are based
on the SNR values of average responsive voxels (SNR = 1) for subjects
with overall high SNR across all voxels (see Supplementary Fig 16).
Thus, we are simulating the average case scenario in order to assess
the limits of what we would be able to detect inn terms of phonemic
feature sensitivity given our data size and for the most responsive
voxels.

First, we examined whether our approach could distinguish
between voxels sensitive to single phonemes versus those sensitive for
diphones, or combinations of single phonemes and diphones. The
single phoneme-only simulated voxel was by construction sensitive to
three randomly chosen distinct phonemes with equal weights. Simi-
larly, the diphone-only simulated voxel was sensitive to three ran-
domly chosen diphones. The simulated voxel that was sensitive to the
combination of single phonemes and diphones had a BOLD signal that
was simply the sum of the BOLD signal for the single phoneme and the
diphone model voxel. To generate a realistic BOLD signal, the signals
obtained from the convolution were low-passed filtered below 0.1 Hz
and Gaussian white-noise was added to fit the SNR of one of a highly
responsive voxel. The voxel SNR was estimated by calculating the
coherence between two repeats of the same speech stream in the
validation data set55. We repeated this procedure 30 times by resam-
pling among single phonemes and diphones to generate a distribution
of simulated results. As shown in Supplementary Fig 3A, for the sti-
mulus duration of 3737 TRs (around 2 hours), we were able to recover
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the VM coefficients and expected values for R2. Thus, for average
sensitive voxels, our procedure could distinguish BOLD responses
reflecting single-phonemes-only sensitivity, diphone-only sensitivity
and responses that resulted from sensitivity to the mixtures of parti-
cular single phoneme and diphone occurrences.

Next, we examined the effect of voxel sensitivity on our ability to
determine whether representations based on phoneme identities
would yield better results than those based on just the phoneme
count. With the decrease of the sensitivity of putative voxels (in the
sense that it responds to a growing number of single phonemes or
diphones), we may fail to differentiate between VMs based on pho-
nemic identity versus phonemic rate. As shown in Supplementary
Fig 3B, as a voxel’s sensitivity decreases (i.e. as it becomes tuned to a
larger number of phonemic identities), the predictive power of the
VM based on phoneme count increases and approaches that of the
VMs based on phoneme identity. The roughly equal prediction per-
formance between the phoneme count and identity based VMs was
obtained around 10 single phonemes for the single phoneme based
VM and 100 diphones for diphone based VM. Note that the observed
decrease of predicted performance of the identity based VMs (green
and cyan lines) for low sensitivity voxels is a result of overfitting. Also,
the suboptimal performance of the diphone based VM for very sen-
sitive putative voxels (i.e. sensitive for < 10 diphones) is a result of the
sparsity of that signal. Particular diphone combinations can occur
with low frequency in 2 hours yielding poor estimations of the VM
coefficients.

Finally, we investigated the number of phonemic combinations
that could be recovered from our dataset. For this purpose, we
generated fake data for three model voxels: one voxel was sensitive
to the phoneme count, one voxel sensitive to phonemic combina-
tions of increasing order (i.e. single phoneme, diphone, triphone,
tetraphone, pentaphone, and hexaphone) and one voxel to the
mixture of both. As in our first stimulation, the BOLD signal for the
phonemic combinationwas obtained by randomly assigning weights
of three features (i.e. three particular single phonemes, or diphones,
etc). Here, taking into account the increasing number of features in
each VM, the sampling was repeated 30 times for single phoneme
simulation, 50 times for diphones, and 150 times for triphone, tet-
raphone, pentaphone and hexaphone based VMs to obtain the
standard deviation of the prediction performance. As shown in
Supplementary Fig 4, we were able to recover the VM coefficients
and expected values for R2 of single, diphone and triphone based
VMs but unable to recover that of tetraphone, pentaphone and
hexaphone based VMs. We also more directly assessed the effect of
the data size by comparing the results we obtained for the diphone
vs triphone based VMmodels for a single subject for which we had 5
(5 h) scanning sessions of Moth Radio Hour stimulus. Although the
additional predictive power of the triphone based VM relative to the
diphone based VM increased slightly, the absolute magnitude of
the relative predictive power of the two models, including
the dominance of the diphone representation, remained (Supple-
mentary Fig. 15).

Therefore based on these three simulations and on the analysis of
one single subject for which we had additional data, with around five
hours of narrated speech stimulus (Supplementary Fig. 15), our
approach should allow us to identify voxels that show sensitivity for
sets of phonemic units and differentiate brain regions that are sensi-
tive to the identity of single phonemes, diphones or triphones as long
as they exhibit sufficient sensitivity (approximately for fewer than 10
particular single phonemes and 100 particular diphones). Increasing
the duration of the data collectionmight allow one to assess sensitivity
for higher order combinations of phonemes including entirewords, or
to detect voxels that are sensitive to phoneme identity with lower
sensitivity, or to recover voxels sensitive to diphones or triphoneswith
very high sensitivity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw fMRI data has been made available on https://gin.g-node.org/
gallantlab/story_listening. All data other than anatomical brain images
has been be shared, as there is concern that anatomical images could
violate subject privacy. However, we have also provided matrices that
map from volumetric data to cortical flatmaps for visualization pur-
poses. Data generated in this study for each figure are provided in the
source data in this repository as well. Source data are provided with
this paper.

Code availability
Custom code used to reproduce the results is available at https://
github.com/theunissenlab/phoneme_segmentation.
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